summaryrefslogtreecommitdiffstats
path: root/modules-available/bootstrap_datepicker
Commit message (Expand)AuthorAgeFilesLines
* i18n for bootstrap_datepicker.Christian Klinger2016-07-0572-7/+1175
* minimal changesChristian Klinger2016-07-051-1/+8
* Added date and time pickers.Christian Klinger2016-06-151-1/+3
* added bootstrap module.Christian Klinger2016-06-103-0/+695
class='logsubject'>Merge tag 'kvmarm-fixes-for-5.3-2' of ↵Paolo Bonzini2019-08-099-24/+88 |\ | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm fixes for 5.3, take #2 - Fix our system register reset so that we stop writing non-sensical values to them, and track which registers get reset instead. - Sync VMCR back from the GIC on WFI so that KVM has an exact vue of PMR. - Reevaluate state of HW-mapped, level triggered interrupts on enable. | * KVM: arm/arm64: vgic: Reevaluate level sensitive interrupts on enableAlexandru Elisei2019-08-091-0/+16 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A HW mapped level sensitive interrupt asserted by a device will not be put into the ap_list if it is disabled at the VGIC level. When it is enabled again, it will be inserted into the ap_list and written to a list register on guest entry regardless of the state of the device. We could argue that this can also happen on real hardware, when the command to enable the interrupt reached the GIC before the device had the chance to de-assert the interrupt signal; however, we emulate the distributor and redistributors in software and we can do better than that. Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> | * KVM: arm: Don't write junk to CP15 registers on resetMarc Zyngier2019-08-091-8/+15 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | At the moment, the way we reset CP15 registers is mildly insane: We write junk to them, call the reset functions, and then check that we have something else in them. The "fun" thing is that this can happen while the guest is running (PSCI, for example). If anything in KVM has to evaluate the state of a CP15 register while junk is in there, bad thing may happen. Let's stop doing that. Instead, we track that we have called a reset function for that register, and assume that the reset function has done something. In the end, the very need of this reset check is pretty dubious, as it doesn't check everything (a lot of the CP15 reg leave outside of the cp15_regs[] array). It may well be axed in the near future. Signed-off-by: Marc Zyngier <maz@kernel.org> | * KVM: arm64: Don't write junk to sysregs on resetMarc Zyngier2019-08-091-14/+18 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | At the moment, the way we reset system registers is mildly insane: We write junk to them, call the reset functions, and then check that we have something else in them. The "fun" thing is that this can happen while the guest is running (PSCI, for example). If anything in KVM has to evaluate the state of a system register while junk is in there, bad thing may happen. Let's stop doing that. Instead, we track that we have called a reset function for that register, and assume that the reset function has done something. This requires fixing a couple of sysreg refinition in the trap table. In the end, the very need of this reset check is pretty dubious, as it doesn't check everything (a lot of the sysregs leave outside of the sys_regs[] array). It may well be axed in the near future. Tested-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org> | * KVM: arm/arm64: Sync ICH_VMCR_EL2 back when about to blockMarc Zyngier2019-08-056-2/+39 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since commit commit 328e56647944 ("KVM: arm/arm64: vgic: Defer touching GICH_VMCR to vcpu_load/put"), we leave ICH_VMCR_EL2 (or its GICv2 equivalent) loaded as long as we can, only syncing it back when we're scheduled out. There is a small snag with that though: kvm_vgic_vcpu_pending_irq(), which is indirectly called from kvm_vcpu_check_block(), needs to evaluate the guest's view of ICC_PMR_EL1. At the point were we call kvm_vcpu_check_block(), the vcpu is still loaded, and whatever changes to PMR is not visible in memory until we do a vcpu_put(). Things go really south if the guest does the following: mov x0, #0 // or any small value masking interrupts msr ICC_PMR_EL1, x0 [vcpu preempted, then rescheduled, VMCR sampled] mov x0, #ff // allow all interrupts msr ICC_PMR_EL1, x0 wfi // traps to EL2, so samping of VMCR [interrupt arrives just after WFI] Here, the hypervisor's view of PMR is zero, while the guest has enabled its interrupts. kvm_vgic_vcpu_pending_irq() will then say that no interrupts are pending (despite an interrupt being received) and we'll block for no reason. If the guest doesn't have a periodic interrupt firing once it has blocked, it will stay there forever. To avoid this unfortuante situation, let's resync VMCR from kvm_arch_vcpu_blocking(), ensuring that a following kvm_vcpu_check_block() will observe the latest value of PMR. This has been found by booting an arm64 Linux guest with the pseudo NMI feature, and thus using interrupt priorities to mask interrupts instead of the usual PSTATE masking. Cc: stable@vger.kernel.org # 4.12 Fixes: 328e56647944 ("KVM: arm/arm64: vgic: Defer touching GICH_VMCR to vcpu_load/put") Signed-off-by: Marc Zyngier <maz@kernel.org> * | Merge tag 'kvmarm-fixes-for-5.3' of ↵Paolo Bonzini2019-08-09