1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
|
#include "cvt.h"
#ifdef __cplusplus
extern "C" {
#endif
/*
* Based on the cvt util:
* http://www.uruk.org/projects/cvt/cvt.c
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define CLOCK_STEP 0.25 /* Clock steps in MHz */
#define MARGIN_PERCENT 1.8 /* % of active vertical image */
#define H_SYNC_PER 8.0 /* sync % of horizontal image */
#define CELL_GRAN 8.4999 /* assumed character cell granularity */
#define CELL_GRAN_RND 8.0 /* assumed character cell granularity (round)*/
#define MIN_V_BPORCH 3.0 /* width of vsync in lines */
#define MIN_V_PORCH_RND 3.0 /* width of vsync in lines */
#define M 600.0 /* blanking formula gradient */
#define C 40.0 /* blanking formula offset */
#define K 128.0 /* blanking formula scaling factor */
#define J 20.0 /* blanking formula scaling factor */
/* Standard Timing Parameters */
#define MIN_VSYNC_BP 550.0 /* min time of vsync + back porch (us) */
#define H_SYNC_PERCENT 8.0 /* width of hsync as % of total line */
/* Reduced Blanking defines */
#define RB_MIN_V_BPORCH 6.0 /* lines */
#define RB_V_FPORCH 3.0 /* lines */
#define RB_MIN_V_BLANK 460.0 /* us */
#define RB_H_SYNC 32.0 /* pixels */
#define RB_H_BLANK 160.0 /* pixels */
/* C' and M' are part of the Blanking Duty Cycle computation */
#define C_PRIME (((C - J) * K/256.0) + J)
#define M_PRIME (K/256.0 * M)
/* NOP out prints */
#define print_value(...) (void)0
typedef struct __options
{
int x, y;
int reduced_blank, interlaced;
int xf86mode, fbmode;
float v_freq;
} options;
/*
* vert_refresh() - as defined by the CVT Timing Standard, compute the
* Stage 1 Parameters using the vertical refresh frequency. In other
* words: input a desired resolution and desired refresh rate, and
* output the CVT mode timings.
*
* XXX margin computations are implemented but not tested (nor used by
* XFree86 of fbset mode descriptions, from what I can tell).
*/
mode *vert_refresh (int h_pixels, int v_lines, float freq,
int interlaced, int reduced_blank, int margins)
{
float h_pixels_rnd;
float v_lines_rnd;
float v_field_rate_rqd;
float top_margin;
float bot_margin;
float interlace;
float h_period_est;
float v_sync_bp;
float total_v_lines;
float left_margin;
float right_margin;
float total_active_pixels;
float ideal_duty_cycle;
float h_blank;
float total_pixels;
float cur_duty_cycle;
float v_sync;
float v_sync_rnd, h_sync_rnd;
float h_back_porch, v_front_porch, h_front_porch;
float vbi_lines, act_vbi_lines, rb_min_vbi;
float act_pixel_freq, act_h_freq;
float act_field_rate, act_frame_rate;
char *aspect_ratio;
int stage;
mode *m = (mode*) malloc (sizeof (mode));
/* 1. Required Field Rate
*
* This is slightly different from the spreadsheet because we use
* a different result for interlaced video modes. Simplifies this
* to the input field rate.
*
* [V FIELD RATE RQD] = [I/P FREQ RQD]
*/
v_field_rate_rqd = freq;
print_value(1, "[V FIELD RATE RQD]", v_field_rate_rqd);
/* 2. Horizontal Pixels
*
* In order to give correct results, the number of horizontal
* pixels requested is first processed to ensure that it is divisible
* by the character size, by rounding it to the nearest character
* cell boundary.
*
* [H PIXELS RND] = ((ROUNDDOWN([H PIXELS]/[CELL GRAN RND],0))
* *[CELLGRAN RND])
*/
h_pixels_rnd = floor((float) h_pixels / CELL_GRAN_RND) * CELL_GRAN_RND;
print_value(2, "[H PIXELS RND]", h_pixels_rnd);
/* 2.5th Calculation, aspect_ratio & v_sync_rnd
*
* [ASPECT_RATIO] = IF(H_PIXELS_RND = CELL_GRAN_RND*ROUND((V_LINES*
* 4.0/3.0)/CELL_GRAN_RND),"4:3")
* etc...
* [V_SYNC] = [value from table based on aspect ratio]
* [V_SYNC_RND] = ROUND(V_SYNC,0) // Not needed in principle
*/
if (h_pixels_rnd == CELL_GRAN_RND * floor(((float)v_lines * 4.0 / 3.0)
/ CELL_GRAN_RND)) {
aspect_ratio = "4:3";
v_sync = 4;
} else if (h_pixels_rnd == CELL_GRAN_RND * floor(((float)v_lines * 16.0
/ 9.0) / CELL_GRAN_RND)) {
aspect_ratio = "16:9";
v_sync = 5;
} else if (h_pixels_rnd == CELL_GRAN_RND * floor(((float)v_lines * 16.0
/ 10.0) / CELL_GRAN_RND)) {
aspect_ratio = "16:10";
v_sync = 6;
} else if (h_pixels_rnd == CELL_GRAN_RND * floor(((float)v_lines * 5.0
/ 4.0) / CELL_GRAN_RND)) {
aspect_ratio = "5:4";
v_sync = 7;
} else if (h_pixels_rnd == CELL_GRAN_RND * floor(((float)v_lines * 15.0
/ 9.0) / CELL_GRAN_RND)) {
aspect_ratio = "15:9";
v_sync = 7;
} else {
/* Default case of unknown aspect ratio */
aspect_ratio = "Custom";
v_sync = 10;
}
v_sync_rnd = v_sync;
/*
* 3. Determine Left & Right Borders
*
* Calculate the margins on the left and right side.
*
* [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
* (ROUNDDOWN( ([H PIXELS RND] * [MARGIN%] / 100 /
* [CELL GRAN RND]),0)) * [CELL GRAN RND],
* 0))
* [RIGHT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
* (ROUNDDOWN( ([H PIXELS RND] * [MARGIN%] / 100 /
* [CELL GRAN RND]),0)) * [CELL GRAN RND],
* 0))
*/
left_margin = margins ?
floor(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN_RND)
* CELL_GRAN_RND : 0.0;
right_margin = left_margin;
print_value(3, "[LEFT MARGIN (PIXELS)]", left_margin);
print_value(3, "[RIGHT MARGIN (PIXELS)]", right_margin);
/* 4. Find total active pixels.
*
* Find total number of active pixels in image and left and right
* margins.
*
* [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] +
* [RIGHT MARGIN (PIXELS)]
*/
total_active_pixels = h_pixels_rnd + left_margin + right_margin;
print_value(4, "[TOTAL ACTIVE PIXELS]", total_active_pixels);
/* 5. Find number of lines per field.
*
* If interlace is requested, the number of vertical lines assumed
* by the calculation must be halved, as the computation calculates
* the number of vertical lines per field. In either case, the
* number of lines is rounded to the nearest integer.
*
* [V LINES RND] = IF([INT RQD?]="y", ROUNDDOWN([V LINES]/2,0),
* ROUNDDOWN([V LINES],0))
*/
v_lines_rnd = interlaced ?
floor((float) v_lines / 2.0) :
floor((float) v_lines);
print_value(5, "[V LINES RND]", v_lines_rnd);
/* 6. Find Top and Bottom margins.
*
* [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
* ROUNDDOWN(([MARGIN%]/100*[V LINES RND]),0),
* 0)
* [BOT MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
* ROUNDDOWN(([MARGIN%]/100*[V LINES RND]),0),
* 0)
*/
top_margin = margins ? floor(MARGIN_PERCENT / 100.0 * v_lines_rnd) : (0.0);
bot_margin = top_margin;
print_value(6, "[TOP MARGIN (LINES)]", top_margin);
print_value(6, "[BOT MARGIN (LINES)]", bot_margin);
/* 7. If interlace is required, then set variable [INTERLACE]=0.5:
*
* [INTERLACE]=(IF([INT RQD?]="y",0.5,0))
*/
interlace = interlaced ? 0.5 : 0.0;
print_value(7, "[INTERLACE]", interlace);
/*
* Here it diverges for "reduced blanking" or normal blanking modes.
*/
if (reduced_blank) {
h_blank = RB_H_BLANK;
/* 8. Estimate Horiz. Period (us).
*
* [H PERIOD EST] = ((1000000/V_FIELD_RATE_RQD)-RB_MIN_V_BLANK)/(V_LINES_RND+TOP_MARGIN+BOT_MARGIN)
*/
h_period_est = (1000000.0/v_field_rate_rqd - RB_MIN_V_BLANK)
/ (v_lines_rnd + top_margin + bot_margin);
print_value(8, "[H PERIOD EST]", h_period_est);
/* 9. Find number of lines in vertical blanking.
*
* [Actual VBI_LINES] = RB_MIN_V_BLANK/H_PERIOD_EST
* [VBI_LINES] = ROUNDDOWN(RB_MIN_V_BLANK/H_PERIOD_EST,0) + 1
*/
vbi_lines = RB_MIN_V_BLANK/h_period_est;
print_value(9, "[Actual VBI LINES]", vbi_lines);
vbi_lines = floor(vbi_lines) + 1.0;
print_value(9, "[VBI LINES]", vbi_lines);
/* 10. Check Vertical Blanking is sufficient.
*
* [RB MIN VBI] = RB_V_FPORCH+V_SYNC_RND+RB_MIN_V_BPORCH
* [ACT VBI LINES] = IF(VBI_LINES<RB_MIN_VBI,RB_MIN_VBI,VBI_LINES)
*/
rb_min_vbi = RB_V_FPORCH + v_sync_rnd + RB_MIN_V_BPORCH;
act_vbi_lines = (vbi_lines < rb_min_vbi) ? rb_min_vbi : vbi_lines;
print_value(10, "[Minimum VBI Lines]", rb_min_vbi);
print_value(10, "[ACT VBI LINES]", act_vbi_lines);
/* 11. Find total number of lines in vertical field.
*
* [TOTAL V LINES] = ACT_VBI_LINES+V_LINES_RND+TOP_MARGIN+BOT_MARGIN+INTERLACE
*/
total_v_lines = act_vbi_lines + v_lines_rnd + top_margin
+ bot_margin + interlace;
print_value(11, "[TOTAL V LINES]", total_v_lines);
/* 12. Find total number of pixels in a line (pixels).
*
* [TOTAL PIXELS] = RB_H_BLANK+TOTAL_ACTIVE_PIXELS
*/
total_pixels = total_active_pixels + RB_H_BLANK;
print_value(12, "[TOTAL PIXELS]", total_pixels);
/* 13. Find Pixel Clock Frequency (MHz).
*
* [Non-rounded PIXEL_FREQ] = V_FIELD_RATE_RQD*TOTAL_V_LINES*TOTAL_PIXELS/1000000
* [ACT PIXEL FREQ] = CLOCK_STEP * ROUND((V_FIELD_RATE_RQD*TOTAL_V_LINES*TOTAL_PIXELS/1000000)/CLOCK_STEP,0)
*/
act_pixel_freq = v_field_rate_rqd * total_v_lines
* total_pixels / 1000000.0;
print_value(13, "[Non-rounded PIXEL FREQ]", act_pixel_freq);
act_pixel_freq = CLOCK_STEP * floor(act_pixel_freq / CLOCK_STEP);
print_value(13, "[ACT PIXEL FREQ]", act_pixel_freq);
stage = 14;
} else { /* Normal Blanking */
/* 8. Estimate Horiz. Period (us).
*
* [H PERIOD EST] = ((1/V_FIELD_RATE_RQD)-MIN_VSYNC_BP/1000000)/(V_LINES_RND+(2*TOP_MARGIN)+MIN_V_PORCH_RND+INTERLACE)*1000000
*/
h_period_est = ((1/v_field_rate_rqd) - MIN_VSYNC_BP/1000000.0)
/ (v_lines_rnd + (2*top_margin) + MIN_V_PORCH_RND + interlace)
* 1000000.0;
print_value(8, "[H PERIOD EST]", h_period_est);
/* 9. Find number of lines in (SYNC + BACK PORCH).
*
* [Estimated V_SYNC_BP] = ROUNDDOWN((MIN_VSYNC_BP/H_PERIOD_EST),0)+1
* [Actual V_SYNC_BP] = MIN_VSYNC_BP/H_PERIOD_EST
* [V_SYNC_BP] = IF(Estimated V_SYNC_BP<(V_SYNC+MIN_V_BPORCH),
* V_SYNC+MIN_V_BPORCH,Estimated V_SYNC_BP)
*/
v_sync_bp = MIN_VSYNC_BP/h_period_est;
print_value(9, "[Actual V_SYNC_BP]", v_sync_bp);
v_sync_bp = floor(v_sync_bp) + 1;
print_value(9, "[Estimated V_SYNC_BP]", v_sync_bp);
v_sync_bp = (v_sync_bp < v_sync + MIN_V_BPORCH) ?
v_sync + MIN_V_BPORCH : v_sync_bp;
print_value(9, "[V_SYNC_BP]", v_sync_bp);
/* 10. Find number of lines in back porch (Lines).
*
* [Back porch] = V_SYNC_BP - V_SYNC_RND;
*/
print_value(10, "[Back porch]", v_sync_bp - v_sync_rnd);
/* 11. Find total number of lines in vertical field.
*
* [TOTAL V LINES] = V_LINES_RND+TOP_MARGIN+BOT_MARGIN
* +V_SYNC_BP+INTERLACE+MIN_V_PORCH_RND
*/
total_v_lines = v_lines_rnd + top_margin + bot_margin
+ v_sync_bp + interlace + MIN_V_PORCH_RND;
print_value(11, "[TOTAL V LINES]", total_v_lines);
/* 12. Find ideal blanking duty cycle from formula (%):
*
* [IDEAL DUTY CYCLE] = C_PRIME-(M_PRIME*H_PERIOD_EST/1000)
*/
ideal_duty_cycle = C_PRIME - (M_PRIME * h_period_est / 1000.0);
print_value(12, "[IDEAL DUTY CYCLE]", ideal_duty_cycle);
/* 13. Find blanking time to nearest cell (Pixels).
*
* [H BLANK] = IF(IDEAL_DUTY_CYCLE<20,(ROUNDDOWN((TOTAL_ACTIVE_PIXELS*20/(100-20)/(2*CELL_GRAN_RND)),0))*(2*CELL_GRAN_RND),(ROUNDDOWN((TOTAL_ACTIVE_PIXELS*IDEAL_DUTY_CYCLE/(100-IDEAL_DUTY_CYCLE)/(2*CELL_GRAN_RND)),0))*(2*CELL_GRAN_RND))
*/
cur_duty_cycle = (ideal_duty_cycle < 20.0) ? 20.0 : ideal_duty_cycle;
h_blank = floor((total_active_pixels * cur_duty_cycle/(100.0 - cur_duty_cycle)/(2.0*CELL_GRAN_RND))) * (2.0*CELL_GRAN_RND);
print_value(13, "[H BLANK]", h_blank);
/* 14. Find total number of pixels in a line (Pixels).
*
* [TOTAL PIXELS] = TOTAL_ACTIVE_PIXELS + H_BLANK
*/
total_pixels = total_active_pixels + h_blank;
print_value(14, "[TOTAL PIXELS]", total_pixels);
/* 15. Find pixel clock frequency (MHz).
*
* [Non-rounded PIXEL FREQ] = TOTAL_PIXELS / H_PERIOD_EST
* [ACT PIXEL FREQ] = CLOCK_STEP * ROUNDDOWN(
*/
act_pixel_freq = total_pixels / h_period_est;
print_value(15, "[Non-rounded PIXEL FREQ]", act_pixel_freq);
act_pixel_freq = CLOCK_STEP * floor(act_pixel_freq / CLOCK_STEP);
print_value(15, "[ACT PIXEL FREQ]", act_pixel_freq);
stage = 16;
}
/* 14/16. Find actual horizontal frequency (kHz)
*
* [ACT H FREQ] = 1000*ACT_PIXEL_FREQ/TOTAL_PIXELS
*/
act_h_freq = 1000 * act_pixel_freq / total_pixels;
print_value(stage, "[ACT H FREQ]", act_h_freq);
stage += 1;
/* 15/17. Find actual field rate (Hz)
*
* [ACT FIELD RATE] = 1000*ACT_H_FREQ/TOTAL_V_LINES
*/
act_field_rate = 1000 * act_h_freq / total_v_lines;
print_value(stage, "[ACT FIELD RATE]", act_field_rate);
stage += 1;
/* 16/18. Find actual vertical frame frequency (Hz)
*
* [ACT FRAME RATE] = IF(INT_RQD?=Y,ACT_FIELD_RATE/2,ACT_FIELD_RATE)
*/
act_frame_rate = interlace ?
(act_field_rate / 2) : act_field_rate;
print_value(stage, "[ACT FRAME RATE]", act_frame_rate);
/*
* Extra computations not numbered in the CVT spreadsheet.
*/
/* 20. Find Horizontal Back Porch.
*
* [H BACK PORCH] = H_BLANK/2
*/
h_back_porch = h_blank/2;
print_value(20, "[H BACK PORCH]", h_back_porch);
/* 21. Find Horizontal Front Porch.
*
* [H SYNC RND] = IF(RED_BLANK_RQD?="Y",RB_H_SYNC,(ROUNDDOWN((H_SYNC_PER/100*TOTAL_PIXELS/CELL_GRAN_RND),0))*CELL_GRAN_RND)
*/
if (reduced_blank) {
h_sync_rnd = RB_H_SYNC;
} else {
h_sync_rnd = floor(H_SYNC_PER/100.0*total_pixels/CELL_GRAN_RND)
* CELL_GRAN_RND;
}
print_value(21, "[H SYNC RND]", h_sync_rnd);
/* 22. Find Horizontal Front Porch.
*
* [H FRONT PORCH] = H_BLANK - H_BACK_PORCH - H_SYNC_RND
*/
h_front_porch = h_blank - h_back_porch - h_sync_rnd;
print_value(22, "[H FRONT PORCH]", h_front_porch);
/* 23. Find Vertical Front Porch.
*
* [V FRONT PORCH] = IF(RED_BLANK_RQD?="y",RB_V_FPORCH,MIN_V_PORCH_RND)
*/
v_front_porch = reduced_blank ? RB_V_FPORCH : MIN_V_PORCH_RND;
print_value(23, "[V FRONT PORCH]", v_front_porch);
/* finally, pack the results in the mode struct */
m->hr = (int) (h_pixels_rnd);
m->hss = (int) (h_pixels_rnd + h_front_porch);
m->hse = (int) (h_pixels_rnd + h_front_porch + h_sync_rnd);
m->hfl = (int) (total_pixels);
#if 0
m->vr = (int) (v_lines_rnd);
m->vss = (int) (v_lines_rnd + v_front_porch);
m->vse = (int) (v_lines_rnd + v_front_porch + v_sync_rnd);
m->vfl = (int) (total_v_lines);
#else
{
int real_v_lines = v_lines;
m->vr = (int) (real_v_lines);
m->vss = (int) (real_v_lines + v_front_porch);
m->vse = (int) (real_v_lines + v_front_porch + v_sync_rnd);
m->vfl = (int) (total_v_lines - v_lines_rnd + real_v_lines);
}
#endif
m->pclk = act_pixel_freq;
m->h_freq = act_h_freq;
m->v_freq = freq;
m->real_v_rate = act_field_rate;
m->in = interlaced;
m->rb = reduced_blank;
return (m);
} // vert_refresh()
#ifdef __cplusplus
}
#endif
|