summaryrefslogtreecommitdiffstats
path: root/contrib/syslinux/syslinux-4.03/com32/libutil/sha512crypt.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/syslinux/syslinux-4.03/com32/libutil/sha512crypt.c')
-rw-r--r--contrib/syslinux/syslinux-4.03/com32/libutil/sha512crypt.c749
1 files changed, 0 insertions, 749 deletions
diff --git a/contrib/syslinux/syslinux-4.03/com32/libutil/sha512crypt.c b/contrib/syslinux/syslinux-4.03/com32/libutil/sha512crypt.c
deleted file mode 100644
index 9db9c0c..0000000
--- a/contrib/syslinux/syslinux-4.03/com32/libutil/sha512crypt.c
+++ /dev/null
@@ -1,749 +0,0 @@
-/* SHA512-based Unix crypt implementation.
- Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. */
-
-#include <alloca.h>
-#include <endian.h>
-#include <errno.h>
-#include <limits.h>
-#include <stdbool.h>
-#include <stdint.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <minmax.h>
-#include <sys/types.h>
-
-#include "xcrypt.h"
-
-#define MIN(x,y) min(x,y)
-#define MAX(x,y) max(x,y)
-
-/* Structure to save state of computation between the single steps. */
-struct sha512_ctx {
- uint64_t H[8];
-
- uint64_t total[2];
- uint64_t buflen;
- char buffer[256]; /* NB: always correctly aligned for uint64_t. */
-};
-
-#if __BYTE_ORDER == __LITTLE_ENDIAN
-# define SWAP(n) \
- (((n) << 56) \
- | (((n) & 0xff00) << 40) \
- | (((n) & 0xff0000) << 24) \
- | (((n) & 0xff000000) << 8) \
- | (((n) >> 8) & 0xff000000) \
- | (((n) >> 24) & 0xff0000) \
- | (((n) >> 40) & 0xff00) \
- | ((n) >> 56))
-#else
-# define SWAP(n) (n)
-#endif
-
-/* This array contains the bytes used to pad the buffer to the next
- 64-byte boundary. (FIPS 180-2:5.1.2) */
-static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ };
-
-/* Constants for SHA512 from FIPS 180-2:4.2.3. */
-static const uint64_t K[80] = {
- UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
- UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
- UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
- UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
- UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
- UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
- UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
- UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
- UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
- UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
- UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
- UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
- UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
- UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
- UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
- UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
- UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
- UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
- UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
- UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
- UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
- UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
- UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
- UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
- UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
- UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
- UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
- UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
- UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
- UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
- UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
- UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
- UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
- UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
- UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
- UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
- UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
- UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
- UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
- UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817)
-};
-
-/* Process LEN bytes of BUFFER, accumulating context into CTX.
- It is assumed that LEN % 128 == 0. */
-static void
-sha512_process_block(const void *buffer, size_t len, struct sha512_ctx *ctx)
-{
- unsigned int t;
- const uint64_t *words = buffer;
- size_t nwords = len / sizeof(uint64_t);
- uint64_t a = ctx->H[0];
- uint64_t b = ctx->H[1];
- uint64_t c = ctx->H[2];
- uint64_t d = ctx->H[3];
- uint64_t e = ctx->H[4];
- uint64_t f = ctx->H[5];
- uint64_t g = ctx->H[6];
- uint64_t h = ctx->H[7];
-
- /* First increment the byte count. FIPS 180-2 specifies the possible
- length of the file up to 2^128 bits. Here we only compute the
- number of bytes. Do a double word increment. */
- ctx->total[0] += len;
- if (ctx->total[0] < len)
- ++ctx->total[1];
-
- /* Process all bytes in the buffer with 128 bytes in each round of
- the loop. */
- while (nwords > 0) {
- uint64_t W[80];
- uint64_t a_save = a;
- uint64_t b_save = b;
- uint64_t c_save = c;
- uint64_t d_save = d;
- uint64_t e_save = e;
- uint64_t f_save = f;
- uint64_t g_save = g;
- uint64_t h_save = h;
-
- /* Operators defined in FIPS 180-2:4.1.2. */
-#define Ch(x, y, z) ((x & y) ^ (~x & z))
-#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
-#define S0(x) (CYCLIC (x, 28) ^ CYCLIC (x, 34) ^ CYCLIC (x, 39))
-#define S1(x) (CYCLIC (x, 14) ^ CYCLIC (x, 18) ^ CYCLIC (x, 41))
-#define R0(x) (CYCLIC (x, 1) ^ CYCLIC (x, 8) ^ (x >> 7))
-#define R1(x) (CYCLIC (x, 19) ^ CYCLIC (x, 61) ^ (x >> 6))
-
- /* It is unfortunate that C does not provide an operator for
- cyclic rotation. Hope the C compiler is smart enough. */
-#define CYCLIC(w, s) ((w >> s) | (w << (64 - s)))
-
- /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */
- for (t = 0; t < 16; ++t) {
- W[t] = SWAP(*words);
- ++words;
- }
- for (t = 16; t < 80; ++t)
- W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
-
- /* The actual computation according to FIPS 180-2:6.3.2 step 3. */
- for (t = 0; t < 80; ++t) {
- uint64_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t];
- uint64_t T2 = S0(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
- }
-
- /* Add the starting values of the context according to FIPS 180-2:6.3.2
- step 4. */
- a += a_save;
- b += b_save;
- c += c_save;
- d += d_save;
- e += e_save;
- f += f_save;
- g += g_save;
- h += h_save;
-
- /* Prepare for the next round. */
- nwords -= 16;
- }
-
- /* Put checksum in context given as argument. */
- ctx->H[0] = a;
- ctx->H[1] = b;
- ctx->H[2] = c;
- ctx->H[3] = d;
- ctx->H[4] = e;
- ctx->H[5] = f;
- ctx->H[6] = g;
- ctx->H[7] = h;
-}
-
-/* Initialize structure containing state of computation.
- (FIPS 180-2:5.3.3) */
-static void sha512_init_ctx(struct sha512_ctx *ctx)
-{
- ctx->H[0] = UINT64_C(0x6a09e667f3bcc908);
- ctx->H[1] = UINT64_C(0xbb67ae8584caa73b);
- ctx->H[2] = UINT64_C(0x3c6ef372fe94f82b);
- ctx->H[3] = UINT64_C(0xa54ff53a5f1d36f1);
- ctx->H[4] = UINT64_C(0x510e527fade682d1);
- ctx->H[5] = UINT64_C(0x9b05688c2b3e6c1f);
- ctx->H[6] = UINT64_C(0x1f83d9abfb41bd6b);
- ctx->H[7] = UINT64_C(0x5be0cd19137e2179);
-
- ctx->total[0] = ctx->total[1] = 0;
- ctx->buflen = 0;
-}
-
-/* Process the remaining bytes in the internal buffer and the usual
- prolog according to the standard and write the result to RESBUF.
-
- IMPORTANT: On some systems it is required that RESBUF is correctly
- aligned for a 32 bits value. */
-static void *sha512_finish_ctx(struct sha512_ctx *ctx, void *resbuf)
-{
- unsigned int i;
- /* Take yet unprocessed bytes into account. */
- uint64_t bytes = ctx->buflen;
- size_t pad;
-
- /* Now count remaining bytes. */
- ctx->total[0] += bytes;
- if (ctx->total[0] < bytes)
- ++ctx->total[1];
-
- pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes;
- memcpy(&ctx->buffer[bytes], fillbuf, pad);
-
- /* Put the 128-bit file length in *bits* at the end of the buffer. */
- *(uint64_t *) & ctx->buffer[bytes + pad + 8] = SWAP(ctx->total[0] << 3);
- *(uint64_t *) & ctx->buffer[bytes + pad] = SWAP((ctx->total[1] << 3) |
- (ctx->total[0] >> 61));
-
- /* Process last bytes. */
- sha512_process_block(ctx->buffer, bytes + pad + 16, ctx);
-
- /* Put result from CTX in first 64 bytes following RESBUF. */
- for (i = 0; i < 8; ++i)
- ((uint64_t *) resbuf)[i] = SWAP(ctx->H[i]);
-
- return resbuf;
-}
-
-static void
-sha512_process_bytes(const void *buffer, size_t len, struct sha512_ctx *ctx)
-{
- /* When we already have some bits in our internal buffer concatenate
- both inputs first. */
- if (ctx->buflen != 0) {
- size_t left_over = ctx->buflen;
- size_t add = 256 - left_over > len ? len : 256 - left_over;
-
- memcpy(&ctx->buffer[left_over], buffer, add);
- ctx->buflen += add;
-
- if (ctx->buflen > 128) {
- sha512_process_block(ctx->buffer, ctx->buflen & ~127, ctx);
-
- ctx->buflen &= 127;
- /* The regions in the following copy operation cannot overlap. */
- memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~127],
- ctx->buflen);
- }
-
- buffer = (const char *)buffer + add;
- len -= add;
- }
-
- /* Process available complete blocks. */
- if (len >= 128) {
-#if !_STRING_ARCH_unaligned
-/* To check alignment gcc has an appropriate operator. Other
- compilers don't. */
-# if __GNUC__ >= 2
-# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint64_t) != 0)
-# else
-# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint64_t) != 0)
-# endif
- if (UNALIGNED_P(buffer))
- while (len > 128) {
- sha512_process_block(memcpy(ctx->buffer, buffer, 128), 128,
- ctx);
- buffer = (const char *)buffer + 128;
- len -= 128;
- } else
-#endif
- {
- sha512_process_block(buffer, len & ~127, ctx);
- buffer = (const char *)buffer + (len & ~127);
- len &= 127;
- }
- }
-
- /* Move remaining bytes into internal buffer. */
- if (len > 0) {
- size_t left_over = ctx->buflen;
-
- memcpy(&ctx->buffer[left_over], buffer, len);
- left_over += len;
- if (left_over >= 128) {
- sha512_process_block(ctx->buffer, 128, ctx);
- left_over -= 128;
- memcpy(ctx->buffer, &ctx->buffer[128], left_over);
- }
- ctx->buflen = left_over;
- }
-}
-
-/* Define our magic string to mark salt for SHA512 "encryption"
- replacement. */
-static const char sha512_salt_prefix[] = "$6$";
-
-/* Prefix for optional rounds specification. */
-static const char sha512_rounds_prefix[] = "rounds=";
-
-/* Maximum salt string length. */
-#define SALT_LEN_MAX 16U
-/* Default number of rounds if not explicitly specified. */
-#define ROUNDS_DEFAULT 5000UL
-/* Minimum number of rounds. */
-#define ROUNDS_MIN 1000UL
-/* Maximum number of rounds. */
-#define ROUNDS_MAX 999999999UL
-
-/* Table with characters for base64 transformation. */
-static const char b64t[64] =
- "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
-
-static char *sha512_crypt_r(const char *key, const char *salt, char *buffer,
- int buflen)
-{
- unsigned char alt_result[64]
- __attribute__ ((__aligned__(__alignof__(uint64_t))));
- unsigned char temp_result[64]
- __attribute__ ((__aligned__(__alignof__(uint64_t))));
- struct sha512_ctx ctx;
- struct sha512_ctx alt_ctx;
- size_t salt_len;
- size_t key_len;
- size_t cnt;
- char *cp;
- char *copied_key = NULL;
- char *copied_salt = NULL;
- char *p_bytes;
- char *s_bytes;
- /* Default number of rounds. */
- size_t rounds = ROUNDS_DEFAULT;
- bool rounds_custom = false;
-
- /* Find beginning of salt string. The prefix should normally always
- be present. Just in case it is not. */
- if (strncmp(sha512_salt_prefix, salt, sizeof(sha512_salt_prefix) - 1) == 0)
- /* Skip salt prefix. */
- salt += sizeof(sha512_salt_prefix) - 1;
-
- if (strncmp(salt, sha512_rounds_prefix, sizeof(sha512_rounds_prefix) - 1)
- == 0) {
- const char *num = salt + sizeof(sha512_rounds_prefix) - 1;
- char *endp;
- unsigned long int srounds = strtoul(num, &endp, 10);
- if (*endp == '$') {
- salt = endp + 1;
- rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX));
- rounds_custom = true;
- }
- }
-
- salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
- key_len = strlen(key);
-
- if ((key - (char *)0) % __alignof__(uint64_t) != 0) {
- char *tmp = (char *)alloca(key_len + __alignof__(uint64_t));
- key = copied_key = memcpy(tmp + __alignof__(uint64_t)
- - (tmp - (char *)0) % __alignof__(uint64_t),
- key, key_len);
- }
-
- if ((salt - (char *)0) % __alignof__(uint64_t) != 0) {
- char *tmp = (char *)alloca(salt_len + __alignof__(uint64_t));
- salt = copied_salt = memcpy(tmp + __alignof__(uint64_t)
- - (tmp - (char *)0) % __alignof__(uint64_t),
- salt, salt_len);
- }
-
- /* Prepare for the real work. */
- sha512_init_ctx(&ctx);
-
- /* Add the key string. */
- sha512_process_bytes(key, key_len, &ctx);
-
- /* The last part is the salt string. This must be at most 8
- characters and it ends at the first `$' character (for
- compatibility with existing implementations). */
- sha512_process_bytes(salt, salt_len, &ctx);
-
- /* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The
- final result will be added to the first context. */
- sha512_init_ctx(&alt_ctx);
-
- /* Add key. */
- sha512_process_bytes(key, key_len, &alt_ctx);
-
- /* Add salt. */
- sha512_process_bytes(salt, salt_len, &alt_ctx);
-
- /* Add key again. */
- sha512_process_bytes(key, key_len, &alt_ctx);
-
- /* Now get result of this (64 bytes) and add it to the other
- context. */
- sha512_finish_ctx(&alt_ctx, alt_result);
-
- /* Add for any character in the key one byte of the alternate sum. */
- for (cnt = key_len; cnt > 64; cnt -= 64)
- sha512_process_bytes(alt_result, 64, &ctx);
- sha512_process_bytes(alt_result, cnt, &ctx);
-
- /* Take the binary representation of the length of the key and for every
- 1 add the alternate sum, for every 0 the key. */
- for (cnt = key_len; cnt > 0; cnt >>= 1)
- if ((cnt & 1) != 0)
- sha512_process_bytes(alt_result, 64, &ctx);
- else
- sha512_process_bytes(key, key_len, &ctx);
-
- /* Create intermediate result. */
- sha512_finish_ctx(&ctx, alt_result);
-
- /* Start computation of P byte sequence. */
- sha512_init_ctx(&alt_ctx);
-
- /* For every character in the password add the entire password. */
- for (cnt = 0; cnt < key_len; ++cnt)
- sha512_process_bytes(key, key_len, &alt_ctx);
-
- /* Finish the digest. */
- sha512_finish_ctx(&alt_ctx, temp_result);
-
- /* Create byte sequence P. */
- cp = p_bytes = alloca(key_len);
- for (cnt = key_len; cnt >= 64; cnt -= 64)
- cp = mempcpy(cp, temp_result, 64);
- memcpy(cp, temp_result, cnt);
-
- /* Start computation of S byte sequence. */
- sha512_init_ctx(&alt_ctx);
-
- /* For every character in the password add the entire password. */
- for (cnt = 0; cnt < (size_t)16 + alt_result[0]; ++cnt)
- sha512_process_bytes(salt, salt_len, &alt_ctx);
-
- /* Finish the digest. */
- sha512_finish_ctx(&alt_ctx, temp_result);
-
- /* Create byte sequence S. */
- cp = s_bytes = alloca(salt_len);
- for (cnt = salt_len; cnt >= 64; cnt -= 64)
- cp = mempcpy(cp, temp_result, 64);
- memcpy(cp, temp_result, cnt);
-
- /* Repeatedly run the collected hash value through SHA512 to burn
- CPU cycles. */
- for (cnt = 0; cnt < rounds; ++cnt) {
- /* New context. */
- sha512_init_ctx(&ctx);
-
- /* Add key or last result. */
- if ((cnt & 1) != 0)
- sha512_process_bytes(p_bytes, key_len, &ctx);
- else
- sha512_process_bytes(alt_result, 64, &ctx);
-
- /* Add salt for numbers not divisible by 3. */
- if (cnt % 3 != 0)
- sha512_process_bytes(s_bytes, salt_len, &ctx);
-
- /* Add key for numbers not divisible by 7. */
- if (cnt % 7 != 0)
- sha512_process_bytes(p_bytes, key_len, &ctx);
-
- /* Add key or last result. */
- if ((cnt & 1) != 0)
- sha512_process_bytes(alt_result, 64, &ctx);
- else
- sha512_process_bytes(p_bytes, key_len, &ctx);
-
- /* Create intermediate result. */
- sha512_finish_ctx(&ctx, alt_result);
- }
-
- /* Now we can construct the result string. It consists of three
- parts. */
- cp = stpncpy(buffer, sha512_salt_prefix, MAX(0, buflen));
- buflen -= sizeof(sha512_salt_prefix) - 1;
-
- if (rounds_custom) {
- int n = snprintf(cp, MAX(0, buflen), "%s%zu$",
- sha512_rounds_prefix, rounds);
- cp += n;
- buflen -= n;
- }
-
- cp = stpncpy(cp, salt, MIN((size_t) MAX(0, buflen), salt_len));
- buflen -= MIN((size_t) MAX(0, buflen), salt_len);
-
- if (buflen > 0) {
- *cp++ = '$';
- --buflen;
- }
-#define b64_from_24bit(B2, B1, B0, N) \
- do { \
- unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \
- int n = (N); \
- while (n-- > 0 && buflen > 0) \
- { \
- *cp++ = b64t[w & 0x3f]; \
- --buflen; \
- w >>= 6; \
- } \
- } while (0)
-
- b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4);
- b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4);
- b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4);
- b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4);
- b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4);
- b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4);
- b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4);
- b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4);
- b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4);
- b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4);
- b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4);
- b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4);
- b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4);
- b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4);
- b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4);
- b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4);
- b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4);
- b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4);
- b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4);
- b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4);
- b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4);
- b64_from_24bit(0, 0, alt_result[63], 2);
-
- if (buflen <= 0) {
- errno = ERANGE;
- buffer = NULL;
- } else
- *cp = '\0'; /* Terminate the string. */
-
- /* Clear the buffer for the intermediate result so that people
- attaching to processes or reading core dumps cannot get any
- information. We do it in this way to clear correct_words[]
- inside the SHA512 implementation as well. */
- sha512_init_ctx(&ctx);
- sha512_finish_ctx(&ctx, alt_result);
- memset(temp_result, '\0', sizeof(temp_result));
- memset(p_bytes, '\0', key_len);
- memset(s_bytes, '\0', salt_len);
- memset(&ctx, '\0', sizeof(ctx));
- memset(&alt_ctx, '\0', sizeof(alt_ctx));
- if (copied_key != NULL)
- memset(copied_key, '\0', key_len);
- if (copied_salt != NULL)
- memset(copied_salt, '\0', salt_len);
-
- return buffer;
-}
-
-/* This entry point is equivalent to the `crypt' function in Unix
- libcs. */
-char *sha512_crypt(const char *key, const char *salt)
-{
- /* We don't want to have an arbitrary limit in the size of the
- password. We can compute an upper bound for the size of the
- result in advance and so we can prepare the buffer we pass to
- `sha512_crypt_r'. */
- static char *buffer;
- static int buflen;
- int needed = (sizeof(sha512_salt_prefix) - 1
- + sizeof(sha512_rounds_prefix) + 9 + 1
- + strlen(salt) + 1 + 86 + 1);
-
- if (buflen < needed) {
- char *new_buffer = (char *)realloc(buffer, needed);
- if (new_buffer == NULL)
- return NULL;
-
- buffer = new_buffer;
- buflen = needed;
- }
-
- return sha512_crypt_r(key, salt, buffer, buflen);
-}
-
-#ifdef TEST
-static const struct {
- const char *input;
- const char result[64];
-} tests[] = {
- /* Test vectors from FIPS 180-2: appendix C.1. */
- {
- "abc",
- "\xdd\xaf\x35\xa1\x93\x61\x7a\xba\xcc\x41\x73\x49\xae\x20\x41\x31"
- "\x12\xe6\xfa\x4e\x89\xa9\x7e\xa2\x0a\x9e\xee\xe6\x4b\x55\xd3\x9a"
- "\x21\x92\x99\x2a\x27\x4f\xc1\xa8\x36\xba\x3c\x23\xa3\xfe\xeb\xbd"
- "\x45\x4d\x44\x23\x64\x3c\xe8\x0e\x2a\x9a\xc9\x4f\xa5\x4c\xa4\x9f"},
- /* Test vectors from FIPS 180-2: appendix C.2. */
- {
- "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
- "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu",
- "\x8e\x95\x9b\x75\xda\xe3\x13\xda\x8c\xf4\xf7\x28\x14\xfc\x14\x3f"
- "\x8f\x77\x79\xc6\xeb\x9f\x7f\xa1\x72\x99\xae\xad\xb6\x88\x90\x18"
- "\x50\x1d\x28\x9e\x49\x00\xf7\xe4\x33\x1b\x99\xde\xc4\xb5\x43\x3a"
- "\xc7\xd3\x29\xee\xb6\xdd\x26\x54\x5e\x96\xe5\x5b\x87\x4b\xe9\x09"},
- /* Test vectors from the NESSIE project. */
- {
- "", "\xcf\x83\xe1\x35\x7e\xef\xb8\xbd\xf1\x54\x28\x50\xd6\x6d\x80\x07"
- "\xd6\x20\xe4\x05\x0b\x57\x15\xdc\x83\xf4\xa9\x21\xd3\x6c\xe9\xce"
- "\x47\xd0\xd1\x3c\x5d\x85\xf2\xb0\xff\x83\x18\xd2\x87\x7e\xec\x2f"
- "\x63\xb9\x31\xbd\x47\x41\x7a\x81\xa5\x38\x32\x7a\xf9\x27\xda\x3e"},
- {
- "a", "\x1f\x40\xfc\x92\xda\x24\x16\x94\x75\x09\x79\xee\x6c\xf5\x82\xf2"
- "\xd5\xd7\xd2\x8e\x18\x33\x5d\xe0\x5a\xbc\x54\xd0\x56\x0e\x0f\x53"
- "\x02\x86\x0c\x65\x2b\xf0\x8d\x56\x02\x52\xaa\x5e\x74\x21\x05\x46"
- "\xf3\x69\xfb\xbb\xce\x8c\x12\xcf\xc7\x95\x7b\x26\x52\xfe\x9a\x75"},
- {
- "message digest",
- "\x10\x7d\xbf\x38\x9d\x9e\x9f\x71\xa3\xa9\x5f\x6c\x05\x5b\x92\x51"
- "\xbc\x52\x68\xc2\xbe\x16\xd6\xc1\x34\x92\xea\x45\xb0\x19\x9f\x33"
- "\x09\xe1\x64\x55\xab\x1e\x96\x11\x8e\x8a\x90\x5d\x55\x97\xb7\x20"
- "\x38\xdd\xb3\x72\xa8\x98\x26\x04\x6d\xe6\x66\x87\xbb\x42\x0e\x7c"},
- {
- "abcdefghijklmnopqrstuvwxyz",
- "\x4d\xbf\xf8\x6c\xc2\xca\x1b\xae\x1e\x16\x46\x8a\x05\xcb\x98\x81"
- "\xc9\x7f\x17\x53\xbc\xe3\x61\x90\x34\x89\x8f\xaa\x1a\xab\xe4\x29"
- "\x95\x5a\x1b\xf8\xec\x48\x3d\x74\x21\xfe\x3c\x16\x46\x61\x3a\x59"
- "\xed\x54\x41\xfb\x0f\x32\x13\x89\xf7\x7f\x48\xa8\x79\xc7\xb1\xf1"},
- {
- "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
- "\x20\x4a\x8f\xc6\xdd\xa8\x2f\x0a\x0c\xed\x7b\xeb\x8e\x08\xa4\x16"
- "\x57\xc1\x6e\xf4\x68\xb2\x28\xa8\x27\x9b\xe3\x31\xa7\x03\xc3\x35"
- "\x96\xfd\x15\xc1\x3b\x1b\x07\xf9\xaa\x1d\x3b\xea\x57\x78\x9c\xa0"
- "\x31\xad\x85\xc7\xa7\x1d\xd7\x03\x54\xec\x63\x12\x38\xca\x34\x45"},
- {
- "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
- "\x1e\x07\xbe\x23\xc2\x6a\x86\xea\x37\xea\x81\x0c\x8e\xc7\x80\x93"
- "\x52\x51\x5a\x97\x0e\x92\x53\xc2\x6f\x53\x6c\xfc\x7a\x99\x96\xc4"
- "\x5c\x83\x70\x58\x3e\x0a\x78\xfa\x4a\x90\x04\x1d\x71\xa4\xce\xab"
- "\x74\x23\xf1\x9c\x71\xb9\xd5\xa3\xe0\x12\x49\xf0\xbe\xbd\x58\x94"},
- {
- "123456789012345678901234567890123456789012345678901234567890"
- "12345678901234567890",
- "\x72\xec\x1e\xf1\x12\x4a\x45\xb0\x47\xe8\xb7\xc7\x5a\x93\x21\x95"
- "\x13\x5b\xb6\x1d\xe2\x4e\xc0\xd1\x91\x40\x42\x24\x6e\x0a\xec\x3a"
- "\x23\x54\xe0\x93\xd7\x6f\x30\x48\xb4\x56\x76\x43\x46\x90\x0c\xb1"
- "\x30\xd2\xa4\xfd\x5d\xd1\x6a\xbb\x5e\x30\xbc\xb8\x50\xde\xe8\x43"}
-};
-
-#define ntests (sizeof (tests) / sizeof (tests[0]))
-
-static const struct {
- const char *salt;
- const char *input;
- const char *expected;
-} tests2[] = {
- {
- "$6$saltstring", "Hello world!",
- "$6$saltstring$svn8UoSVapNtMuq1ukKS4tPQd8iKwSMHWjl/O817G3uBnIFNjnQJu"
- "esI68u4OTLiBFdcbYEdFCoEOfaS35inz1"}, {
- "$6$rounds=10000$saltstringsaltstring", "Hello world!",
- "$6$rounds=10000$saltstringsaltst$OW1/O6BYHV6BcXZu8QVeXbDWra3Oeqh0sb"
- "HbbMCVNSnCM/UrjmM0Dp8vOuZeHBy/YTBmSK6H9qs/y3RnOaw5v."}, {
- "$6$rounds=5000$toolongsaltstring", "This is just a test",
- "$6$rounds=5000$toolongsaltstrin$lQ8jolhgVRVhY4b5pZKaysCLi0QBxGoNeKQ"
- "zQ3glMhwllF7oGDZxUhx1yxdYcz/e1JSbq3y6JMxxl8audkUEm0"}, {
- "$6$rounds=1400$anotherlongsaltstring",
- "a very much longer text to encrypt. This one even stretches over more"
- "than one line.",
- "$6$rounds=1400$anotherlongsalts$POfYwTEok97VWcjxIiSOjiykti.o/pQs.wP"
- "vMxQ6Fm7I6IoYN3CmLs66x9t0oSwbtEW7o7UmJEiDwGqd8p4ur1"}, {
- "$6$rounds=77777$short",
- "we have a short salt string but not a short password",
- "$6$rounds=77777$short$WuQyW2YR.hBNpjjRhpYD/ifIw05xdfeEyQoMxIXbkvr0g"
- "ge1a1x3yRULJ5CCaUeOxFmtlcGZelFl5CxtgfiAc0"}, {
- "$6$rounds=123456$asaltof16chars..", "a short string",
- "$6$rounds=123456$asaltof16chars..$BtCwjqMJGx5hrJhZywWvt0RLE8uZ4oPwc"
- "elCjmw2kSYu.Ec6ycULevoBK25fs2xXgMNrCzIMVcgEJAstJeonj1"}, {
-"$6$rounds=10$roundstoolow", "the minimum number is still observed",
- "$6$rounds=1000$roundstoolow$kUMsbe306n21p9R.FRkW3IGn.S9NPN0x50YhH1x"
- "hLsPuWGsUSklZt58jaTfF4ZEQpyUNGc0dqbpBYYBaHHrsX."},};
-#define ntests2 (sizeof (tests2) / sizeof (tests2[0]))
-
-int main(void)
-{
- struct sha512_ctx ctx;
- char sum[64];
- int result = 0;
- int cnt;
-
- for (cnt = 0; cnt < (int)ntests; ++cnt) {
- sha512_init_ctx(&ctx);
- sha512_process_bytes(tests[cnt].input, strlen(tests[cnt].input), &ctx);
- sha512_finish_ctx(&ctx, sum);
- if (memcmp(tests[cnt].result, sum, 64) != 0) {
- printf("test %d run %d failed\n", cnt, 1);
- result = 1;
- }
-
- sha512_init_ctx(&ctx);
- for (int i = 0; tests[cnt].input[i] != '\0'; ++i)
- sha512_process_bytes(&tests[cnt].input[i], 1, &ctx);
- sha512_finish_ctx(&ctx, sum);
- if (memcmp(tests[cnt].result, sum, 64) != 0) {
- printf("test %d run %d failed\n", cnt, 2);
- result = 1;
- }
- }
-
- /* Test vector from FIPS 180-2: appendix C.3. */
- char buf[1000];
- memset(buf, 'a', sizeof(buf));
- sha512_init_ctx(&ctx);
- for (int i = 0; i < 1000; ++i)
- sha512_process_bytes(buf, sizeof(buf), &ctx);
- sha512_finish_ctx(&ctx, sum);
- static const char expected[64] =
- "\xe7\x18\x48\x3d\x0c\xe7\x69\x64\x4e\x2e\x42\xc7\xbc\x15\xb4\x63"
- "\x8e\x1f\x98\xb1\x3b\x20\x44\x28\x56\x32\xa8\x03\xaf\xa9\x73\xeb"
- "\xde\x0f\xf2\x44\x87\x7e\xa6\x0a\x4c\xb0\x43\x2c\xe5\x77\xc3\x1b"
- "\xeb\x00\x9c\x5c\x2c\x49\xaa\x2e\x4e\xad\xb2\x17\xad\x8c\xc0\x9b";
- if (memcmp(expected, sum, 64) != 0) {
- printf("test %d failed\n", cnt);
- result = 1;
- }
-
- for (cnt = 0; cnt < ntests2; ++cnt) {
- char *cp = sha512_crypt(tests2[cnt].input, tests2[cnt].salt);
-
- if (strcmp(cp, tests2[cnt].expected) != 0) {
- printf("test %d: expected \"%s\", got \"%s\"\n",
- cnt, tests2[cnt].expected, cp);
- result = 1;
- }
- }
-
- if (result == 0)
- puts("all tests OK");
-
- return result;
-}
-#endif