summaryrefslogblamecommitdiffstats
path: root/hacks/glx/projectiveplane.c
blob: 1220772ef3b3713d2f86b24af8f31679c293ca20 (plain) (tree)
1
2
3
4
5
6
7
8
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992



                                                                        
                                                                             

      
                                                                     














                                                                          





                                                                         






                                                                      






                                                                    











                                                                      




                                                                      


                                                                      
                                                                 




                                                                  








                                                                      




                                                                      
                                                                    











































                                                                      















                                                                      





                                                                      




                                                                      


                                                                 
                                                                    

































                                                                      





                                    


















                                           
                                          










                                           
 
                 
                                                     
                                                     
                                                     
 











                                                                        
                       




















                                                                          
                          






















                                                                                
                                                                          



                                                                          

                                                                   



                                                                          

                                                                   




















                                                                                      
                                                                                    




















                                                                                      




                         







                                                    






                                                                      






                          
                     





                                             

                             


























                                                                        



















                                                     




                                                                               




























































































































































































                                                                        

















































































































































                                                                       






































































                                                                    















































                                                                    

                                                                           

        

                   
 



                                                                       
 










































                                    
   

















                                                                       












                                                                          
                         














                                                              
                  
                  
                       
                       
                       
                        
                        









                                                                  







                                                      
                      


                                                            
                       
                       













                                           




















































































































































                                                                          
 




                                                                         






                                                                         
                                            
                       
                      
                            
                    

                                                              



















































































                                                                           
 


                                                

                                                         

                                 





























































                                                                          































                                                                          
   

                                      
     

                                                                          
     
                                           
     






                                                                      



                                            

                 














                                                                    
                  



                                    

















                                                                             




                                                                              



















                                                         
                  


                                    

















                                                                             




                                                                              





              






























































































































































































































































































































































































































































































                                                                             


               

                      





                                                                   
                                       

                                            




                                                                 
                                                                          



                                                      













































































































































                                                                             

                              
































                                                              



                           











                                                       


                      
 



                                                                     
                                    
                         









































































                                                                         











                             

   


                                                                          
      

                                                                          






























































































                                                                               


























































                                                             



                                               




















                                               

                                    


















































































                                                                  


























                                                                               
                                                    
 

                                    





















                                                              
                                                                  



                        
 







                                                                   













                                             

 
 


                                                        
/* projectiveplane --- Shows a 4d embedding of the real projective plane
   that rotates in 4d or on which you can walk */

#if 0
static const char sccsid[] = "@(#)projectiveplane.c  1.1 14/01/03 xlockmore";
#endif

/* Copyright (c) 2013-2021 Carsten Steger <carsten@mirsanmir.org>. */

/*
 * Permission to use, copy, modify, and distribute this software and its
 * documentation for any purpose and without fee is hereby granted,
 * provided that the above copyright notice appear in all copies and that
 * both that copyright notice and this permission notice appear in
 * supporting documentation.
 *
 * This file is provided AS IS with no warranties of any kind.  The author
 * shall have no liability with respect to the infringement of copyrights,
 * trade secrets or any patents by this file or any part thereof.  In no
 * event will the author be liable for any lost revenue or profits or
 * other special, indirect and consequential damages.
 *
 * REVISION HISTORY:
 * C. Steger - 14/01/03: Initial version
 * C. Steger - 14/10/03: Moved the curlicue texture to curlicue.h
 * C. Steger - 20/01/06: Added the changing colors mode
 * C. Steger - 20/12/05: Added per-fragment shading
 * C. Steger - 20/12/06: Moved all GLSL support code into glsl-utils.[hc]
 * C. Steger - 20/12/30: Make the shader code work under macOS and iOS
 */

/*
 * This program shows a 4d embedding of the real projective plane.
 * You can walk on the projective plane, see it turn in 4d, or walk on
 * it while it turns in 4d.  The fact that the surface is an embedding
 * of the real projective plane in 4d can be seen in the depth colors
 * mode (using static colors): set all rotation speeds to 0 and the
 * projection mode to 4d orthographic projection.  In its default
 * orientation, the embedding of the real projective plane will then
 * project to the Roman surface, which has three lines of
 * self-intersection.  However, at the three lines of
 * self-intersection the parts of the surface that intersect have
 * different colors, i.e., different 4d depths.
 *
 * The real projective plane is a non-orientable surface.  To make
 * this apparent, the two-sided color mode can be used.
 * Alternatively, orientation markers (curling arrows) can be drawn as
 * a texture map on the surface of the projective plane.  While
 * walking on the projective plane, you will notice that the
 * orientation of the curling arrows changes (which it must because
 * the projective plane is non-orientable).
 *
 * The real projective plane is a model for the projective geometry in
 * 2d space.  One point can be singled out as the origin.  A line can
 * be singled out as the line at infinity, i.e., a line that lies at
 * an infinite distance to the origin.  The line at infinity, like all
 * lines in the projective plane, is topologically a circle.  Points
 * on the line at infinity are also used to model directions in
 * projective geometry.  The origin can be visualized in different
 * manners.  When using distance colors (and using static colors), the
 * origin is the point that is displayed as fully saturated red, which
 * is easier to see as the center of the reddish area on the
 * projective plane.  Alternatively, when using distance bands, the
 * origin is the center of the only band that projects to a disk.
 * When using direction bands, the origin is the point where all
 * direction bands collapse to a point.  Finally, when orientation
 * markers are being displayed, the origin the the point where all
 * orientation markers are compressed to a point.  The line at
 * infinity can also be visualized in different ways.  When using
 * distance colors (and using static colors), the line at infinity is
 * the line that is displayed as fully saturated magenta.  When
 * two-sided (and static) colors are used, the line at infinity lies
 * at the points where the red and green "sides" of the projective
 * plane meet (of course, the real projective plane only has one side,
 * so this is a design choice of the visualization).  Alternatively,
 * when orientation markers are being displayed, the line at infinity
 * is the place where the orientation markers change their
 * orientation.
 *
 * Note that when the projective plane is displayed with bands, the
 * orientation markers are placed in the middle of the bands.  For
 * distance bands, the bands are chosen in such a way that the band at
 * the origin is only half as wide as the remaining bands, which
 * results in a disk being displayed at the origin that has the same
 * diameter as the remaining bands.  This choice, however, also
 * implies that the band at infinity is half as wide as the other
 * bands.  Since the projective plane is attached to itself (in a
 * complicated fashion) at the line at infinity, effectively the band
 * at infinity is again as wide as the remaining bands.  However,
 * since the orientation markers are displayed in the middle of the
 * bands, this means that only one half of the orientation markers
 * will be displayed twice at the line at infinity if distance bands
 * are used.  If direction bands are used or if the projective plane
 * is displayed as a solid surface, the orientation markers are
 * displayed fully at the respective sides of the line at infinity.
 *
 * The program projects the 4d projective plane to 3d using either a
 * perspective or an orthographic projection.  Which of the two
 * alternatives looks more appealing is up to you.  However, two
 * famous surfaces are obtained if orthographic 4d projection is used:
 * The Roman surface and the cross cap.  If the projective plane is
 * rotated in 4d, the result of the projection for certain rotations
 * is a Roman surface and for certain rotations it is a cross cap.
 * The easiest way to see this is to set all rotation speeds to 0 and
 * the rotation speed around the yz plane to a value different from 0.
 * However, for any 4d rotation speeds, the projections will generally
 * cycle between the Roman surface and the cross cap.  The difference
 * is where the origin and the line at infinity will lie with respect
 * to the self-intersections in the projections to 3d.
 *
 * The projected projective plane can then be projected to the screen
 * either perspectively or orthographically.  When using the walking
 * modes, perspective projection to the screen will be used.
 *
 * There are three display modes for the projective plane: mesh
 * (wireframe), solid, or transparent.  Furthermore, the appearance of
 * the projective plane can be as a solid object or as a set of
 * see-through bands.  The bands can be distance bands, i.e., bands
 * that lie at increasing distances from the origin, or direction
 * bands, i.e., bands that lie at increasing angles with respect to
 * the origin.
 *
 * When the projective plane is displayed with direction bands, you
 * will be able to see that each direction band (modulo the "pinching"
 * at the origin) is a Moebius strip, which also shows that the
 * projective plane is non-orientable.
 *
 * Finally, the colors with with the projective plane is drawn can be
 * set to one-sided, two-sided, distance, direction, or depth.  In
 * one-sided mode, the projective plane is drawn with the same color
 * on both "sides."  In two-sided mode (using static colors), the
 * projective plane is drawn with red on one "side" and green on the
 * "other side."  As described above, the projective plane only has
 * one side, so the color jumps from red to green along the line at
 * infinity.  This mode enables you to see that the projective plane
 * is non-orientable.  If changing colors are used in two-sided mode,
 * changing complementary colors are used on the respective "sides."
 * In distance mode, the projective plane is displayed with fully
 * saturated colors that depend on the distance of the points on the
 * projective plane to the origin.  If static colors are used, the
 * origin is displayed in red, while the line at infinity is displayed
 * in magenta.  If the projective plane is displayed as distance
 * bands, each band will be displayed with a different color.  In
 * direction mode, the projective plane is displayed with fully
 * saturated colors that depend on the angle of the points on the
 * projective plane with respect to the origin.  Angles in opposite
 * directions to the origin (e.g., 15 and 205 degrees) are displayed
 * in the same color since they are projectively equivalent.  If the
 * projective plane is displayed as direction bands, each band will be
 * displayed with a different color.  Finally, in depth mode the
 * projective plane is displayed with colors chosen depending on the
 * 4d "depth" (i.e., the w coordinate) of the points on the projective
 * plane at its default orientation in 4d.  As discussed above, this
 * mode enables you to see that the projective plane does not
 * intersect itself in 4d.
 *
 * The rotation speed for each of the six planes around which the
 * projective plane rotates can be chosen.  For the walk-and-turn
 * mode, only the rotation speeds around the true 4d planes are used
 * (the xy, xz, and yz planes).
 *
 * Furthermore, in the walking modes the walking direction in the 2d
 * base square of the projective plane and the walking speed can be
 * chosen.  The walking direction is measured as an angle in degrees
 * in the 2d square that forms the coordinate system of the surface of
 * the projective plane.  A value of 0 or 180 means that the walk is
 * along a circle at a randomly chosen distance from the origin
 * (parallel to a distance band).  A value of 90 or 270 means that the
 * walk is directly from the origin to the line at infinity and back
 * (analogous to a direction band).  Any other value results in a
 * curved path from the origin to the line at infinity and back.
 *
 * This program is somewhat inspired by Thomas Banchoff's book "Beyond
 * the Third Dimension: Geometry, Computer Graphics, and Higher
 * Dimensions", Scientific American Library, 1990.
 */

#include "curlicue.h"

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

#define DISP_WIREFRAME             0
#define DISP_SURFACE               1
#define DISP_TRANSPARENT           2
#define NUM_DISPLAY_MODES          3

#define APPEARANCE_SOLID           0
#define APPEARANCE_DISTANCE_BANDS  1
#define APPEARANCE_DIRECTION_BANDS 2
#define NUM_APPEARANCES            3

#define COLORS_ONESIDED            0
#define COLORS_TWOSIDED            1
#define COLORS_DISTANCE            2
#define COLORS_DIRECTION           3
#define COLORS_DEPTH               4
#define NUM_COLORS                 5

#define VIEW_WALK                  0
#define VIEW_TURN                  1
#define VIEW_WALKTURN              2
#define NUM_VIEW_MODES             3

#define DISP_3D_PERSPECTIVE        0
#define DISP_3D_ORTHOGRAPHIC       1
#define NUM_DISP_3D_MODES          2

#define DISP_4D_PERSPECTIVE        0
#define DISP_4D_ORTHOGRAPHIC       1
#define NUM_DISP_4D_MODES          2

#define DEF_DISPLAY_MODE           "random"
#define DEF_APPEARANCE             "random"
#define DEF_COLORS                 "random"
#define DEF_VIEW_MODE              "random"
#define DEF_MARKS                  "False"
#define DEF_CHANGE_COLORS          "False"
#define DEF_PROJECTION_3D          "random"
#define DEF_PROJECTION_4D          "random"
#define DEF_SPEEDWX                "1.1"
#define DEF_SPEEDWY                "1.3"
#define DEF_SPEEDWZ                "1.5"
#define DEF_SPEEDXY                "1.7"
#define DEF_SPEEDXZ                "1.9"
#define DEF_SPEEDYZ                "2.1"
#define DEF_WALK_DIRECTION         "83.0"
#define DEF_WALK_SPEED             "20.0"


#ifdef STANDALONE
# define DEFAULTS           "*delay:      25000 \n" \
                            "*showFPS:    False \n" \
                            "*prefersGLSL: True \n" \

# define release_projectiveplane 0
# include "xlockmore.h"         /* from the xscreensaver distribution */
#else  /* !STANDALONE */
# include "xlock.h"             /* from the xlockmore distribution */
#endif /* !STANDALONE */

#ifdef USE_GL

#ifndef HAVE_JWXYZ
# include <X11/keysym.h>
#endif

#include "glsl-utils.h"
#include "gltrackball.h"

#include <float.h>


#ifdef USE_MODULES
ModStruct projectiveplane_description =
{"projectiveplane", "init_projectiveplane", "draw_projectiveplane",
 NULL, "draw_projectiveplane", "change_projectiveplane",
 NULL, &projectiveplane_opts, 25000, 1, 1, 1, 1.0, 4, "",
 "Rotate a 4d embedding of the real projective plane in 4d or walk on it",
 0, NULL};

#endif


static char *mode;
static char *appear;
static char *color_mode;
static char *view_mode;
static Bool marks;
static Bool change_colors;
static char *proj_3d;
static char *proj_4d;
static float speed_wx;
static float speed_wy;
static float speed_wz;
static float speed_xy;
static float speed_xz;
static float speed_yz;
static float walk_direction;
static float walk_speed;


static XrmOptionDescRec opts[] =
{
  {"-mode",              ".displayMode",   XrmoptionSepArg, 0 },
  {"-wireframe",         ".displayMode",   XrmoptionNoArg,  "wireframe" },
  {"-surface",           ".displayMode",   XrmoptionNoArg,  "surface" },
  {"-transparent",       ".displayMode",   XrmoptionNoArg,  "transparent" },
  {"-appearance",        ".appearance",    XrmoptionSepArg, 0 },
  {"-solid",             ".appearance",    XrmoptionNoArg,  "solid" },
  {"-distance-bands",    ".appearance",    XrmoptionNoArg,  "distance-bands" },
  {"-direction-bands",   ".appearance",    XrmoptionNoArg,  "direction-bands" },
  {"-colors",            ".colors",        XrmoptionSepArg, 0 },
  {"-onesided-colors",   ".colors",        XrmoptionNoArg,  "one-sided" },
  {"-twosided-colors",   ".colors",        XrmoptionNoArg,  "two-sided" },
  {"-distance-colors",   ".colors",        XrmoptionNoArg,  "distance" },
  {"-direction-colors",  ".colors",        XrmoptionNoArg,  "direction" },
  {"-depth-colors",      ".colors",        XrmoptionNoArg,  "depth" },
  {"-change-colors",     ".changeColors",  XrmoptionNoArg,  "on"},
  {"+change-colors",     ".changeColors",  XrmoptionNoArg,  "off"},
  {"-view-mode",         ".viewMode",      XrmoptionSepArg, 0 },
  {"-walk",              ".viewMode",      XrmoptionNoArg,  "walk" },
  {"-turn",              ".viewMode",      XrmoptionNoArg,  "turn" },
  {"-walk-turn",         ".viewMode",      XrmoptionNoArg,  "walk-turn" },
  {"-orientation-marks", ".marks",         XrmoptionNoArg,  "on"},
  {"+orientation-marks", ".marks",         XrmoptionNoArg,  "off"},
  {"-projection-3d",     ".projection3d",  XrmoptionSepArg, 0 },
  {"-perspective-3d",    ".projection3d",  XrmoptionNoArg,  "perspective" },
  {"-orthographic-3d",   ".projection3d",  XrmoptionNoArg,  "orthographic" },
  {"-projection-4d",     ".projection4d",  XrmoptionSepArg, 0 },
  {"-perspective-4d",    ".projection4d",  XrmoptionNoArg,  "perspective" },
  {"-orthographic-4d",   ".projection4d",  XrmoptionNoArg,  "orthographic" },
  {"-speed-wx",          ".speedwx",       XrmoptionSepArg, 0 },
  {"-speed-wy",          ".speedwy",       XrmoptionSepArg, 0 },
  {"-speed-wz",          ".speedwz",       XrmoptionSepArg, 0 },
  {"-speed-xy",          ".speedxy",       XrmoptionSepArg, 0 },
  {"-speed-xz",          ".speedxz",       XrmoptionSepArg, 0 },
  {"-speed-yz",          ".speedyz",       XrmoptionSepArg, 0 },
  {"-walk-direction",    ".walkDirection", XrmoptionSepArg, 0 },
  {"-walk-speed",        ".walkSpeed",     XrmoptionSepArg, 0 }
};

static argtype vars[] =
{
  { &mode,           "displayMode",   "DisplayMode",   DEF_DISPLAY_MODE,   t_String },
  { &appear,         "appearance",    "Appearance",    DEF_APPEARANCE,     t_String },
  { &color_mode,     "colors",        "Colors",        DEF_COLORS,         t_String },
  { &change_colors,  "changeColors",  "ChangeColors",  DEF_CHANGE_COLORS,  t_Bool },
  { &view_mode,      "viewMode",      "ViewMode",      DEF_VIEW_MODE,      t_String },
  { &marks,          "marks",         "Marks",         DEF_MARKS,          t_Bool },
  { &proj_3d,        "projection3d",  "Projection3d",  DEF_PROJECTION_3D,  t_String },
  { &proj_4d,        "projection4d",  "Projection4d",  DEF_PROJECTION_4D,  t_String },
  { &speed_wx,       "speedwx",       "Speedwx",       DEF_SPEEDWX,        t_Float},
  { &speed_wy,       "speedwy",       "Speedwy",       DEF_SPEEDWY,        t_Float},
  { &speed_wz,       "speedwz",       "Speedwz",       DEF_SPEEDWZ,        t_Float},
  { &speed_xy,       "speedxy",       "Speedxy",       DEF_SPEEDXY,        t_Float},
  { &speed_xz,       "speedxz",       "Speedxz",       DEF_SPEEDXZ,        t_Float},
  { &speed_yz,       "speedyz",       "Speedyz",       DEF_SPEEDYZ,        t_Float},
  { &walk_direction, "walkDirection", "WalkDirection", DEF_WALK_DIRECTION, t_Float},
  { &walk_speed,     "walkSpeed",     "WalkSpeed",     DEF_WALK_SPEED,     t_Float}
};

ENTRYPOINT ModeSpecOpt projectiveplane_opts =
{sizeof opts / sizeof opts[0], opts, sizeof vars / sizeof vars[0], vars, NULL};


/* Offset by which we walk above the projective plane */
#define DELTAY  0.01

/* Color change speeds */
#define DRHO    0.7
#define DSIGMA  1.1
#define DTAU    1.7

/* Number of subdivisions of the projective plane */
#define NUMU 128
#define NUMV 128

/* Number of subdivisions per band */
#define NUMB 8


#if !defined(__GNUC__) && !defined(__extension__)
 /* don't warn about "string length is greater than the length ISO C89
    compilers are required to support" in these string constants... */
# define  __extension__ /**/
#endif


typedef struct {
  GLint      WindH, WindW;
  GLXContext *glx_context;
  /* Options */
  int display_mode;
  int appearance;
  int colors;
  Bool change_colors;
  int view;
  Bool marks;
  int projection_3d;
  int projection_4d;
  /* 4D rotation angles */
  float alpha, beta, delta, zeta, eta, theta;
  /* Color rotation angles */
  float rho, sigma, tau;
  /* Movement parameters */
  float umove, vmove, dumove, dvmove;
  int side, dir;
  /* The viewing offset in 4d */
  float offset4d[4];
  /* The viewing offset in 3d */
  float offset3d[4];
  /* The 4d coordinates of the projective plane and their derivatives */
  float x[(NUMU+1)*(NUMV+1)][4];
  float xu[(NUMU+1)*(NUMV+1)][4];
  float xv[(NUMU+1)*(NUMV+1)][4];
  float pp[(NUMU+1)*(NUMV+1)][3];
  float pn[(NUMU+1)*(NUMV+1)][3];
  /* The precomputed colors of the projective plane */
  float col[(NUMU+1)*(NUMV+1)][4];
  /* The precomputed texture coordinates of the projective plane */
  float tex[(NUMU+1)*(NUMV+1)][2];
  /* The "curlicue" texture */
  GLuint tex_name;
  /* Aspect ratio of the current window */
  float aspect;
  /* Trackball states */
  trackball_state *trackballs[2];
  int current_trackball;
  Bool button_pressed;
  /* A random factor to modify the rotation speeds */
  float speed_scale;
#ifdef HAVE_GLSL
  GLfloat uv[(NUMU+1)*(NUMV+1)][2];
  GLuint indices[4*(NUMU+1)*(NUMV+1)];
  Bool use_shaders, buffers_initialized;
  GLuint shader_program;
  GLint vertex_uv_index, vertex_t_index, color_index;
  GLint mat_rot_index, mat_p_index, bool_persp_index;
  GLint off4d_index, off3d_index;
  GLint bool_textures_index, draw_lines_index;
  GLint glbl_ambient_index, lt_ambient_index;
  GLint lt_diffuse_index, lt_specular_index;
  GLint lt_direction_index, lt_halfvect_index;
  GLint front_ambient_index, back_ambient_index;
  GLint front_diffuse_index, back_diffuse_index;
  GLint specular_index, shininess_index;
  GLint texture_sampler_index;
  GLuint vertex_uv_buffer, vertex_t_buffer;
  GLuint color_buffer, indices_buffer;
  GLint ni, ne, nt;
#endif /* HAVE_GLSL */
} projectiveplanestruct;

static projectiveplanestruct *projectiveplane = (projectiveplanestruct *) NULL;


#ifdef HAVE_GLSL

/* The GLSL versions that correspond to different versions of OpenGL. */
static const GLchar *shader_version_2_1 =
  "#version 120\n";
static const GLchar *shader_version_3_0 =
  "#version 130\n";
static const GLchar *shader_version_3_0_es =
  "#version 300 es\n"
  "precision highp float;\n"
  "precision highp int;\n";

/* The vertex shader code is composed of code fragments that depend on
   the OpenGL version and code fragments that are version-independent.
   They are concatenated by glsl_CompileAndLinkShaders in the function
   init_glsl(). */
static const GLchar *vertex_shader_attribs_2_1 =
  "attribute vec2 VertexUV;\n"
  "attribute vec4 VertexT;\n"
  "attribute vec4 VertexColor;\n"
  "\n"
  "varying vec3 Normal;\n"
  "varying vec4 Color;\n"
  "varying vec4 TexCoord;\n"
  "\n";
static const GLchar *vertex_shader_attribs_3_0 =
  "in vec2 VertexUV;\n"
  "in vec4 VertexT;\n"
  "in vec4 VertexColor;\n"
  "\n"
  "out vec3 Normal;\n"
  "out vec4 Color;\n"
  "out vec4 TexCoord;\n"
  "\n";
static const GLchar *vertex_shader_main =
  __extension__
  "uniform mat4 MatRot4D;\n"
  "uniform mat4 MatProj;\n"
  "uniform bool BoolPersp;\n"
  "uniform vec4 Offset4D;\n"
  "uniform vec4 Offset3D;\n"
  "uniform bool BoolTextures;\n"
  "\n"
  "void main (void)\n"
  "{\n"
  "  const float EPSILON = 1.0e-7f;\n"
  "  float u, v, su, cu, s2u, c2u, sv2, cv2, sv4, cv4;\n"
  "  vec3 p, pu, pv;\n"
  "  u = VertexUV.x;\n"
  "  v = VertexUV.y;\n"
  "  su = sin(u)\n;"
  "  cu = cos(u)\n;"
  "  s2u = sin(2.0f*u)\n;"
  "  c2u = cos(2.0f*u)\n;"
  "  sv2 = sin(0.5f*v)\n;"
  "  cv2 = cos(0.5f*v)\n;"
  "  sv4 = sin(0.25f*v)\n;"
  "  cv4 = cos(0.25f*v)\n;"
  "  vec4 xx = vec4(0.5f*s2u*sv4*sv4,\n"
  "                 0.5f*su*sv2,\n"
  "                 0.5f*cu*sv2,\n"
  "                 0.5f*(su*su*sv4*sv4-cv4*cv4));\n"
  "  if (v < EPSILON)\n"
  "  {\n"
  "    v = EPSILON;\n"
  "    sv2 = sin(0.5f*v)\n;"
  "    cv2 = cos(0.5f*v)\n;"
  "    sv4 = sin(0.25f*v)\n;"
  "  }\n"
  "  vec4 xxu = vec4(c2u*sv4*sv4,\n"
  "                  0.5f*cu*sv2,\n"
  "                  -0.5f*su*sv2,\n"
  "                  0.5f*s2u*sv4*sv4);\n"
  "  vec4 xxv = vec4(0.125f*s2u*sv2,\n"
  "                  0.25f*su*cv2,\n"
  "                  0.25f*cu*cv2,\n"
  "                  0.125f*(su*su+1.0f)*sv2);\n"
  "  vec4 x = MatRot4D*xx+Offset4D;\n"
  "  vec4 xu = MatRot4D*xxu;\n"
  "  vec4 xv = MatRot4D*xxv;\n"
  "  if (BoolPersp)\n"
  "  {\n"
  "    vec3 r = x.xyz;\n"
  "    float s = x.w;\n"
  "    float t = s*s;\n"
  "    p = r/s+Offset3D.xyz;\n"
  "    pu = (s*xu.xyz-r*xu.w)/t;\n"
  "    pv = (s*xv.xyz-r*xv.w)/t;\n"
  "  }\n"
  "  else\n"
  "  {\n"
  "    p = x.xyz+Offset3D.xyz;\n"
  "    pu = xu.xyz;\n"
  "    pv = xv.xyz;\n"
  "  }\n"
  "  vec4 Position = vec4(p,1.0);\n"
  "  Normal = normalize(cross(pu,pv));\n"
  "  gl_Position = MatProj*Position;\n"
  "  Color = VertexColor;\n"
  "  if (BoolTextures)\n"
  "    TexCoord = VertexT;\n"
  "}\n";

/* The fragment shader code is composed of code fragments that depend on
   the OpenGL version and code fragments that are version-independent.
   They are concatenated by glsl_CompileAndLinkShaders in the function
   init_glsl(). */
static const GLchar *fragment_shader_attribs_2_1 =
  "varying vec3 Normal;\n"
  "varying vec4 Color;\n"
  "varying vec4 TexCoord;\n"
  "\n";
static const GLchar *fragment_shader_attribs_3_0 =
  "in vec3 Normal;\n"
  "in vec4 Color;\n"
  "in vec4 TexCoord;\n"
  "\n"
  "out vec4 FragColor;\n"
  "\n";
static const GLchar *fragment_shader_main =
  __extension__
  "uniform bool DrawLines;\n"
  "uniform vec4 LtGlblAmbient;\n"
  "uniform vec4 LtAmbient, LtDiffuse, LtSpecular;\n"
  "uniform vec3 LtDirection, LtHalfVector;\n"
  "uniform vec4 MatFrontAmbient, MatBackAmbient;\n"
  "uniform vec4 MatFrontDiffuse, MatBackDiffuse;\n"
  "uniform vec4 MatSpecular;\n"
  "uniform float MatShininess;\n"
  "uniform bool BoolTextures;\n"
  "uniform sampler2D TextureSampler;"
  "\n"
  "void main (void)\n"
  "{\n"
  "  vec4 color;\n"
  "  if (DrawLines)\n"
  "  {\n"
  "    color = Color;\n"
  "  }\n"
  "  else\n"
  "  {\n"
  "    vec3 normalDirection;\n"
  "    vec4 ambientColor, diffuseColor, sceneColor;\n"
  "    vec4 ambientLighting, diffuseReflection, specularReflection;\n"
  "    float ndotl, ndoth, pf;\n"
  "    \n"
  "    if (gl_FrontFacing)\n"
  "    {\n"
  "      normalDirection = normalize(Normal);\n"
  "      sceneColor = Color*MatFrontAmbient*LtGlblAmbient;\n"
  "      ambientColor = Color*MatFrontAmbient;\n"
  "      diffuseColor = Color*MatFrontDiffuse;\n"
  "    }\n"
  "    else\n"
  "    {\n"
  "      normalDirection = -normalize(Normal);\n"
  "      sceneColor = Color*MatBackAmbient*LtGlblAmbient;\n"
  "      ambientColor = Color*MatBackAmbient;\n"
  "      diffuseColor = Color*MatBackDiffuse;\n"
  "    }\n"
  "    \n"
  "    ndotl = max(0.0,dot(normalDirection,LtDirection));\n"
  "    ndoth = max(0.0,dot(normalDirection,LtHalfVector));\n"
  "    if (ndotl == 0.0)\n"
  "      pf = 0.0;\n"
  "    else\n"
  "      pf = pow(ndoth,MatShininess);\n"
  "    ambientLighting = ambientColor*LtAmbient;\n"
  "    diffuseReflection = LtDiffuse*diffuseColor*ndotl;\n"
  "    specularReflection = LtSpecular*MatSpecular*pf;\n"
  "    color = sceneColor+ambientLighting+diffuseReflection;\n";
static const GLchar *fragment_shader_out_2_1 =
  "    if (BoolTextures)\n"
  "      color *= texture2D(TextureSampler,TexCoord.st);"
  "    color += specularReflection;\n"
  "  }\n"
  "  gl_FragColor = clamp(color,0.0,1.0);\n"
  "}\n";
static const GLchar *fragment_shader_out_3_0 =
  "    if (BoolTextures)\n"
  "      color *= texture(TextureSampler,TexCoord.st);"
  "    color += specularReflection;\n"
  "  }\n"
  "  FragColor = clamp(color,0.0,1.0);\n"
  "}\n";

#endif /* HAVE_GLSL */


/* Add a rotation around the wx-plane to the matrix m. */
static void rotatewx(float m[4][4], float phi)
{
  float c, s, u, v;
  int i;

  phi *= M_PI/180.0;
  c = cos(phi);
  s = sin(phi);
  for (i=0; i<4; i++)
  {
    u = m[i][1];
    v = m[i][2];
    m[i][1] = c*u+s*v;
    m[i][2] = -s*u+c*v;
  }
}


/* Add a rotation around the wy-plane to the matrix m. */
static void rotatewy(float m[4][4], float phi)
{
  float c, s, u, v;
  int i;

  phi *= M_PI/180.0;
  c = cos(phi);
  s = sin(phi);
  for (i=0; i<4; i++)
  {
    u = m[i][0];
    v = m[i][2];
    m[i][0] = c*u-s*v;
    m[i][2] = s*u+c*v;
  }
}


/* Add a rotation around the wz-plane to the matrix m. */
static void rotatewz(float m[4][4], float phi)
{
  float c, s, u, v;
  int i;

  phi *= M_PI/180.0;
  c = cos(phi);
  s = sin(phi);
  for (i=0; i<4; i++)
  {
    u = m[i][0];
    v = m[i][1];
    m[i][0] = c*u+s*v;
    m[i][1] = -s*u+c*v;
  }
}


/* Add a rotation around the xy-plane to the matrix m. */
static void rotatexy(float m[4][4], float phi)
{
  float c, s, u, v;
  int i;

  phi *= M_PI/180.0;
  c = cos(phi);
  s = sin(phi);
  for (i=0; i<4; i++)
  {
    u = m[i][2];
    v = m[i][3];
    m[i][2] = c*u+s*v;
    m[i][3] = -s*u+c*v;
  }
}


/* Add a rotation around the xz-plane to the matrix m. */
static void rotatexz(float m[4][4], float phi)
{
  float c, s, u, v;
  int i;

  phi *= M_PI/180.0;
  c = cos(phi);
  s = sin(phi);
  for (i=0; i<4; i++)
  {
    u = m[i][1];
    v = m[i][3];
    m[i][1] = c*u-s*v;
    m[i][3] = s*u+c*v;
  }
}


/* Add a rotation around the yz-plane to the matrix m. */
static void rotateyz(float m[4][4], float phi)
{
  float c, s, u, v;
  int i;

  phi *= M_PI/180.0;
  c = cos(phi);
  s = sin(phi);
  for (i=0; i<4; i++)
  {
    u = m[i][0];
    v = m[i][3];
    m[i][0] = c*u-s*v;
    m[i][3] = s*u+c*v;
  }
}


/* Compute the rotation matrix m from the rotation angles. */
static void rotateall(float al, float be, float de, float ze, float et,
                      float th, float m[4][4])
{
  int i, j;

  for (i=0; i<4; i++)
    for (j=0; j<4; j++)
      m[i][j] = (i==j);
  rotatewx(m,al);
  rotatewy(m,be);
  rotatewz(m,de);
  rotatexy(m,ze);
  rotatexz(m,et);
  rotateyz(m,th);
}


/* Compute the rotation matrix m from the 4d rotation angles. */
static void rotateall4d(float ze, float et, float th, float m[4][4])
{
  int i, j;

  for (i=0; i<4; i++)
    for (j=0; j<4; j++)
      m[i][j] = (i==j);
  rotatexy(m,ze);
  rotatexz(m,et);
  rotateyz(m,th);
}


/* Add a rotation around the x-axis to the matrix m. */
static void rotatex(float m[3][3], float phi)
{
  float c, s, u, v;
  int i;

  phi *= M_PI/180.0;
  c = cos(phi);
  s = sin(phi);
  for (i=0; i<3; i++)
  {
    u = m[i][1];
    v = m[i][2];
    m[i][1] = c*u+s*v;
    m[i][2] = -s*u+c*v;
  }
}


/* Add a rotation around the y-axis to the matrix m. */
static void rotatey(float m[3][3], float phi)
{
  float c, s, u, v;
  int i;

  phi *= M_PI/180.0;
  c = cos(phi);
  s = sin(phi);
  for (i=0; i<3; i++)
  {
    u = m[i][0];
    v = m[i][2];
    m[i][0] = c*u-s*v;
    m[i][2] = s*u+c*v;
  }
}


/* Add a rotation around the z-axis to the matrix m. */
static void rotatez(float m[3][3], float phi)
{
  float c, s, u, v;
  int i;

  phi *= M_PI/180.0;
  c = cos(phi);
  s = sin(phi);
  for (i=0; i<3; i++)
  {
    u = m[i][0];
    v = m[i][1];
    m[i][0] = c*u+s*v;
    m[i][1] = -s*u+c*v;
  }
}


/* Compute the 3d rotation matrix m from the 3d rotation angles. */
static void rotateall3d(float al, float be, float de, float m[3][3])
{
  int i, j;

  for (i=0; i<3; i++)
    for (j=0; j<3; j++)
      m[i][j] = (i==j);
  rotatex(m,al);
  rotatey(m,be);
  rotatez(m,de);
}


/* Multiply two rotation matrices: o=m*n. */
static void mult_rotmat(float m[4][4], float n[4][4], float o[4][4])
{
  int i, j, k;

  for (i=0; i<4; i++)
  {
    for (j=0; j<4; j++)
    {
      o[i][j] = 0.0;
      for (k=0; k<4; k++)
        o[i][j] += m[i][k]*n[k][j];
    }
  }
}


/* Compute a 4D rotation matrix from two unit quaternions. */
static void quats_to_rotmat(float p[4], float q[4], float m[4][4])
{
  double al, be, de, ze, et, th;
  double r00, r01, r02, r12, r22;

  r00 = 1.0-2.0*(p[1]*p[1]+p[2]*p[2]);
  r01 = 2.0*(p[0]*p[1]+p[2]*p[3]);
  r02 = 2.0*(p[2]*p[0]-p[1]*p[3]);
  r12 = 2.0*(p[1]*p[2]+p[0]*p[3]);
  r22 = 1.0-2.0*(p[1]*p[1]+p[0]*p[0]);

  al = atan2(-r12,r22)*180.0/M_PI;
  be = atan2(r02,sqrt(r00*r00+r01*r01))*180.0/M_PI;
  de = atan2(-r01,r00)*180.0/M_PI;

  r00 = 1.0-2.0*(q[1]*q[1]+q[2]*q[2]);
  r01 = 2.0*(q[0]*q[1]+q[2]*q[3]);
  r02 = 2.0*(q[2]*q[0]-q[1]*q[3]);
  r12 = 2.0*(q[1]*q[2]+q[0]*q[3]);
  r22 = 1.0-2.0*(q[1]*q[1]+q[0]*q[0]);

  et = atan2(-r12,r22)*180.0/M_PI;
  th = atan2(r02,sqrt(r00*r00+r01*r01))*180.0/M_PI;
  ze = atan2(-r01,r00)*180.0/M_PI;

  rotateall(al,be,de,ze,et,-th,m);
}


/* Compute a fully saturated and bright color based on an angle. */
static void color(projectiveplanestruct *pp, double angle, float mat[3][3],
                  float col[4])
{
  int s;
  double t, ca, sa;
  float m;

  if (!pp->change_colors)
  {
    if (pp->colors == COLORS_ONESIDED || pp->colors == COLORS_TWOSIDED)
      return;

    if (angle >= 0.0)
      angle = fmod(angle,2.0*M_PI);
    else
      angle = fmod(angle,-2.0*M_PI);
    s = floor(angle/(M_PI/3));
    t = angle/(M_PI/3)-s;
    if (s >= 6)
      s = 0;
    switch (s)
    {
      case 0:
        col[0] = 1.0;
        col[1] = t;
        col[2] = 0.0;
        break;
      case 1:
        col[0] = 1.0-t;
        col[1] = 1.0;
        col[2] = 0.0;
        break;
      case 2:
        col[0] = 0.0;
        col[1] = 1.0;
        col[2] = t;
        break;
      case 3:
        col[0] = 0.0;
        col[1] = 1.0-t;
        col[2] = 1.0;
        break;
      case 4:
        col[0] = t;
        col[1] = 0.0;
        col[2] = 1.0;
        break;
      case 5:
        col[0] = 1.0;
        col[1] = 0.0;
        col[2] = 1.0-t;
        break;
    }
  }
  else /* pp->change_colors */
  {
    if (pp->colors == COLORS_ONESIDED || pp->colors == COLORS_TWOSIDED)
    {
      col[0] = mat[0][2];
      col[1] = mat[1][2];
      col[2] = mat[2][2];
    }
    else
    {
      ca = cos(angle);
      sa = sin(angle);
      col[0] = ca*mat[0][0]+sa*mat[0][1];
      col[1] = ca*mat[1][0]+sa*mat[1][1];
      col[2] = ca*mat[2][0]+sa*mat[2][1];
    }
    m = 0.5f/fmaxf(fmaxf(fabsf(col[0]),fabsf(col[1])),fabsf(col[2]));
    col[0] = m*col[0]+0.5f;
    col[1] = m*col[1]+0.5f;
    col[2] = m*col[2]+0.5f;
  }
  if (pp->display_mode == DISP_TRANSPARENT)
    col[3] = 0.7;
  else
    col[3] = 1.0;
}


/* Set up the projective plane coordinates, colors, and texture. */
static void setup_projective_plane(ModeInfo *mi, double umin, double umax,
                                   double vmin, double vmax)
{
  int i, j, k;
  double u, v, w, ur, vr;
  double cu, su, cv2, sv2, cv4, sv4, c2u, s2u;
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];

  ur = umax-umin;
  vr = vmax-vmin;
  for (i=0; i<=NUMV; i++)
  {
    for (j=0; j<=NUMU; j++)
    {
      k = i*(NUMU+1)+j;
      if (pp->appearance != APPEARANCE_DIRECTION_BANDS)
        u = -ur*j/NUMU+umin;
      else
        u = ur*j/NUMU+umin;
      v = vr*i/NUMV+vmin;
      su = sin(u);
      cu = cos(u);
      s2u = sin(2.0*u);
      c2u = cos(2.0*u);
      sv2 = sin(0.5*v);
      sv4 = sin(0.25*v);
      cv4 = cos(0.25*v);
      w = 0.5*(su*su*sv4*sv4-cv4*cv4);
      if (!pp->change_colors)
      {
        if (pp->colors == COLORS_DEPTH)
          color(pp,(2.0*w+1.0)*M_PI*2.0/3.0,NULL,pp->col[k]);
        else if (pp->colors == COLORS_DIRECTION)
          color(pp,2.0*M_PI+fmod(2.0*u,2.0*M_PI),NULL,pp->col[k]);
        else /* pp->colors == COLORS_DISTANCE */
          color(pp,v*(5.0/6.0),NULL,pp->col[k]);
      }
      pp->tex[k][0] = -32*u/(2.0*M_PI);
      if (pp->appearance != APPEARANCE_DISTANCE_BANDS)
        pp->tex[k][1] = 32*v/(2.0*M_PI);
      else
        pp->tex[k][1] = 32*v/(2.0*M_PI)-0.5;
      pp->x[k][0] = 0.5*s2u*sv4*sv4;
      pp->x[k][1] = 0.5*su*sv2;
      pp->x[k][2] = 0.5*cu*sv2;
      pp->x[k][3] = w;
      /* Avoid degenerate tangential plane basis vectors. */
      if (v < FLT_EPSILON)
        v = FLT_EPSILON;
      sv2 = sin(0.5*v);
      cv2 = cos(0.5*v);
      sv4 = sin(0.25*v);
      pp->xu[k][0] = c2u*sv4*sv4;
      pp->xu[k][1] = 0.5*cu*sv2;
      pp->xu[k][2] = -0.5*su*sv2;
      pp->xu[k][3] = 0.5*s2u*sv4*sv4;
      pp->xv[k][0] = 0.125*s2u*sv2;
      pp->xv[k][1] = 0.25*su*cv2;
      pp->xv[k][2] = 0.25*cu*cv2;
      pp->xv[k][3] = 0.125*(su*su+1.0)*sv2;
    }
  }
}


/* Compute the current walk frame, i.e., the coordinate system of the
   point and direction at which the viewer is currently walking on the
   projective plane. */
static void compute_walk_frame(projectiveplanestruct *pp, float mat[4][4])
{
  int l, m;
  double u, v;
  double q, r, s, t;
  double cu, su, cv2, sv2, cv4, sv4, c2u, s2u;
  float p[3], pu[3], pv[3], pm[3], n[3], b[3];
  double xx[4], xxu[4], xxv[4], y[4], yu[4], yv[4];

  /* Compute the rotation that rotates the projective plane in 4D without
     the trackball rotations. */
  rotateall4d(pp->zeta,pp->eta,pp->theta,mat);

  u = pp->umove;
  v = pp->vmove;
  su = sin(u);
  cu = cos(u);
  s2u = sin(2.0*u);
  c2u = cos(2.0*u);
  sv2 = sin(0.5*v);
  sv4 = sin(0.25*v);
  cv4 = cos(0.25*v);
  xx[0] = 0.5*s2u*sv4*sv4;
  xx[1] = 0.5*su*sv2;
  xx[2] = 0.5*cu*sv2;
  xx[3] = 0.5*(su*su*sv4*sv4-cv4*cv4);
  /* Avoid degenerate tangential plane basis vectors. */
  if (v < FLT_EPSILON)
    v = FLT_EPSILON;
  sv2 = sin(0.5*v);
  cv2 = cos(0.5*v);
  sv4 = sin(0.25*v);
  xxu[0] = c2u*sv4*sv4;
  xxu[1] = 0.5*cu*sv2;
  xxu[2] = -0.5*su*sv2;
  xxu[3] = 0.5*s2u*sv4*sv4;
  xxv[0] = 0.125*s2u*sv2;
  xxv[1] = 0.25*su*cv2;
  xxv[2] = 0.25*cu*cv2;
  xxv[3] = 0.125*(su*su+1.0)*sv2;
  for (l=0; l<4; l++)
  {
    y[l] = (mat[l][0]*xx[0]+mat[l][1]*xx[1]+
            mat[l][2]*xx[2]+mat[l][3]*xx[3]);
    yu[l] = (mat[l][0]*xxu[0]+mat[l][1]*xxu[1]+
             mat[l][2]*xxu[2]+mat[l][3]*xxu[3]);
    yv[l] = (mat[l][0]*xxv[0]+mat[l][1]*xxv[1]+
             mat[l][2]*xxv[2]+mat[l][3]*xxv[3]);
  }
  if (pp->projection_4d == DISP_4D_ORTHOGRAPHIC)
  {
    for (l=0; l<3; l++)
    {
      p[l] = y[l]+pp->offset4d[l];
      pu[l] = yu[l];
      pv[l] = yv[l];
    }
  }
  else
  {
    s = y[3]+pp->offset4d[3];
    q = 1.0/s;
    t = q*q;
    for (l=0; l<3; l++)
    {
      r = y[l]+pp->offset4d[l];
      p[l] = r*q;
      pu[l] = (yu[l]*s-r*yu[3])*t;
      pv[l] = (yv[l]*s-r*yv[3])*t;
    }
  }
  n[0] = pu[1]*pv[2]-pu[2]*pv[1];
  n[1] = pu[2]*pv[0]-pu[0]*pv[2];
  n[2] = pu[0]*pv[1]-pu[1]*pv[0];
  t = 1.0/(pp->side*4.0*sqrt(n[0]*n[0]+n[1]*n[1]+n[2]*n[2]));
  n[0] *= t;
  n[1] *= t;
  n[2] *= t;
  pm[0] = pu[0]*pp->dumove+pv[0]*pp->dvmove;
  pm[1] = pu[1]*pp->dumove+pv[1]*pp->dvmove;
  pm[2] = pu[2]*pp->dumove+pv[2]*pp->dvmove;
  t = 1.0/(4.0*sqrt(pm[0]*pm[0]+pm[1]*pm[1]+pm[2]*pm[2]));
  pm[0] *= t;
  pm[1] *= t;
  pm[2] *= t;
  b[0] = n[1]*pm[2]-n[2]*pm[1];
  b[1] = n[2]*pm[0]-n[0]*pm[2];
  b[2] = n[0]*pm[1]-n[1]*pm[0];
  t = 1.0/(4.0*sqrt(b[0]*b[0]+b[1]*b[1]+b[2]*b[2]));
  b[0] *= t;
  b[1] *= t;
  b[2] *= t;

  /* Compute alpha, beta, delta from the three basis vectors.
         |  -b[0]  -b[1]  -b[2] |
     m = |   n[0]   n[1]   n[2] |
         | -pm[0] -pm[1] -pm[2] |
  */
  pp->alpha = atan2(-n[2],-pm[2])*180/M_PI;
  pp->beta = atan2(-b[2],sqrt(b[0]*b[0]+b[1]*b[1]))*180/M_PI;
  pp->delta = atan2(b[1],-b[0])*180/M_PI;

  /* Compute the rotation that rotates the projective plane in 4D. */
  rotateall(pp->alpha,pp->beta,pp->delta,pp->zeta,pp->eta,pp->theta,mat);

  u = pp->umove;
  v = pp->vmove;
  su = sin(u);
  cu = cos(u);
  s2u = sin(2.0*u);
  sv2 = sin(0.5*v);
  sv4 = sin(0.25*v);
  cv4 = cos(0.25*v);
  xx[0] = 0.5*s2u*sv4*sv4;
  xx[1] = 0.5*su*sv2;
  xx[2] = 0.5*cu*sv2;
  xx[3] = 0.5*(su*su*sv4*sv4-cv4*cv4);
  for (l=0; l<4; l++)
  {
    r = 0.0;
    for (m=0; m<4; m++)
      r += mat[l][m]*xx[m];
    y[l] = r;
  }
  if (pp->projection_4d == DISP_4D_ORTHOGRAPHIC)
  {
    for (l=0; l<3; l++)
      p[l] = y[l]+pp->offset4d[l];
  }
  else
  {
    s = y[3]+pp->offset4d[3];
    for (l=0; l<3; l++)
      p[l] = (y[l]+pp->offset4d[l])/s;
  }

  pp->offset3d[0] = -p[0];
  pp->offset3d[1] = -p[1]-DELTAY;
  pp->offset3d[2] = -p[2];
}


/* Draw a 4d embedding of the projective plane projected into 3D using
   OpenGL's fixed functionality. */
static int projective_plane_ff(ModeInfo *mi, double umin, double umax,
                               double vmin, double vmax)
{
  static const GLfloat light_ambient[]          = { 0.0, 0.0, 0.0, 1.0 };
  static const GLfloat light_diffuse[]          = { 1.0, 1.0, 1.0, 1.0 };
  static const GLfloat light_specular[]         = { 1.0, 1.0, 1.0, 1.0 };
  static const GLfloat light_position[]         = { 1.0, 1.0, 1.0, 0.0 };
  static const GLfloat mat_specular[]           = { 1.0, 1.0, 1.0, 1.0 };
  static const GLfloat mat_diff_red[]           = { 1.0, 0.0, 0.0, 1.0 };
  static const GLfloat mat_diff_green[]         = { 0.0, 1.0, 0.0, 1.0 };
  static const GLfloat mat_diff_oneside[]       = { 0.9, 0.4, 0.3, 1.0 };
  static const GLfloat mat_diff_trans_red[]     = { 1.0, 0.0, 0.0, 0.7 };
  static const GLfloat mat_diff_trans_green[]   = { 0.0, 1.0, 0.0, 0.7 };
  static const GLfloat mat_diff_trans_oneside[] = { 0.9, 0.4, 0.3, 0.7 };
  float mat_diff_dyn[4], mat_diff_dyn_compl[4];
  float pu[3], pv[3], mat[4][4], matc[3][3];
  int i, j, k, l, m, o;
  double u, v, ur, vr;
  double y[4], yu[4], yv[4];
  double q, r, s, t;
  float q1[4], q2[4], r1[4][4], r2[4][4];
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];
  int polys;

  glMatrixMode(GL_PROJECTION);
  glLoadIdentity();
  if (pp->projection_3d == DISP_3D_PERSPECTIVE ||
      pp->view == VIEW_WALK || pp->view == VIEW_WALKTURN)
  {
    if (pp->view == VIEW_WALK || pp->view == VIEW_WALKTURN)
      gluPerspective(60.0,pp->aspect,0.01,10.0);
    else
      gluPerspective(60.0,pp->aspect,0.1,10.0);
  }
  else
  {
    if (pp->aspect >= 1.0)
      glOrtho(-0.6*pp->aspect,0.6*pp->aspect,-0.6,0.6,0.1,10.0);
    else
      glOrtho(-0.6,0.6,-0.6/pp->aspect,0.6/pp->aspect,0.1,10.0);
  }
  glMatrixMode(GL_MODELVIEW);
  glLoadIdentity();

  if (pp->display_mode == DISP_SURFACE)
  {
    glEnable(GL_DEPTH_TEST);
    glDepthFunc(GL_LESS);
    glDepthMask(GL_TRUE);
    glShadeModel(GL_SMOOTH);
    glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
    glLightModeli(GL_LIGHT_MODEL_TWO_SIDE,GL_TRUE);
    glEnable(GL_LIGHTING);
    glEnable(GL_LIGHT0);
    glLightfv(GL_LIGHT0,GL_AMBIENT,light_ambient);
    glLightfv(GL_LIGHT0,GL_DIFFUSE,light_diffuse);
    glLightfv(GL_LIGHT0,GL_SPECULAR,light_specular);
    glLightfv(GL_LIGHT0,GL_POSITION,light_position);
    glMaterialfv(GL_FRONT_AND_BACK,GL_SPECULAR,mat_specular);
    glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,50.0);
    glDisable(GL_BLEND);
  }
  else if (pp->display_mode == DISP_TRANSPARENT)
  {
    glDisable(GL_DEPTH_TEST);
    glDepthMask(GL_FALSE);
    glShadeModel(GL_SMOOTH);
    glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
    glLightModeli(GL_LIGHT_MODEL_TWO_SIDE,GL_TRUE);
    glEnable(GL_LIGHTING);
    glEnable(GL_LIGHT0);
    glLightfv(GL_LIGHT0,GL_AMBIENT,light_ambient);
    glLightfv(GL_LIGHT0,GL_DIFFUSE,light_diffuse);
    glLightfv(GL_LIGHT0,GL_SPECULAR,light_specular);
    glLightfv(GL_LIGHT0,GL_POSITION,light_position);
    glMaterialfv(GL_FRONT_AND_BACK,GL_SPECULAR,mat_specular);
    glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,50.0);
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA,GL_ONE);
  }
  else  /* pp->display_mode == DISP_WIREFRAME */
  {
    glEnable(GL_DEPTH_TEST);
    glDepthFunc(GL_LESS);
    glDepthMask(GL_TRUE);
    glShadeModel(GL_FLAT);
    glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
    glDisable(GL_LIGHTING);
    glDisable(GL_LIGHT0);
    glDisable(GL_BLEND);
  }

  if (pp->marks)
  {
    glEnable(GL_TEXTURE_2D);
#ifndef HAVE_JWZGLES
    glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL,GL_SEPARATE_SPECULAR_COLOR);
#endif
  }
  else
  {
    glDisable(GL_TEXTURE_2D);
#ifndef HAVE_JWZGLES
    glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL,GL_SINGLE_COLOR);
#endif
  }

  if (pp->change_colors)
    rotateall3d(pp->rho,pp->sigma,pp->tau,matc);

  if (pp->view == VIEW_WALK || pp->view == VIEW_WALKTURN)
  {
    /* Compute the walk frame. */
    compute_walk_frame(pp,mat);
  }
  else
  {
    /* Compute the rotation that rotates the projective plane in 4D,
       including the trackball rotations. */
    rotateall(pp->alpha,pp->beta,pp->delta,pp->zeta,pp->eta,pp->theta,r1);

    gltrackball_get_quaternion(pp->trackballs[0],q1);
    gltrackball_get_quaternion(pp->trackballs[1],q2);
    quats_to_rotmat(q1,q2,r2);

    mult_rotmat(r2,r1,mat);
  }

  /* Project the points from 4D to 3D. */
  for (i=0; i<=NUMV; i++)
  {
    for (j=0; j<=NUMU; j++)
    {
      o = i*(NUMU+1)+j;
      for (l=0; l<4; l++)
      {
        y[l] = (mat[l][0]*pp->x[o][0]+mat[l][1]*pp->x[o][1]+
                mat[l][2]*pp->x[o][2]+mat[l][3]*pp->x[o][3]);
        yu[l] = (mat[l][0]*pp->xu[o][0]+mat[l][1]*pp->xu[o][1]+
                 mat[l][2]*pp->xu[o][2]+mat[l][3]*pp->xu[o][3]);
        yv[l] = (mat[l][0]*pp->xv[o][0]+mat[l][1]*pp->xv[o][1]+
                 mat[l][2]*pp->xv[o][2]+mat[l][3]*pp->xv[o][3]);
      }
      if (pp->projection_4d == DISP_4D_ORTHOGRAPHIC)
      {
        for (l=0; l<3; l++)
        {
          pp->pp[o][l] = (y[l]+pp->offset4d[l])+pp->offset3d[l];
          pu[l] = yu[l];
          pv[l] = yv[l];
        }
      }
      else
      {
        s = y[3]+pp->offset4d[3];
        q = 1.0/s;
        t = q*q;
        for (l=0; l<3; l++)
        {
          r = y[l]+pp->offset4d[l];
          pp->pp[o][l] = r*q+pp->offset3d[l];
          pu[l] = (yu[l]*s-r*yu[3])*t;
          pv[l] = (yv[l]*s-r*yv[3])*t;
        }
      }
      pp->pn[o][0] = pu[1]*pv[2]-pu[2]*pv[1];
      pp->pn[o][1] = pu[2]*pv[0]-pu[0]*pv[2];
      pp->pn[o][2] = pu[0]*pv[1]-pu[1]*pv[0];
      t = 1.0/sqrt(pp->pn[o][0]*pp->pn[o][0]+pp->pn[o][1]*pp->pn[o][1]+
                   pp->pn[o][2]*pp->pn[o][2]);
      pp->pn[o][0] *= t;
      pp->pn[o][1] *= t;
      pp->pn[o][2] *= t;
    }
  }

  if (!pp->change_colors)
  {
    if (pp->colors == COLORS_ONESIDED)
    {
      glColor3fv(mat_diff_oneside);
      if (pp->display_mode == DISP_TRANSPARENT)
      {
        glMaterialfv(GL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE,
                     mat_diff_trans_oneside);
      }
      else
      {
        glMaterialfv(GL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE,
                     mat_diff_oneside);
      }
    }
    else if (pp->colors == COLORS_TWOSIDED)
    {
      glColor3fv(mat_diff_red);
      if (pp->display_mode == DISP_TRANSPARENT)
      {
        glMaterialfv(GL_FRONT,GL_AMBIENT_AND_DIFFUSE,mat_diff_trans_red);
        glMaterialfv(GL_BACK,GL_AMBIENT_AND_DIFFUSE,mat_diff_trans_green);
      }
      else
      {
        glMaterialfv(GL_FRONT,GL_AMBIENT_AND_DIFFUSE,mat_diff_red);
        glMaterialfv(GL_BACK,GL_AMBIENT_AND_DIFFUSE,mat_diff_green);
      }
    }
  }
  else /* pp->change_colors */
  {
    color(pp,0.0,matc,mat_diff_dyn);
    if (pp->colors == COLORS_ONESIDED)
    {
      glColor3fv(mat_diff_dyn);
      glMaterialfv(GL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE,mat_diff_dyn);
    }
    else if (pp->colors == COLORS_TWOSIDED)
    {
      mat_diff_dyn_compl[0] = 1.0f-mat_diff_dyn[0];
      mat_diff_dyn_compl[1] = 1.0f-mat_diff_dyn[1];
      mat_diff_dyn_compl[2] = 1.0f-mat_diff_dyn[2];
      mat_diff_dyn_compl[3] = mat_diff_dyn[3];
      glColor3fv(mat_diff_dyn);
      glMaterialfv(GL_FRONT,GL_AMBIENT_AND_DIFFUSE,mat_diff_dyn);
      glMaterialfv(GL_BACK,GL_AMBIENT_AND_DIFFUSE,mat_diff_dyn_compl);
    }
  }
  glBindTexture(GL_TEXTURE_2D,pp->tex_name);

  ur = umax-umin;
  vr = vmax-vmin;
  if (pp->appearance != APPEARANCE_DIRECTION_BANDS)
  {
    for (i=0; i<NUMV; i++)
    {
      if (pp->appearance == APPEARANCE_DISTANCE_BANDS &&
          ((i & (NUMB-1)) >= NUMB/4) && ((i & (NUMB-1)) < 3*NUMB/4))
        continue;
      if (pp->display_mode == DISP_WIREFRAME)
        glBegin(GL_QUAD_STRIP);
      else
        glBegin(GL_TRIANGLE_STRIP);
      for (j=0; j<=NUMU; j++)
      {
        for (k=0; k<=1; k++)
        {
          l = i+k;
          m = j;
          o = l*(NUMU+1)+m;
          glNormal3fv(pp->pn[o]);
          glTexCoord2fv(pp->tex[o]);
          if (pp->change_colors)
          {
            if (pp->colors == COLORS_DEPTH)
            {
              color(pp,(2.0*pp->x[o][3]+1.0)*M_PI*2.0/3.0,matc,pp->col[o]);
            }
            else if (pp->colors == COLORS_DIRECTION)
            {
              u = -ur*m/NUMU+umin;
              color(pp,2.0*M_PI+fmod(2.0*u,2.0*M_PI),matc,pp->col[o]);
            }
            else if (pp->colors == COLORS_DISTANCE)
            {
              v = vr*l/NUMV+vmin;
              color(pp,v*(5.0/6.0),matc,pp->col[o]);
            }
          }
          if (pp->colors != COLORS_ONESIDED && pp->colors != COLORS_TWOSIDED)
          {
            glColor3fv(pp->col[o]);
            glMaterialfv(GL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE,pp->col[o]);
          }
          glVertex3fv(pp->pp[o]);
        }
      }
      glEnd();
    }
  }
  else /* pp->appearance == APPEARANCE_DIRECTION_BANDS */
  {
    for (j=0; j<NUMU; j++)
    {
      if ((j & (NUMB-1)) >= NUMB/2)
        continue;
      if (pp->display_mode == DISP_WIREFRAME)
        glBegin(GL_QUAD_STRIP);
      else
        glBegin(GL_TRIANGLE_STRIP);
      for (i=0; i<=NUMV; i++)
      {
        for (k=0; k<=1; k++)
        {
          l = i;
          m = j+k;
          o = l*(NUMU+1)+m;
          glNormal3fv(pp->pn[o]);
          glTexCoord2fv(pp->tex[o]);
          if (pp->change_colors)
          {
            if (pp->colors == COLORS_DEPTH)
            {
              color(pp,(2.0*pp->x[o][3]+1.0)*M_PI*2.0/3.0,matc,pp->col[o]);
            }
            else if (pp->colors == COLORS_DIRECTION)
            {
              u = ur*m/NUMU+umin;
              color(pp,2.0*M_PI+fmod(2.0*u,2.0*M_PI),matc,pp->col[o]);
            }
            else if (pp->colors == COLORS_DISTANCE)
            {
              v = vr*l/NUMV+vmin;
              color(pp,v*(5.0/6.0),matc,pp->col[o]);
            }
          }
          if (pp->colors != COLORS_ONESIDED && pp->colors != COLORS_TWOSIDED)
          {
            glColor3fv(pp->col[o]);
            glMaterialfv(GL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE,pp->col[o]);
          }
          glVertex3fv(pp->pp[o]);
        }
      }
      glEnd();
    }
  }

  polys = 2*NUMU*NUMV;
  if (pp->appearance != APPEARANCE_SOLID)
    polys /= 2;
  return polys;
}


#ifdef HAVE_GLSL

/* Draw a 4d embedding of the projective plane projected into 3D using
   OpenGL's programmable functionality. */
static int projective_plane_pf(ModeInfo *mi, double umin, double umax,
                               double vmin, double vmax)
{
  static const GLfloat light_model_ambient[]    = { 0.2, 0.2, 0.2, 1.0 };
  static const GLfloat light_ambient[]          = { 0.0, 0.0, 0.0, 1.0 };
  static const GLfloat light_diffuse[]          = { 1.0, 1.0, 1.0, 1.0 };
  static const GLfloat light_specular[]         = { 1.0, 1.0, 1.0, 1.0 };
  static const GLfloat light_position[]         = { 1.0, 1.0, 1.0, 0.0 };
  static const GLfloat mat_specular[]           = { 1.0, 1.0, 1.0, 1.0 };
  static const GLfloat mat_diff_red[]           = { 1.0, 0.0, 0.0, 1.0 };
  static const GLfloat mat_diff_green[]         = { 0.0, 1.0, 0.0, 1.0 };
  static const GLfloat mat_diff_oneside[]       = { 0.9, 0.4, 0.3, 1.0 };
  static const GLfloat mat_diff_trans_red[]     = { 1.0, 0.0, 0.0, 0.7 };
  static const GLfloat mat_diff_trans_green[]   = { 0.0, 1.0, 0.0, 0.7 };
  static const GLfloat mat_diff_trans_oneside[] = { 0.9, 0.4, 0.3, 0.7 };
  static const GLfloat mat_diff_white[]         = { 1.0, 1.0, 1.0, 1.0 };
  GLfloat light_direction[3], half_vector[3], len;
  GLfloat p_mat[16];
  float mat_diff_dyn[4], mat_diff_dyn_compl[4];
  float mat[4][4], matc[3][3];
  int i, j, k, l, m, o;
  double u, v, ur, vr;
  float q1[4], q2[4], r1[4][4], r2[4][4];
  GLsizeiptr index_offset;
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];
  int polys;

  if (!pp->use_shaders)
    return 0;

  if (!pp->buffers_initialized)
  {
    /* The u and v values need to be computed once (or each time the value
       of appearance changes, once we support that). */
    ur = umax-umin;
    vr = vmax-vmin;
    for (i=0; i<=NUMV; i++)
    {
      for (j=0; j<=NUMU; j++)
      {
        o = i*(NUMU+1)+j;
        if (pp->appearance != APPEARANCE_DIRECTION_BANDS)
          u = -ur*j/NUMU+umin;
        else
          u = ur*j/NUMU+umin;
        v = vr*i/NUMV+vmin;
        pp->uv[o][0] = u;
        pp->uv[o][1] = v;
      }
    }
    glBindBuffer(GL_ARRAY_BUFFER,pp->vertex_uv_buffer);
    glBufferData(GL_ARRAY_BUFFER,2*(NUMU+1)*(NUMV+1)*sizeof(GLfloat),
                 pp->uv,GL_STATIC_DRAW);
    glBindBuffer(GL_ARRAY_BUFFER,0);

    glBindBuffer(GL_ARRAY_BUFFER,pp->vertex_t_buffer);
    glBufferData(GL_ARRAY_BUFFER,2*(NUMU+1)*(NUMV+1)*sizeof(GLfloat),
                 pp->tex,GL_STATIC_DRAW);
    glBindBuffer(GL_ARRAY_BUFFER,0);

    if (!pp->change_colors &&
        pp->colors != COLORS_ONESIDED && pp->colors != COLORS_TWOSIDED)
    {
      glBindBuffer(GL_ARRAY_BUFFER,pp->color_buffer);
      glBufferData(GL_ARRAY_BUFFER,4*(NUMU+1)*(NUMV+1)*sizeof(GLfloat),
                   pp->col,GL_STATIC_DRAW);
      glBindBuffer(GL_ARRAY_BUFFER,0);
    }

    /* The indices only need to be computed once (or each time the value of
       appearance changes, once we support that). */
    pp->ni = 0;
    pp->ne = 0;
    pp->nt = 0;
    if (pp->display_mode != DISP_WIREFRAME)
    {
      if (pp->appearance != APPEARANCE_DIRECTION_BANDS)
      {
        for (i=0; i<NUMV; i++)
        {
          if (pp->appearance == APPEARANCE_DISTANCE_BANDS &&
              ((i & (NUMB-1)) >= NUMB/4) && ((i & (NUMB-1)) < 3*NUMB/4))
            continue;
          for (j=0; j<=NUMU; j++)
          {
            for (k=0; k<=1; k++)
            {
              l = i+k;
              m = j;
              o = l*(NUMU+1)+m;
              pp->indices[pp->ni++] = o;
            }
          }
          pp->ne++;
        }
        pp->nt = 2*(NUMU+1);
      }
      else /* pp->appearance == APPEARANCE_DIRECTION_BANDS */
      {
        for (j=0; j<NUMU; j++)
        {
          if ((j & (NUMB-1)) >= NUMB/2)
            continue;
          for (i=0; i<=NUMV; i++)
          {
            for (k=0; k<=1; k++)
            {
              l = i;
              m = j+k;
              o = l*(NUMU+1)+m;
              pp->indices[pp->ni++] = o;
            }
          }
          pp->ne++;
        }
        pp->nt = 2*(NUMV+1);
      }
    }
    else /* pp->display_mode == DISP_WIREFRAME */
    {
      if (pp->appearance != APPEARANCE_DIRECTION_BANDS)
      {
        for (i=0; i<=NUMV; i++)
        {
          if (pp->appearance == APPEARANCE_DISTANCE_BANDS &&
              ((i & (NUMB-1)) > NUMB/4) && ((i & (NUMB-1)) < 3*NUMB/4))
            continue;
          if (pp->appearance == APPEARANCE_DISTANCE_BANDS &&
              ((i & (NUMB-1)) == NUMB/4))
          {
            for (j=0; j<NUMU; j++)
            {
              pp->indices[pp->ni++] = i*(NUMU+1)+j;
              pp->indices[pp->ni++] = i*(NUMU+1)+j+1;
            }
            continue;
          }
          for (j=0; j<NUMU; j++)
          {
            pp->indices[pp->ni++] = i*(NUMU+1)+j;
            pp->indices[pp->ni++] = i*(NUMU+1)+j+1;
            if (i < NUMV)
            {
              pp->indices[pp->ni++] = i*(NUMU+1)+j;
              pp->indices[pp->ni++] = (i+1)*(NUMU+1)+j;
            }
          }
        }
      }
      else /* pp->appearance == APPEARANCE_DIRECTION_BANDS */
      {
        for (j=0; j<NUMU; j++)
        {
          if ((j & (NUMB-1)) > NUMB/2)
            continue;
          if ((j & (NUMB-1)) == NUMB/2)
          {
            for (i=0; i<NUMV; i++)
            {
              pp->indices[pp->ni++] = i*(NUMU+1)+j;
              pp->indices[pp->ni++] = (i+1)*(NUMU+1)+j;
            }
            continue;
          }
          for (i=0; i<=NUMV; i++)
          {
            pp->indices[pp->ni++] = i*(NUMU+1)+j;
            pp->indices[pp->ni++] = i*(NUMU+1)+j+1;
            if (i < NUMV)
            {
              pp->indices[pp->ni++] = i*(NUMU+1)+j;
              pp->indices[pp->ni++] = (i+1)*(NUMU+1)+j;
            }
          }
        }
      }
      pp->ne = 1;
    }

    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,pp->indices_buffer);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER,pp->ni*sizeof(GLuint),
                 pp->indices,GL_STATIC_DRAW);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0);

    pp->buffers_initialized = True;
  }

  if (pp->change_colors)
    rotateall3d(pp->rho,pp->sigma,pp->tau,matc);

  if (pp->view == VIEW_WALK || pp->view == VIEW_WALKTURN)
  {
    /* Compute the walk frame. */
    compute_walk_frame(pp,mat);
  }
  else
  {
    /* Compute the rotation that rotates the projective plane in 4D,
       including the trackball rotations. */
    rotateall(pp->alpha,pp->beta,pp->delta,pp->zeta,pp->eta,pp->theta,r1);

    gltrackball_get_quaternion(pp->trackballs[0],q1);
    gltrackball_get_quaternion(pp->trackballs[1],q2);
    quats_to_rotmat(q1,q2,r2);

    mult_rotmat(r2,r1,mat);
  }

  if (pp->change_colors &&
      (pp->colors == COLORS_DEPTH || pp->colors == COLORS_DIRECTION ||
       pp->colors == COLORS_DISTANCE))
  {
    ur = umax-umin;
    vr = vmax-vmin;
    for (i=0; i<=NUMV; i++)
    {
      for (j=0; j<=NUMU; j++)
      {
        o = i*(NUMU+1)+j;
        if (pp->colors == COLORS_DEPTH)
        {
          color(pp,(2.0*pp->x[o][3]+1.0)*M_PI*2.0/3.0,matc,pp->col[o]);
        }
        else if (pp->colors == COLORS_DIRECTION)
        {
          u = -ur*j/NUMU+umin;
          color(pp,2.0*M_PI+fmod(2.0*u,2.0*M_PI),matc,pp->col[o]);
        }
        else if (pp->colors == COLORS_DISTANCE)
        {
          v = vr*i/NUMV+vmin;
          color(pp,v*(5.0/6.0),matc,pp->col[o]);
        }
      }
    }
  }

  glUseProgram(pp->shader_program);

  glsl_Identity(p_mat);
  if (pp->projection_3d == DISP_3D_PERSPECTIVE ||
      pp->view == VIEW_WALK || pp->view == VIEW_WALKTURN)
  {
    if (pp->view == VIEW_WALK || pp->view == VIEW_WALKTURN)
      glsl_Perspective(p_mat,60.0f,pp->aspect,0.01f,10.0f);
    else
      glsl_Perspective(p_mat,60.0f,pp->aspect,0.1f,10.0f);
  }
  else
  {
    if (pp->aspect >= 1.0)
      glsl_Orthographic(p_mat,-0.6f*pp->aspect,0.6f*pp->aspect,-0.6f,0.6f,
                        0.1f,10.0f);
    else
      glsl_Orthographic(p_mat,-0.6f,0.6f,-0.6f/pp->aspect,0.6f/pp->aspect,
                        0.1f,10.0f);
  }
  glUniformMatrix4fv(pp->mat_rot_index,1,GL_TRUE,(GLfloat *)mat);
  glUniformMatrix4fv(pp->mat_p_index,1,GL_FALSE,p_mat);
  glUniform1i(pp->bool_persp_index,pp->projection_4d == DISP_4D_PERSPECTIVE);
  glUniform4fv(pp->off4d_index,1,pp->offset4d);
  glUniform4fv(pp->off3d_index,1,pp->offset3d);

  len = sqrtf(light_position[0]*light_position[0]+
              light_position[1]*light_position[1]+
              light_position[2]*light_position[2]);
  light_direction[0] = light_position[0]/len;
  light_direction[1] = light_position[1]/len;
  light_direction[2] = light_position[2]/len;
  half_vector[0] = light_direction[0];
  half_vector[1] = light_direction[1];
  half_vector[2] = light_direction[2]+1.0f;
  len = sqrtf(half_vector[0]*half_vector[0]+
              half_vector[1]*half_vector[1]+
              half_vector[2]*half_vector[2]);
  half_vector[0] /= len;
  half_vector[1] /= len;
  half_vector[2] /= len;

  if (pp->display_mode == DISP_SURFACE)
  {
    glEnable(GL_DEPTH_TEST);
    glDepthFunc(GL_LESS);
    glDepthMask(GL_TRUE);
    glDisable(GL_BLEND);
    glUniform4fv(pp->glbl_ambient_index,1,light_model_ambient);
    glUniform4fv(pp->lt_ambient_index,1,light_ambient);
    glUniform4fv(pp->lt_diffuse_index,1,light_diffuse);
    glUniform4fv(pp->lt_specular_index,1,light_specular);
    glUniform3fv(pp->lt_direction_index,1,light_direction);
    glUniform3fv(pp->lt_halfvect_index,1,half_vector);
    glUniform4fv(pp->specular_index,1,mat_specular);
    glUniform1f(pp->shininess_index,50.0f);
    glUniform1i(pp->draw_lines_index,GL_FALSE);
  }
  else if (pp->display_mode == DISP_TRANSPARENT)
  {
    glDisable(GL_DEPTH_TEST);
    glDepthMask(GL_FALSE);
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA,GL_ONE);
    glUniform4fv(pp->glbl_ambient_index,1,light_model_ambient);
    glUniform4fv(pp->lt_ambient_index,1,light_ambient);
    glUniform4fv(pp->lt_diffuse_index,1,light_diffuse);
    glUniform4fv(pp->lt_specular_index,1,light_specular);
    glUniform3fv(pp->lt_direction_index,1,light_direction);
    glUniform3fv(pp->lt_halfvect_index,1,half_vector);
    glUniform4fv(pp->specular_index,1,mat_specular);
    glUniform1f(pp->shininess_index,50.0f);
    glUniform1i(pp->draw_lines_index,GL_FALSE);
  }
  else /* pp->display_mode == DISP_WIREFRAME */
  {
    glEnable(GL_DEPTH_TEST);
    glDepthFunc(GL_LESS);
    glDepthMask(GL_TRUE);
    glDisable(GL_BLEND);
    glUniform1i(pp->draw_lines_index,GL_TRUE);
  }

  if (pp->marks)
    glEnable(GL_TEXTURE_2D);
  else
    glDisable(GL_TEXTURE_2D);

  glUniform4fv(pp->front_ambient_index,1,mat_diff_white);
  glUniform4fv(pp->front_diffuse_index,1,mat_diff_white);
  glUniform4fv(pp->back_ambient_index,1,mat_diff_white);
  glUniform4fv(pp->back_diffuse_index,1,mat_diff_white);
  glVertexAttrib4f(pp->color_index,1.0f,1.0f,1.0f,1.0f);
  if (!pp->change_colors)
  {
    if (pp->colors == COLORS_ONESIDED)
    {
      if (pp->display_mode == DISP_TRANSPARENT)
      {
        glUniform4fv(pp->front_ambient_index,1,mat_diff_trans_oneside);
        glUniform4fv(pp->front_diffuse_index,1,mat_diff_trans_oneside);
        glUniform4fv(pp->back_ambient_index,1,mat_diff_trans_oneside);
        glUniform4fv(pp->back_diffuse_index,1,mat_diff_trans_oneside);
      }
      else if (pp->display_mode == DISP_SURFACE)
      {
        glUniform4fv(pp->front_ambient_index,1,mat_diff_oneside);
        glUniform4fv(pp->front_diffuse_index,1,mat_diff_oneside);
        glUniform4fv(pp->back_ambient_index,1,mat_diff_oneside);
        glUniform4fv(pp->back_diffuse_index,1,mat_diff_oneside);
      }
      else /* pp->display_mode == DISP_WIREFRAME */
      {
        glVertexAttrib4fv(pp->color_index,mat_diff_oneside);
      }
    }
    else if (pp->colors == COLORS_TWOSIDED)
    {
      if (pp->display_mode == DISP_TRANSPARENT)
      {
        glUniform4fv(pp->front_ambient_index,1,mat_diff_trans_red);
        glUniform4fv(pp->front_diffuse_index,1,mat_diff_trans_red);
        glUniform4fv(pp->back_ambient_index,1,mat_diff_trans_green);
        glUniform4fv(pp->back_diffuse_index,1,mat_diff_trans_green);
      }
      else if (pp->display_mode == DISP_SURFACE)
      {
        glUniform4fv(pp->front_ambient_index,1,mat_diff_red);
        glUniform4fv(pp->front_diffuse_index,1,mat_diff_red);
        glUniform4fv(pp->back_ambient_index,1,mat_diff_green);
        glUniform4fv(pp->back_diffuse_index,1,mat_diff_green);
      }
      else /* pp->display_mode == DISP_WIREFRAME */
      {
        glVertexAttrib4fv(pp->color_index,mat_diff_red);
      }
    }
  }
  else /* pp->change_colors */
  {
    color(pp,0.0,matc,mat_diff_dyn);
    if (pp->colors == COLORS_ONESIDED)
    {
      if (pp->display_mode == DISP_TRANSPARENT ||
          pp->display_mode == DISP_SURFACE)
      {
        glUniform4fv(pp->front_ambient_index,1,mat_diff_dyn);
        glUniform4fv(pp->front_diffuse_index,1,mat_diff_dyn);
        glUniform4fv(pp->back_ambient_index,1,mat_diff_dyn);
        glUniform4fv(pp->back_diffuse_index,1,mat_diff_dyn);
      }
      else /* pp->display_mode == DISP_WIREFRAME */
      {
        glVertexAttrib4fv(pp->color_index,mat_diff_dyn);
      }
    }
    else if (pp->colors == COLORS_TWOSIDED)
    {
      if (pp->display_mode == DISP_TRANSPARENT ||
          pp->display_mode == DISP_SURFACE)
      {
        mat_diff_dyn_compl[0] = 1.0f-mat_diff_dyn[0];
        mat_diff_dyn_compl[1] = 1.0f-mat_diff_dyn[1];
        mat_diff_dyn_compl[2] = 1.0f-mat_diff_dyn[2];
        mat_diff_dyn_compl[3] = mat_diff_dyn[3];
        glUniform4fv(pp->front_ambient_index,1,mat_diff_dyn);
        glUniform4fv(pp->front_diffuse_index,1,mat_diff_dyn);
        glUniform4fv(pp->back_ambient_index,1,mat_diff_dyn_compl);
        glUniform4fv(pp->back_diffuse_index,1,mat_diff_dyn_compl);
      }
      else /* pp->display_mode == DISP_WIREFRAME */
      {
        glVertexAttrib4fv(pp->color_index,mat_diff_dyn);
      }
    }
  }

  glActiveTexture(GL_TEXTURE0);
  glBindTexture(GL_TEXTURE_2D,pp->tex_name);
  glUniform1i(pp->texture_sampler_index,0);
  glUniform1i(pp->bool_textures_index,pp->marks);

  glEnableVertexAttribArray(pp->vertex_uv_index);
  glBindBuffer(GL_ARRAY_BUFFER,pp->vertex_uv_buffer);
  glVertexAttribPointer(pp->vertex_uv_index,2,GL_FLOAT,GL_FALSE,0,0);

  glEnableVertexAttribArray(pp->vertex_t_index);
  glBindBuffer(GL_ARRAY_BUFFER,pp->vertex_t_buffer);
  glVertexAttribPointer(pp->vertex_t_index,2,GL_FLOAT,GL_FALSE,0,0);

  if (pp->colors != COLORS_ONESIDED && pp->colors != COLORS_TWOSIDED)
  {
    glEnableVertexAttribArray(pp->color_index);
    glBindBuffer(GL_ARRAY_BUFFER,pp->color_buffer);
    if (pp->change_colors)
      glBufferData(GL_ARRAY_BUFFER,4*(NUMU+1)*(NUMV+1)*sizeof(GLfloat),
                   pp->col,GL_STREAM_DRAW);
    glVertexAttribPointer(pp->color_index,4,GL_FLOAT,GL_FALSE,0,0);
  }

  glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,pp->indices_buffer);

  if (pp->display_mode != DISP_WIREFRAME)
  {
    for (i=0; i<pp->ne; i++)
    {
      index_offset = pp->nt*i*sizeof(GLuint);
      glDrawElements(GL_TRIANGLE_STRIP,pp->nt,GL_UNSIGNED_INT,
                     (const GLvoid *)index_offset);
    }
  }
  else /* pp->display_mode == DISP_WIREFRAME */
  {
    glLineWidth(1.0f);
    index_offset = 0;
    glDrawElements(GL_LINES,pp->ni,GL_UNSIGNED_INT,
                   (const void *)index_offset);
  }

  glDisableVertexAttribArray(pp->vertex_uv_index);
  glDisableVertexAttribArray(pp->vertex_t_index);
  if (pp->colors != COLORS_ONESIDED && pp->colors != COLORS_TWOSIDED)
    glDisableVertexAttribArray(pp->color_index);
  glBindBuffer(GL_ARRAY_BUFFER,0);
  glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0);

  glUseProgram(0);

  polys = 2*NUMU*NUMV;
  if (pp->appearance != APPEARANCE_SOLID)
    polys /= 2;
  return polys;
}

#endif /* HAVE_GLSL */


/* Generate a texture image that shows the orientation reversal. */
static void gen_texture(ModeInfo *mi)
{
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];

  glPixelStorei(GL_UNPACK_ALIGNMENT,1);
  glGenTextures(1,&pp->tex_name);
  glBindTexture(GL_TEXTURE_2D,pp->tex_name);
  glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);
  glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_REPEAT);
  glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
  glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
  glTexEnvf(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_MODULATE);
  glTexImage2D(GL_TEXTURE_2D,0,GL_LUMINANCE,TEX_DIMENSION,TEX_DIMENSION,0,
               GL_LUMINANCE,GL_UNSIGNED_BYTE,texture);
}


#ifdef HAVE_GLSL

static void init_glsl(ModeInfo *mi)
{
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];
  GLint gl_major, gl_minor, glsl_major, glsl_minor;
  GLboolean gl_gles3;
  const GLchar *vertex_shader_source[3];
  const GLchar *fragment_shader_source[4];

  /* Determine whether to use shaders to render the projective plane. */
  pp->use_shaders = False;
  pp->buffers_initialized = False;
  pp->shader_program = 0;
  pp->ni = 0;
  pp->ne = 0;
  pp->nt = 0;

  if (!glsl_GetGlAndGlslVersions(&gl_major,&gl_minor,&glsl_major,&glsl_minor,
                                 &gl_gles3))
    return;
  if (!gl_gles3)
  {
    if (gl_major < 3 ||
        (glsl_major < 1 || (glsl_major == 1 && glsl_minor < 30)))
    {
      if ((gl_major < 2 || (gl_major == 2 && gl_minor < 1)) ||
          (glsl_major < 1 || (glsl_major == 1 && glsl_minor < 20)))
        return;
      /* We have at least OpenGL 2.1 and at least GLSL 1.20. */
      vertex_shader_source[0] = shader_version_2_1;
      vertex_shader_source[1] = vertex_shader_attribs_2_1;
      vertex_shader_source[2] = vertex_shader_main;
      fragment_shader_source[0] = shader_version_2_1;
      fragment_shader_source[1] = fragment_shader_attribs_2_1;
      fragment_shader_source[2] = fragment_shader_main;
      fragment_shader_source[3] = fragment_shader_out_2_1;
    }
    else
    {
      /* We have at least OpenGL 3.0 and at least GLSL 1.30. */
      vertex_shader_source[0] = shader_version_3_0;
      vertex_shader_source[1] = vertex_shader_attribs_3_0;
      vertex_shader_source[2] = vertex_shader_main;
      fragment_shader_source[0] = shader_version_3_0;
      fragment_shader_source[1] = fragment_shader_attribs_3_0;
      fragment_shader_source[2] = fragment_shader_main;
      fragment_shader_source[3] = fragment_shader_out_3_0;
    }
  }
  else /* gl_gles3 */
  {
    if (gl_major < 3 || glsl_major < 3)
      return;
    /* We have at least OpenGL ES 3.0 and at least GLSL ES 3.0. */
    vertex_shader_source[0] = shader_version_3_0_es;
    vertex_shader_source[1] = vertex_shader_attribs_3_0;
    vertex_shader_source[2] = vertex_shader_main;
    fragment_shader_source[0] = shader_version_3_0_es;
    fragment_shader_source[1] = fragment_shader_attribs_3_0;
    fragment_shader_source[2] = fragment_shader_main;
    fragment_shader_source[3] = fragment_shader_out_3_0;
  }
  if (!glsl_CompileAndLinkShaders(3,vertex_shader_source,
                                  4,fragment_shader_source,
                                  &pp->shader_program))
    return;
  pp->vertex_uv_index = glGetAttribLocation(pp->shader_program,"VertexUV");
  pp->vertex_t_index = glGetAttribLocation(pp->shader_program,"VertexT");
  pp->color_index = glGetAttribLocation(pp->shader_program,"VertexColor");
  if (pp->vertex_uv_index == -1 || pp->vertex_t_index == -1 ||
      pp->color_index == -1)
  {
    glDeleteProgram(pp->shader_program);
    return;
  }
  pp->mat_rot_index = glGetUniformLocation(pp->shader_program,
                                           "MatRot4D");
  pp->mat_p_index = glGetUniformLocation(pp->shader_program,
                                         "MatProj");
  pp->bool_persp_index = glGetUniformLocation(pp->shader_program,
                                              "BoolPersp");
  pp->off4d_index = glGetUniformLocation(pp->shader_program,
                                         "Offset4D");
  pp->off3d_index = glGetUniformLocation(pp->shader_program,
                                         "Offset3D");
  pp->bool_textures_index = glGetUniformLocation(pp->shader_program,
                                                "BoolTextures");
  pp->draw_lines_index = glGetUniformLocation(pp->shader_program,
                                              "DrawLines");
  pp->glbl_ambient_index = glGetUniformLocation(pp->shader_program,
                                                "LtGlblAmbient");
  pp->lt_ambient_index = glGetUniformLocation(pp->shader_program,
                                              "LtAmbient");
  pp->lt_diffuse_index = glGetUniformLocation(pp->shader_program,
                                              "LtDiffuse");
  pp->lt_specular_index = glGetUniformLocation(pp->shader_program,
                                               "LtSpecular");
  pp->lt_direction_index = glGetUniformLocation(pp->shader_program,
                                                "LtDirection");
  pp->lt_halfvect_index = glGetUniformLocation(pp->shader_program,
                                               "LtHalfVector");
  pp->front_ambient_index = glGetUniformLocation(pp->shader_program,
                                                 "MatFrontAmbient");
  pp->back_ambient_index = glGetUniformLocation(pp->shader_program,
                                                "MatBackAmbient");
  pp->front_diffuse_index = glGetUniformLocation(pp->shader_program,
                                                 "MatFrontDiffuse");
  pp->back_diffuse_index = glGetUniformLocation(pp->shader_program,
                                                "MatBackDiffuse");
  pp->specular_index = glGetUniformLocation(pp->shader_program,
                                            "MatSpecular");
  pp->shininess_index = glGetUniformLocation(pp->shader_program,
                                             "MatShininess");
  pp->texture_sampler_index = glGetUniformLocation(pp->shader_program,
                                                   "TextureSampler");
  if (pp->mat_rot_index == -1 || pp->mat_p_index == -1 ||
      pp->bool_persp_index == -1 || pp->off4d_index == -1 ||
      pp->off3d_index == -1 || pp->bool_textures_index == -1 ||
      pp->draw_lines_index == -1 || pp->glbl_ambient_index == -1 ||
      pp->lt_ambient_index == -1 || pp->lt_diffuse_index == -1 ||
      pp->lt_specular_index == -1 || pp->lt_direction_index == -1 ||
      pp->lt_halfvect_index == -1 || pp->front_ambient_index == -1 ||
      pp->back_ambient_index == -1 || pp->front_diffuse_index == -1 ||
      pp->back_diffuse_index == -1 || pp->specular_index == -1 ||
      pp->shininess_index == -1 || pp->texture_sampler_index == -1)
  {
    glDeleteProgram(pp->shader_program);
    return;
  }

  glGenBuffers(1,&pp->vertex_uv_buffer);
  glGenBuffers(1,&pp->vertex_t_buffer);
  glGenBuffers(1,&pp->color_buffer);
  glGenBuffers(1,&pp->indices_buffer);

  pp->use_shaders = True;
}

#endif /* HAVE_GLSL */


static void init(ModeInfo *mi)
{
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];

  if (walk_speed == 0.0)
    walk_speed = 20.0;

  if (pp->view == VIEW_TURN)
  {
    pp->alpha = frand(360.0);
    pp->beta = frand(360.0);
    pp->delta = frand(360.0);
    pp->zeta = 0.0;
    pp->eta = 0.0;
    pp->theta = 0.0;
  }
  else
  {
    pp->alpha = 0.0;
    pp->beta = 0.0;
    pp->delta = 0.0;
    pp->zeta = 120.0;
    pp->eta = 180.0;
    pp->theta = 90.0;
  }
  pp->umove = frand(2.0*M_PI);
  pp->vmove = frand(2.0*M_PI);
  pp->dumove = 0.0;
  pp->dvmove = 0.0;
  pp->side = 1;
  if (sin(walk_direction*M_PI/180.0) >= 0.0)
    pp->dir = 1;
  else
    pp->dir = -1;

  pp->rho = frand(360.0);
  pp->sigma = frand(360.0);
  pp->tau = frand(360.0);

  pp->offset4d[0] = 0.0;
  pp->offset4d[1] = 0.0;
  pp->offset4d[2] = 0.0;
  pp->offset4d[3] = 1.2;
  pp->offset3d[0] = 0.0;
  pp->offset3d[1] = 0.0;
  pp->offset3d[2] = -1.2;
  pp->offset3d[3] = 0.0;

  gen_texture(mi);
  setup_projective_plane(mi,0.0,2.0*M_PI,0.0,2.0*M_PI);

#ifdef HAVE_GLSL
  init_glsl(mi);
#endif /* HAVE_GLSL */

#ifdef HAVE_ANDROID
  /* glPolygonMode(...,GL_LINE) is not supported for an OpenGL ES 1.1
     context. */
  if (!pp->use_shaders && pp->display_mode == DISP_WIREFRAME)
    pp->display_mode = DISP_SURFACE;
#endif /* HAVE_ANDROID */
}


/* Redisplay the Klein bottle. */
static void display_projectiveplane(ModeInfo *mi)
{
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];

  if (!pp->button_pressed)
  {
    if (pp->view == VIEW_TURN)
    {
      pp->alpha += speed_wx * pp->speed_scale;
      if (pp->alpha >= 360.0)
        pp->alpha -= 360.0;
      pp->beta += speed_wy * pp->speed_scale;
      if (pp->beta >= 360.0)
        pp->beta -= 360.0;
      pp->delta += speed_wz * pp->speed_scale;
      if (pp->delta >= 360.0)
        pp->delta -= 360.0;
      pp->zeta += speed_xy * pp->speed_scale;
      if (pp->zeta >= 360.0)
        pp->zeta -= 360.0;
      pp->eta += speed_xz * pp->speed_scale;
      if (pp->eta >= 360.0)
        pp->eta -= 360.0;
      pp->theta += speed_yz * pp->speed_scale;
      if (pp->theta >= 360.0)
        pp->theta -= 360.0;
    }
    if (pp->view == VIEW_WALKTURN)
    {
      pp->zeta += speed_xy * pp->speed_scale;
      if (pp->zeta >= 360.0)
        pp->zeta -= 360.0;
      pp->eta += speed_xz * pp->speed_scale;
      if (pp->eta >= 360.0)
        pp->eta -= 360.0;
      pp->theta += speed_yz * pp->speed_scale;
      if (pp->theta >= 360.0)
        pp->theta -= 360.0;
    }
    if (pp->view == VIEW_WALK || pp->view == VIEW_WALKTURN)
    {
      pp->dvmove = (pp->dir*sin(walk_direction*M_PI/180.0)*
                    walk_speed*M_PI/4096.0);
      pp->vmove += pp->dvmove;
      if (pp->vmove > 2.0*M_PI)
      {
        pp->vmove = 4.0*M_PI-pp->vmove;
        pp->umove = pp->umove-M_PI;
        if (pp->umove < 0.0)
          pp->umove += 2.0*M_PI;
        pp->side = -pp->side;
        pp->dir = -pp->dir;
        pp->dvmove = -pp->dvmove;
      }
      if (pp->vmove < 0.0)
      {
        pp->vmove = -pp->vmove;
        pp->umove = pp->umove-M_PI;
        if (pp->umove < 0.0)
          pp->umove += 2.0*M_PI;
        pp->dir = -pp->dir;
        pp->dvmove = -pp->dvmove;
      }
      pp->dumove = cos(walk_direction*M_PI/180.0)*walk_speed*M_PI/4096.0;
      pp->umove += pp->dumove;
      if (pp->umove >= 2.0*M_PI)
        pp->umove -= 2.0*M_PI;
      if (pp->umove < 0.0)
        pp->umove += 2.0*M_PI;
    }
    if (pp->change_colors)
    {
      pp->rho += DRHO;
      if (pp->rho >= 360.0)
        pp->rho -= 360.0;
      pp->sigma += DSIGMA;
      if (pp->sigma >= 360.0)
        pp->sigma -= 360.0;
      pp->tau += DTAU;
      if (pp->tau >= 360.0)
        pp->tau -= 360.0;
    }
  }

#ifdef HAVE_GLSL
  if (pp->use_shaders)
    mi->polygon_count = projective_plane_pf(mi,0.0,2.0*M_PI,0.0,2.0*M_PI);
  else
#endif /* HAVE_GLSL */
    mi->polygon_count = projective_plane_ff(mi,0.0,2.0*M_PI,0.0,2.0*M_PI);
}


ENTRYPOINT void reshape_projectiveplane(ModeInfo *mi, int width, int height)
{
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];

  pp->WindW = (GLint)width;
  pp->WindH = (GLint)height;
  glViewport(0,0,width,height);
  pp->aspect = (GLfloat)width/(GLfloat)height;
}


ENTRYPOINT Bool projectiveplane_handle_event(ModeInfo *mi, XEvent *event)
{
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];
  KeySym  sym = 0;
  char c = 0;

  if (event->xany.type == KeyPress || event->xany.type == KeyRelease)
    XLookupString (&event->xkey, &c, 1, &sym, 0);

  if (event->xany.type == ButtonPress &&
      event->xbutton.button == Button1)
  {
    pp->button_pressed = True;
    gltrackball_start(pp->trackballs[pp->current_trackball],
                      event->xbutton.x, event->xbutton.y,
                      MI_WIDTH(mi), MI_HEIGHT(mi));
    return True;
  }
  else if (event->xany.type == ButtonRelease &&
           event->xbutton.button == Button1)
  {
    pp->button_pressed = False;
    return True;
  }
  else if (event->xany.type == KeyPress)
  {
    if (sym == XK_Shift_L || sym == XK_Shift_R)
    {
      pp->current_trackball = 1;
      if (pp->button_pressed)
        gltrackball_start(pp->trackballs[pp->current_trackball],
                          event->xbutton.x, event->xbutton.y,
                          MI_WIDTH(mi), MI_HEIGHT(mi));
      return True;
    }
  }
  else if (event->xany.type == KeyRelease)
  {
    if (sym == XK_Shift_L || sym == XK_Shift_R)
    {
      pp->current_trackball = 0;
      if (pp->button_pressed)
        gltrackball_start(pp->trackballs[pp->current_trackball],
                          event->xbutton.x, event->xbutton.y,
                          MI_WIDTH(mi), MI_HEIGHT(mi));
      return True;
    }
  }
  else if (event->xany.type == MotionNotify && pp->button_pressed)
  {
    gltrackball_track(pp->trackballs[pp->current_trackball],
                      event->xmotion.x, event->xmotion.y,
                      MI_WIDTH(mi), MI_HEIGHT(mi));
    return True;
  }

  return False;
}


/*
 *-----------------------------------------------------------------------------
 *-----------------------------------------------------------------------------
 *    Xlock hooks.
 *-----------------------------------------------------------------------------
 *-----------------------------------------------------------------------------
 */

/*
 *-----------------------------------------------------------------------------
 *    Initialize projectiveplane.  Called each time the window changes.
 *-----------------------------------------------------------------------------
 */

ENTRYPOINT void init_projectiveplane(ModeInfo *mi)
{
  projectiveplanestruct *pp;

  MI_INIT(mi, projectiveplane);
  pp = &projectiveplane[MI_SCREEN(mi)];

  pp->trackballs[0] = gltrackball_init(True);
  pp->trackballs[1] = gltrackball_init(True);
  pp->current_trackball = 0;
  pp->button_pressed = False;

  /* Set the display mode. */
  if (!strcasecmp(mode,"random"))
  {
    pp->display_mode = random() % NUM_DISPLAY_MODES;
  }
  else if (!strcasecmp(mode,"wireframe"))
  {
    pp->display_mode = DISP_WIREFRAME;
  }
  else if (!strcasecmp(mode,"surface"))
  {
    pp->display_mode = DISP_SURFACE;
  }
  else if (!strcasecmp(mode,"transparent"))
  {
    pp->display_mode = DISP_TRANSPARENT;
  }
  else
  {
    pp->display_mode = random() % NUM_DISPLAY_MODES;
  }

  /* Orientation marks don't make sense in wireframe mode. */
  pp->marks = marks;
  if (pp->display_mode == DISP_WIREFRAME)
    pp->marks = False;

  /* Set the appearance. */
  if (!strcasecmp(appear,"random"))
  {
    pp->appearance = random() % NUM_APPEARANCES;
  }
  else if (!strcasecmp(appear,"solid"))
  {
    pp->appearance = APPEARANCE_SOLID;
  }
  else if (!strcasecmp(appear,"distance-bands"))
  {
    pp->appearance = APPEARANCE_DISTANCE_BANDS;
  }
  else if (!strcasecmp(appear,"direction-bands"))
  {
    pp->appearance = APPEARANCE_DIRECTION_BANDS;
  }
  else
  {
    pp->appearance = random() % NUM_APPEARANCES;
  }

  /* Set the color mode. */
  if (!strcasecmp(color_mode,"random"))
  {
    pp->colors = random() % NUM_COLORS;
  }
  else if (!strcasecmp(color_mode,"one-sided"))
  {
    pp->colors = COLORS_ONESIDED;
  }
  else if (!strcasecmp(color_mode,"two-sided"))
  {
    pp->colors = COLORS_TWOSIDED;
  }
  else if (!strcasecmp(color_mode,"distance"))
  {
    pp->colors = COLORS_DISTANCE;
  }
  else if (!strcasecmp(color_mode,"direction"))
  {
    pp->colors = COLORS_DIRECTION;
  }
  else if (!strcasecmp(color_mode,"depth"))
  {
    pp->colors = COLORS_DEPTH;
  }
  else
  {
    pp->colors = random() % NUM_COLORS;
  }

  pp->change_colors = change_colors;

  /* Set the view mode. */
  if (!strcasecmp(view_mode,"random"))
  {
    pp->view = random() % NUM_VIEW_MODES;
  }
  else if (!strcasecmp(view_mode,"walk"))
  {
    pp->view = VIEW_WALK;
  }
  else if (!strcasecmp(view_mode,"turn"))
  {
    pp->view = VIEW_TURN;
  }
  else if (!strcasecmp(view_mode,"walk-turn"))
  {
    pp->view = VIEW_WALKTURN;
  }
  else
  {
    pp->view = random() % NUM_VIEW_MODES;
  }

  /* Set the 3d projection mode. */
  if (!strcasecmp(proj_3d,"random"))
  {
    /* Orthographic projection only makes sense in turn mode. */
    if (pp->view == VIEW_TURN)
      pp->projection_3d = random() % NUM_DISP_3D_MODES;
    else
      pp->projection_3d = DISP_3D_PERSPECTIVE;
  }
  else if (!strcasecmp(proj_3d,"perspective"))
  {
    pp->projection_3d = DISP_3D_PERSPECTIVE;
  }
  else if (!strcasecmp(proj_3d,"orthographic"))
  {
    pp->projection_3d = DISP_3D_ORTHOGRAPHIC;
  }
  else
  {
    /* Orthographic projection only makes sense in turn mode. */
    if (pp->view == VIEW_TURN)
      pp->projection_3d = random() % NUM_DISP_3D_MODES;
    else
      pp->projection_3d = DISP_3D_PERSPECTIVE;
  }

  /* Set the 4d projection mode. */
  if (!strcasecmp(proj_4d,"random"))
  {
    pp->projection_4d = random() % NUM_DISP_4D_MODES;
  }
  else if (!strcasecmp(proj_4d,"perspective"))
  {
    pp->projection_4d = DISP_4D_PERSPECTIVE;
  }
  else if (!strcasecmp(proj_4d,"orthographic"))
  {
    pp->projection_4d = DISP_4D_ORTHOGRAPHIC;
  }
  else
  {
    pp->projection_4d = random() % NUM_DISP_4D_MODES;
  }

  /* Modify the speeds to a useful range in walk-and-turn mode. */
  if (pp->view == VIEW_WALKTURN)
  {
    speed_wx *= 0.2;
    speed_wy *= 0.2;
    speed_wz *= 0.2;
    speed_xy *= 0.2;
    speed_xz *= 0.2;
    speed_yz *= 0.2;
  }

  /* make multiple screens rotate at slightly different rates. */
  pp->speed_scale = 0.9 + frand(0.3);

  if ((pp->glx_context = init_GL(mi)) != NULL)
  {
    reshape_projectiveplane(mi,MI_WIDTH(mi),MI_HEIGHT(mi));
    init(mi);
  }
  else
  {
    MI_CLEARWINDOW(mi);
  }
}

/*
 *-----------------------------------------------------------------------------
 *    Called by the mainline code periodically to update the display.
 *-----------------------------------------------------------------------------
 */
ENTRYPOINT void draw_projectiveplane(ModeInfo *mi)
{
  Display          *display = MI_DISPLAY(mi);
  Window           window = MI_WINDOW(mi);
  projectiveplanestruct *pp;

  if (projectiveplane == NULL)
    return;
  pp = &projectiveplane[MI_SCREEN(mi)];

  MI_IS_DRAWN(mi) = True;
  if (!pp->glx_context)
    return;

  glXMakeCurrent(display, window, *pp->glx_context);

  glClearColor(0.0f,0.0f,0.0f,1.0f);
  glClearDepth(1.0f);
  glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
  glLoadIdentity();

  display_projectiveplane(mi);

  if (MI_IS_FPS(mi))
    do_fps (mi);

  glFlush();

  glXSwapBuffers(display,window);
}


#ifndef STANDALONE
ENTRYPOINT void change_projectiveplane(ModeInfo *mi)
{
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];

  if (!pp->glx_context)
    return;

  glXMakeCurrent(MI_DISPLAY(mi), MI_WINDOW(mi), *pp->glx_context);
  init(mi);
}
#endif /* !STANDALONE */


ENTRYPOINT void free_projectiveplane(ModeInfo *mi)
{
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];
  if (!pp->glx_context) return;
  glXMakeCurrent (MI_DISPLAY(mi), MI_WINDOW(mi), *pp->glx_context);
  gltrackball_free (pp->trackballs[0]);
  gltrackball_free (pp->trackballs[1]);
  if (pp->tex_name) glDeleteTextures (1, &pp->tex_name);
#ifdef HAVE_GLSL
  if (pp->use_shaders)
  {
    glDeleteBuffers(1,&pp->vertex_uv_buffer);
    glDeleteBuffers(1,&pp->vertex_t_buffer);
    glDeleteBuffers(1,&pp->color_buffer);
    glDeleteBuffers(1,&pp->indices_buffer);
    if (pp->shader_program != 0)
    {
      glUseProgram(0);
      glDeleteProgram(pp->shader_program);
    }
  }
#endif /* HAVE_GLSL */
}


XSCREENSAVER_MODULE ("ProjectivePlane", projectiveplane)

#endif /* USE_GL */