summaryrefslogtreecommitdiffstats
path: root/hacks/penrose.c
diff options
context:
space:
mode:
Diffstat (limited to 'hacks/penrose.c')
-rw-r--r--hacks/penrose.c1352
1 files changed, 1352 insertions, 0 deletions
diff --git a/hacks/penrose.c b/hacks/penrose.c
new file mode 100644
index 0000000..6317cb6
--- /dev/null
+++ b/hacks/penrose.c
@@ -0,0 +1,1352 @@
+/* -*- Mode: C; tab-width: 4 -*- */
+/* penrose --- quasiperiodic tilings */
+
+/* As reported in News of the Weird:
+
+ In April, Sir Roger Penrose, a British math professor who has worked
+ with Stephen Hawking on such topics as relativity, black holes, and
+ whether time has a beginning, filed a copyright-infringement lawsuit
+ against the Kimberly-Clark Corporation, which Penrose said copied a
+ pattern he created (a pattern demonstrating that "a nonrepeating
+ pattern could exist in nature") for its Kleenex quilted toilet paper.
+ Penrose said he doesn't like litigation but, "When it comes to the
+ population of Great Britain being invited by a multinational to wipe
+ their bottoms on what appears to be the work of a Knight of the
+ Realm, then a last stand must be taken."
+
+ NOTW #491, 4-jul-1997, by Chuck Shepherd.
+ http://www.nine.org/notw/notw.html
+ */
+
+#if 0
+static const char sccsid[] = "@(#)penrose.c 5.00 2000/11/01 xlockmore";
+#endif
+
+/*-
+ * Copyright (c) 1996 by Timo Korvola <tkorvola@dopey.hut.fi>
+ *
+ * Permission to use, copy, modify, and distribute this software and its
+ * documentation for any purpose and without fee is hereby granted,
+ * provided that the above copyright notice appear in all copies and that
+ * both that copyright notice and this permission notice appear in
+ * supporting documentation.
+ *
+ * This file is provided AS IS with no warranties of any kind. The author
+ * shall have no liability with respect to the infringement of copyrights,
+ * trade secrets or any patents by this file or any part thereof. In no
+ * event will the author be liable for any lost revenue or profits or
+ * other special, indirect and consequential damages.
+ *
+ * Revision History:
+ * 01-Nov-2000: Allocation checks
+ * 10-May-1997: Jamie Zawinski <jwz@jwz.org> compatible with xscreensaver
+ * 09-Sep-1996: Written.
+ */
+
+/*-
+Be careful, this probably still has a few bugs (many of which may only
+appear with a very low probability). These are seen with -verbose .
+If one of these are hit penrose will reinitialize.
+*/
+
+/*-
+ * See Onoda, Steinhardt, DiVincenzo and Socolar in
+ * Phys. Rev. Lett. 60, #25, 1988 or
+ * Strandburg in Computers in Physics, Sep/Oct 1991.
+ *
+ * This implementation uses the simpler version of the growth
+ * algorithm, i.e., if there are no forced vertices, a randomly chosen
+ * tile is added to a randomly chosen vertex (no preference for those
+ * 108 degree angles).
+ *
+ * There are two essential differences to the algorithm presented in
+ * the literature: First, we do not allow the tiling to enclose an
+ * untiled area. Whenever this is in danger of happening, we just
+ * do not add the tile, hoping for a better random choice the next
+ * time. Second, when choosing a vertex randomly, we will take
+ * one that lies within the viewport if available. If this seems to
+ * cause enclosures in the forced rule case, we will allow invisible
+ * vertices to be chosen.
+ *
+ * Tiling is restarted whenever one of the following happens: there
+ * are no incomplete vertices within the viewport or the tiling has
+ * extended a window's length beyond the edge of the window
+ * horizontally or vertically or forced rule choice has failed 100
+ * times due to areas about to become enclosed.
+ *
+ * Introductory info:
+ * Science News March 23 1985 Vol 127, No. 12
+ * Science News July 16 1988 Vol 134, No. 3
+ * The Economist Sept 17 1988 pg. 100
+ *
+ */
+
+#ifdef STANDALONE
+#define MODE_penrose
+#define DEFAULTS "*delay: 10000 \n" \
+ "*size: 40 \n" \
+ "*ncolors: 64 \n" \
+ "*fpsSolid: true \n" \
+ "*ignoreRotation: True \n" \
+
+# define release_penrose 0
+# define penrose_handle_event 0
+# include "xlockmore.h" /* from the xscreensaver distribution */
+#else /* !STANDALONE */
+# include "xlock.h" /* from the xlockmore distribution */
+#endif /* !STANDALONE */
+
+#ifdef MODE_penrose
+
+#define DEF_AMMANN "False"
+
+static Bool ammann;
+
+static XrmOptionDescRec opts[] =
+{
+ {"-ammann", ".penrose.ammann", XrmoptionNoArg, "on"},
+ {"+ammann", ".penrose.ammann", XrmoptionNoArg, "off"}
+};
+static argtype vars[] =
+{
+ {&ammann, "ammann", "Ammann", DEF_AMMANN, t_Bool}
+};
+static OptionStruct desc[] =
+{
+ {"-/+ammann", "turn on/off Ammann lines"}
+};
+
+ENTRYPOINT ModeSpecOpt penrose_opts =
+{sizeof opts / sizeof opts[0], opts, sizeof vars / sizeof vars[0], vars, desc};
+
+#ifdef USE_MODULES
+ModStruct penrose_description =
+{"penrose", "init_penrose", "draw_penrose", (char *) NULL,
+ "init_penrose", "init_penrose", "free_penrose", &penrose_opts,
+ 10000, 1, 1, -40, 64, 1.0, "",
+ "Shows Penrose's quasiperiodic tilings", 0, NULL};
+
+#endif
+
+/*-
+ * Annoyingly the ANSI C library people have reserved all identifiers
+ * ending with _t for future use. Hence we use _c as a suffix for
+ * typedefs (c for class, although this is not C++).
+ */
+
+#define MINSIZE 5
+
+/*-
+ * In theory one could fit 10 tiles to a single vertex. However, the
+ * vertex rules only allow at most seven tiles to meet at a vertex.
+ */
+
+#define CELEBRATE 31415 /* This causes a pause, an error occurred. */
+#define COMPLETION 3141 /* This causes a pause, tiles filled up screen. */
+
+#define MAX_TILES_PER_VERTEX 7
+#define N_VERTEX_RULES 8
+#define ALLOC_NODE(type) (type *)malloc(sizeof (type))
+
+/*-
+ * These are used to specify directions. They can also be used in bit
+ * masks to specify a combination of directions.
+ */
+#define S_LEFT 1
+#define S_RIGHT 2
+
+
+/*-
+ * We do not actually maintain objects corresponding to the tiles since
+ * we do not really need them and they would only consume memory and
+ * cause additional bookkeeping. Instead we only have vertices, and
+ * each vertex lists the type of each adjacent tile as well as the
+ * position of the vertex on the tile (hereafter refered to as
+ * "corner"). These positions are numbered in counterclockwise order
+ * so that 0 is where two double arrows meet (see one of the
+ * articles). The tile type and vertex number are stored in a single
+ * integer (we use char, and even most of it remains unused).
+ *
+ * The primary use of tile objects would be draw traversal, but we do
+ * not currently do redraws at all (we just start over).
+ */
+#define VT_CORNER_MASK 0x3
+#define VT_TYPE_MASK 0x4
+#define VT_THIN 0
+#define VT_THICK 0x4
+#define VT_BITS 3
+#define VT_TOTAL_MASK 0x7
+
+typedef unsigned char vertex_type_c;
+
+/*-
+ * These allow one to compute the types of the other corners of the tile. If
+ * you are standing at a vertex of type vt looking towards the middle of the
+ * tile, VT_LEFT( vt) is the vertex on your left etc.
+ */
+#define VT_LEFT( vt) ((((vt) - 1) & VT_CORNER_MASK) | (((vt) & VT_TYPE_MASK)))
+#define VT_RIGHT( vt) ((((vt) + 1) & VT_CORNER_MASK) | (((vt) & VT_TYPE_MASK)))
+#define VT_FAR( vt) ((vt) ^ 2)
+
+
+/*-
+ * Since we do not do redraws, we only store the vertices we need. These are
+ * the ones with still some empty space around them for the growth algorithm
+ * to fill.
+ *
+ * Here we use a doubly chained ring-like structure as vertices often need
+ * to be removed or inserted (they are kept in geometrical order
+ * circling the tiled area counterclockwise). The ring is refered to by
+ * a pointer to one more or less random node. When deleting nodes one
+ * must make sure that this pointer continues to refer to a valid
+ * node. A vertex count is maintained to make it easier to pick
+ * vertices randomly.
+ */
+typedef struct forced_node forced_node_c;
+
+typedef struct fringe_node {
+ struct fringe_node *prev;
+ struct fringe_node *next;
+ /* These are numbered counterclockwise. The gap, if any, lies
+ between the last and first tiles. */
+ vertex_type_c tiles[MAX_TILES_PER_VERTEX];
+ int n_tiles;
+ /* A bit mask used to indicate vertex rules that are still applicable for
+ completing this vertex. Initialize this to (1 << N_VERTEX_RULES) - 1,
+ i.e., all ones, and the rule matching functions will automatically mask
+ out rules that no longer match. */
+ unsigned char rule_mask;
+ /* If the vertex is on the forced vertex list, this points to the
+ pointer to the appropriate node in the list. To remove the
+ vertex from the list just set *list_ptr to the next node,
+ deallocate and decrement node count. */
+ struct forced_node **list_ptr;
+ /* Screen coordinates. */
+ XPoint loc;
+ /* We also keep track of 5D coordinates to avoid rounding errors.
+ These are in units of edge length. */
+ int fived[5];
+ /* This is used to quickly check if a vertex is visible. */
+ unsigned char off_screen;
+} fringe_node_c;
+
+typedef struct {
+ fringe_node_c *nodes;
+ /* This does not count off-screen nodes. */
+ int n_nodes;
+} fringe_c;
+
+
+/*-
+ * The forced vertex pool contains vertices where at least one
+ * side of the tiled region can only be extended in one way. Note
+ * that this does not necessarily mean that there would only be one
+ * applicable rule. forced_sides are specified using S_LEFT and
+ * S_RIGHT as if looking at the untiled region from the vertex.
+ */
+struct forced_node {
+ fringe_node_c *vertex;
+ unsigned forced_sides;
+ struct forced_node *next;
+};
+
+typedef struct {
+ forced_node_c *first;
+ int n_nodes, n_visible;
+} forced_pool_c;
+
+
+/* The tiles are listed in counterclockwise order. */
+typedef struct {
+ vertex_type_c tiles[MAX_TILES_PER_VERTEX];
+ int n_tiles;
+} vertex_rule_c;
+
+static vertex_rule_c vertex_rules[N_VERTEX_RULES] =
+{
+ {
+ {VT_THICK | 2, VT_THICK | 2, VT_THICK | 2, VT_THICK | 2, VT_THICK | 2}, 5},
+ {
+ {VT_THICK | 0, VT_THICK | 0, VT_THICK | 0, VT_THICK | 0, VT_THICK | 0}, 5},
+ {
+ {VT_THICK | 0, VT_THICK | 0, VT_THICK | 0, VT_THIN | 0}, 4},
+ {
+ {VT_THICK | 2, VT_THICK | 2, VT_THIN | 1, VT_THIN | 3, VT_THICK | 2,
+ VT_THIN | 1, VT_THIN | 3}, 7},
+ {
+ {VT_THICK | 2, VT_THICK | 2, VT_THICK | 2, VT_THICK | 2,
+ VT_THIN | 1, VT_THIN | 3}, 6},
+ {
+ {VT_THICK | 1, VT_THICK | 3, VT_THIN | 2}, 3},
+ {
+ {VT_THICK | 0, VT_THIN | 0, VT_THIN | 0}, 3},
+ {
+ {VT_THICK | 2, VT_THIN | 1, VT_THICK | 3, VT_THICK | 1, VT_THIN | 3}, 5}
+};
+
+
+/* Match information returned by match_rules. */
+typedef struct {
+ int rule;
+ int pos;
+} rule_match_c;
+
+
+/* Occasionally floating point coordinates are needed. */
+typedef struct {
+ float x, y;
+} fcoord_c;
+
+
+/* All angles are measured in multiples of 36 degrees. */
+typedef int angle_c;
+
+static angle_c vtype_angles[] =
+{4, 1, 4, 1, 2, 3, 2, 3};
+
+#define vtype_angle( v) (vtype_angles[ v])
+
+
+/* This is the data related to the tiling of one screen. */
+typedef struct {
+ int width, height;
+ XPoint origin;
+ int edge_length, line_width;
+ fringe_c fringe;
+ forced_pool_c forced;
+ int done, failures;
+ unsigned long thick_color, thin_color;
+ int busyLoop;
+ Bool ammann;
+ float ammann_r;
+ fcoord_c fived_table[5];
+} tiling_c;
+
+static tiling_c *tilings = (tiling_c *) NULL;
+
+
+
+/* Direction angle of an edge. */
+static angle_c
+vertex_dir(ModeInfo * mi, fringe_node_c * vertex, unsigned side)
+{
+ tiling_c *tp = &tilings[MI_SCREEN(mi)];
+ fringe_node_c *v2 =
+ (side == S_LEFT ? vertex->next : vertex->prev);
+ register int i;
+
+ for (i = 0; i < 5; i++)
+ switch (v2->fived[i] - vertex->fived[i]) {
+ case 1:
+ return 2 * i;
+ case -1:
+ return (2 * i + 5) % 10;
+ }
+ tp->done = True;
+ if (MI_IS_VERBOSE(mi)) {
+ (void) fprintf(stderr,
+ "Weirdness in vertex_dir (this has been reported)\n");
+ for (i = 0; i < 5; i++)
+ (void) fprintf(stderr, "v2->fived[%d]=%d, vertex->fived[%d]=%d\n",
+ i, v2->fived[i], i, vertex->fived[i]);
+ }
+ tp->busyLoop = CELEBRATE;
+ return 0;
+}
+
+
+/* Move one step to a given direction. */
+static void
+add_unit_vec(angle_c dir, int *fived)
+{
+ static const int dir2i[] = {0, 3, 1, 4, 2};
+
+ while (dir < 0)
+ dir += 10;
+ fived[dir2i[dir % 5]] += (dir % 2 ? -1 : 1);
+}
+
+
+/* For comparing coordinates. */
+#define fived_equal( f1, f2) (!memcmp( (f1), (f2), 5 * sizeof( int)))
+
+
+/*-
+ * This computes screen coordinates from 5D representation. Note that X
+ * uses left-handed coordinates (y increases downwards).
+ */
+static void
+fived_to_loc(int fived[], tiling_c * tp, XPoint *pt)
+{
+ float fifth = 8 * atan(1.) / 5;
+ register int i;
+ register float r;
+ register fcoord_c offset;
+
+ *pt = tp->origin;
+ offset.x = 0.0;
+ offset.y = 0.0;
+ if (tp->fived_table[0].x == .0)
+ for (i = 0; i < 5; i++) {
+ tp->fived_table[i].x = cos(fifth * i);
+ tp->fived_table[i].y = sin(fifth * i);
+ }
+ for (i = 0; i < 5; i++) {
+ r = fived[i] * tp->edge_length;
+ offset.x += r * tp->fived_table[i].x;
+ offset.y -= r * tp->fived_table[i].y;
+ }
+ (*pt).x += (int) (offset.x + .5);
+ (*pt).y += (int) (offset.y + .5);
+}
+
+
+/* Mop up dynamic data for one screen. */
+ENTRYPOINT void
+free_penrose(ModeInfo * mi)
+{
+ tiling_c * tp = &tilings[MI_SCREEN(mi)];
+ register fringe_node_c *fp1, *fp2;
+ register forced_node_c *lp1, *lp2;
+
+ if (tp->fringe.nodes == NULL)
+ return;
+ fp1 = tp->fringe.nodes;
+ do {
+ fp2 = fp1;
+ fp1 = fp1->next;
+ (void) free((void *) fp2);
+ } while (fp1 != tp->fringe.nodes);
+ tp->fringe.nodes = (fringe_node_c *) NULL;
+ for (lp1 = tp->forced.first; lp1 != 0;) {
+ lp2 = lp1;
+ lp1 = lp1->next;
+ (void) free((void *) lp2);
+ }
+ tp->forced.first = 0;
+}
+
+
+/* Called to init the mode. */
+ENTRYPOINT void
+init_penrose(ModeInfo * mi)
+{
+ tiling_c *tp;
+ fringe_node_c *fp;
+ int i, size;
+
+ MI_INIT (mi, tilings);
+ tp = &tilings[MI_SCREEN(mi)];
+
+#if 0 /* if you do this, then the -ammann and -no-ammann options don't work.
+ -- jwz */
+ if (MI_IS_FULLRANDOM(mi))
+ tp->ammann = (Bool) (LRAND() & 1);
+ else
+#endif /* 0 */
+ tp->ammann = ammann;
+
+ tp->done = False;
+ tp->busyLoop = 0;
+ tp->failures = 0;
+ tp->width = MI_WIDTH(mi);
+ tp->height = MI_HEIGHT(mi);
+ if (MI_NPIXELS(mi) > 2) {
+ tp->thick_color = NRAND(MI_NPIXELS(mi));
+ /* Insure good contrast */
+ tp->thin_color = (NRAND(2 * MI_NPIXELS(mi) / 3) + tp->thick_color +
+ MI_NPIXELS(mi) / 6) % MI_NPIXELS(mi);
+ }
+ size = MI_SIZE(mi);
+ tp->line_width = 1;
+
+ if (MI_WIDTH(mi) > 2560) { /* Retina displays */
+ size *= 3;
+ tp->line_width *= 3;
+ }
+
+ if (size < -MINSIZE)
+ tp->edge_length = NRAND(MIN(-size, MAX(MINSIZE,
+ MIN(tp->width, tp->height) / 2)) - MINSIZE + 1) + MINSIZE;
+ else if (size < MINSIZE) {
+ if (!size)
+ tp->edge_length = MAX(MINSIZE, MIN(tp->width, tp->height) / 2);
+ else
+ tp->edge_length = MINSIZE;
+ } else
+ tp->edge_length = MIN(size, MAX(MINSIZE,
+ MIN(tp->width, tp->height) / 2));
+ tp->origin.x = (tp->width / 2 + NRAND(tp->width)) / 2;
+ tp->origin.y = (tp->height / 2 + NRAND(tp->height)) / 2;
+ tp->fringe.n_nodes = 2;
+ if (tp->fringe.nodes != NULL)
+ free_penrose(mi);
+ if (tp->fringe.nodes != NULL || tp->forced.first != 0) {
+ if (MI_IS_VERBOSE(mi)) {
+ (void) fprintf(stderr, "Weirdness in init_penrose()\n");
+ (void) fprintf(stderr, "tp->fringe.nodes = NULL && tp->forced.first = 0\n");
+ }
+ free_penrose(mi); /* Try again */
+ tp->done = True;
+ }
+ tp->forced.n_nodes = tp->forced.n_visible = 0;
+ if ((fp = tp->fringe.nodes = ALLOC_NODE(fringe_node_c)) == NULL) {
+ free_penrose(mi);
+ return;
+ }
+ if (fp == 0) {
+ if (MI_IS_VERBOSE(mi)) {
+ (void) fprintf(stderr, "Weirdness in init_penrose()\n");
+ (void) fprintf(stderr, "fp = 0\n");
+ }
+ if ((fp = tp->fringe.nodes = ALLOC_NODE(fringe_node_c)) == NULL) {
+ free_penrose(mi);
+ return;
+ }
+ tp->done = True;
+ }
+ /* First vertex. */
+ fp->rule_mask = (1 << N_VERTEX_RULES) - 1;
+ fp->list_ptr = 0;
+ if ((fp->prev = fp->next = ALLOC_NODE(fringe_node_c)) == NULL) {
+ free_penrose(mi);
+ return;
+ }
+ if (fp->next == 0) {
+ if (MI_IS_VERBOSE(mi)) {
+ (void) fprintf(stderr, "Weirdness in init_penrose()\n");
+ (void) fprintf(stderr, "fp->next = 0\n");
+ }
+ if ((fp->prev = fp->next = ALLOC_NODE(fringe_node_c)) == NULL) {
+ free_penrose(mi);
+ return;
+ }
+ tp->done = True;
+ }
+ fp->n_tiles = 0;
+ fp->loc = tp->origin;
+ fp->off_screen = False;
+ for (i = 0; i < 5; i++)
+ fp->fived[i] = 0;
+
+ /* Second vertex. */
+ *(fp->next) = *fp;
+ fp->next->prev = fp->next->next = fp;
+ fp = fp->next;
+ i = NRAND(5);
+ fp->fived[i] = 2 * NRAND(2) - 1;
+ fived_to_loc(fp->fived, tp, &(fp->loc));
+ /* That's it! We have created our first edge. */
+
+ MI_CLEARWINDOW(mi);
+}
+
+/*-
+ * This attempts to match the configuration of vertex with the vertex
+ * rules. The return value is a total match count. If matches is
+ * non-null, it will be used to store information about the matches
+ * and must be large enough to contain it. To play it absolutely
+ * safe, allocate room for MAX_TILES_PER_VERTEX * N_VERTEX_RULES
+ * entries when searching all matches. The rule mask of vertex will
+ * be applied and rules masked out will not be searched. Only strict
+ * subsequences match. If first_only is true, the search stops when
+ * the first match is found. Otherwise all matches will be found and
+ * the rule_mask of vertex will be updated, which also happens in
+ * single-match mode if no match is found.
+ */
+static int
+match_rules(fringe_node_c * vertex, rule_match_c * matches, int first_only)
+{
+ /* I will assume that I can fit all the relevant bits in vertex->tiles
+ into one unsigned long. With 3 bits per element and at most 7
+ elements this means 21 bits, which should leave plenty of room.
+ After packing the bits the rest is just integer comparisons and
+ some bit shuffling. This is essentially Rabin-Karp without
+ congruence arithmetic. */
+ register int i, j;
+ int hits = 0, good_rules[N_VERTEX_RULES], n_good = 0;
+ unsigned long
+ vertex_hash = 0, lower_bits_mask = ~(VT_TOTAL_MASK << VT_BITS * (vertex->n_tiles - 1));
+ unsigned new_rule_mask = 0;
+
+ for (i = 0; i < N_VERTEX_RULES; i++)
+ if (vertex->n_tiles >= vertex_rules[i].n_tiles)
+ vertex->rule_mask &= ~(1 << i);
+ else if (vertex->rule_mask & 1 << i)
+ good_rules[n_good++] = i;
+ for (i = 0; i < vertex->n_tiles; i++)
+ vertex_hash |= (unsigned long) vertex->tiles[i] << (VT_BITS * i);
+
+ for (j = 0; j < n_good; j++) {
+ unsigned long rule_hash = 0;
+ vertex_rule_c *vr = vertex_rules + good_rules[j];
+
+ for (i = 0; i < vertex->n_tiles; i++)
+ rule_hash |= (unsigned long) vr->tiles[i] << (VT_BITS * i);
+ if (rule_hash == vertex_hash) {
+ if (matches != 0) {
+ matches[hits].rule = good_rules[j];
+ matches[hits].pos = 0;
+ }
+ hits++;
+ if (first_only)
+ return hits;
+ else
+ new_rule_mask |= 1 << good_rules[j];
+ }
+ for (i = vr->n_tiles - 1; i > 0; i--) {
+ rule_hash = vr->tiles[i] | (rule_hash & lower_bits_mask) << VT_BITS;
+ if (vertex_hash == rule_hash) {
+ if (matches != 0) {
+ matches[hits].rule = good_rules[j];
+ matches[hits].pos = i;
+ }
+ hits++;
+ if (first_only)
+ return hits;
+ else
+ new_rule_mask |= 1 << good_rules[j];
+ }
+ }
+ }
+ vertex->rule_mask = new_rule_mask;
+ return hits;
+}
+
+
+/*-
+ * find_completions finds the possible ways to add a tile to a vertex.
+ * The return values is the number of such possibilities. You must
+ * first call match_rules to produce matches and n_matches. sides
+ * specifies which side of the vertex to extend and can be S_LEFT or
+ * S_RIGHT. If results is non-null, it should point to an array large
+ * enough to contain the results, which will be stored there.
+ * MAX_COMPL elements will always suffice. If first_only is true we
+ * stop as soon as we find one possibility (NOT USED).
+ */
+#define MAX_COMPL 2
+
+static int
+find_completions(fringe_node_c * vertex, rule_match_c * matches, int n_matches,
+ unsigned side, vertex_type_c * results /*, int first_only */ )
+{
+ int n_res = 0, cont;
+ register int i, j;
+ vertex_type_c buf[MAX_COMPL];
+
+ if (results == 0)
+ results = buf;
+ if (n_matches <= 0)
+ return 0;
+ for (i = 0; i < n_matches; i++) {
+ vertex_rule_c *rule = vertex_rules + matches[i].rule;
+ int pos = (matches[i].pos
+ + (side == S_RIGHT ? vertex->n_tiles : rule->n_tiles - 1))
+ % rule->n_tiles;
+ vertex_type_c vtype = rule->tiles[pos];
+
+ cont = 1;
+ for (j = 0; j < n_res; j++)
+ if (vtype == results[j]) {
+ cont = 0;
+ break;
+ }
+ if (cont)
+ results[n_res++] = vtype;
+ }
+ return n_res;
+}
+
+
+/*-
+ * Draw a tile on the display. Vertices must be given in a
+ * counterclockwise order. vtype is the vertex type of v1 (and thus
+ * also gives the tile type).
+ */
+static void
+draw_tile(fringe_node_c * v1, fringe_node_c * v2,
+ fringe_node_c * v3, fringe_node_c * v4,
+ vertex_type_c vtype, ModeInfo * mi)
+{
+ Display *display = MI_DISPLAY(mi);
+ Window window = MI_WINDOW(mi);
+ GC gc = MI_GC(mi);
+ tiling_c *tp = &tilings[MI_SCREEN(mi)];
+ XPoint pts[5];
+ vertex_type_c corner = vtype & VT_CORNER_MASK;
+
+ if (v1->off_screen && v2->off_screen && v3->off_screen && v4->off_screen)
+ return;
+ pts[corner] = v1->loc;
+ pts[VT_RIGHT(corner)] = v2->loc;
+ pts[VT_FAR(corner)] = v3->loc;
+ pts[VT_LEFT(corner)] = v4->loc;
+ pts[4] = pts[0];
+ if (MI_NPIXELS(mi) > 2) {
+ if ((vtype & VT_TYPE_MASK) == VT_THICK)
+ XSetForeground(display, gc, MI_PIXEL(mi, tp->thick_color));
+ else
+ XSetForeground(display, gc, MI_PIXEL(mi, tp->thin_color));
+ } else
+ XSetForeground(display, gc, MI_WHITE_PIXEL(mi));
+ XFillPolygon(display, window, gc, pts, 4, Convex, CoordModeOrigin);
+ XSetForeground(display, gc, MI_BLACK_PIXEL(mi));
+ XSetLineAttributes(display, gc, tp->line_width,
+ LineSolid, CapNotLast, JoinMiter);
+ XDrawLines(display, window, gc, pts, 5, CoordModeOrigin);
+
+ if (tp->ammann) {
+ /* Draw some Ammann lines for debugging purposes. This will probably
+ fail miserably on a b&w display. */
+
+ if ((vtype & VT_TYPE_MASK) == VT_THICK) {
+
+ if (tp->ammann_r == .0) {
+ float pi10 = 2 * atan(1.) / 5;
+
+ tp->ammann_r = 1 - sin(pi10) / (2 * sin(3 * pi10));
+ }
+ if (MI_NPIXELS(mi) > 2)
+ XSetForeground(display, gc, MI_PIXEL(mi, tp->thin_color));
+ else {
+ XSetForeground(display, gc, MI_BLACK_PIXEL(mi));
+ XSetLineAttributes(display, gc, 1, LineOnOffDash, CapNotLast, JoinMiter);
+ }
+ XDrawLine(display, window, gc,
+ (int) (tp->ammann_r * pts[3].x + (1 - tp->ammann_r) * pts[0].x + .5),
+ (int) (tp->ammann_r * pts[3].y + (1 - tp->ammann_r) * pts[0].y + .5),
+ (int) (tp->ammann_r * pts[1].x + (1 - tp->ammann_r) * pts[0].x + .5),
+ (int) (tp->ammann_r * pts[1].y + (1 - tp->ammann_r) * pts[0].y + .5));
+ if (MI_NPIXELS(mi) <= 2)
+ XSetLineAttributes(display, gc, 1, LineSolid, CapNotLast, JoinMiter);
+ } else {
+ if (MI_NPIXELS(mi) > 2)
+ XSetForeground(display, gc, MI_PIXEL(mi, tp->thick_color));
+ else {
+ XSetForeground(display, gc, MI_BLACK_PIXEL(mi));
+ XSetLineAttributes(display, gc, 1, LineOnOffDash, CapNotLast, JoinMiter);
+ }
+ XDrawLine(display, window, gc,
+ (int) ((pts[3].x + pts[2].x) / 2 + .5),
+ (int) ((pts[3].y + pts[2].y) / 2 + .5),
+ (int) ((pts[1].x + pts[2].x) / 2 + .5),
+ (int) ((pts[1].y + pts[2].y) / 2 + .5));
+ if (MI_NPIXELS(mi) <= 2)
+ XSetLineAttributes(display, gc, 1, LineSolid, CapNotLast, JoinMiter);
+ }
+ }
+}
+
+/*-
+ * Update the status of this vertex on the forced vertex queue. If
+ * the vertex has become untileable set tp->done. This is supposed
+ * to detect dislocations -- never call this routine with a completely
+ * tiled vertex.
+ *
+ * Check for untileable vertices in check_vertex and stop tiling as
+ * soon as one finds one. I don't know if it is possible to run out
+ * of forced vertices while untileable vertices exist (or will
+ * cavities inevitably appear). If this can happen, add_random_tile
+ * might get called with an untileable vertex, causing ( n <= 1).
+ * (This is what the tp->done checks for).
+ *
+ * A delayLoop celebrates the dislocation.
+ */
+static void
+check_vertex(ModeInfo * mi, fringe_node_c * vertex, tiling_c * tp)
+{
+ rule_match_c hits[MAX_TILES_PER_VERTEX * N_VERTEX_RULES];
+ int n_hits = match_rules(vertex, hits, False);
+ unsigned forced_sides = 0;
+
+ if (vertex->rule_mask == 0) {
+ tp->done = True;
+ if (MI_IS_VERBOSE(mi)) {
+ (void) fprintf(stderr, "Dislocation occurred!\n");
+ }
+ tp->busyLoop = CELEBRATE; /* Should be able to recover */
+ }
+ if (1 == find_completions(vertex, hits, n_hits, S_LEFT, 0 /*, False */ ))
+ forced_sides |= S_LEFT;
+ if (1 == find_completions(vertex, hits, n_hits, S_RIGHT, 0 /*, False */ ))
+ forced_sides |= S_RIGHT;
+ if (forced_sides == 0) {
+ if (vertex->list_ptr != 0) {
+ forced_node_c *node = *vertex->list_ptr;
+
+ *vertex->list_ptr = node->next;
+ if (node->next != 0)
+ node->next->vertex->list_ptr = vertex->list_ptr;
+ (void) free((void *) node);
+ tp->forced.n_nodes--;
+ if (!vertex->off_screen)
+ tp->forced.n_visible--;
+ vertex->list_ptr = 0;
+ }
+ } else {
+ forced_node_c *node;
+
+ if (vertex->list_ptr == 0) {
+ if ((node = ALLOC_NODE(forced_node_c)) == NULL)
+ return;
+ node->vertex = vertex;
+ node->next = tp->forced.first;
+ if (tp->forced.first != 0)
+ tp->forced.first->vertex->list_ptr = &(node->next);
+ tp->forced.first = node;
+ vertex->list_ptr = &(tp->forced.first);
+ tp->forced.n_nodes++;
+ if (!vertex->off_screen)
+ tp->forced.n_visible++;
+ } else
+ node = *vertex->list_ptr;
+ node->forced_sides = forced_sides;
+ }
+}
+
+
+/*-
+ * Delete this vertex. If the vertex is a member of the forced vertex queue,
+ * also remove that entry. We assume that the vertex is no longer
+ * connected to the fringe. Note that tp->fringe.nodes must not point to
+ * the vertex being deleted.
+ */
+static void
+delete_vertex(ModeInfo * mi, fringe_node_c * vertex, tiling_c * tp)
+{
+ if (tp->fringe.nodes == vertex) {
+ tp->done = True;
+ if (MI_IS_VERBOSE(mi)) {
+ (void) fprintf(stderr, "Weirdness in delete_penrose()\n");
+ (void) fprintf(stderr, "tp->fringe.nodes == vertex\n");
+ }
+ tp->busyLoop = CELEBRATE;
+ }
+ if (vertex->list_ptr != 0) {
+ forced_node_c *node = *vertex->list_ptr;
+
+ *vertex->list_ptr = node->next;
+ if (node->next != 0)
+ node->next->vertex->list_ptr = vertex->list_ptr;
+ (void) free((void *) node);
+ tp->forced.n_nodes--;
+ if (!vertex->off_screen)
+ tp->forced.n_visible--;
+ }
+ if (!vertex->off_screen)
+ tp->fringe.n_nodes--;
+ (void) free((void *) vertex);
+}
+
+
+/*-
+ * Check whether the addition of a tile of type vtype would completely fill
+ * the space available at vertex.
+ */
+static int
+fills_vertex(ModeInfo * mi, vertex_type_c vtype, fringe_node_c * vertex)
+{
+ return
+ (vertex_dir(mi, vertex, S_LEFT) - vertex_dir(mi, vertex, S_RIGHT)
+ - vtype_angle(vtype)) % 10 == 0;
+}
+
+
+/*-
+ * If you were to add a tile of type vtype to a specified side of
+ * vertex, fringe_changes tells you which other vertices it would
+ * attach to. The addresses of these vertices will be stored in the
+ * last three arguments. Null is stored if the corresponding vertex
+ * would need to be allocated.
+ *
+ * The function also analyzes which vertices would be swallowed by the tiling
+ * and thus cut off from the fringe. The result is returned as a bit pattern.
+ */
+#define FC_BAG 1 /* Total enclosure. Should never occur. */
+#define FC_NEW_RIGHT 2
+#define FC_NEW_FAR 4
+#define FC_NEW_LEFT 8
+#define FC_NEW_MASK 0xe
+#define FC_CUT_THIS 0x10
+#define FC_CUT_RIGHT 0x20
+#define FC_CUT_FAR 0x40
+#define FC_CUT_LEFT 0x80
+#define FC_CUT_MASK 0xf0
+#define FC_TOTAL_MASK 0xff
+
+static unsigned
+fringe_changes(ModeInfo * mi, fringe_node_c * vertex,
+ unsigned side, vertex_type_c vtype,
+ fringe_node_c ** right, fringe_node_c ** far,
+ fringe_node_c ** left)
+{
+ fringe_node_c *v, *f = (fringe_node_c *) NULL;
+ unsigned result = FC_NEW_FAR; /* We clear this later if necessary. */
+
+ if (far)
+ *far = 0;
+ if (fills_vertex(mi, vtype, vertex)) {
+ result |= FC_CUT_THIS;
+ } else if (side == S_LEFT) {
+ result |= FC_NEW_RIGHT;
+ if (right)
+ *right = 0;
+ } else {
+ result |= FC_NEW_LEFT;
+ if (left)
+ *left = 0;
+ }
+
+ if (!(result & FC_NEW_LEFT)) {
+ v = vertex->next;
+ if (left)
+ *left = v;
+ if (fills_vertex(mi, VT_LEFT(vtype), v)) {
+ result = (result & ~FC_NEW_FAR) | FC_CUT_LEFT;
+ f = v->next;
+ if (far)
+ *far = f;
+ }
+ }
+ if (!(result & FC_NEW_RIGHT)) {
+ v = vertex->prev;
+ if (right)
+ *right = v;
+ if (fills_vertex(mi, VT_RIGHT(vtype), v)) {
+ result = (result & ~FC_NEW_FAR) | FC_CUT_RIGHT;
+ f = v->prev;
+ if (far)
+ *far = f;
+ }
+ }
+ if (!(result & FC_NEW_FAR)
+ && fills_vertex(mi, VT_FAR(vtype), f)) {
+ result |= FC_CUT_FAR;
+ result &= (~FC_NEW_LEFT & ~FC_NEW_RIGHT);
+ if (right && (result & FC_CUT_LEFT))
+ *right = f->next;
+ if (left && (result & FC_CUT_RIGHT))
+ *left = f->prev;
+ }
+ if (((result & FC_CUT_LEFT) && (result & FC_CUT_RIGHT))
+ || ((result & FC_CUT_THIS) && (result & FC_CUT_FAR)))
+ result |= FC_BAG;
+ return result;
+}
+
+
+/* A couple of lesser helper functions for add_tile. */
+static void
+add_vtype(fringe_node_c * vertex, unsigned side, vertex_type_c vtype)
+{
+ if (side == S_RIGHT)
+ vertex->tiles[vertex->n_tiles++] = vtype;
+ else {
+ register int i;
+
+ for (i = vertex->n_tiles; i > 0; i--)
+ vertex->tiles[i] = vertex->tiles[i - 1];
+ vertex->tiles[0] = vtype;
+ vertex->n_tiles++;
+ }
+}
+
+static fringe_node_c *
+alloc_vertex(ModeInfo * mi, angle_c dir, fringe_node_c * from, tiling_c * tp)
+{
+ fringe_node_c *v;
+
+ if ((v = ALLOC_NODE(fringe_node_c)) == NULL) {
+ tp->done = True;
+ if (MI_IS_VERBOSE(mi)) {
+ (void) fprintf(stderr, "No memory in alloc_vertex()\n");
+ }
+ tp->busyLoop = CELEBRATE;
+ return v;
+ }
+ *v = *from;
+ add_unit_vec(dir, v->fived);
+ fived_to_loc(v->fived, tp, &(v->loc));
+ if (v->loc.x < 0 || v->loc.y < 0
+ || v->loc.x >= tp->width || v->loc.y >= tp->height) {
+ int ww = tp->width;
+ int hh = tp->height;
+ if (ww < 200) ww = 200; /* tiny window */
+ if (hh < 200) hh = 200;
+ v->off_screen = True;
+ if (v->loc.x < -ww || v->loc.y < -hh ||
+ v->loc.x >= 2 * ww || v->loc.y >= 2 * hh)
+ tp->done = True;
+ } else {
+ v->off_screen = False;
+ tp->fringe.n_nodes++;
+ }
+ v->n_tiles = 0;
+ v->rule_mask = (1 << N_VERTEX_RULES) - 1;
+ v->list_ptr = 0;
+ return v;
+}
+
+/*-
+ * Add a tile described by vtype to the side of vertex. This must be
+ * allowed by the rules -- we do not check it here. New vertices are
+ * allocated as necessary. The fringe and the forced vertex pool are updated.
+ * The new tile is drawn on the display.
+ *
+ * One thing we do check here is whether the new tile causes an untiled
+ * area to become enclosed by the tiling. If this would happen, the tile
+ * is not added. The return value is true iff a tile was added.
+ */
+static int
+add_tile(ModeInfo * mi,
+ fringe_node_c * vertex, unsigned side, vertex_type_c vtype)
+{
+ tiling_c *tp = &tilings[MI_SCREEN(mi)];
+
+ fringe_node_c
+ *left = (fringe_node_c *) NULL,
+ *right = (fringe_node_c *) NULL,
+ *far = (fringe_node_c *) NULL,
+ *node;
+ unsigned fc = fringe_changes(mi, vertex, side, vtype, &right, &far, &left);
+
+ vertex_type_c
+ ltype = VT_LEFT(vtype),
+ rtype = VT_RIGHT(vtype),
+ ftype = VT_FAR(vtype);
+
+ /* By our conventions vertex->next lies to the left of vertex and
+ vertex->prev to the right. */
+
+ /* This should never occur. */
+ if (fc & FC_BAG) {
+ tp->done = True;
+ if (MI_IS_VERBOSE(mi)) {
+ (void) fprintf(stderr, "Weirdness in add_tile()\n");
+ (void) fprintf(stderr, "fc = %d, FC_BAG = %d\n", fc, FC_BAG);
+ }
+ }
+ if (side == S_LEFT) {
+ if (right == NULL)
+ if ((right = alloc_vertex(mi, vertex_dir(mi, vertex, S_LEFT) -
+ vtype_angle(vtype), vertex, tp)) == NULL)
+ return False;
+ if (far == NULL)
+ if ((far = alloc_vertex(mi, vertex_dir(mi, left, S_RIGHT) +
+ vtype_angle(ltype), left, tp)) == NULL)
+ return False;
+ } else {
+ if (left == NULL)
+ if ((left = alloc_vertex(mi, vertex_dir(mi, vertex, S_RIGHT) +
+ vtype_angle(vtype), vertex, tp)) == NULL)
+ return False;
+ if (far == NULL)
+ if ((far = alloc_vertex(mi, vertex_dir(mi, right, S_LEFT) -
+ vtype_angle(rtype), right, tp)) == NULL)
+ return False;
+ }
+
+ /* Having allocated the new vertices, but before joining them with
+ the rest of the fringe, check if vertices with same coordinates
+ already exist. If any such are found, give up. */
+ node = tp->fringe.nodes;
+ do {
+ if (((fc & FC_NEW_LEFT) && fived_equal(node->fived, left->fived))
+ || ((fc & FC_NEW_RIGHT) && fived_equal(node->fived, right->fived))
+ || ((fc & FC_NEW_FAR) && fived_equal(node->fived, far->fived))) {
+ /* Better luck next time. */
+ if (fc & FC_NEW_LEFT)
+ delete_vertex(mi, left, tp);
+ if (fc & FC_NEW_RIGHT)
+ delete_vertex(mi, right, tp);
+ if (fc & FC_NEW_FAR)
+ delete_vertex(mi, far, tp);
+ return False;
+ }
+ node = node->next;
+ } while (node != tp->fringe.nodes);
+
+ /* Rechain. */
+ if (!(fc & FC_CUT_THIS)) {
+ if (side == S_LEFT) {
+ vertex->next = right;
+ right->prev = vertex;
+ } else {
+ vertex->prev = left;
+ left->next = vertex;
+ }
+ }
+ if (!(fc & FC_CUT_FAR)) {
+ if (!(fc & FC_CUT_LEFT)) {
+ far->next = left;
+ left->prev = far;
+ }
+ if (!(fc & FC_CUT_RIGHT)) {
+ far->prev = right;
+ right->next = far;
+ }
+ }
+ draw_tile(vertex, right, far, left, vtype, mi);
+
+ /* Delete vertices that are no longer on the fringe. Check the others. */
+ if (fc & FC_CUT_THIS) {
+ tp->fringe.nodes = far;
+ delete_vertex(mi, vertex, tp);
+ } else {
+ add_vtype(vertex, side, vtype);
+ check_vertex(mi, vertex, tp);
+ tp->fringe.nodes = vertex;
+ }
+ if (fc & FC_CUT_FAR)
+ delete_vertex(mi, far, tp);
+ else {
+ add_vtype(far, fc & FC_CUT_RIGHT ? S_LEFT : S_RIGHT, ftype);
+ check_vertex(mi, far, tp);
+ }
+ if (fc & FC_CUT_LEFT)
+ delete_vertex(mi, left, tp);
+ else {
+ add_vtype(left, fc & FC_CUT_FAR ? S_LEFT : S_RIGHT, ltype);
+ check_vertex(mi, left, tp);
+ }
+ if (fc & FC_CUT_RIGHT)
+ delete_vertex(mi, right, tp);
+ else {
+ add_vtype(right, fc & FC_CUT_FAR ? S_RIGHT : S_LEFT, rtype);
+ check_vertex(mi, right, tp);
+ }
+ return True;
+}
+
+
+/*-
+ * Add a forced tile to a given forced vertex. Basically an easy job,
+ * since we know what to add. But it might fail if adding the tile
+ * would cause some untiled area to become enclosed. There is also another
+ * more exotic culprit: we might have a dislocation. Fortunately, they
+ * are very rare (the PRL article reported that perfect tilings of over
+ * 2^50 tiles had been generated). There is a version of the algorithm
+ * that doesn't produce dislocations, but it's a lot hairier than the
+ * simpler version I used.
+ */
+static int
+add_forced_tile(ModeInfo * mi, forced_node_c * node)
+{
+ tiling_c *tp = &tilings[MI_SCREEN(mi)];
+ unsigned side;
+ vertex_type_c vtype = 0;
+ rule_match_c hits[MAX_TILES_PER_VERTEX * N_VERTEX_RULES];
+ int n;
+
+ if (node->forced_sides == (S_LEFT | S_RIGHT))
+ side = NRAND(2) ? S_LEFT : S_RIGHT;
+ else
+ side = node->forced_sides;
+ n = match_rules(node->vertex, hits, True);
+ n = find_completions(node->vertex, hits, n, side, &vtype /*, True */ );
+ if (n <= 0) {
+ tp->done = True;
+ if (MI_IS_VERBOSE(mi)) {
+ (void) fprintf(stderr, "Weirdness in add_forced_tile()\n");
+ (void) fprintf(stderr, "n = %d\n", n);
+ }
+ }
+ return add_tile(mi, node->vertex, side, vtype);
+}
+
+
+/*-
+ * Whether the addition of a tile of vtype on the given side of vertex
+ * would conform to the rules. The efficient way to do this would be
+ * to add the new tile and then use the same type of search as in
+ * match_rules. However, this function is not a performance
+ * bottleneck (only needed for random tile additions, which are
+ * relatively infrequent), so I will settle for a simpler implementation.
+ */
+static int
+legal_move(fringe_node_c * vertex, unsigned side, vertex_type_c vtype)
+{
+ rule_match_c hits[MAX_TILES_PER_VERTEX * N_VERTEX_RULES];
+ vertex_type_c legal_vt[MAX_COMPL];
+ int n_hits, n_legal, i;
+
+ n_hits = match_rules(vertex, hits, False);
+ n_legal = find_completions(vertex, hits, n_hits, side, legal_vt /*, False */ );
+ for (i = 0; i < n_legal; i++)
+ if (legal_vt[i] == vtype)
+ return True;
+ return False;
+}
+
+
+/*-
+ * Add a randomly chosen tile to a given vertex. This requires more checking
+ * as we must make sure the new tile conforms to the vertex rules at every
+ * vertex it touches. */
+static void
+add_random_tile(fringe_node_c * vertex, ModeInfo * mi)
+{
+ fringe_node_c *right, *left, *far;
+ int i, j, n, n_hits, n_good;
+ unsigned side, fc, no_good, s;
+ vertex_type_c vtypes[MAX_COMPL];
+ rule_match_c hits[MAX_TILES_PER_VERTEX * N_VERTEX_RULES];
+ tiling_c *tp = &tilings[MI_SCREEN(mi)];
+
+ if (MI_NPIXELS(mi) > 2) {
+ tp->thick_color = NRAND(MI_NPIXELS(mi));
+ /* Insure good contrast */
+ tp->thin_color = (NRAND(2 * MI_NPIXELS(mi) / 3) + tp->thick_color +
+ MI_NPIXELS(mi) / 6) % MI_NPIXELS(mi);
+ } else
+ tp->thick_color = tp->thin_color = MI_WHITE_PIXEL(mi);
+ n_hits = match_rules(vertex, hits, False);
+ side = NRAND(2) ? S_LEFT : S_RIGHT;
+ n = find_completions(vertex, hits, n_hits, side, vtypes /*, False */ );
+ /* One answer would mean a forced tile. */
+ if (n <= 0) {
+ tp->done = True;
+ if (MI_IS_VERBOSE(mi)) {
+ (void) fprintf(stderr, "Weirdness in add_random_tile()\n");
+ (void) fprintf(stderr, "n = %d\n", n);
+ }
+ }
+ no_good = 0;
+ n_good = n;
+ for (i = 0; i < n; i++) {
+ fc = fringe_changes(mi, vertex, side, vtypes[i], &right, &far, &left);
+ if (fc & FC_BAG) {
+ tp->done = True;
+ if (MI_IS_VERBOSE(mi)) {
+ (void) fprintf(stderr, "Weirdness in add_random_tile()\n");
+ (void) fprintf(stderr, "fc = %d, FC_BAG = %d\n", fc, FC_BAG);
+ }
+ }
+ if (right) {
+ s = (((fc & FC_CUT_FAR) && (fc & FC_CUT_LEFT)) ? S_RIGHT : S_LEFT);
+ if (!legal_move(right, s, VT_RIGHT(vtypes[i]))) {
+ no_good |= (1 << i);
+ n_good--;
+ continue;
+ }
+ }
+ if (left) {
+ s = (((fc & FC_CUT_FAR) && (fc & FC_CUT_RIGHT)) ? S_LEFT : S_RIGHT);
+ if (!legal_move(left, s, VT_LEFT(vtypes[i]))) {
+ no_good |= (1 << i);
+ n_good--;
+ continue;
+ }
+ }
+ if (far) {
+ s = ((fc & FC_CUT_LEFT) ? S_RIGHT : S_LEFT);
+ if (!legal_move(far, s, VT_FAR(vtypes[i]))) {
+ no_good |= (1 << i);
+ n_good--;
+ }
+ }
+ }
+ if (n_good <= 0) {
+ tp->done = True;
+ if (MI_IS_VERBOSE(mi)) {
+ (void) fprintf(stderr, "Weirdness in add_random_tile()\n");
+ (void) fprintf(stderr, "n_good = %d\n", n_good);
+ }
+ }
+ n = NRAND(n_good);
+ for (i = j = 0; i <= n; i++, j++)
+ while (no_good & (1 << j))
+ j++;
+
+ if (!add_tile(mi, vertex, side, vtypes[j - 1])) {
+ tp->done = True;
+ if (MI_IS_VERBOSE(mi)) {
+ (void) fprintf(stderr, "Weirdness in add_random_tile()\n");
+ }
+ free_penrose(mi);
+ }
+}
+
+/* One step of the growth algorithm. */
+ENTRYPOINT void
+draw_penrose(ModeInfo * mi)
+{
+ int i = 0, n;
+ forced_node_c *p;
+ tiling_c *tp;
+
+ if (tilings == NULL)
+ return;
+ tp = &tilings[MI_SCREEN(mi)];
+ if (tp->fringe.nodes == NULL)
+ return;
+
+ MI_IS_DRAWN(mi) = True;
+ p = tp->forced.first;
+ if (tp->busyLoop > 0) {
+ tp->busyLoop--;
+ return;
+ }
+ if (tp->done || tp->failures >= 100) {
+ init_penrose(mi);
+ return;
+ }
+ /* Check for the initial "2-gon". */
+ if (tp->fringe.nodes->prev == tp->fringe.nodes->next) {
+ vertex_type_c vtype = (unsigned char) (VT_TOTAL_MASK & LRAND());
+
+ if (!add_tile(mi, tp->fringe.nodes, S_LEFT, vtype))
+ free_penrose(mi);
+ return;
+ }
+ /* No visible nodes left. */
+ if (tp->fringe.n_nodes == 0) {
+ tp->done = True;
+ tp->busyLoop = COMPLETION; /* Just finished drawing */
+ return;
+ }
+ if (tp->forced.n_visible > 0 && tp->failures < 10) {
+ n = NRAND(tp->forced.n_visible);
+ for (;;) {
+ while (p->vertex->off_screen)
+ p = p->next;
+ if (i++ < n)
+ p = p->next;
+ else
+ break;
+ }
+ } else if (tp->forced.n_nodes > 0) {
+ n = NRAND(tp->forced.n_nodes);
+ while (i++ < n)
+ p = p->next;
+ } else {
+ fringe_node_c *fringe_p = tp->fringe.nodes;
+
+ n = NRAND(tp->fringe.n_nodes);
+ i = 0;
+ for (; i <= n; i++)
+ do {
+ fringe_p = fringe_p->next;
+ } while (fringe_p->off_screen);
+ add_random_tile(fringe_p, mi);
+ tp->failures = 0;
+ return;
+ }
+ if (add_forced_tile(mi, p))
+ tp->failures = 0;
+ else
+ tp->failures++;
+}
+
+
+ENTRYPOINT void
+reshape_penrose(ModeInfo * mi, int width, int height)
+{
+ tiling_c *tp = &tilings[MI_SCREEN(mi)];
+ tp->width = width;
+ tp->height = height;
+}
+
+XSCREENSAVER_MODULE ("Penrose", penrose)
+
+#endif /* MODE_penrose */