/*
* Ethernet driver for Motorola MPC8260.
* Copyright (c) 1999 Dan Malek (dmalek@jlc.net)
* Copyright (c) 2000 MontaVista Software Inc. (source@mvista.com)
* 2.3.99 Updates
*
* I copied this from the 8xx CPM Ethernet driver, so follow the
* credits back through that.
*
* This version of the driver is somewhat selectable for the different
* processor/board combinations. It works for the boards I know about
* now, and should be easily modified to include others. Some of the
* configuration information is contained in <asm/commproc.h> and the
* remainder is here.
*
* Buffer descriptors are kept in the CPM dual port RAM, and the frame
* buffers are in the host memory.
*
* Right now, I am very watseful with the buffers. I allocate memory
* pages and then divide them into 2K frame buffers. This way I know I
* have buffers large enough to hold one frame within one buffer descriptor.
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
* will be much more memory efficient and will easily handle lots of
* small packets.
*
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/bitops.h>
#include <asm/immap_cpm2.h>
#include <asm/pgtable.h>
#include <asm/mpc8260.h>
#include <asm/uaccess.h>
#include <asm/cpm2.h>
#include <asm/irq.h>
/*
* Theory of Operation
*
* The MPC8260 CPM performs the Ethernet processing on an SCC. It can use
* an aribtrary number of buffers on byte boundaries, but must have at
* least two receive buffers to prevent constant overrun conditions.
*
* The buffer descriptors are allocated from the CPM dual port memory
* with the data buffers allocated from host memory, just like all other
* serial communication protocols. The host memory buffers are allocated
* from the free page pool, and then divided into smaller receive and
* transmit buffers. The size of the buffers should be a power of two,
* since that nicely divides the page. This creates a ring buffer
* structure similar to the LANCE and other controllers.
*
* Like the LANCE driver:
* The driver runs as two independent, single-threaded flows of control. One
* is the send-packet routine, which enforces single-threaded use by the
* cep->tx_busy flag. The other thread is the interrupt handler, which is
* single threaded by the hardware and other software.
*/
/* The transmitter timeout
*/
#define TX_TIMEOUT (2*HZ)
/* The number of Tx and Rx buffers. These are allocated from the page
* pool. The code may assume these are power of two, so it is best
* to keep them that size.
* We don't need to allocate pages for the transmitter. We just use
* the skbuffer directly.
*/
#define CPM_ENET_RX_PAGES 4
#define CPM_ENET_RX_FRSIZE 2048
#define CPM_ENET_RX_FRPPG (PAGE_SIZE / CPM_ENET_RX_FRSIZE)
#define RX_RING_SIZE (CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES)
#define TX_RING_SIZE 8 /* Must be power of two */
#define TX_RING_MOD_MASK 7 /* for this to work */
/* The CPM stores dest/src/type, data, and checksum for receive packets.
*/
#define PKT_MAXBUF_SIZE 1518
#define PKT_MINBUF_SIZE 64
#define PKT_MAXBLR_SIZE 1520
/* The CPM buffer descriptors track the ring buffers. The rx_bd_base and
* tx_bd_base always point to the base of the buffer descriptors. The
* cur_rx and cur_tx point to the currently available buffer.
* The dirty_tx tracks the current buffer that is being sent by the
* controller. The cur_tx and dirty_tx are equal under both completely
* empty and completely full conditions. The empty/ready indicator in
* the buffer descriptor determines the actual condition.
*/
struct scc_enet_private {
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
struct sk_buff* tx_skbuff[TX_RING_SIZE];
ushort skb_cur;
ushort skb_dirty;
/* CPM dual port RAM relative addresses.
*/
cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
cbd_t *tx_bd_base;
cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
cbd_t *dirty_tx; /* The ring entries to be free()ed. */
scc_t *sccp;
struct net_device_stats stats;
uint tx_full;
spinlock_t lock;
};
static int scc_enet_open(struct net_device *dev);
static int scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
static int scc_enet_rx(struct net_device *dev);
static irqreturn_t scc_enet_interrupt(int irq, void *dev_id, struct pt_regs *);
static int scc_enet_close(struct net_device *dev);
static struct net_device_stats *scc_enet_get_stats(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
/* These will be configurable for the SCC choice.
*/
#define CPM_ENET_BLOCK CPM_CR_SCC1_SBLOCK
#define CPM_ENET_PAGE CPM_CR_SCC1_PAGE
#define PROFF_ENET PROFF_SCC1
#define SCC_ENET 0
#define SIU_INT_ENET SIU_INT_SCC1
/* These are both board and SCC dependent....
*/
#define PD_ENET_RXD ((uint)0x00000001)
#define PD_ENET_TXD ((uint)0x00000002)
#define PD_ENET_TENA ((uint)0x00000004)
#define PC_ENET_RENA ((uint)0x00020000)
#define PC_ENET_CLSN ((uint)0x00000004)
#define PC_ENET_TXCLK ((uint)0x00000800)
#define PC_ENET_RXCLK ((uint)0x00000400)
#define CMX_CLK_ROUTE ((uint)0x25000000)
#define CMX_CLK_MASK ((uint)0xff000000)
/* Specific to a board.
*/
#define PC_EST8260_ENET_LOOPBACK ((uint)0x80000000)
#define PC_EST8260_ENET_SQE ((uint)0x40000000)
#define PC_EST8260_ENET_NOTFD ((uint)0x20000000)
static int
scc_enet_open(struct net_device *dev)
{
/* I should reset the ring buffers here, but I don't yet know
* a simple way to do that.
*/
netif_start_queue(dev);
return 0; /* Always succeed */
}
static int
scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
volatile cbd_t *bdp;
/* Fill in a Tx ring entry */
bdp = cep->cur_tx;
#ifndef final_version
if (bdp->cbd_sc & BD_ENET_TX_READY) {
/* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since cep->tx_full should be set.
*/
printk("%s: tx queue full!.\n", dev->name);
return 1;
}
#endif
/* Clear all of the status flags.
*/
bdp->cbd_sc &= ~BD_ENET_TX_STATS;
/* If the frame is short, tell CPM to pad it.
*/
if (skb->len <= ETH_ZLEN)
bdp->cbd_sc |= BD_ENET_TX_PAD;
else
bdp->cbd_sc &= ~BD_ENET_TX_PAD;
/* Set buffer length and buffer pointer.
*/
bdp->cbd_datlen = skb->len;
bdp->cbd_bufaddr = __pa(skb->data);
/* Save skb pointer.
*/
cep->tx_skbuff[cep->skb_cur] = skb;
cep->stats.tx_bytes += skb->len;
cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
spin_lock_irq(&cep->lock);
/* Send it on its way. Tell CPM its ready, interrupt when done,
* its the last BD of the frame, and to put the CRC on the end.
*/
bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
dev->trans_start = jiffies;
/* If this was the last BD in the ring, start at the beginning again.
*/
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
bdp = cep->tx_bd_base;
else
bdp++;
if (bdp->cbd_sc & BD_ENET_TX_READY) {
netif_stop_queue(dev);
cep->tx_full = 1;
}
cep->cur_tx = (cbd_t *)bdp;
spin_unlock_irq(&cep->lock);
return 0;
}
static void
scc_enet_timeout(struct net_device *dev)
{
struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
printk("%s: transmit timed out.\n", dev->name);
cep->stats.tx_errors++;
#ifndef final_version
{
int i;
cbd_t *bdp;
printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n",
cep->cur_tx, cep->tx_full ? " (full)" : "",
cep->cur_rx);
bdp = cep->tx_bd_base;
printk(" Tx @base %p :\n", bdp);
for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
printk("%04x %04x %08x\n",
bdp->cbd_sc,
bdp->cbd_datlen,
bdp->cbd_bufaddr);
bdp = cep->rx_bd_base;
printk(" Rx @base %p :\n", bdp);
for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
printk("%04x %04x %08x\n",
bdp->cbd_sc,
bdp->cbd_datlen,
bdp->cbd_bufaddr);
}
#endif
if (!cep->tx_full)
netif_wake_queue(dev);
}
/* The interrupt handler.
* This is called from the CPM handler, not the MPC core interrupt.
*/
static irqreturn_t
scc_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
{
struct net_device *dev = dev_id;
volatile struct scc_enet_private *cep;
volatile cbd_t *bdp;
ushort int_events;
int must_restart;
cep = (struct scc_enet_private *)dev->priv;
/* Get the interrupt events that caused us to be here.
*/
int_events = cep->sccp->scc_scce;
cep->sccp->scc_scce = int_events;
must_restart = 0;
/* Handle receive event in its own function.
*/
if (int_events & SCCE_ENET_RXF)
scc_enet_rx(dev_id);
/* Check for a transmit error. The manual is a little unclear
* about this, so the debug code until I get it figured out. It
* appears that if TXE is set, then TXB is not set. However,
* if carrier sense is lost during frame transmission, the TXE
* bit is set, "and continues the buffer transmission normally."
* I don't know if "normally" implies TXB is set when the buffer
* descriptor is closed.....trial and error :-).
*/
/* Transmit OK, or non-fatal error. Update the buffer descriptors.
*/
if (int_events & (SCCE_ENET_TXE | SCCE_ENET_TXB)) {
spin_lock(&cep->lock);
bdp = cep->dirty_tx;
while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
if ((bdp==cep->cur_tx) && (cep->tx_full == 0))
break;
if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
cep->stats.tx_heartbeat_errors++;
if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
cep->stats.tx_window_errors++;
if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
cep->stats.tx_aborted_errors++;
if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
cep->stats.tx_fifo_errors++;
if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
cep->stats.tx_carrier_errors++;
/* No heartbeat or Lost carrier are not really bad errors.
* The others require a restart transmit command.
*/
if (bdp->cbd_sc &
(BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
must_restart = 1;
cep->stats.tx_errors++;
}
cep->stats.tx_packets++;
/* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK.
*/
if (bdp->cbd_sc & BD_ENET_TX_DEF)
cep->stats.collisions++;
/* Free the sk buffer associated with this last transmit.
*/
dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
/* Update pointer to next buffer descriptor to be transmitted.
*/
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
bdp = cep->tx_bd_base;
else
bdp++;
/* I don't know if we can be held off from processing these
* interrupts for more than one frame time. I really hope
* not. In such a case, we would now want to check the
* currently available BD (cur_tx) and determine if any
* buffers between the dirty_tx and cur_tx have also been
* sent. We would want to process anything in between that
* does not have BD_ENET_TX_READY set.
*/
/* Since we have freed up a buffer, the ring is no longer
* full.
*/
if (cep->tx_full) {
cep->tx_full = 0;
if (netif_queue_stopped(dev)) {
netif_wake_queue(dev);
}
}
cep->dirty_tx = (cbd_t *)bdp;
}
if (must_restart) {
volatile cpm_cpm2_t *cp;
/* Some transmit errors cause the transmitter to shut
* down. We now issue a restart transmit. Since the
* errors close the BD and update the pointers, the restart
* _should_ pick up without having to reset any of our
* pointers either.
*/
cp = cpmp;
cp->cp_cpcr =
mk_cr_cmd(CPM_ENET_PAGE, CPM_ENET_BLOCK, 0,
CPM_CR_RESTART_TX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
}
spin_unlock(&cep->lock);
}
/* Check for receive busy, i.e. packets coming but no place to
* put them. This "can't happen" because the receive interrupt
* is tossing previous frames.
*/
if (int_events & SCCE_ENET_BSY) {
cep->stats.rx_dropped++;
printk("SCC ENET: BSY can't happen.\n");
}
return IRQ_HANDLED;
}
/* During a receive, the cur_rx points to the current incoming buffer.
* When we update through the ring, if the next incoming buffer has
* not been given to the system, we just set the empty indicator,
* effectively tossing the packet.
*/
static int
scc_enet_rx(struct net_device *dev)
{
struct scc_enet_private *cep;
volatile cbd_t *bdp;
struct sk_buff *skb;
ushort pkt_len;
cep = (struct scc_enet_private *)dev->priv;
/* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = cep->cur_rx;
for (;;) {
if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
break;
#ifndef final_version
/* Since we have allocated space to hold a complete frame, both
* the first and last indicators should be set.
*/
if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
(BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
printk("CPM ENET: rcv is not first+last\n");
#endif
/* Frame too long or too short.
*/
if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
cep->stats.rx_length_errors++;
if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
cep->stats.rx_frame_errors++;
if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
cep->stats.rx_crc_errors++;
if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
cep->stats.rx_crc_errors++;
/* Report late collisions as a frame error.
* On this error, the BD is closed, but we don't know what we
* have in the buffer. So, just drop this frame on the floor.
*/
if (bdp->cbd_sc & BD_ENET_RX_CL) {
cep->stats.rx_frame_errors++;
}
else {
/* Process the incoming frame.
*/
cep->stats.rx_packets++;
pkt_len = bdp->cbd_datlen;
cep->stats.rx_bytes += pkt_len;
/* This does 16 byte alignment, much more than we need.
* The packet length includes FCS, but we don't want to
* include that when passing upstream as it messes up
* bridging applications.
*/
skb = dev_alloc_skb(pkt_len-4);
if (skb == NULL) {
printk("%s: Memory squeeze, dropping packet.\n", dev->name);
cep->stats.rx_dropped++;
}
else {
skb->dev = dev;
skb_put(skb,pkt_len-4); /* Make room */
eth_copy_and_sum(skb,
(unsigned char *)__va(bdp->cbd_bufaddr),
pkt_len-4, 0);
skb->protocol=eth_type_trans(skb,dev);
netif_rx(skb);
}
}
/* Clear the status flags for this buffer.
*/
bdp->cbd_sc &= ~BD_ENET_RX_STATS;
/* Mark the buffer empty.
*/
bdp->cbd_sc |= BD_ENET_RX_EMPTY;
/* Update BD pointer to next entry.
*/
if (bdp->cbd_sc & BD_ENET_RX_WRAP)
bdp = cep->rx_bd_base;
else
bdp++;
}
cep->cur_rx = (cbd_t *)bdp;
return 0;
}
static int
scc_enet_close(struct net_device *dev)
{
/* Don't know what to do yet.
*/
netif_stop_queue(dev);
return 0;
}
static struct net_device_stats *scc_enet_get_stats(struct net_device *dev)
{
struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
return &cep->stats;
}
/* Set or clear the multicast filter for this adaptor.
* Skeleton taken from sunlance driver.
* The CPM Ethernet implementation allows Multicast as well as individual
* MAC address filtering. Some of the drivers check to make sure it is
* a group multicast address, and discard those that are not. I guess I
* will do the same for now, but just remove the test if you want
* individual filtering as well (do the upper net layers want or support
* this kind of feature?).
*/
static void set_multicast_list(struct net_device *dev)
{
struct scc_enet_private *cep;
struct dev_mc_list *dmi;
u_char *mcptr, *tdptr;
volatile scc_enet_t *ep;
int i, j;
cep = (struct scc_enet_private *)dev->priv;
/* Get pointer to SCC area in parameter RAM.
*/
ep = (scc_enet_t *)dev->base_addr;
if (dev->flags&IFF_PROMISC) {
/* Log any net taps. */
printk("%s: Promiscuous mode enabled.\n", dev->name);
cep->sccp->scc_psmr |= SCC_PSMR_PRO;
} else {
cep->sccp->scc_psmr &= ~SCC_PSMR_PRO;
if (dev->flags & IFF_ALLMULTI) {
/* Catch all multicast addresses, so set the
* filter to all 1's.
*/
ep->sen_gaddr1 = 0xffff;
ep->sen_gaddr2 = 0xffff;
ep->sen_gaddr3 = 0xffff;
ep->sen_gaddr4 = 0xffff;
}
else {
/* Clear filter and add the addresses in the list.
*/
ep->sen_gaddr1 = 0;
ep->sen_gaddr2 = 0;
ep->sen_gaddr3 = 0;
ep->sen_gaddr4 = 0;
dmi = dev->mc_list;
for (i=0; i<dev->mc_count; i++) {
/* Only support group multicast for now.
*/
if (!(dmi->dmi_addr[0] & 1))
continue;
/* The address in dmi_addr is LSB first,
* and taddr is MSB first. We have to
* copy bytes MSB first from dmi_addr.
*/
mcptr = (u_char *)dmi->dmi_addr + 5;
tdptr = (u_char *)&ep->sen_taddrh;
for (j=0; j<6; j++)
*tdptr++ = *mcptr--;
/* Ask CPM to run CRC and set bit in
* filter mask.
*/
cpmp->cp_cpcr = mk_cr_cmd(CPM_ENET_PAGE,
CPM_ENET_BLOCK, 0,
CPM_CR_SET_GADDR) | CPM_CR_FLG;
/* this delay is necessary here -- Cort */
udelay(10);
while (cpmp->cp_cpcr & CPM_CR_FLG);
}
}
}
}
/* Initialize the CPM Ethernet on SCC.
*/
static int __init scc_enet_init(void)
{
struct net_device *dev;
struct scc_enet_private *cep;
int i, j, err;
uint dp_offset;
unsigned char *eap;
unsigned long mem_addr;
bd_t *bd;
volatile cbd_t *bdp;
volatile cpm_cpm2_t *cp;
volatile scc_t *sccp;
volatile scc_enet_t *ep;
volatile cpm2_map_t *immap;
volatile iop_cpm2_t *io;
cp = cpmp; /* Get pointer to Communication Processor */
immap = (cpm2_map_t *)CPM_MAP_ADDR; /* and to internal registers */
io = &immap->im_ioport;
bd = (bd_t *)__res;
/* Create an Ethernet device instance.
*/
dev = alloc_etherdev(sizeof(*cep));
if (!dev)
return -ENOMEM;
cep = dev->priv;
spin_lock_init(&cep->lock);
/* Get pointer to SCC area in parameter RAM.
*/
ep = (scc_enet_t *)(&immap->im_dprambase[PROFF_ENET]);
/* And another to the SCC register area.
*/
sccp = (volatile scc_t *)(&immap->im_scc[SCC_ENET]);
cep->sccp = (scc_t *)sccp; /* Keep the pointer handy */
/* Disable receive and transmit in case someone left it running.
*/
sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT);
/* Configure port C and D pins for SCC Ethernet. This
* won't work for all SCC possibilities....it will be
* board/port specific.
*/
io->iop_pparc |=
(PC_ENET_RENA | PC_ENET_CLSN | PC_ENET_TXCLK | PC_ENET_RXCLK);
io->iop_pdirc &=
~(PC_ENET_RENA | PC_ENET_CLSN | PC_ENET_TXCLK | PC_ENET_RXCLK);
io->iop_psorc &=
~(PC_ENET_RENA | PC_ENET_TXCLK | PC_ENET_RXCLK);
io->iop_psorc |= PC_ENET_CLSN;
io->iop_ppard |= (PD_ENET_RXD | PD_ENET_TXD | PD_ENET_TENA);
io->iop_pdird |= (PD_ENET_TXD | PD_ENET_TENA);
io->iop_pdird &= ~PD_ENET_RXD;
io->iop_psord |= PD_ENET_TXD;
io->iop_psord &= ~(PD_ENET_RXD | PD_ENET_TENA);
/* Configure Serial Interface clock routing.
* First, clear all SCC bits to zero, then set the ones we want.
*/
immap->im_cpmux.cmx_scr &= ~CMX_CLK_MASK;
immap->im_cpmux.cmx_scr |= CMX_CLK_ROUTE;
/* Allocate space for the buffer descriptors in the DP ram.
* These are relative offsets in the DP ram address space.
* Initialize base addresses for the buffer descriptors.
*/
dp_offset = cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
ep->sen_genscc.scc_rbase = dp_offset;
cep->rx_bd_base = (cbd_t *)cpm_dpram_addr(dp_offset);
dp_offset = cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
ep->sen_genscc.scc_tbase = dp_offset;
cep->tx_bd_base = (cbd_t *)cpm_dpram_addr(dp_offset);
cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
cep->cur_rx = cep->rx_bd_base;
ep->sen_genscc.scc_rfcr = CPMFCR_GBL | CPMFCR_EB;
ep->sen_genscc.scc_tfcr = CPMFCR_GBL | CPMFCR_EB;
/* Set maximum bytes per receive buffer.
* This appears to be an Ethernet frame size, not the buffer
* fragment size. It must be a multiple of four.
*/
ep->sen_genscc.scc_mrblr = PKT_MAXBLR_SIZE;
/* Set CRC preset and mask.
*/
ep->sen_cpres = 0xffffffff;
ep->sen_cmask = 0xdebb20e3;
ep->sen_crcec = 0; /* CRC Error counter */
ep->sen_alec = 0; /* alignment error counter */
ep->sen_disfc = 0; /* discard frame counter */
ep->sen_pads = 0x8888; /* Tx short frame pad character */
ep->sen_retlim = 15; /* Retry limit threshold */
ep->sen_maxflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
ep->sen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
ep->sen_maxd1 = PKT_MAXBLR_SIZE; /* maximum DMA1 length */
ep->sen_maxd2 = PKT_MAXBLR_SIZE; /* maximum DMA2 length */
/* Clear hash tables.
*/
ep->sen_gaddr1 = 0;
ep->sen_gaddr2 = 0;
ep->sen_gaddr3 = 0;
ep->sen_gaddr4 = 0;
ep->sen_iaddr1 = 0;
ep->sen_iaddr2 = 0;
ep->sen_iaddr3 = 0;
ep->sen_iaddr4 = 0;
/* Set Ethernet station address.
*
* This is supplied in the board information structure, so we
* copy that into the controller.
*/
eap = (unsigned char *)&(ep->sen_paddrh);
for (i=5; i>=0; i--)
*eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
ep->sen_pper = 0; /* 'cause the book says so */
ep->sen_taddrl = 0; /* temp address (LSB) */
ep->sen_taddrm = 0;
ep->sen_taddrh = 0; /* temp address (MSB) */
/* Now allocate the host memory pages and initialize the
* buffer descriptors.
*/
bdp = cep->tx_bd_base;
for (i=0; i<TX_RING_SIZE; i++) {
/* Initialize the BD for every fragment in the page.
*/
bdp->cbd_sc = 0;
bdp->cbd_bufaddr = 0;
bdp++;
}
/* Set the last buffer to wrap.
*/
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
bdp = cep->rx_bd_base;
for (i=0; i<CPM_ENET_RX_PAGES; i++) {
/* Allocate a page.
*/
mem_addr = __get_free_page(GFP_KERNEL);
/* BUG: no check for failure */
/* Initialize the BD for every fragment in the page.
*/
for (j=0; j<CPM_ENET_RX_FRPPG; j++) {
bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
bdp->cbd_bufaddr = __pa(mem_addr);
mem_addr += CPM_ENET_RX_FRSIZE;
bdp++;
}
}
/* Set the last buffer to wrap.
*/
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
/* Let's re-initialize the channel now. We have to do it later
* than the manual describes because we have just now finished
* the BD initialization.
*/
cpmp->cp_cpcr = mk_cr_cmd(CPM_ENET_PAGE, CPM_ENET_BLOCK, 0,
CPM_CR_INIT_TRX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
cep->skb_cur = cep->skb_dirty = 0;
sccp->scc_scce = 0xffff; /* Clear any pending events */
/* Enable interrupts for transmit error, complete frame
* received, and any transmit buffer we have also set the
* interrupt flag.
*/
sccp->scc_sccm = (SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
/* Install our interrupt handler.
*/
request_irq(SIU_INT_ENET, scc_enet_interrupt, 0, "enet", dev);
/* BUG: no check for failure */
/* Set GSMR_H to enable all normal operating modes.
* Set GSMR_L to enable Ethernet to MC68160.
*/
sccp->scc_gsmrh = 0;
sccp->scc_gsmrl = (SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | SCC_GSMRL_MODE_ENET);
/* Set sync/delimiters.
*/
sccp->scc_dsr = 0xd555;
/* Set processing mode. Use Ethernet CRC, catch broadcast, and
* start frame search 22 bit times after RENA.
*/
sccp->scc_psmr = (SCC_PSMR_ENCRC | SCC_PSMR_NIB22);
/* It is now OK to enable the Ethernet transmitter.
* Unfortunately, there are board implementation differences here.
*/
io->iop_pparc &= ~(PC_EST8260_ENET_LOOPBACK |
PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD);
io->iop_psorc &= ~(PC_EST8260_ENET_LOOPBACK |
PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD);
io->iop_pdirc |= (PC_EST8260_ENET_LOOPBACK |
PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD);
io->iop_pdatc &= ~(PC_EST8260_ENET_LOOPBACK | PC_EST8260_ENET_SQE);
io->iop_pdatc |= PC_EST8260_ENET_NOTFD;
dev->base_addr = (unsigned long)ep;
/* The CPM Ethernet specific entries in the device structure. */
dev->open = scc_enet_open;
dev->hard_start_xmit = scc_enet_start_xmit;
dev->tx_timeout = scc_enet_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
dev->stop = scc_enet_close;
dev->get_stats = scc_enet_get_stats;
dev->set_multicast_list = set_multicast_list;
/* And last, enable the transmit and receive processing.
*/
sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT);
err = register_netdev(dev);
if (err) {
free_netdev(dev);
return err;
}
printk("%s: SCC ENET Version 0.1, ", dev->name);
for (i=0; i<5; i++)
printk("%02x:", dev->dev_addr[i]);
printk("%02x\n", dev->dev_addr[5]);
return 0;
}
module_init(scc_enet_init);