summaryrefslogblamecommitdiffstats
path: root/arch/ppc64/mm/numa.c
blob: 0b191f2de0163b64d20b302a92f5047aee23ed8e (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

























































































































































































































































































































































































































































                                                                                              

                                                                              








































                                                                                  
                                                             


































































































































































                                                                                               





                                                                          






















































































                                                                                       
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/module.h>
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <asm/lmb.h>
#include <asm/machdep.h>
#include <asm/abs_addr.h>

static int numa_enabled = 1;

static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

#ifdef DEBUG_NUMA
#define ARRAY_INITIALISER -1
#else
#define ARRAY_INITIALISER 0
#endif

int numa_cpu_lookup_table[NR_CPUS] = { [ 0 ... (NR_CPUS - 1)] =
	ARRAY_INITIALISER};
char *numa_memory_lookup_table;
cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
int nr_cpus_in_node[MAX_NUMNODES] = { [0 ... (MAX_NUMNODES -1)] = 0};

struct pglist_data *node_data[MAX_NUMNODES];
bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
static int min_common_depth;

/*
 * We need somewhere to store start/span for each node until we have
 * allocated the real node_data structures.
 */
static struct {
	unsigned long node_start_pfn;
	unsigned long node_end_pfn;
	unsigned long node_present_pages;
} init_node_data[MAX_NUMNODES] __initdata;

EXPORT_SYMBOL(node_data);
EXPORT_SYMBOL(numa_cpu_lookup_table);
EXPORT_SYMBOL(numa_memory_lookup_table);
EXPORT_SYMBOL(numa_cpumask_lookup_table);
EXPORT_SYMBOL(nr_cpus_in_node);

static inline void map_cpu_to_node(int cpu, int node)
{
	numa_cpu_lookup_table[cpu] = node;
	if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node]))) {
		cpu_set(cpu, numa_cpumask_lookup_table[node]);
		nr_cpus_in_node[node]++;
	}
}

#ifdef CONFIG_HOTPLUG_CPU
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

	if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
		cpu_clear(cpu, numa_cpumask_lookup_table[node]);
		nr_cpus_in_node[node]--;
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

static struct device_node * __devinit find_cpu_node(unsigned int cpu)
{
	unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
	struct device_node *cpu_node = NULL;
	unsigned int *interrupt_server, *reg;
	int len;

	while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
		/* Try interrupt server first */
		interrupt_server = (unsigned int *)get_property(cpu_node,
					"ibm,ppc-interrupt-server#s", &len);

		len = len / sizeof(u32);

		if (interrupt_server && (len > 0)) {
			while (len--) {
				if (interrupt_server[len] == hw_cpuid)
					return cpu_node;
			}
		} else {
			reg = (unsigned int *)get_property(cpu_node,
							   "reg", &len);
			if (reg && (len > 0) && (reg[0] == hw_cpuid))
				return cpu_node;
		}
	}

	return NULL;
}

/* must hold reference to node during call */
static int *of_get_associativity(struct device_node *dev)
{
	return (unsigned int *)get_property(dev, "ibm,associativity", NULL);
}

static int of_node_numa_domain(struct device_node *device)
{
	int numa_domain;
	unsigned int *tmp;

	if (min_common_depth == -1)
		return 0;

	tmp = of_get_associativity(device);
	if (tmp && (tmp[0] >= min_common_depth)) {
		numa_domain = tmp[min_common_depth];
	} else {
		dbg("WARNING: no NUMA information for %s\n",
		    device->full_name);
		numa_domain = 0;
	}
	return numa_domain;
}

/*
 * In theory, the "ibm,associativity" property may contain multiple
 * associativity lists because a resource may be multiply connected
 * into the machine.  This resource then has different associativity
 * characteristics relative to its multiple connections.  We ignore
 * this for now.  We also assume that all cpu and memory sets have
 * their distances represented at a common level.  This won't be
 * true for heirarchical NUMA.
 *
 * In any case the ibm,associativity-reference-points should give
 * the correct depth for a normal NUMA system.
 *
 * - Dave Hansen <haveblue@us.ibm.com>
 */
static int __init find_min_common_depth(void)
{
	int depth;
	unsigned int *ref_points;
	struct device_node *rtas_root;
	unsigned int len;

	rtas_root = of_find_node_by_path("/rtas");

	if (!rtas_root)
		return -1;

	/*
	 * this property is 2 32-bit integers, each representing a level of
	 * depth in the associativity nodes.  The first is for an SMP
	 * configuration (should be all 0's) and the second is for a normal
	 * NUMA configuration.
	 */
	ref_points = (unsigned int *)get_property(rtas_root,
			"ibm,associativity-reference-points", &len);

	if ((len >= 1) && ref_points) {
		depth = ref_points[1];
	} else {
		dbg("WARNING: could not find NUMA "
		    "associativity reference point\n");
		depth = -1;
	}
	of_node_put(rtas_root);

	return depth;
}

static int __init get_mem_addr_cells(void)
{
	struct device_node *memory = NULL;
	int rc;

	memory = of_find_node_by_type(memory, "memory");
	if (!memory)
		return 0; /* it won't matter */

	rc = prom_n_addr_cells(memory);
	return rc;
}

static int __init get_mem_size_cells(void)
{
	struct device_node *memory = NULL;
	int rc;

	memory = of_find_node_by_type(memory, "memory");
	if (!memory)
		return 0; /* it won't matter */
	rc = prom_n_size_cells(memory);
	return rc;
}

static unsigned long read_n_cells(int n, unsigned int **buf)
{
	unsigned long result = 0;

	while (n--) {
		result = (result << 32) | **buf;
		(*buf)++;
	}
	return result;
}

/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
static int numa_setup_cpu(unsigned long lcpu)
{
	int numa_domain = 0;
	struct device_node *cpu = find_cpu_node(lcpu);

	if (!cpu) {
		WARN_ON(1);
		goto out;
	}

	numa_domain = of_node_numa_domain(cpu);

	if (numa_domain >= num_online_nodes()) {
		/*
		 * POWER4 LPAR uses 0xffff as invalid node,
		 * dont warn in this case.
		 */
		if (numa_domain != 0xffff)
			printk(KERN_ERR "WARNING: cpu %ld "
			       "maps to invalid NUMA node %d\n",
			       lcpu, numa_domain);
		numa_domain = 0;
	}
out:
	node_set_online(numa_domain);

	map_cpu_to_node(lcpu, numa_domain);

	of_node_put(cpu);

	return numa_domain;
}

static int cpu_numa_callback(struct notifier_block *nfb,
			     unsigned long action,
			     void *hcpu)
{
	unsigned long lcpu = (unsigned long)hcpu;
	int ret = NOTIFY_DONE;

	switch (action) {
	case CPU_UP_PREPARE:
		if (min_common_depth == -1 || !numa_enabled)
			map_cpu_to_node(lcpu, 0);
		else
			numa_setup_cpu(lcpu);
		ret = NOTIFY_OK;
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		unmap_cpu_from_node(lcpu);
		break;
		ret = NOTIFY_OK;
#endif
	}
	return ret;
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
 * discarded as it lies wholy above the memory limit.
 */
static unsigned long __init numa_enforce_memory_limit(unsigned long start, unsigned long size)
{
	/*
	 * We use lmb_end_of_DRAM() in here instead of memory_limit because
	 * we've already adjusted it for the limit and it takes care of
	 * having memory holes below the limit.
	 */
	extern unsigned long memory_limit;

	if (! memory_limit)
		return size;

	if (start + size <= lmb_end_of_DRAM())
		return size;

	if (start >= lmb_end_of_DRAM())
		return 0;

	return lmb_end_of_DRAM() - start;
}

static int __init parse_numa_properties(void)
{
	struct device_node *cpu = NULL;
	struct device_node *memory = NULL;
	int addr_cells, size_cells;
	int max_domain = 0;
	long entries = lmb_end_of_DRAM() >> MEMORY_INCREMENT_SHIFT;
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	numa_memory_lookup_table =
		(char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1));
	memset(numa_memory_lookup_table, 0, entries * sizeof(char));

	for (i = 0; i < entries ; i++)
		numa_memory_lookup_table[i] = ARRAY_INITIALISER;

	min_common_depth = find_min_common_depth();

	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
	if (min_common_depth < 0)
		return min_common_depth;

	max_domain = numa_setup_cpu(boot_cpuid);

	/*
	 * Even though we connect cpus to numa domains later in SMP init,
	 * we need to know the maximum node id now. This is because each
	 * node id must have NODE_DATA etc backing it.
	 * As a result of hotplug we could still have cpus appear later on
	 * with larger node ids. In that case we force the cpu into node 0.
	 */
	for_each_cpu(i) {
		int numa_domain;

		cpu = find_cpu_node(i);

		if (cpu) {
			numa_domain = of_node_numa_domain(cpu);
			of_node_put(cpu);

			if (numa_domain < MAX_NUMNODES &&
			    max_domain < numa_domain)
				max_domain = numa_domain;
		}
	}

	addr_cells = get_mem_addr_cells();
	size_cells = get_mem_size_cells();
	memory = NULL;
	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
		unsigned long start;
		unsigned long size;
		int numa_domain;
		int ranges;
		unsigned int *memcell_buf;
		unsigned int len;

		memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		ranges = memory->n_addrs;
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
		start = read_n_cells(addr_cells, &memcell_buf);
		size = read_n_cells(size_cells, &memcell_buf);

		start = _ALIGN_DOWN(start, MEMORY_INCREMENT);
		size = _ALIGN_UP(size, MEMORY_INCREMENT);

		numa_domain = of_node_numa_domain(memory);

		if (numa_domain >= MAX_NUMNODES) {
			if (numa_domain != 0xffff)
				printk(KERN_ERR "WARNING: memory at %lx maps "
				       "to invalid NUMA node %d\n", start,
				       numa_domain);
			numa_domain = 0;
		}

		if (max_domain < numa_domain)
			max_domain = numa_domain;

		if (! (size = numa_enforce_memory_limit(start, size))) {
			if (--ranges)
				goto new_range;
			else
				continue;
		}

		/*
		 * Initialize new node struct, or add to an existing one.
		 */
		if (init_node_data[numa_domain].node_end_pfn) {
			if ((start / PAGE_SIZE) <
			    init_node_data[numa_domain].node_start_pfn)
				init_node_data[numa_domain].node_start_pfn =
					start / PAGE_SIZE;
			if (((start / PAGE_SIZE) + (size / PAGE_SIZE)) >
			    init_node_data[numa_domain].node_end_pfn)
				init_node_data[numa_domain].node_end_pfn =
					(start / PAGE_SIZE) +
					(size / PAGE_SIZE);

			init_node_data[numa_domain].node_present_pages +=
				size / PAGE_SIZE;
		} else {
			node_set_online(numa_domain);

			init_node_data[numa_domain].node_start_pfn =
				start / PAGE_SIZE;
			init_node_data[numa_domain].node_end_pfn =
				init_node_data[numa_domain].node_start_pfn +
				size / PAGE_SIZE;
			init_node_data[numa_domain].node_present_pages =
				size / PAGE_SIZE;
		}

		for (i = start ; i < (start+size); i += MEMORY_INCREMENT)
			numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] =
				numa_domain;
		memory_present(numa_domain, start >> PAGE_SHIFT,
						(start + size) >> PAGE_SHIFT);

		if (--ranges)
			goto new_range;
	}

	for (i = 0; i <= max_domain; i++)
		node_set_online(i);

	return 0;
}

static void __init setup_nonnuma(void)
{
	unsigned long top_of_ram = lmb_end_of_DRAM();
	unsigned long total_ram = lmb_phys_mem_size();
	unsigned long i;

	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
	       top_of_ram, total_ram);
	printk(KERN_INFO "Memory hole size: %ldMB\n",
	       (top_of_ram - total_ram) >> 20);

	if (!numa_memory_lookup_table) {
		long entries = top_of_ram >> MEMORY_INCREMENT_SHIFT;
		numa_memory_lookup_table =
			(char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1));
		memset(numa_memory_lookup_table, 0, entries * sizeof(char));
		for (i = 0; i < entries ; i++)
			numa_memory_lookup_table[i] = ARRAY_INITIALISER;
	}

	map_cpu_to_node(boot_cpuid, 0);

	node_set_online(0);

	init_node_data[0].node_start_pfn = 0;
	init_node_data[0].node_end_pfn = lmb_end_of_DRAM() / PAGE_SIZE;
	init_node_data[0].node_present_pages = total_ram / PAGE_SIZE;

	for (i = 0 ; i < top_of_ram; i += MEMORY_INCREMENT)
		numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] = 0;
	memory_present(0, 0, init_node_data[0].node_end_pfn);
}

static void __init dump_numa_topology(void)
{
	unsigned int node;
	unsigned int count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
		unsigned long i;

		printk(KERN_INFO "Node %d Memory:", node);

		count = 0;

		for (i = 0; i < lmb_end_of_DRAM(); i += MEMORY_INCREMENT) {
			if (numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] == node) {
				if (count == 0)
					printk(" 0x%lx", i);
				++count;
			} else {
				if (count > 0)
					printk("-0x%lx", i);
				count = 0;
			}
		}

		if (count > 0)
			printk("-0x%lx", i);
		printk("\n");
	}
	return;
}

/*
 * Allocate some memory, satisfying the lmb or bootmem allocator where
 * required. nid is the preferred node and end is the physical address of
 * the highest address in the node.
 *
 * Returns the physical address of the memory.
 */
static unsigned long careful_allocation(int nid, unsigned long size,
					unsigned long align, unsigned long end)
{
	unsigned long ret = lmb_alloc_base(size, align, end);

	/* retry over all memory */
	if (!ret)
		ret = lmb_alloc_base(size, align, lmb_end_of_DRAM());

	if (!ret)
		panic("numa.c: cannot allocate %lu bytes on node %d",
		      size, nid);

	/*
	 * If the memory came from a previously allocated node, we must
	 * retry with the bootmem allocator.
	 */
	if (pa_to_nid(ret) < nid) {
		nid = pa_to_nid(ret);
		ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(nid),
				size, align, 0);

		if (!ret)
			panic("numa.c: cannot allocate %lu bytes on node %d",
			      size, nid);

		ret = virt_to_abs(ret);

		dbg("alloc_bootmem %lx %lx\n", ret, size);
	}

	return ret;
}

void __init do_init_bootmem(void)
{
	int nid;
	int addr_cells, size_cells;
	struct device_node *memory = NULL;
	static struct notifier_block ppc64_numa_nb = {
		.notifier_call = cpu_numa_callback,
		.priority = 1 /* Must run before sched domains notifier. */
	};

	min_low_pfn = 0;
	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
	max_pfn = max_low_pfn;

	if (parse_numa_properties())
		setup_nonnuma();
	else
		dump_numa_topology();

	register_cpu_notifier(&ppc64_numa_nb);

	for_each_online_node(nid) {
		unsigned long start_paddr, end_paddr;
		int i;
		unsigned long bootmem_paddr;
		unsigned long bootmap_pages;

		start_paddr = init_node_data[nid].node_start_pfn * PAGE_SIZE;
		end_paddr = init_node_data[nid].node_end_pfn * PAGE_SIZE;

		/* Allocate the node structure node local if possible */
		NODE_DATA(nid) = (struct pglist_data *)careful_allocation(nid,
					sizeof(struct pglist_data),
					SMP_CACHE_BYTES, end_paddr);
		NODE_DATA(nid) = abs_to_virt(NODE_DATA(nid));
		memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));

  		dbg("node %d\n", nid);
		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));

		NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
		NODE_DATA(nid)->node_start_pfn =
			init_node_data[nid].node_start_pfn;
		NODE_DATA(nid)->node_spanned_pages =
			end_paddr - start_paddr;

		if (NODE_DATA(nid)->node_spanned_pages == 0)
  			continue;

  		dbg("start_paddr = %lx\n", start_paddr);
  		dbg("end_paddr = %lx\n", end_paddr);

		bootmap_pages = bootmem_bootmap_pages((end_paddr - start_paddr) >> PAGE_SHIFT);

		bootmem_paddr = careful_allocation(nid,
				bootmap_pages << PAGE_SHIFT,
				PAGE_SIZE, end_paddr);
		memset(abs_to_virt(bootmem_paddr), 0,
		       bootmap_pages << PAGE_SHIFT);
		dbg("bootmap_paddr = %lx\n", bootmem_paddr);

		init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
				  start_paddr >> PAGE_SHIFT,
				  end_paddr >> PAGE_SHIFT);

		/*
		 * We need to do another scan of all memory sections to
		 * associate memory with the correct node.
		 */
		addr_cells = get_mem_addr_cells();
		size_cells = get_mem_size_cells();
		memory = NULL;
		while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
			unsigned long mem_start, mem_size;
			int numa_domain, ranges;
			unsigned int *memcell_buf;
			unsigned int len;

			memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
			if (!memcell_buf || len <= 0)
				continue;

			ranges = memory->n_addrs;	/* ranges in cell */
new_range:
			mem_start = read_n_cells(addr_cells, &memcell_buf);
			mem_size = read_n_cells(size_cells, &memcell_buf);
			if (numa_enabled) {
				numa_domain = of_node_numa_domain(memory);
				if (numa_domain  >= MAX_NUMNODES)
					numa_domain = 0;
			} else
				numa_domain =  0;

			if (numa_domain != nid)
				continue;

			mem_size = numa_enforce_memory_limit(mem_start, mem_size);
  			if (mem_size) {
  				dbg("free_bootmem %lx %lx\n", mem_start, mem_size);
  				free_bootmem_node(NODE_DATA(nid), mem_start, mem_size);
			}

			if (--ranges)		/* process all ranges in cell */
				goto new_range;
		}

		/*
		 * Mark reserved regions on this node
		 */
		for (i = 0; i < lmb.reserved.cnt; i++) {
			unsigned long physbase = lmb.reserved.region[i].physbase;
			unsigned long size = lmb.reserved.region[i].size;

			if (pa_to_nid(physbase) != nid &&
			    pa_to_nid(physbase+size-1) != nid)
				continue;

			if (physbase < end_paddr &&
			    (physbase+size) > start_paddr) {
				/* overlaps */
				if (physbase < start_paddr) {
					size -= start_paddr - physbase;
					physbase = start_paddr;
				}

				if (size > end_paddr - physbase)
					size = end_paddr - physbase;

				dbg("reserve_bootmem %lx %lx\n", physbase,
				    size);
				reserve_bootmem_node(NODE_DATA(nid), physbase,
						     size);
			}
		}
	}
}

void __init paging_init(void)
{
	unsigned long zones_size[MAX_NR_ZONES];
	unsigned long zholes_size[MAX_NR_ZONES];
	int nid;

	memset(zones_size, 0, sizeof(zones_size));
	memset(zholes_size, 0, sizeof(zholes_size));

	for_each_online_node(nid) {
		unsigned long start_pfn;
		unsigned long end_pfn;

		start_pfn = init_node_data[nid].node_start_pfn;
		end_pfn = init_node_data[nid].node_end_pfn;

		zones_size[ZONE_DMA] = end_pfn - start_pfn;
		zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] -
			init_node_data[nid].node_present_pages;

		dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid,
		    zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]);

		free_area_init_node(nid, NODE_DATA(nid), zones_size,
							start_pfn, zholes_size);
	}
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

	return 0;
}
early_param("numa", early_numa);