/*
* SuperH Timer Support - CMT
*
* Copyright (C) 2008 Magnus Damm
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
#include <linux/sh_timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
struct sh_cmt_device;
/*
* The CMT comes in 5 different identified flavours, depending not only on the
* SoC but also on the particular instance. The following table lists the main
* characteristics of those flavours.
*
* 16B 32B 32B-F 48B 48B-2
* -----------------------------------------------------------------------------
* Channels 2 1/4 1 6 2/8
* Control Width 16 16 16 16 32
* Counter Width 16 32 32 32/48 32/48
* Shared Start/Stop Y Y Y Y N
*
* The 48-bit gen2 version has a per-channel start/stop register located in the
* channel registers block. All other versions have a shared start/stop register
* located in the global space.
*
* Channels are indexed from 0 to N-1 in the documentation. The channel index
* infers the start/stop bit position in the control register and the channel
* registers block address. Some CMT instances have a subset of channels
* available, in which case the index in the documentation doesn't match the
* "real" index as implemented in hardware. This is for instance the case with
* CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
* in the documentation but using start/stop bit 5 and having its registers
* block at 0x60.
*
* Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
* channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
*/
enum sh_cmt_model {
SH_CMT_16BIT,
SH_CMT_32BIT,
SH_CMT_32BIT_FAST,
SH_CMT_48BIT,
SH_CMT_48BIT_GEN2,
};
struct sh_cmt_info {
enum sh_cmt_model model;
unsigned long width; /* 16 or 32 bit version of hardware block */
unsigned long overflow_bit;
unsigned long clear_bits;
/* callbacks for CMSTR and CMCSR access */
unsigned long (*read_control)(void __iomem *base, unsigned long offs);
void (*write_control)(void __iomem *base, unsigned long offs,
unsigned long value);
/* callbacks for CMCNT and CMCOR access */
unsigned long (*read_count)(void __iomem *base, unsigned long offs);
void (*write_count)(void __iomem *base, unsigned long offs,
unsigned long value);
};
struct sh_cmt_channel {
struct sh_cmt_device *cmt;
unsigned int index; /* Index in the documentation */
unsigned int hwidx; /* Real hardware index */
void __iomem *iostart;
void __iomem *ioctrl;
unsigned int timer_bit;
unsigned long flags;
unsigned long match_value;
unsigned long next_match_value;
unsigned long max_match_value;
unsigned long rate;
raw_spinlock_t lock;
struct clock_event_device ced;
struct clocksource cs;
unsigned long total_cycles;
bool cs_enabled;
};
struct sh_cmt_device {
struct platform_device *pdev;
const struct sh_cmt_info *info;
void __iomem *mapbase;
struct clk *clk;
raw_spinlock_t lock; /* Protect the shared start/stop register */
struct sh_cmt_channel *channels;
unsigned int num_channels;
unsigned int hw_channels;
bool has_clockevent;
bool has_clocksource;
};
#define SH_CMT16_CMCSR_CMF (1 << 7)
#define SH_CMT16_CMCSR_CMIE (1 << 6)
#define SH_CMT16_CMCSR_CKS8 (0 << 0)
#define SH_CMT16_CMCSR_CKS32 (1 << 0)
#define SH_CMT16_CMCSR_CKS128 (2 << 0)
#define SH_CMT16_CMCSR_CKS512 (3 << 0)
#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
#define SH_CMT32_CMCSR_CMF (1 << 15)
#define SH_CMT32_CMCSR_OVF (1 << 14)
#define SH_CMT32_CMCSR_WRFLG (1 << 13)
#define SH_CMT32_CMCSR_STTF (1 << 12)
#define SH_CMT32_CMCSR_STPF (1 << 11)
#define SH_CMT32_CMCSR_SSIE (1 << 10)
#define SH_CMT32_CMCSR_CMS (1 << 9)
#define SH_CMT32_CMCSR_CMM (1 << 8)
#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
{
return ioread16(base + (offs << 1));
}
static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
{
return ioread32(base + (offs << 2));
}
static void sh_cmt_write16(void __iomem *base, unsigned long offs,
unsigned long value)
{
iowrite16(value, base + (offs << 1));
}
static void sh_cmt_write32(void __iomem *base, unsigned long offs,
unsigned long value)
{
iowrite32(value, base + (offs << 2));
}
static const struct sh_cmt_info sh_cmt_info[] = {
[SH_CMT_16BIT] = {
.model = SH_CMT_16BIT,
.width = 16,
.overflow_bit = SH_CMT16_CMCSR_CMF,
.clear_bits = ~SH_CMT16_CMCSR_CMF,
.read_control = sh_cmt_read16,
.write_control = sh_cmt_write16,
.read_count = sh_cmt_read16,
.write_count = sh_cmt_write16,
},
[SH_CMT_32BIT] = {
.model = SH_CMT_32BIT,
.width = 32,
.overflow_bit = SH_CMT32_CMCSR_CMF,
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
.read_control = sh_cmt_read16,
.write_control = sh_cmt_write16,
.read_count = sh_cmt_read32,
.write_count = sh_cmt_write32,
},
[SH_CMT_32BIT_FAST] = {
.model = SH_CMT_32BIT_FAST,
.width = 32,
.overflow_bit = SH_CMT32_CMCSR_CMF,
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
.read_control = sh_cmt_read16,
.write_control = sh_cmt_write16,
.read_count = sh_cmt_read32,
.write_count = sh_cmt_write32,
},
[SH_CMT_48BIT] = {
.model = SH_CMT_48BIT,
.width = 32,
.overflow_bit = SH_CMT32_CMCSR_CMF,
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
.read_control = sh_cmt_read32,
.write_control = sh_cmt_write32,
.read_count = sh_cmt_read32,
.write_count = sh_cmt_write32,
},
[SH_CMT_48BIT_GEN2] = {
.model = SH_CMT_48BIT_GEN2,
.width = 32,
.overflow_bit = SH_CMT32_CMCSR_CMF,
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
.read_control = sh_cmt_read32,
.write_control = sh_cmt_write32,
.read_count = sh_cmt_read32,
.write_count = sh_cmt_write32,
},
};
#define CMCSR 0 /* channel register */
#define CMCNT 1 /* channel register */
#define CMCOR 2 /* channel register */
static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
{
if (ch->iostart)
return ch->cmt->info->read_control(ch->iostart, 0);
else
return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
}
static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
unsigned long value)
{
if (ch->iostart)
ch->cmt->info->write_control(ch->iostart, 0, value);
else
ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
}
static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
{
return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
}
static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
unsigned long value)
{
ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
}
static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
{
return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
}
static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
unsigned long value)
{
ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
}
static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
unsigned long value)
{
ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
}
static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
int *has_wrapped)
{
unsigned long v1, v2, v3;
int o1, o2;
o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
/* Make sure the timer value is stable. Stolen from acpi_pm.c */
do {
o2 = o1;
v1 = sh_cmt_read_cmcnt(ch);
v2 = sh_cmt_read_cmcnt(ch);
v3 = sh_cmt_read_cmcnt(ch);
o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
|| (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
*has_wrapped = o1;
return v2;
}
static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
{
unsigned long flags, value;
/* start stop register shared by multiple timer channels */
raw_spin_lock_irqsave(&ch->cmt->lock, flags);
value = sh_cmt_read_cmstr(ch);
if (start)
value |= 1 << ch->timer_bit;
else
value &= ~(1 << ch->timer_bit);
sh_cmt_write_cmstr(ch, value);
raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
}
static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
{
int k, ret;
pm_runtime_get_sync(&ch->cmt->pdev->dev);
dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
/* enable clock */
ret = clk_enable(ch->cmt->clk);
if (ret) {
dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
ch->index);
goto err0;
}
/* make sure channel is disabled */
sh_cmt_start_stop_ch(ch, 0);
/* configure channel, periodic mode and maximum timeout */
if (ch->cmt->info->width == 16) {
*rate = clk_get_rate(ch->cmt->clk) / 512;
sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
SH_CMT16_CMCSR_CKS512);
} else {
*rate = clk_get_rate(ch->cmt->clk) / 8;
sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
SH_CMT32_CMCSR_CMTOUT_IE |
SH_CMT32_CMCSR_CMR_IRQ |
SH_CMT32_CMCSR_CKS_RCLK8);
}
sh_cmt_write_cmcor(ch, 0xffffffff);
sh_cmt_write_cmcnt(ch, 0);
/*
* According to the sh73a0 user's manual, as CMCNT can be operated
* only by the RCLK (Pseudo 32 KHz), there's one restriction on
* modifying CMCNT register; two RCLK cycles are necessary before
* this register is either read or any modification of the value
* it holds is reflected in the LSI's actual operation.
*
* While at it, we're supposed to clear out the CMCNT as of this
* moment, so make sure it's processed properly here. This will
* take RCLKx2 at maximum.
*/
for (k = 0; k < 100; k++) {
if (!sh_cmt_read_cmcnt(ch))
break;
udelay(1);
}
if (sh_cmt_read_cmcnt(ch)) {
dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
ch->index);
ret = -ETIMEDOUT;
goto err1;
}
/* enable channel */
sh_cmt_start_stop_ch(ch, 1);
return 0;
err1:
/* stop clock */
clk_disable(ch->cmt->clk);
err0:
return ret;
}
static void sh_cmt_disable(struct sh_cmt_channel *ch)
{
/* disable channel */
sh_cmt_start_stop_ch(ch, 0);
/* disable interrupts in CMT block */
sh_cmt_write_cmcsr(ch, 0);
/* stop clock */
clk_disable(ch->cmt->clk);
dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
pm_runtime_put(&ch->cmt->pdev->dev);
}
/* private flags */
#define FLAG_CLOCKEVENT (1 << 0)
#define FLAG_CLOCKSOURCE (1 << 1)
#define FLAG_REPROGRAM (1 << 2)
#define FLAG_SKIPEVENT (1 << 3)
#define FLAG_IRQCONTEXT (1 << 4)
static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
int absolute)
{
unsigned long new_match;
unsigned long value = ch->next_match_value;
unsigned long delay = 0;
unsigned long now = 0;
int has_wrapped;
now = sh_cmt_get_counter(ch, &has_wrapped);
ch->flags |= FLAG_REPROGRAM; /* force reprogram */
if (has_wrapped) {
/* we're competing with the interrupt handler.
* -> let the interrupt handler reprogram the timer.
* -> interrupt number two handles the event.
*/
ch->flags |= FLAG_SKIPEVENT;
return;
}
if (absolute)
now = 0;
do {
/* reprogram the timer hardware,
* but don't save the new match value yet.
*/
new_match = now + value + delay;
if (new_match > ch->max_match_value)
new_match = ch->max_match_value;
sh_cmt_write_cmcor(ch, new_match);
now = sh_cmt_get_counter(ch, &has_wrapped);
if (has_wrapped && (new_match > ch->match_value)) {
/* we are changing to a greater match value,
* so this wrap must be caused by the counter
* matching the old value.
* -> first interrupt reprograms the timer.
* -> interrupt number two handles the event.
*/
ch->flags |= FLAG_SKIPEVENT;
break;
}
if (has_wrapped) {
/* we are changing to a smaller match value,
* so the wrap must be caused by the counter
* matching the new value.
* -> save programmed match value.
* -> let isr handle the event.
*/
ch->match_value = new_match;
break;
}
/* be safe: verify hardware settings */
if (now < new_match) {
/* timer value is below match value, all good.
* this makes sure we won't miss any match events.
* -> save programmed match value.
* -> let isr handle the event.
*/
ch->match_value = new_match;
break;
}
/* the counter has reached a value greater
* than our new match value. and since the
* has_wrapped flag isn't set we must have
* programmed a too close event.
* -> increase delay and retry.
*/
if (delay)
delay <<= 1;
else
delay = 1;
if (!delay)
dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
ch->index);
} while (delay);
}
static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
{
if (delta > ch->max_match_value)
dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
ch->index);
ch->next_match_value = delta;
sh_cmt_clock_event_program_verify(ch, 0);
}
static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
{
unsigned long flags;
raw_spin_lock_irqsave(&ch->lock, flags);
__sh_cmt_set_next(ch, delta);
raw_spin_unlock_irqrestore(&ch->lock, flags);
}
static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
{
struct sh_cmt_channel *ch = dev_id;
/* clear flags */
sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
ch->cmt->info->clear_bits);
/* update clock source counter to begin with if enabled
* the wrap flag should be cleared by the timer specific
* isr before we end up here.
*/
if (ch->flags & FLAG_CLOCKSOURCE)
ch->total_cycles += ch->match_value + 1;
if (!(ch->flags & FLAG_REPROGRAM))
ch->next_match_value = ch->max_match_value;
ch->flags |= FLAG_IRQCONTEXT;
if (ch->flags & FLAG_CLOCKEVENT) {
if (!(ch->flags & FLAG_SKIPEVENT)) {
if (clockevent_state_oneshot(&ch->ced)) {
ch->next_match_value = ch->max_match_value;
ch->flags |= FLAG_REPROGRAM;
}
ch->ced.event_handler(&ch->ced);
}
}
ch->flags &= ~FLAG_SKIPEVENT;
if (ch->flags & FLAG_REPROGRAM) {
ch->flags &= ~FLAG_REPROGRAM;
sh_cmt_clock_event_program_verify(ch, 1);
if (ch->flags & FLAG_CLOCKEVENT)
if ((clockevent_state_shutdown(&ch->ced))
|| (ch->match_value == ch->next_match_value))
ch->flags &= ~FLAG_REPROGRAM;
}
ch->flags &= ~FLAG_IRQCONTEXT;
return IRQ_HANDLED;
}
static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
{
int ret = 0;
unsigned long flags;
raw_spin_lock_irqsave(&ch->lock, flags);
if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
ret = sh_cmt_enable(ch, &ch->rate);
if (ret)
goto out;
ch->flags |= flag;
/* setup timeout if no clockevent */
if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
__sh_cmt_set_next(ch, ch->max_match_value);
out:
raw_spin_unlock_irqrestore(&ch->lock, flags);
return ret;
}
static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
{
unsigned long flags;
unsigned long f;
raw_spin_lock_irqsave(&ch->lock, flags);
f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
ch->flags &= ~flag;
if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
sh_cmt_disable(ch);
/* adjust the timeout to maximum if only clocksource left */
if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
__sh_cmt_set_next(ch, ch->max_match_value);
raw_spin_unlock_irqrestore(&ch->lock, flags);
}
static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
{
return container_of(cs, struct sh_cmt_channel, cs);
}
static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
{
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
unsigned long flags, raw;
unsigned long value;
int has_wrapped;
raw_spin_lock_irqsave(&ch->lock, flags);
value = ch->total_cycles;
raw = sh_cmt_get_counter(ch, &has_wrapped);
if (unlikely(has_wrapped))
raw += ch->match_value + 1;
raw_spin_unlock_irqrestore(&ch->lock, flags);
return value + raw;
}
static int sh_cmt_clocksource_enable(struct clocksource *cs)
{
int ret;
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
WARN_ON(ch->cs_enabled);
ch->total_cycles = 0;
ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
if (!ret) {
__clocksource_update_freq_hz(cs, ch->rate);
ch->cs_enabled = true;
}
return ret;
}
static void sh_cmt_clocksource_disable(struct clocksource *cs)
{
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
WARN_ON(!ch->cs_enabled);
sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
ch->cs_enabled = false;
}
static void sh_cmt_clocksource_suspend(struct clocksource *cs)
{
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
if (!ch->cs_enabled)
return;
sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
}
static void sh_cmt_clocksource_resume(struct clocksource *cs)
{
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
if (!ch->cs_enabled)
return;
pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
sh_cmt_start(ch, FLAG_CLOCKSOURCE);
}
static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
const char *name)
{
struct clocksource *cs = &ch->cs;
cs->name = name;
cs->rating = 125;
cs->read = sh_cmt_clocksource_read;
cs->enable = sh_cmt_clocksource_enable;
cs->disable = sh_cmt_clocksource_disable;
cs->suspend = sh_cmt_clocksource_suspend;
cs->resume = sh_cmt_clocksource_resume;
cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
ch->index);
/* Register with dummy 1 Hz value, gets updated in ->enable() */
clocksource_register_hz(cs, 1);
return 0;
}
static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
{
return container_of(ced, struct sh_cmt_channel, ced);
}
static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
{
struct clock_event_device *ced = &ch->ced;
sh_cmt_start(ch, FLAG_CLOCKEVENT);
/* TODO: calculate good shift from rate and counter bit width */
ced->shift = 32;
ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
if (periodic)
sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
else
sh_cmt_set_next(ch, ch->max_match_value);
}
static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
{
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
sh_cmt_stop(ch, FLAG_CLOCKEVENT);
return 0;
}
static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
int periodic)
{
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
/* deal with old setting first */
if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
sh_cmt_stop(ch, FLAG_CLOCKEVENT);
dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
ch->index, periodic ? "periodic" : "oneshot");
sh_cmt_clock_event_start(ch, periodic);
return 0;
}
static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
{
return sh_cmt_clock_event_set_state(ced, 0);
}
static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
{
return sh_cmt_clock_event_set_state(ced, 1);
}
static int sh_cmt_clock_event_next(unsigned long delta,
struct clock_event_device *ced)
{
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
BUG_ON(!clockevent_state_oneshot(ced));
if (likely(ch->flags & FLAG_IRQCONTEXT))
ch->next_match_value = delta - 1;
else
sh_cmt_set_next(ch, delta - 1);
return 0;
}
static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
{
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
clk_unprepare(ch->cmt->clk);
}
static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
{
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
clk_prepare(ch->cmt->clk);
pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
}
static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
const char *name)
{
struct clock_event_device *ced = &ch->ced;
int irq;
int ret;
irq = platform_get_irq(ch->cmt->pdev, ch->index);
if (irq < 0) {
dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
ch->index);
return irq;
}
ret = request_irq(irq, sh_cmt_interrupt,
IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
dev_name(&ch->cmt->pdev->dev), ch);
if (ret) {
dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
ch->index, irq);
return ret;
}
ced->name = name;
ced->features = CLOCK_EVT_FEAT_PERIODIC;
ced->features |= CLOCK_EVT_FEAT_ONESHOT;
ced->rating = 125;
ced->cpumask = cpu_possible_mask;
ced->set_next_event = sh_cmt_clock_event_next;
ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
ced->suspend = sh_cmt_clock_event_suspend;
ced->resume = sh_cmt_clock_event_resume;
dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
ch->index);
clockevents_register_device(ced);
return 0;
}
static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
bool clockevent, bool clocksource)
{
int ret;
if (clockevent) {
ch->cmt->has_clockevent = true;
ret = sh_cmt_register_clockevent(ch, name);
if (ret < 0)
return ret;
}
if (clocksource) {
ch->cmt->has_clocksource = true;
sh_cmt_register_clocksource(ch, name);
}
return 0;
}
static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
unsigned int hwidx, bool clockevent,
bool clocksource, struct sh_cmt_device *cmt)
{
int ret;
/* Skip unused channels. */
if (!clockevent && !clocksource)
return 0;
ch->cmt = cmt;
ch->index = index;
ch->hwidx = hwidx;
/*
* Compute the address of the channel control register block. For the
* timers with a per-channel start/stop register, compute its address
* as well.
*/
switch (cmt->info->model) {
case SH_CMT_16BIT:
ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
break;
case SH_CMT_32BIT:
case SH_CMT_48BIT:
ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
break;
case SH_CMT_32BIT_FAST:
/*
* The 32-bit "fast" timer has a single channel at hwidx 5 but
* is located at offset 0x40 instead of 0x60 for some reason.
*/
ch->ioctrl = cmt->mapbase + 0x40;
break;
case SH_CMT_48BIT_GEN2:
ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
ch->ioctrl = ch->iostart + 0x10;
break;
}
if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
ch->max_match_value = ~0;
else
ch->max_match_value = (1 << cmt->info->width) - 1;
ch->match_value = ch->max_match_value;
raw_spin_lock_init(&ch->lock);
ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
clockevent, clocksource);
if (ret) {
dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
ch->index);
return ret;
}
ch->cs_enabled = false;
return 0;
}
static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
{
struct resource *mem;
mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
if (!mem) {
dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
return -ENXIO;
}
cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
if (cmt->mapbase == NULL) {
dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
return -ENXIO;
}
return 0;
}
static const struct platform_device_id sh_cmt_id_table[] = {
{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
{ }
};
MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
{ .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
{ .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
{ .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
{ .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
{ }
};
MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
{
struct device_node *np = cmt->pdev->dev.of_node;
return of_property_read_u32(np, "renesas,channels-mask",
&cmt->hw_channels);
}
static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
{
unsigned int mask;
unsigned int i;
int ret;
cmt->pdev = pdev;
raw_spin_lock_init(&cmt->lock);
if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
const struct of_device_id *id;
id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
cmt->info = id->data;
ret = sh_cmt_parse_dt(cmt);
if (ret < 0)
return ret;
} else if (pdev->dev.platform_data) {
struct sh_timer_config *cfg = pdev->dev.platform_data;
const struct platform_device_id *id = pdev->id_entry;
cmt->info = (const struct sh_cmt_info *)id->driver_data;
cmt->hw_channels = cfg->channels_mask;
} else {
dev_err(&cmt->pdev->dev, "missing platform data\n");
return -ENXIO;
}
/* Get hold of clock. */
cmt->clk = clk_get(&cmt->pdev->dev, "fck");
if (IS_ERR(cmt->clk)) {
dev_err(&cmt->pdev->dev, "cannot get clock\n");
return PTR_ERR(cmt->clk);
}
ret = clk_prepare(cmt->clk);
if (ret < 0)
goto err_clk_put;
/* Map the memory resource(s). */
ret = sh_cmt_map_memory(cmt);
if (ret < 0)
goto err_clk_unprepare;
/* Allocate and setup the channels. */
cmt->num_channels = hweight8(cmt->hw_channels);
cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
GFP_KERNEL);
if (cmt->channels == NULL) {
ret = -ENOMEM;
goto err_unmap;
}
/*
* Use the first channel as a clock event device and the second channel
* as a clock source. If only one channel is available use it for both.
*/
for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
unsigned int hwidx = ffs(mask) - 1;
bool clocksource = i == 1 || cmt->num_channels == 1;
bool clockevent = i == 0;
ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
clockevent, clocksource, cmt);
if (ret < 0)
goto err_unmap;
mask &= ~(1 << hwidx);
}
platform_set_drvdata(pdev, cmt);
return 0;
err_unmap:
kfree(cmt->channels);
iounmap(cmt->mapbase);
err_clk_unprepare:
clk_unprepare(cmt->clk);
err_clk_put:
clk_put(cmt->clk);
return ret;
}
static int sh_cmt_probe(struct platform_device *pdev)
{
struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
int ret;
if (!is_early_platform_device(pdev)) {
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
}
if (cmt) {
dev_info(&pdev->dev, "kept as earlytimer\n");
goto out;
}
cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
if (cmt == NULL)
return -ENOMEM;
ret = sh_cmt_setup(cmt, pdev);
if (ret) {
kfree(cmt);
pm_runtime_idle(&pdev->dev);
return ret;
}
if (is_early_platform_device(pdev))
return 0;
out:
if (cmt->has_clockevent || cmt->has_clocksource)
pm_runtime_irq_safe(&pdev->dev);
else
pm_runtime_idle(&pdev->dev);
return 0;
}
static int sh_cmt_remove(struct platform_device *pdev)
{
return -EBUSY; /* cannot unregister clockevent and clocksource */
}
static struct platform_driver sh_cmt_device_driver = {
.probe = sh_cmt_probe,
.remove = sh_cmt_remove,
.driver = {
.name = "sh_cmt",
.of_match_table = of_match_ptr(sh_cmt_of_table),
},
.id_table = sh_cmt_id_table,
};
static int __init sh_cmt_init(void)
{
return platform_driver_register(&sh_cmt_device_driver);
}
static void __exit sh_cmt_exit(void)
{
platform_driver_unregister(&sh_cmt_device_driver);
}
early_platform_init("earlytimer", &sh_cmt_device_driver);
subsys_initcall(sh_cmt_init);
module_exit(sh_cmt_exit);
MODULE_AUTHOR("Magnus Damm");
MODULE_DESCRIPTION("SuperH CMT Timer Driver");
MODULE_LICENSE("GPL v2");