/*
* Copyright © 2006-2007 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/i2c.h>
#include <drm/drmP.h>
#include "intel_bios.h"
#include "psb_drv.h"
#include "psb_intel_drv.h"
#include "psb_intel_reg.h"
#include "power.h"
#include "cdv_device.h"
#include <linux/pm_runtime.h>
static void cdv_intel_crt_dpms(struct drm_encoder *encoder, int mode)
{
struct drm_device *dev = encoder->dev;
u32 temp, reg;
reg = ADPA;
temp = REG_READ(reg);
temp &= ~(ADPA_HSYNC_CNTL_DISABLE | ADPA_VSYNC_CNTL_DISABLE);
temp &= ~ADPA_DAC_ENABLE;
switch (mode) {
case DRM_MODE_DPMS_ON:
temp |= ADPA_DAC_ENABLE;
break;
case DRM_MODE_DPMS_STANDBY:
temp |= ADPA_DAC_ENABLE | ADPA_HSYNC_CNTL_DISABLE;
break;
case DRM_MODE_DPMS_SUSPEND:
temp |= ADPA_DAC_ENABLE | ADPA_VSYNC_CNTL_DISABLE;
break;
case DRM_MODE_DPMS_OFF:
temp |= ADPA_HSYNC_CNTL_DISABLE | ADPA_VSYNC_CNTL_DISABLE;
break;
}
REG_WRITE(reg, temp);
}
static enum drm_mode_status cdv_intel_crt_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
return MODE_NO_DBLESCAN;
/* The lowest clock for CDV is 20000KHz */
if (mode->clock < 20000)
return MODE_CLOCK_LOW;
/* The max clock for CDV is 355 instead of 400 */
if (mode->clock > 355000)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static void cdv_intel_crt_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = encoder->dev;
struct drm_crtc *crtc = encoder->crtc;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
int dpll_md_reg;
u32 adpa, dpll_md;
u32 adpa_reg;
if (gma_crtc->pipe == 0)
dpll_md_reg = DPLL_A_MD;
else
dpll_md_reg = DPLL_B_MD;
adpa_reg = ADPA;
/*
* Disable separate mode multiplier used when cloning SDVO to CRT
* XXX this needs to be adjusted when we really are cloning
*/
{
dpll_md = REG_READ(dpll_md_reg);
REG_WRITE(dpll_md_reg,
dpll_md & ~DPLL_MD_UDI_MULTIPLIER_MASK);
}
adpa = 0;
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
adpa |= ADPA_HSYNC_ACTIVE_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
adpa |= ADPA_VSYNC_ACTIVE_HIGH;
if (gma_crtc->pipe == 0)
adpa |= ADPA_PIPE_A_SELECT;
else
adpa |= ADPA_PIPE_B_SELECT;
REG_WRITE(adpa_reg, adpa);
}
/**
* Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect CRT presence.
*
* \return true if CRT is connected.
* \return false if CRT is disconnected.
*/
static bool cdv_intel_crt_detect_hotplug(struct drm_connector *connector,
bool force)
{
struct drm_device *dev = connector->dev;
u32 hotplug_en;
int i, tries = 0, ret = false;
u32 orig;
/*
* On a CDV thep, CRT detect sequence need to be done twice
* to get a reliable result.
*/
tries = 2;
orig = hotplug_en = REG_READ(PORT_HOTPLUG_EN);
hotplug_en &= ~(CRT_HOTPLUG_DETECT_MASK);
hotplug_en |= CRT_HOTPLUG_FORCE_DETECT;
hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
for (i = 0; i < tries ; i++) {
unsigned long timeout;
/* turn on the FORCE_DETECT */
REG_WRITE(PORT_HOTPLUG_EN, hotplug_en);
timeout = jiffies + msecs_to_jiffies(1000);
/* wait for FORCE_DETECT to go off */
do {
if (!(REG_READ(PORT_HOTPLUG_EN) &
CRT_HOTPLUG_FORCE_DETECT))
break;
msleep(1);
} while (time_after(timeout, jiffies));
}
if ((REG_READ(PORT_HOTPLUG_STAT) & CRT_HOTPLUG_MONITOR_MASK) !=
CRT_HOTPLUG_MONITOR_NONE)
ret = true;
/* clear the interrupt we just generated, if any */
REG_WRITE(PORT_HOTPLUG_STAT, CRT_HOTPLUG_INT_STATUS);
/* and put the bits back */
REG_WRITE(PORT_HOTPLUG_EN, orig);
return ret;
}
static enum drm_connector_status cdv_intel_crt_detect(
struct drm_connector *connector, bool force)
{
if (cdv_intel_crt_detect_hotplug(connector, force))
return connector_status_connected;
else
return connector_status_disconnected;
}
static void cdv_intel_crt_destroy(struct drm_connector *connector)
{
struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
psb_intel_i2c_destroy(gma_encoder->ddc_bus);
drm_connector_unregister(connector);
drm_connector_cleanup(connector);
kfree(connector);
}
static int cdv_intel_crt_get_modes(struct drm_connector *connector)
{
struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
return psb_intel_ddc_get_modes(connector,
&gma_encoder->ddc_bus->adapter);
}
static int cdv_intel_crt_set_property(struct drm_connector *connector,
struct drm_property *property,
uint64_t value)
{
return 0;
}
/*
* Routines for controlling stuff on the analog port
*/
static const struct drm_encoder_helper_funcs cdv_intel_crt_helper_funcs = {
.dpms = cdv_intel_crt_dpms,
.prepare = gma_encoder_prepare,
.commit = gma_encoder_commit,
.mode_set = cdv_intel_crt_mode_set,
};
static const struct drm_connector_funcs cdv_intel_crt_connector_funcs = {
.dpms = drm_helper_connector_dpms,
.detect = cdv_intel_crt_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = cdv_intel_crt_destroy,
.set_property = cdv_intel_crt_set_property,
};
static const struct drm_connector_helper_funcs
cdv_intel_crt_connector_helper_funcs = {
.mode_valid = cdv_intel_crt_mode_valid,
.get_modes = cdv_intel_crt_get_modes,
.best_encoder = gma_best_encoder,
};
static void cdv_intel_crt_enc_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
}
static const struct drm_encoder_funcs cdv_intel_crt_enc_funcs = {
.destroy = cdv_intel_crt_enc_destroy,
};
void cdv_intel_crt_init(struct drm_device *dev,
struct psb_intel_mode_device *mode_dev)
{
struct gma_connector *gma_connector;
struct gma_encoder *gma_encoder;
struct drm_connector *connector;
struct drm_encoder *encoder;
u32 i2c_reg;
gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
if (!gma_encoder)
return;
gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
if (!gma_connector)
goto failed_connector;
connector = &gma_connector->base;
connector->polled = DRM_CONNECTOR_POLL_HPD;
drm_connector_init(dev, connector,
&cdv_intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
encoder = &gma_encoder->base;
drm_encoder_init(dev, encoder,
&cdv_intel_crt_enc_funcs, DRM_MODE_ENCODER_DAC, NULL);
gma_connector_attach_encoder(gma_connector, gma_encoder);
/* Set up the DDC bus. */
i2c_reg = GPIOA;
/* Remove the following code for CDV */
/*
if (dev_priv->crt_ddc_bus != 0)
i2c_reg = dev_priv->crt_ddc_bus;
}*/
gma_encoder->ddc_bus = psb_intel_i2c_create(dev,
i2c_reg, "CRTDDC_A");
if (!gma_encoder->ddc_bus) {
dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
"failed.\n");
goto failed_ddc;
}
gma_encoder->type = INTEL_OUTPUT_ANALOG;
/*
psb_intel_output->clone_mask = (1 << INTEL_ANALOG_CLONE_BIT);
psb_intel_output->crtc_mask = (1 << 0) | (1 << 1);
*/
connector->interlace_allowed = 0;
connector->doublescan_allowed = 0;
drm_encoder_helper_add(encoder, &cdv_intel_crt_helper_funcs);
drm_connector_helper_add(connector,
&cdv_intel_crt_connector_helper_funcs);
drm_connector_register(connector);
return;
failed_ddc:
drm_encoder_cleanup(&gma_encoder->base);
drm_connector_cleanup(&gma_connector->base);
kfree(gma_connector);
failed_connector:
kfree(gma_encoder);
return;
}