summaryrefslogblamecommitdiffstats
path: root/drivers/infiniband/hw/hfi1/tid_rdma.c
blob: d8a46b7ddca02f90228bec36448242924848e71d (plain) (tree)
1
2
3
4
5
6
7
8
9
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128






                                                     
               
               

                     
                    
                  
 














                                                                           






                                                                    


                                                         









                                                                          







                                                            
                                                          

                                         




                                                                
 


                                            







































                                                                      
                                                              




                                                                       
 
























































































                                                                              

                                                            


























































                                                                              
                                               

 
































                                                                      
                   


                                        

                                                                  





                                                                          
 









































                                                                            

                 


                                                                       





















                                                                             
 





































































































































                                                                             
                                               





















































































































                                                                            
                                                         

































































































































































                                                                               







































                                                                           
                                                                      

                                                                        

                                                                      































                                                                                


                                                                               






























































































                                                                      
                                                                           

                                                                  
                                                                           
















































































































































                                                                                

                                                                               


































                                                                               

                                                                      






































































                                                                                

                                                                               


















































                                                                               



                                                              

































































                                                                                
                                                                              





























































































































































































































































                                                                                







                                                                      

















































































































































































                                                                               








































































































































































































































































































































                                                                               
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
/*
 * Copyright(c) 2018 Intel Corporation.
 *
 */

#include "hfi.h"
#include "qp.h"
#include "rc.h"
#include "verbs.h"
#include "tid_rdma.h"
#include "exp_rcv.h"
#include "trace.h"

/**
 * DOC: TID RDMA READ protocol
 *
 * This is an end-to-end protocol at the hfi1 level between two nodes that
 * improves performance by avoiding data copy on the requester side. It
 * converts a qualified RDMA READ request into a TID RDMA READ request on
 * the requester side and thereafter handles the request and response
 * differently. To be qualified, the RDMA READ request should meet the
 * following:
 * -- The total data length should be greater than 256K;
 * -- The total data length should be a multiple of 4K page size;
 * -- Each local scatter-gather entry should be 4K page aligned;
 * -- Each local scatter-gather entry should be a multiple of 4K page size;
 */

#define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32)
#define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33)
#define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34)
#define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35)
#define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37)
#define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38)

/* Maximum number of packets within a flow generation. */
#define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT)

#define GENERATION_MASK 0xFFFFF

static u32 mask_generation(u32 a)
{
	return a & GENERATION_MASK;
}

/* Reserved generation value to set to unused flows for kernel contexts */
#define KERN_GENERATION_RESERVED mask_generation(U32_MAX)

/*
 * J_KEY for kernel contexts when TID RDMA is used.
 * See generate_jkey() in hfi.h for more information.
 */
#define TID_RDMA_JKEY                   32
#define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE
#define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1)

/* Maximum number of segments in flight per QP request. */
#define TID_RDMA_MAX_READ_SEGS_PER_REQ  6
#define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4
#define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \
			TID_RDMA_MAX_WRITE_SEGS_PER_REQ)
#define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1)

#define MAX_EXPECTED_PAGES     (MAX_EXPECTED_BUFFER / PAGE_SIZE)

#define TID_RDMA_DESTQP_FLOW_SHIFT      11
#define TID_RDMA_DESTQP_FLOW_MASK       0x1f

#define TID_OPFN_QP_CTXT_MASK 0xff
#define TID_OPFN_QP_CTXT_SHIFT 56
#define TID_OPFN_QP_KDETH_MASK 0xff
#define TID_OPFN_QP_KDETH_SHIFT 48
#define TID_OPFN_MAX_LEN_MASK 0x7ff
#define TID_OPFN_MAX_LEN_SHIFT 37
#define TID_OPFN_TIMEOUT_MASK 0x1f
#define TID_OPFN_TIMEOUT_SHIFT 32
#define TID_OPFN_RESERVED_MASK 0x3f
#define TID_OPFN_RESERVED_SHIFT 26
#define TID_OPFN_URG_MASK 0x1
#define TID_OPFN_URG_SHIFT 25
#define TID_OPFN_VER_MASK 0x7
#define TID_OPFN_VER_SHIFT 22
#define TID_OPFN_JKEY_MASK 0x3f
#define TID_OPFN_JKEY_SHIFT 16
#define TID_OPFN_MAX_READ_MASK 0x3f
#define TID_OPFN_MAX_READ_SHIFT 10
#define TID_OPFN_MAX_WRITE_MASK 0x3f
#define TID_OPFN_MAX_WRITE_SHIFT 4

/*
 * OPFN TID layout
 *
 * 63               47               31               15
 * NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC
 * 3210987654321098 7654321098765432 1098765432109876 5432109876543210
 * N - the context Number
 * K - the Kdeth_qp
 * M - Max_len
 * T - Timeout
 * D - reserveD
 * V - version
 * U - Urg capable
 * J - Jkey
 * R - max_Read
 * W - max_Write
 * C - Capcode
 */

static void tid_rdma_trigger_resume(struct work_struct *work);
static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req);
static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
					 gfp_t gfp);
static void hfi1_init_trdma_req(struct rvt_qp *qp,
				struct tid_rdma_request *req);

static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p)
{
	return
		(((u64)p->qp & TID_OPFN_QP_CTXT_MASK) <<
			TID_OPFN_QP_CTXT_SHIFT) |
		((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) <<
			TID_OPFN_QP_KDETH_SHIFT) |
		(((u64)((p->max_len >> PAGE_SHIFT) - 1) &
			TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) |
		(((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) <<
			TID_OPFN_TIMEOUT_SHIFT) |
		(((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) |
		(((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) |
		(((u64)p->max_read & TID_OPFN_MAX_READ_MASK) <<
			TID_OPFN_MAX_READ_SHIFT) |
		(((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) <<
			TID_OPFN_MAX_WRITE_SHIFT);
}

static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data)
{
	p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) &
		TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT;
	p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK;
	p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) &
		TID_OPFN_MAX_WRITE_MASK;
	p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) &
		TID_OPFN_MAX_READ_MASK;
	p->qp =
		((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK)
			<< 16) |
		((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK));
	p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK;
	p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK;
}

void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p)
{
	struct hfi1_qp_priv *priv = qp->priv;

	p->qp = (kdeth_qp << 16) | priv->rcd->ctxt;
	p->max_len = TID_RDMA_MAX_SEGMENT_SIZE;
	p->jkey = priv->rcd->jkey;
	p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ;
	p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ;
	p->timeout = qp->timeout;
	p->urg = is_urg_masked(priv->rcd);
}

bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data)
{
	struct hfi1_qp_priv *priv = qp->priv;

	*data = tid_rdma_opfn_encode(&priv->tid_rdma.local);
	return true;
}

bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data)
{
	struct hfi1_qp_priv *priv = qp->priv;
	struct tid_rdma_params *remote, *old;
	bool ret = true;

	old = rcu_dereference_protected(priv->tid_rdma.remote,
					lockdep_is_held(&priv->opfn.lock));
	data &= ~0xfULL;
	/*
	 * If data passed in is zero, return true so as not to continue the
	 * negotiation process
	 */
	if (!data || !HFI1_CAP_IS_KSET(TID_RDMA))
		goto null;
	/*
	 * If kzalloc fails, return false. This will result in:
	 * * at the requester a new OPFN request being generated to retry
	 *   the negotiation
	 * * at the responder, 0 being returned to the requester so as to
	 *   disable TID RDMA at both the requester and the responder
	 */
	remote = kzalloc(sizeof(*remote), GFP_ATOMIC);
	if (!remote) {
		ret = false;
		goto null;
	}

	tid_rdma_opfn_decode(remote, data);
	priv->tid_timer_timeout_jiffies =
		usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) /
				   1000UL) << 3) * 7);
	trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local);
	trace_hfi1_opfn_param(qp, 1, remote);
	rcu_assign_pointer(priv->tid_rdma.remote, remote);
	/*
	 * A TID RDMA READ request's segment size is not equal to
	 * remote->max_len only when the request's data length is smaller
	 * than remote->max_len. In that case, there will be only one segment.
	 * Therefore, when priv->pkts_ps is used to calculate req->cur_seg
	 * during retry, it will lead to req->cur_seg = 0, which is exactly
	 * what is expected.
	 */
	priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len);
	priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1;
	goto free;
null:
	RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
	priv->timeout_shift = 0;
free:
	if (old)
		kfree_rcu(old, rcu_head);
	return ret;
}

bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data)
{
	bool ret;

	ret = tid_rdma_conn_reply(qp, *data);
	*data = 0;
	/*
	 * If tid_rdma_conn_reply() returns error, set *data as 0 to indicate
	 * TID RDMA could not be enabled. This will result in TID RDMA being
	 * disabled at the requester too.
	 */
	if (ret)
		(void)tid_rdma_conn_req(qp, data);
	return ret;
}

void tid_rdma_conn_error(struct rvt_qp *qp)
{
	struct hfi1_qp_priv *priv = qp->priv;
	struct tid_rdma_params *old;

	old = rcu_dereference_protected(priv->tid_rdma.remote,
					lockdep_is_held(&priv->opfn.lock));
	RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
	if (old)
		kfree_rcu(old, rcu_head);
}

/* This is called at context initialization time */
int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit)
{
	if (reinit)
		return 0;

	BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY);
	BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY);
	rcd->jkey = TID_RDMA_JKEY;
	hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey);
	return hfi1_alloc_ctxt_rcv_groups(rcd);
}

/**
 * qp_to_rcd - determine the receive context used by a qp
 * @qp - the qp
 *
 * This routine returns the receive context associated
 * with a a qp's qpn.
 *
 * Returns the context.
 */
static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi,
				       struct rvt_qp *qp)
{
	struct hfi1_ibdev *verbs_dev = container_of(rdi,
						    struct hfi1_ibdev,
						    rdi);
	struct hfi1_devdata *dd = container_of(verbs_dev,
					       struct hfi1_devdata,
					       verbs_dev);
	unsigned int ctxt;

	if (qp->ibqp.qp_num == 0)
		ctxt = 0;
	else
		ctxt = ((qp->ibqp.qp_num >> dd->qos_shift) %
			(dd->n_krcv_queues - 1)) + 1;

	return dd->rcd[ctxt];
}

int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
		      struct ib_qp_init_attr *init_attr)
{
	struct hfi1_qp_priv *qpriv = qp->priv;
	int i, ret;

	qpriv->rcd = qp_to_rcd(rdi, qp);

	spin_lock_init(&qpriv->opfn.lock);
	INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request);
	INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume);
	qpriv->flow_state.psn = 0;
	qpriv->flow_state.index = RXE_NUM_TID_FLOWS;
	qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS;
	qpriv->flow_state.generation = KERN_GENERATION_RESERVED;
	INIT_LIST_HEAD(&qpriv->tid_wait);

	if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
		struct hfi1_devdata *dd = qpriv->rcd->dd;

		qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES *
						sizeof(*qpriv->pages),
					    GFP_KERNEL, dd->node);
		if (!qpriv->pages)
			return -ENOMEM;
		for (i = 0; i < qp->s_size; i++) {
			struct hfi1_swqe_priv *priv;
			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);

			priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
					    dd->node);
			if (!priv)
				return -ENOMEM;

			hfi1_init_trdma_req(qp, &priv->tid_req);
			priv->tid_req.e.swqe = wqe;
			wqe->priv = priv;
		}
		for (i = 0; i < rvt_max_atomic(rdi); i++) {
			struct hfi1_ack_priv *priv;

			priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
					    dd->node);
			if (!priv)
				return -ENOMEM;

			hfi1_init_trdma_req(qp, &priv->tid_req);
			priv->tid_req.e.ack = &qp->s_ack_queue[i];

			ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req,
							    GFP_KERNEL);
			if (ret) {
				kfree(priv);
				return ret;
			}
			qp->s_ack_queue[i].priv = priv;
		}
	}

	return 0;
}

void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
{
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct rvt_swqe *wqe;
	u32 i;

	if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
		for (i = 0; i < qp->s_size; i++) {
			wqe = rvt_get_swqe_ptr(qp, i);
			kfree(wqe->priv);
			wqe->priv = NULL;
		}
		for (i = 0; i < rvt_max_atomic(rdi); i++) {
			struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv;

			if (priv)
				hfi1_kern_exp_rcv_free_flows(&priv->tid_req);
			kfree(priv);
			qp->s_ack_queue[i].priv = NULL;
		}
		cancel_work_sync(&qpriv->opfn.opfn_work);
		kfree(qpriv->pages);
		qpriv->pages = NULL;
	}
}

/* Flow and tid waiter functions */
/**
 * DOC: lock ordering
 *
 * There are two locks involved with the queuing
 * routines: the qp s_lock and the exp_lock.
 *
 * Since the tid space allocation is called from
 * the send engine, the qp s_lock is already held.
 *
 * The allocation routines will get the exp_lock.
 *
 * The first_qp() call is provided to allow the head of
 * the rcd wait queue to be fetched under the exp_lock and
 * followed by a drop of the exp_lock.
 *
 * Any qp in the wait list will have the qp reference count held
 * to hold the qp in memory.
 */

/*
 * return head of rcd wait list
 *
 * Must hold the exp_lock.
 *
 * Get a reference to the QP to hold the QP in memory.
 *
 * The caller must release the reference when the local
 * is no longer being used.
 */
static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd,
			       struct tid_queue *queue)
	__must_hold(&rcd->exp_lock)
{
	struct hfi1_qp_priv *priv;

	lockdep_assert_held(&rcd->exp_lock);
	priv = list_first_entry_or_null(&queue->queue_head,
					struct hfi1_qp_priv,
					tid_wait);
	if (!priv)
		return NULL;
	rvt_get_qp(priv->owner);
	return priv->owner;
}

/**
 * kernel_tid_waiters - determine rcd wait
 * @rcd: the receive context
 * @qp: the head of the qp being processed
 *
 * This routine will return false IFF
 * the list is NULL or the head of the
 * list is the indicated qp.
 *
 * Must hold the qp s_lock and the exp_lock.
 *
 * Return:
 * false if either of the conditions below are statisfied:
 * 1. The list is empty or
 * 2. The indicated qp is at the head of the list and the
 *    HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags.
 * true is returned otherwise.
 */
static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd,
			       struct tid_queue *queue, struct rvt_qp *qp)
	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
{
	struct rvt_qp *fqp;
	bool ret = true;

	lockdep_assert_held(&qp->s_lock);
	lockdep_assert_held(&rcd->exp_lock);
	fqp = first_qp(rcd, queue);
	if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE)))
		ret = false;
	rvt_put_qp(fqp);
	return ret;
}

/**
 * dequeue_tid_waiter - dequeue the qp from the list
 * @qp - the qp to remove the wait list
 *
 * This routine removes the indicated qp from the
 * wait list if it is there.
 *
 * This should be done after the hardware flow and
 * tid array resources have been allocated.
 *
 * Must hold the qp s_lock and the rcd exp_lock.
 *
 * It assumes the s_lock to protect the s_flags
 * field and to reliably test the HFI1_S_WAIT_TID_SPACE flag.
 */
static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd,
			       struct tid_queue *queue, struct rvt_qp *qp)
	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
{
	struct hfi1_qp_priv *priv = qp->priv;

	lockdep_assert_held(&qp->s_lock);
	lockdep_assert_held(&rcd->exp_lock);
	if (list_empty(&priv->tid_wait))
		return;
	list_del_init(&priv->tid_wait);
	qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
	queue->dequeue++;
	rvt_put_qp(qp);
}

/**
 * queue_qp_for_tid_wait - suspend QP on tid space
 * @rcd: the receive context
 * @qp: the qp
 *
 * The qp is inserted at the tail of the rcd
 * wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set.
 *
 * Must hold the qp s_lock and the exp_lock.
 */
static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd,
				  struct tid_queue *queue, struct rvt_qp *qp)
	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
{
	struct hfi1_qp_priv *priv = qp->priv;

	lockdep_assert_held(&qp->s_lock);
	lockdep_assert_held(&rcd->exp_lock);
	if (list_empty(&priv->tid_wait)) {
		qp->s_flags |= HFI1_S_WAIT_TID_SPACE;
		list_add_tail(&priv->tid_wait, &queue->queue_head);
		priv->tid_enqueue = ++queue->enqueue;
		rcd->dd->verbs_dev.n_tidwait++;
		trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE);
		rvt_get_qp(qp);
	}
}

/**
 * __trigger_tid_waiter - trigger tid waiter
 * @qp: the qp
 *
 * This is a private entrance to schedule the qp
 * assuming the caller is holding the qp->s_lock.
 */
static void __trigger_tid_waiter(struct rvt_qp *qp)
	__must_hold(&qp->s_lock)
{
	lockdep_assert_held(&qp->s_lock);
	if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE))
		return;
	trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE);
	hfi1_schedule_send(qp);
}

/**
 * tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp
 * @qp - the qp
 *
 * trigger a schedule or a waiting qp in a deadlock
 * safe manner.  The qp reference is held prior
 * to this call via first_qp().
 *
 * If the qp trigger was already scheduled (!rval)
 * the the reference is dropped, otherwise the resume
 * or the destroy cancel will dispatch the reference.
 */
static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp)
{
	struct hfi1_qp_priv *priv;
	struct hfi1_ibport *ibp;
	struct hfi1_pportdata *ppd;
	struct hfi1_devdata *dd;
	bool rval;

	if (!qp)
		return;

	priv = qp->priv;
	ibp = to_iport(qp->ibqp.device, qp->port_num);
	ppd = ppd_from_ibp(ibp);
	dd = dd_from_ibdev(qp->ibqp.device);

	rval = queue_work_on(priv->s_sde ?
			     priv->s_sde->cpu :
			     cpumask_first(cpumask_of_node(dd->node)),
			     ppd->hfi1_wq,
			     &priv->tid_rdma.trigger_work);
	if (!rval)
		rvt_put_qp(qp);
}

/**
 * tid_rdma_trigger_resume - field a trigger work request
 * @work - the work item
 *
 * Complete the off qp trigger processing by directly
 * calling the progress routine.
 */
static void tid_rdma_trigger_resume(struct work_struct *work)
{
	struct tid_rdma_qp_params *tr;
	struct hfi1_qp_priv *priv;
	struct rvt_qp *qp;

	tr = container_of(work, struct tid_rdma_qp_params, trigger_work);
	priv = container_of(tr, struct hfi1_qp_priv, tid_rdma);
	qp = priv->owner;
	spin_lock_irq(&qp->s_lock);
	if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) {
		spin_unlock_irq(&qp->s_lock);
		hfi1_do_send(priv->owner, true);
	} else {
		spin_unlock_irq(&qp->s_lock);
	}
	rvt_put_qp(qp);
}

/**
 * tid_rdma_flush_wait - unwind any tid space wait
 *
 * This is called when resetting a qp to
 * allow a destroy or reset to get rid
 * of any tid space linkage and reference counts.
 */
static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue)
	__must_hold(&qp->s_lock)
{
	struct hfi1_qp_priv *priv;

	if (!qp)
		return;
	lockdep_assert_held(&qp->s_lock);
	priv = qp->priv;
	qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
	spin_lock(&priv->rcd->exp_lock);
	if (!list_empty(&priv->tid_wait)) {
		list_del_init(&priv->tid_wait);
		qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
		queue->dequeue++;
		rvt_put_qp(qp);
	}
	spin_unlock(&priv->rcd->exp_lock);
}

void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp)
	__must_hold(&qp->s_lock)
{
	struct hfi1_qp_priv *priv = qp->priv;

	_tid_rdma_flush_wait(qp, &priv->rcd->flow_queue);
	_tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue);
}

/* Flow functions */
/**
 * kern_reserve_flow - allocate a hardware flow
 * @rcd - the context to use for allocation
 * @last - the index of the preferred flow. Use RXE_NUM_TID_FLOWS to
 *         signify "don't care".
 *
 * Use a bit mask based allocation to reserve a hardware
 * flow for use in receiving KDETH data packets. If a preferred flow is
 * specified the function will attempt to reserve that flow again, if
 * available.
 *
 * The exp_lock must be held.
 *
 * Return:
 * On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1
 * On failure: -EAGAIN
 */
static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last)
	__must_hold(&rcd->exp_lock)
{
	int nr;

	/* Attempt to reserve the preferred flow index */
	if (last >= 0 && last < RXE_NUM_TID_FLOWS &&
	    !test_and_set_bit(last, &rcd->flow_mask))
		return last;

	nr = ffz(rcd->flow_mask);
	BUILD_BUG_ON(RXE_NUM_TID_FLOWS >=
		     (sizeof(rcd->flow_mask) * BITS_PER_BYTE));
	if (nr > (RXE_NUM_TID_FLOWS - 1))
		return -EAGAIN;
	set_bit(nr, &rcd->flow_mask);
	return nr;
}

static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation,
			     u32 flow_idx)
{
	u64 reg;

	reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) |
		RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK |
		RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK |
		RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK |
		RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK |
		RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK;

	if (generation != KERN_GENERATION_RESERVED)
		reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK;

	write_uctxt_csr(rcd->dd, rcd->ctxt,
			RCV_TID_FLOW_TABLE + 8 * flow_idx, reg);
}

static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
	__must_hold(&rcd->exp_lock)
{
	u32 generation = rcd->flows[flow_idx].generation;

	kern_set_hw_flow(rcd, generation, flow_idx);
	return generation;
}

static u32 kern_flow_generation_next(u32 gen)
{
	u32 generation = mask_generation(gen + 1);

	if (generation == KERN_GENERATION_RESERVED)
		generation = mask_generation(generation + 1);
	return generation;
}

static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
	__must_hold(&rcd->exp_lock)
{
	rcd->flows[flow_idx].generation =
		kern_flow_generation_next(rcd->flows[flow_idx].generation);
	kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx);
}

int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
{
	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
	struct tid_flow_state *fs = &qpriv->flow_state;
	struct rvt_qp *fqp;
	unsigned long flags;
	int ret = 0;

	/* The QP already has an allocated flow */
	if (fs->index != RXE_NUM_TID_FLOWS)
		return ret;

	spin_lock_irqsave(&rcd->exp_lock, flags);
	if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp))
		goto queue;

	ret = kern_reserve_flow(rcd, fs->last_index);
	if (ret < 0)
		goto queue;
	fs->index = ret;
	fs->last_index = fs->index;

	/* Generation received in a RESYNC overrides default flow generation */
	if (fs->generation != KERN_GENERATION_RESERVED)
		rcd->flows[fs->index].generation = fs->generation;
	fs->generation = kern_setup_hw_flow(rcd, fs->index);
	fs->psn = 0;
	fs->flags = 0;
	dequeue_tid_waiter(rcd, &rcd->flow_queue, qp);
	/* get head before dropping lock */
	fqp = first_qp(rcd, &rcd->flow_queue);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);

	tid_rdma_schedule_tid_wakeup(fqp);
	return 0;
queue:
	queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);
	return -EAGAIN;
}

void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
{
	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
	struct tid_flow_state *fs = &qpriv->flow_state;
	struct rvt_qp *fqp;
	unsigned long flags;

	if (fs->index >= RXE_NUM_TID_FLOWS)
		return;
	spin_lock_irqsave(&rcd->exp_lock, flags);
	kern_clear_hw_flow(rcd, fs->index);
	clear_bit(fs->index, &rcd->flow_mask);
	fs->index = RXE_NUM_TID_FLOWS;
	fs->psn = 0;
	fs->generation = KERN_GENERATION_RESERVED;

	/* get head before dropping lock */
	fqp = first_qp(rcd, &rcd->flow_queue);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);

	if (fqp == qp) {
		__trigger_tid_waiter(fqp);
		rvt_put_qp(fqp);
	} else {
		tid_rdma_schedule_tid_wakeup(fqp);
	}
}

void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd)
{
	int i;

	for (i = 0; i < RXE_NUM_TID_FLOWS; i++) {
		rcd->flows[i].generation = mask_generation(prandom_u32());
		kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i);
	}
}

/* TID allocation functions */
static u8 trdma_pset_order(struct tid_rdma_pageset *s)
{
	u8 count = s->count;

	return ilog2(count) + 1;
}

/**
 * tid_rdma_find_phys_blocks_4k - get groups base on mr info
 * @npages - number of pages
 * @pages - pointer to an array of page structs
 * @list - page set array to return
 *
 * This routine returns the number of groups associated with
 * the current sge information.  This implementation is based
 * on the expected receive find_phys_blocks() adjusted to
 * use the MR information vs. the pfn.
 *
 * Return:
 * the number of RcvArray entries
 */
static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow,
					struct page **pages,
					u32 npages,
					struct tid_rdma_pageset *list)
{
	u32 pagecount, pageidx, setcount = 0, i;
	void *vaddr, *this_vaddr;

	if (!npages)
		return 0;

	/*
	 * Look for sets of physically contiguous pages in the user buffer.
	 * This will allow us to optimize Expected RcvArray entry usage by
	 * using the bigger supported sizes.
	 */
	vaddr = page_address(pages[0]);
	trace_hfi1_tid_flow_page(flow->req->qp, flow, 0, 0, 0, vaddr);
	for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
		this_vaddr = i < npages ? page_address(pages[i]) : NULL;
		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 0, 0,
					 this_vaddr);
		/*
		 * If the vaddr's are not sequential, pages are not physically
		 * contiguous.
		 */
		if (this_vaddr != (vaddr + PAGE_SIZE)) {
			/*
			 * At this point we have to loop over the set of
			 * physically contiguous pages and break them down it
			 * sizes supported by the HW.
			 * There are two main constraints:
			 *     1. The max buffer size is MAX_EXPECTED_BUFFER.
			 *        If the total set size is bigger than that
			 *        program only a MAX_EXPECTED_BUFFER chunk.
			 *     2. The buffer size has to be a power of two. If
			 *        it is not, round down to the closes power of
			 *        2 and program that size.
			 */
			while (pagecount) {
				int maxpages = pagecount;
				u32 bufsize = pagecount * PAGE_SIZE;

				if (bufsize > MAX_EXPECTED_BUFFER)
					maxpages =
						MAX_EXPECTED_BUFFER >>
						PAGE_SHIFT;
				else if (!is_power_of_2(bufsize))
					maxpages =
						rounddown_pow_of_two(bufsize) >>
						PAGE_SHIFT;

				list[setcount].idx = pageidx;
				list[setcount].count = maxpages;
				trace_hfi1_tid_pageset(flow->req->qp, setcount,
						       list[setcount].idx,
						       list[setcount].count);
				pagecount -= maxpages;
				pageidx += maxpages;
				setcount++;
			}
			pageidx = i;
			pagecount = 1;
			vaddr = this_vaddr;
		} else {
			vaddr += PAGE_SIZE;
			pagecount++;
		}
	}
	/* insure we always return an even number of sets */
	if (setcount & 1)
		list[setcount++].count = 0;
	return setcount;
}

/**
 * tid_flush_pages - dump out pages into pagesets
 * @list - list of pagesets
 * @idx - pointer to current page index
 * @pages - number of pages to dump
 * @sets - current number of pagesset
 *
 * This routine flushes out accumuated pages.
 *
 * To insure an even number of sets the
 * code may add a filler.
 *
 * This can happen with when pages is not
 * a power of 2 or pages is a power of 2
 * less than the maximum pages.
 *
 * Return:
 * The new number of sets
 */

static u32 tid_flush_pages(struct tid_rdma_pageset *list,
			   u32 *idx, u32 pages, u32 sets)
{
	while (pages) {
		u32 maxpages = pages;

		if (maxpages > MAX_EXPECTED_PAGES)
			maxpages = MAX_EXPECTED_PAGES;
		else if (!is_power_of_2(maxpages))
			maxpages = rounddown_pow_of_two(maxpages);
		list[sets].idx = *idx;
		list[sets++].count = maxpages;
		*idx += maxpages;
		pages -= maxpages;
	}
	/* might need a filler */
	if (sets & 1)
		list[sets++].count = 0;
	return sets;
}

/**
 * tid_rdma_find_phys_blocks_8k - get groups base on mr info
 * @pages - pointer to an array of page structs
 * @npages - number of pages
 * @list - page set array to return
 *
 * This routine parses an array of pages to compute pagesets
 * in an 8k compatible way.
 *
 * pages are tested two at a time, i, i + 1 for contiguous
 * pages and i - 1 and i contiguous pages.
 *
 * If any condition is false, any accumlated pages are flushed and
 * v0,v1 are emitted as separate PAGE_SIZE pagesets
 *
 * Otherwise, the current 8k is totaled for a future flush.
 *
 * Return:
 * The number of pagesets
 * list set with the returned number of pagesets
 *
 */
static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow,
					struct page **pages,
					u32 npages,
					struct tid_rdma_pageset *list)
{
	u32 idx, sets = 0, i;
	u32 pagecnt = 0;
	void *v0, *v1, *vm1;

	if (!npages)
		return 0;
	for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) {
		/* get a new v0 */
		v0 = page_address(pages[i]);
		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 0, v0);
		v1 = i + 1 < npages ?
				page_address(pages[i + 1]) : NULL;
		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 1, v1);
		/* compare i, i + 1 vaddr */
		if (v1 != (v0 + PAGE_SIZE)) {
			/* flush out pages */
			sets = tid_flush_pages(list, &idx, pagecnt, sets);
			/* output v0,v1 as two pagesets */
			list[sets].idx = idx++;
			list[sets++].count = 1;
			if (v1) {
				list[sets].count = 1;
				list[sets++].idx = idx++;
			} else {
				list[sets++].count = 0;
			}
			vm1 = NULL;
			pagecnt = 0;
			continue;
		}
		/* i,i+1 consecutive, look at i-1,i */
		if (vm1 && v0 != (vm1 + PAGE_SIZE)) {
			/* flush out pages */
			sets = tid_flush_pages(list, &idx, pagecnt, sets);
			pagecnt = 0;
		}
		/* pages will always be a multiple of 8k */
		pagecnt += 2;
		/* save i-1 */
		vm1 = v1;
		/* move to next pair */
	}
	/* dump residual pages at end */
	sets = tid_flush_pages(list, &idx, npages - idx, sets);
	/* by design cannot be odd sets */
	WARN_ON(sets & 1);
	return sets;
}

/**
 * Find pages for one segment of a sge array represented by @ss. The function
 * does not check the sge, the sge must have been checked for alignment with a
 * prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of
 * rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge
 * copy maintained in @ss->sge, the original sge is not modified.
 *
 * Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not
 * releasing the MR reference count at the same time. Otherwise, we'll "leak"
 * references to the MR. This difference requires that we keep track of progress
 * into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request
 * structure.
 */
static u32 kern_find_pages(struct tid_rdma_flow *flow,
			   struct page **pages,
			   struct rvt_sge_state *ss, bool *last)
{
	struct tid_rdma_request *req = flow->req;
	struct rvt_sge *sge = &ss->sge;
	u32 length = flow->req->seg_len;
	u32 len = PAGE_SIZE;
	u32 i = 0;

	while (length && req->isge < ss->num_sge) {
		pages[i++] = virt_to_page(sge->vaddr);

		sge->vaddr += len;
		sge->length -= len;
		sge->sge_length -= len;
		if (!sge->sge_length) {
			if (++req->isge < ss->num_sge)
				*sge = ss->sg_list[req->isge - 1];
		} else if (sge->length == 0 && sge->mr->lkey) {
			if (++sge->n >= RVT_SEGSZ) {
				++sge->m;
				sge->n = 0;
			}
			sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
			sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
		}
		length -= len;
	}

	flow->length = flow->req->seg_len - length;
	*last = req->isge == ss->num_sge ? false : true;
	return i;
}

static void dma_unmap_flow(struct tid_rdma_flow *flow)
{
	struct hfi1_devdata *dd;
	int i;
	struct tid_rdma_pageset *pset;

	dd = flow->req->rcd->dd;
	for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
			i++, pset++) {
		if (pset->count && pset->addr) {
			dma_unmap_page(&dd->pcidev->dev,
				       pset->addr,
				       PAGE_SIZE * pset->count,
				       DMA_FROM_DEVICE);
			pset->mapped = 0;
		}
	}
}

static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages)
{
	int i;
	struct hfi1_devdata *dd = flow->req->rcd->dd;
	struct tid_rdma_pageset *pset;

	for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
			i++, pset++) {
		if (pset->count) {
			pset->addr = dma_map_page(&dd->pcidev->dev,
						  pages[pset->idx],
						  0,
						  PAGE_SIZE * pset->count,
						  DMA_FROM_DEVICE);

			if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) {
				dma_unmap_flow(flow);
				return -ENOMEM;
			}
			pset->mapped = 1;
		}
	}
	return 0;
}

static inline bool dma_mapped(struct tid_rdma_flow *flow)
{
	return !!flow->pagesets[0].mapped;
}

/*
 * Get pages pointers and identify contiguous physical memory chunks for a
 * segment. All segments are of length flow->req->seg_len.
 */
static int kern_get_phys_blocks(struct tid_rdma_flow *flow,
				struct page **pages,
				struct rvt_sge_state *ss, bool *last)
{
	u8 npages;

	/* Reuse previously computed pagesets, if any */
	if (flow->npagesets) {
		trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head,
					  flow);
		if (!dma_mapped(flow))
			return dma_map_flow(flow, pages);
		return 0;
	}

	npages = kern_find_pages(flow, pages, ss, last);

	if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096))
		flow->npagesets =
			tid_rdma_find_phys_blocks_4k(flow, pages, npages,
						     flow->pagesets);
	else
		flow->npagesets =
			tid_rdma_find_phys_blocks_8k(flow, pages, npages,
						     flow->pagesets);

	return dma_map_flow(flow, pages);
}

static inline void kern_add_tid_node(struct tid_rdma_flow *flow,
				     struct hfi1_ctxtdata *rcd, char *s,
				     struct tid_group *grp, u8 cnt)
{
	struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++];

	WARN_ON_ONCE(flow->tnode_cnt >=
		     (TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT));
	if (WARN_ON_ONCE(cnt & 1))
		dd_dev_err(rcd->dd,
			   "unexpected odd allocation cnt %u map 0x%x used %u",
			   cnt, grp->map, grp->used);

	node->grp = grp;
	node->map = grp->map;
	node->cnt = cnt;
	trace_hfi1_tid_node_add(flow->req->qp, s, flow->tnode_cnt - 1,
				grp->base, grp->map, grp->used, cnt);
}

/*
 * Try to allocate pageset_count TID's from TID groups for a context
 *
 * This function allocates TID's without moving groups between lists or
 * modifying grp->map. This is done as follows, being cogizant of the lists
 * between which the TID groups will move:
 * 1. First allocate complete groups of 8 TID's since this is more efficient,
 *    these groups will move from group->full without affecting used
 * 2. If more TID's are needed allocate from used (will move from used->full or
 *    stay in used)
 * 3. If we still don't have the required number of TID's go back and look again
 *    at a complete group (will move from group->used)
 */
static int kern_alloc_tids(struct tid_rdma_flow *flow)
{
	struct hfi1_ctxtdata *rcd = flow->req->rcd;
	struct hfi1_devdata *dd = rcd->dd;
	u32 ngroups, pageidx = 0;
	struct tid_group *group = NULL, *used;
	u8 use;

	flow->tnode_cnt = 0;
	ngroups = flow->npagesets / dd->rcv_entries.group_size;
	if (!ngroups)
		goto used_list;

	/* First look at complete groups */
	list_for_each_entry(group,  &rcd->tid_group_list.list, list) {
		kern_add_tid_node(flow, rcd, "complete groups", group,
				  group->size);

		pageidx += group->size;
		if (!--ngroups)
			break;
	}

	if (pageidx >= flow->npagesets)
		goto ok;

used_list:
	/* Now look at partially used groups */
	list_for_each_entry(used, &rcd->tid_used_list.list, list) {
		use = min_t(u32, flow->npagesets - pageidx,
			    used->size - used->used);
		kern_add_tid_node(flow, rcd, "used groups", used, use);

		pageidx += use;
		if (pageidx >= flow->npagesets)
			goto ok;
	}

	/*
	 * Look again at a complete group, continuing from where we left.
	 * However, if we are at the head, we have reached the end of the
	 * complete groups list from the first loop above
	 */
	if (group && &group->list == &rcd->tid_group_list.list)
		goto bail_eagain;
	group = list_prepare_entry(group, &rcd->tid_group_list.list,
				   list);
	if (list_is_last(&group->list, &rcd->tid_group_list.list))
		goto bail_eagain;
	group = list_next_entry(group, list);
	use = min_t(u32, flow->npagesets - pageidx, group->size);
	kern_add_tid_node(flow, rcd, "complete continue", group, use);
	pageidx += use;
	if (pageidx >= flow->npagesets)
		goto ok;
bail_eagain:
	trace_hfi1_msg_alloc_tids(flow->req->qp, " insufficient tids: needed ",
				  (u64)flow->npagesets);
	return -EAGAIN;
ok:
	return 0;
}

static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num,
				   u32 *pset_idx)
{
	struct hfi1_ctxtdata *rcd = flow->req->rcd;
	struct hfi1_devdata *dd = rcd->dd;
	struct kern_tid_node *node = &flow->tnode[grp_num];
	struct tid_group *grp = node->grp;
	struct tid_rdma_pageset *pset;
	u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT;
	u32 rcventry, npages = 0, pair = 0, tidctrl;
	u8 i, cnt = 0;

	for (i = 0; i < grp->size; i++) {
		rcventry = grp->base + i;

		if (node->map & BIT(i) || cnt >= node->cnt) {
			rcv_array_wc_fill(dd, rcventry);
			continue;
		}
		pset = &flow->pagesets[(*pset_idx)++];
		if (pset->count) {
			hfi1_put_tid(dd, rcventry, PT_EXPECTED,
				     pset->addr, trdma_pset_order(pset));
		} else {
			hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
		}
		npages += pset->count;

		rcventry -= rcd->expected_base;
		tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1;
		/*
		 * A single TID entry will be used to use a rcvarr pair (with
		 * tidctrl 0x3), if ALL these are true (a) the bit pos is even
		 * (b) the group map shows current and the next bits as free
		 * indicating two consecutive rcvarry entries are available (c)
		 * we actually need 2 more entries
		 */
		pair = !(i & 0x1) && !((node->map >> i) & 0x3) &&
			node->cnt >= cnt + 2;
		if (!pair) {
			if (!pset->count)
				tidctrl = 0x1;
			flow->tid_entry[flow->tidcnt++] =
				EXP_TID_SET(IDX, rcventry >> 1) |
				EXP_TID_SET(CTRL, tidctrl) |
				EXP_TID_SET(LEN, npages);
			trace_hfi1_tid_entry_alloc(/* entry */
			   flow->req->qp, flow->tidcnt - 1,
			   flow->tid_entry[flow->tidcnt - 1]);

			/* Efficient DIV_ROUND_UP(npages, pmtu_pg) */
			flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg);
			npages = 0;
		}

		if (grp->used == grp->size - 1)
			tid_group_move(grp, &rcd->tid_used_list,
				       &rcd->tid_full_list);
		else if (!grp->used)
			tid_group_move(grp, &rcd->tid_group_list,
				       &rcd->tid_used_list);

		grp->used++;
		grp->map |= BIT(i);
		cnt++;
	}
}

static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num)
{
	struct hfi1_ctxtdata *rcd = flow->req->rcd;
	struct hfi1_devdata *dd = rcd->dd;
	struct kern_tid_node *node = &flow->tnode[grp_num];
	struct tid_group *grp = node->grp;
	u32 rcventry;
	u8 i, cnt = 0;

	for (i = 0; i < grp->size; i++) {
		rcventry = grp->base + i;

		if (node->map & BIT(i) || cnt >= node->cnt) {
			rcv_array_wc_fill(dd, rcventry);
			continue;
		}

		hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);

		grp->used--;
		grp->map &= ~BIT(i);
		cnt++;

		if (grp->used == grp->size - 1)
			tid_group_move(grp, &rcd->tid_full_list,
				       &rcd->tid_used_list);
		else if (!grp->used)
			tid_group_move(grp, &rcd->tid_used_list,
				       &rcd->tid_group_list);
	}
	if (WARN_ON_ONCE(cnt & 1)) {
		struct hfi1_ctxtdata *rcd = flow->req->rcd;
		struct hfi1_devdata *dd = rcd->dd;

		dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u",
			   cnt, grp->map, grp->used);
	}
}

static void kern_program_rcvarray(struct tid_rdma_flow *flow)
{
	u32 pset_idx = 0;
	int i;

	flow->npkts = 0;
	flow->tidcnt = 0;
	for (i = 0; i < flow->tnode_cnt; i++)
		kern_program_rcv_group(flow, i, &pset_idx);
	trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, flow);
}

/**
 * hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a
 * TID RDMA request
 *
 * @req: TID RDMA request for which the segment/flow is being set up
 * @ss: sge state, maintains state across successive segments of a sge
 * @last: set to true after the last sge segment has been processed
 *
 * This function
 * (1) finds a free flow entry in the flow circular buffer
 * (2) finds pages and continuous physical chunks constituing one segment
 *     of an sge
 * (3) allocates TID group entries for those chunks
 * (4) programs rcvarray entries in the hardware corresponding to those
 *     TID's
 * (5) computes a tidarray with formatted TID entries which can be sent
 *     to the sender
 * (6) Reserves and programs HW flows.
 * (7) It also manages queing the QP when TID/flow resources are not
 *     available.
 *
 * @req points to struct tid_rdma_request of which the segments are a part. The
 * function uses qp, rcd and seg_len members of @req. In the absence of errors,
 * req->flow_idx is the index of the flow which has been prepared in this
 * invocation of function call. With flow = &req->flows[req->flow_idx],
 * flow->tid_entry contains the TID array which the sender can use for TID RDMA
 * sends and flow->npkts contains number of packets required to send the
 * segment.
 *
 * hfi1_check_sge_align should be called prior to calling this function and if
 * it signals error TID RDMA cannot be used for this sge and this function
 * should not be called.
 *
 * For the queuing, caller must hold the flow->req->qp s_lock from the send
 * engine and the function will procure the exp_lock.
 *
 * Return:
 * The function returns -EAGAIN if sufficient number of TID/flow resources to
 * map the segment could not be allocated. In this case the function should be
 * called again with previous arguments to retry the TID allocation. There are
 * no other error returns. The function returns 0 on success.
 */
int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
			    struct rvt_sge_state *ss, bool *last)
	__must_hold(&req->qp->s_lock)
{
	struct tid_rdma_flow *flow = &req->flows[req->setup_head];
	struct hfi1_ctxtdata *rcd = req->rcd;
	struct hfi1_qp_priv *qpriv = req->qp->priv;
	unsigned long flags;
	struct rvt_qp *fqp;
	u16 clear_tail = req->clear_tail;

	lockdep_assert_held(&req->qp->s_lock);
	/*
	 * We return error if either (a) we don't have space in the flow
	 * circular buffer, or (b) we already have max entries in the buffer.
	 * Max entries depend on the type of request we are processing and the
	 * negotiated TID RDMA parameters.
	 */
	if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) ||
	    CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >=
	    req->n_flows)
		return -EINVAL;

	/*
	 * Get pages, identify contiguous physical memory chunks for the segment
	 * If we can not determine a DMA address mapping we will treat it just
	 * like if we ran out of space above.
	 */
	if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) {
		hfi1_wait_kmem(flow->req->qp);
		return -ENOMEM;
	}

	spin_lock_irqsave(&rcd->exp_lock, flags);
	if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp))
		goto queue;

	/*
	 * At this point we know the number of pagesets and hence the number of
	 * TID's to map the segment. Allocate the TID's from the TID groups. If
	 * we cannot allocate the required number we exit and try again later
	 */
	if (kern_alloc_tids(flow))
		goto queue;
	/*
	 * Finally program the TID entries with the pagesets, compute the
	 * tidarray and enable the HW flow
	 */
	kern_program_rcvarray(flow);

	/*
	 * Setup the flow state with relevant information.
	 * This information is used for tracking the sequence of data packets
	 * for the segment.
	 * The flow is setup here as this is the most accurate time and place
	 * to do so. Doing at a later time runs the risk of the flow data in
	 * qpriv getting out of sync.
	 */
	memset(&flow->flow_state, 0x0, sizeof(flow->flow_state));
	flow->idx = qpriv->flow_state.index;
	flow->flow_state.generation = qpriv->flow_state.generation;
	flow->flow_state.spsn = qpriv->flow_state.psn;
	flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1;
	flow->flow_state.r_next_psn =
		full_flow_psn(flow, flow->flow_state.spsn);
	qpriv->flow_state.psn += flow->npkts;

	dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp);
	/* get head before dropping lock */
	fqp = first_qp(rcd, &rcd->rarr_queue);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);
	tid_rdma_schedule_tid_wakeup(fqp);

	req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
	return 0;
queue:
	queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);
	return -EAGAIN;
}

static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow)
{
	flow->npagesets = 0;
}

/*
 * This function is called after one segment has been successfully sent to
 * release the flow and TID HW/SW resources for that segment. The segments for a
 * TID RDMA request are setup and cleared in FIFO order which is managed using a
 * circular buffer.
 */
int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req)
	__must_hold(&req->qp->s_lock)
{
	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
	struct hfi1_ctxtdata *rcd = req->rcd;
	unsigned long flags;
	int i;
	struct rvt_qp *fqp;

	lockdep_assert_held(&req->qp->s_lock);
	/* Exit if we have nothing in the flow circular buffer */
	if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS))
		return -EINVAL;

	spin_lock_irqsave(&rcd->exp_lock, flags);

	for (i = 0; i < flow->tnode_cnt; i++)
		kern_unprogram_rcv_group(flow, i);
	/* To prevent double unprogramming */
	flow->tnode_cnt = 0;
	/* get head before dropping lock */
	fqp = first_qp(rcd, &rcd->rarr_queue);
	spin_unlock_irqrestore(&rcd->exp_lock, flags);

	dma_unmap_flow(flow);

	hfi1_tid_rdma_reset_flow(flow);
	req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1);

	if (fqp == req->qp) {
		__trigger_tid_waiter(fqp);
		rvt_put_qp(fqp);
	} else {
		tid_rdma_schedule_tid_wakeup(fqp);
	}

	return 0;
}

/*
 * This function is called to release all the tid entries for
 * a request.
 */
void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req)
	__must_hold(&req->qp->s_lock)
{
	/* Use memory barrier for proper ordering */
	while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) {
		if (hfi1_kern_exp_rcv_clear(req))
			break;
	}
}

/**
 * hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information
 * @req - the tid rdma request to be cleaned
 */
static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req)
{
	kfree(req->flows);
	req->flows = NULL;
}

/**
 * __trdma_clean_swqe - clean up for large sized QPs
 * @qp: the queue patch
 * @wqe: the send wqe
 */
void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
{
	struct hfi1_swqe_priv *p = wqe->priv;

	hfi1_kern_exp_rcv_free_flows(&p->tid_req);
}

/*
 * This can be called at QP create time or in the data path.
 */
static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
					 gfp_t gfp)
{
	struct tid_rdma_flow *flows;
	int i;

	if (likely(req->flows))
		return 0;
	flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp,
			     req->rcd->numa_id);
	if (!flows)
		return -ENOMEM;
	/* mini init */
	for (i = 0; i < MAX_FLOWS; i++) {
		flows[i].req = req;
		flows[i].npagesets = 0;
		flows[i].pagesets[0].mapped =  0;
	}
	req->flows = flows;
	return 0;
}

static void hfi1_init_trdma_req(struct rvt_qp *qp,
				struct tid_rdma_request *req)
{
	struct hfi1_qp_priv *qpriv = qp->priv;

	/*
	 * Initialize various TID RDMA request variables.
	 * These variables are "static", which is why they
	 * can be pre-initialized here before the WRs has
	 * even been submitted.
	 * However, non-NULL values for these variables do not
	 * imply that this WQE has been enabled for TID RDMA.
	 * Drivers should check the WQE's opcode to determine
	 * if a request is a TID RDMA one or not.
	 */
	req->qp = qp;
	req->rcd = qpriv->rcd;
}

u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
			    void *context, int vl, int mode, u64 data)
{
	struct hfi1_devdata *dd = context;

	return dd->verbs_dev.n_tidwait;
}

/* TID RDMA READ functions */
u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
				    struct ib_other_headers *ohdr, u32 *bth1,
				    u32 *bth2, u32 *len)
{
	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
	struct tid_rdma_flow *flow = &req->flows[req->flow_idx];
	struct rvt_qp *qp = req->qp;
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct hfi1_swqe_priv *wpriv = wqe->priv;
	struct tid_rdma_read_req *rreq = &ohdr->u.tid_rdma.r_req;
	struct tid_rdma_params *remote;
	u32 req_len = 0;
	void *req_addr = NULL;

	/* This is the IB psn used to send the request */
	*bth2 = mask_psn(flow->flow_state.ib_spsn + flow->pkt);

	/* TID Entries for TID RDMA READ payload */
	req_addr = &flow->tid_entry[flow->tid_idx];
	req_len = sizeof(*flow->tid_entry) *
			(flow->tidcnt - flow->tid_idx);

	memset(&ohdr->u.tid_rdma.r_req, 0, sizeof(ohdr->u.tid_rdma.r_req));
	wpriv->ss.sge.vaddr = req_addr;
	wpriv->ss.sge.sge_length = req_len;
	wpriv->ss.sge.length = wpriv->ss.sge.sge_length;
	/*
	 * We can safely zero these out. Since the first SGE covers the
	 * entire packet, nothing else should even look at the MR.
	 */
	wpriv->ss.sge.mr = NULL;
	wpriv->ss.sge.m = 0;
	wpriv->ss.sge.n = 0;

	wpriv->ss.sg_list = NULL;
	wpriv->ss.total_len = wpriv->ss.sge.sge_length;
	wpriv->ss.num_sge = 1;

	/* Construct the TID RDMA READ REQ packet header */
	rcu_read_lock();
	remote = rcu_dereference(qpriv->tid_rdma.remote);

	KDETH_RESET(rreq->kdeth0, KVER, 0x1);
	KDETH_RESET(rreq->kdeth1, JKEY, remote->jkey);
	rreq->reth.vaddr = cpu_to_be64(wqe->rdma_wr.remote_addr +
			   req->cur_seg * req->seg_len + flow->sent);
	rreq->reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey);
	rreq->reth.length = cpu_to_be32(*len);
	rreq->tid_flow_psn =
		cpu_to_be32((flow->flow_state.generation <<
			     HFI1_KDETH_BTH_SEQ_SHIFT) |
			    ((flow->flow_state.spsn + flow->pkt) &
			     HFI1_KDETH_BTH_SEQ_MASK));
	rreq->tid_flow_qp =
		cpu_to_be32(qpriv->tid_rdma.local.qp |
			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
			     TID_RDMA_DESTQP_FLOW_SHIFT) |
			    qpriv->rcd->ctxt);
	rreq->verbs_qp = cpu_to_be32(qp->remote_qpn);
	*bth1 &= ~RVT_QPN_MASK;
	*bth1 |= remote->qp;
	*bth2 |= IB_BTH_REQ_ACK;
	rcu_read_unlock();

	/* We are done with this segment */
	flow->sent += *len;
	req->cur_seg++;
	qp->s_state = TID_OP(READ_REQ);
	req->ack_pending++;
	req->flow_idx = (req->flow_idx + 1) & (MAX_FLOWS - 1);
	qpriv->pending_tid_r_segs++;
	qp->s_num_rd_atomic++;

	/* Set the TID RDMA READ request payload size */
	*len = req_len;

	return sizeof(ohdr->u.tid_rdma.r_req) / sizeof(u32);
}

/*
 * @len: contains the data length to read upon entry and the read request
 *       payload length upon exit.
 */
u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
				 struct ib_other_headers *ohdr, u32 *bth1,
				 u32 *bth2, u32 *len)
	__must_hold(&qp->s_lock)
{
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
	struct tid_rdma_flow *flow = NULL;
	u32 hdwords = 0;
	bool last;
	bool retry = true;
	u32 npkts = rvt_div_round_up_mtu(qp, *len);

	/*
	 * Check sync conditions. Make sure that there are no pending
	 * segments before freeing the flow.
	 */
sync_check:
	if (req->state == TID_REQUEST_SYNC) {
		if (qpriv->pending_tid_r_segs)
			goto done;

		hfi1_kern_clear_hw_flow(req->rcd, qp);
		req->state = TID_REQUEST_ACTIVE;
	}

	/*
	 * If the request for this segment is resent, the tid resources should
	 * have been allocated before. In this case, req->flow_idx should
	 * fall behind req->setup_head.
	 */
	if (req->flow_idx == req->setup_head) {
		retry = false;
		if (req->state == TID_REQUEST_RESEND) {
			/*
			 * This is the first new segment for a request whose
			 * earlier segments have been re-sent. We need to
			 * set up the sge pointer correctly.
			 */
			restart_sge(&qp->s_sge, wqe, req->s_next_psn,
				    qp->pmtu);
			req->isge = 0;
			req->state = TID_REQUEST_ACTIVE;
		}

		/*
		 * Check sync. The last PSN of each generation is reserved for
		 * RESYNC.
		 */
		if ((qpriv->flow_state.psn + npkts) > MAX_TID_FLOW_PSN - 1) {
			req->state = TID_REQUEST_SYNC;
			goto sync_check;
		}

		/* Allocate the flow if not yet */
		if (hfi1_kern_setup_hw_flow(qpriv->rcd, qp))
			goto done;

		/*
		 * The following call will advance req->setup_head after
		 * allocating the tid entries.
		 */
		if (hfi1_kern_exp_rcv_setup(req, &qp->s_sge, &last)) {
			req->state = TID_REQUEST_QUEUED;

			/*
			 * We don't have resources for this segment. The QP has
			 * already been queued.
			 */
			goto done;
		}
	}

	/* req->flow_idx should only be one slot behind req->setup_head */
	flow = &req->flows[req->flow_idx];
	flow->pkt = 0;
	flow->tid_idx = 0;
	flow->sent = 0;
	if (!retry) {
		/* Set the first and last IB PSN for the flow in use.*/
		flow->flow_state.ib_spsn = req->s_next_psn;
		flow->flow_state.ib_lpsn =
			flow->flow_state.ib_spsn + flow->npkts - 1;
	}

	/* Calculate the next segment start psn.*/
	req->s_next_psn += flow->npkts;

	/* Build the packet header */
	hdwords = hfi1_build_tid_rdma_read_packet(wqe, ohdr, bth1, bth2, len);
done:
	return hdwords;
}

/*
 * Validate and accept the TID RDMA READ request parameters.
 * Return 0 if the request is accepted successfully;
 * Return 1 otherwise.
 */
static int tid_rdma_rcv_read_request(struct rvt_qp *qp,
				     struct rvt_ack_entry *e,
				     struct hfi1_packet *packet,
				     struct ib_other_headers *ohdr,
				     u32 bth0, u32 psn, u64 vaddr, u32 len)
{
	struct hfi1_qp_priv *qpriv = qp->priv;
	struct tid_rdma_request *req;
	struct tid_rdma_flow *flow;
	u32 flow_psn, i, tidlen = 0, pktlen, tlen;

	req = ack_to_tid_req(e);

	/* Validate the payload first */
	flow = &req->flows[req->setup_head];

	/* payload length = packet length - (header length + ICRC length) */
	pktlen = packet->tlen - (packet->hlen + 4);
	if (pktlen > sizeof(flow->tid_entry))
		return 1;
	memcpy(flow->tid_entry, packet->ebuf, pktlen);
	flow->tidcnt = pktlen / sizeof(*flow->tid_entry);

	/*
	 * Walk the TID_ENTRY list to make sure we have enough space for a
	 * complete segment. Also calculate the number of required packets.
	 */
	flow->npkts = rvt_div_round_up_mtu(qp, len);
	for (i = 0; i < flow->tidcnt; i++) {
		tlen = EXP_TID_GET(flow->tid_entry[i], LEN);
		if (!tlen)
			return 1;

		/*
		 * For tid pair (tidctr == 3), the buffer size of the pair
		 * should be the sum of the buffer size described by each
		 * tid entry. However, only the first entry needs to be
		 * specified in the request (see WFR HAS Section 8.5.7.1).
		 */
		tidlen += tlen;
	}
	if (tidlen * PAGE_SIZE < len)
		return 1;

	/* Empty the flow array */
	req->clear_tail = req->setup_head;
	flow->pkt = 0;
	flow->tid_idx = 0;
	flow->tid_offset = 0;
	flow->sent = 0;
	flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_qp);
	flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
		    TID_RDMA_DESTQP_FLOW_MASK;
	flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_psn));
	flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
	flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
	flow->length = len;

	flow->flow_state.lpsn = flow->flow_state.spsn +
		flow->npkts - 1;
	flow->flow_state.ib_spsn = psn;
	flow->flow_state.ib_lpsn = flow->flow_state.ib_spsn + flow->npkts - 1;

	/* Set the initial flow index to the current flow. */
	req->flow_idx = req->setup_head;

	/* advance circular buffer head */
	req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);

	/*
	 * Compute last PSN for request.
	 */
	e->opcode = (bth0 >> 24) & 0xff;
	e->psn = psn;
	e->lpsn = psn + flow->npkts - 1;
	e->sent = 0;

	req->n_flows = qpriv->tid_rdma.local.max_read;
	req->state = TID_REQUEST_ACTIVE;
	req->cur_seg = 0;
	req->comp_seg = 0;
	req->ack_seg = 0;
	req->isge = 0;
	req->seg_len = qpriv->tid_rdma.local.max_len;
	req->total_len = len;
	req->total_segs = 1;
	req->r_flow_psn = e->psn;

	return 0;
}

static int tid_rdma_rcv_error(struct hfi1_packet *packet,
			      struct ib_other_headers *ohdr,
			      struct rvt_qp *qp, u32 psn, int diff)
{
	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
	struct hfi1_ctxtdata *rcd = ((struct hfi1_qp_priv *)qp->priv)->rcd;
	struct rvt_ack_entry *e;
	struct tid_rdma_request *req;
	unsigned long flags;
	u8 prev;
	bool old_req;

	if (diff > 0) {
		/* sequence error */
		if (!qp->r_nak_state) {
			ibp->rvp.n_rc_seqnak++;
			qp->r_nak_state = IB_NAK_PSN_ERROR;
			qp->r_ack_psn = qp->r_psn;
			rc_defered_ack(rcd, qp);
		}
		goto done;
	}

	ibp->rvp.n_rc_dupreq++;

	spin_lock_irqsave(&qp->s_lock, flags);
	e = find_prev_entry(qp, psn, &prev, NULL, &old_req);
	if (!e || e->opcode != TID_OP(READ_REQ))
		goto unlock;

	req = ack_to_tid_req(e);
	req->r_flow_psn = psn;

	if (e->opcode == TID_OP(READ_REQ)) {
		struct ib_reth *reth;
		u32 offset;
		u32 len;
		u32 rkey;
		u64 vaddr;
		int ok;
		u32 bth0;

		reth = &ohdr->u.tid_rdma.r_req.reth;
		/*
		 * The requester always restarts from the start of the original
		 * request.
		 */
		offset = delta_psn(psn, e->psn) * qp->pmtu;
		len = be32_to_cpu(reth->length);
		if (psn != e->psn || len != req->total_len)
			goto unlock;

		if (e->rdma_sge.mr) {
			rvt_put_mr(e->rdma_sge.mr);
			e->rdma_sge.mr = NULL;
		}

		rkey = be32_to_cpu(reth->rkey);
		vaddr = get_ib_reth_vaddr(reth);

		qp->r_len = len;
		ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey,
				 IB_ACCESS_REMOTE_READ);
		if (unlikely(!ok))
			goto unlock;

		/*
		 * If all the response packets for the current request have
		 * been sent out and this request is complete (old_request
		 * == false) and the TID flow may be unusable (the
		 * req->clear_tail is advanced). However, when an earlier
		 * request is received, this request will not be complete any
		 * more (qp->s_tail_ack_queue is moved back, see below).
		 * Consequently, we need to update the TID flow info everytime
		 * a duplicate request is received.
		 */
		bth0 = be32_to_cpu(ohdr->bth[0]);
		if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn,
					      vaddr, len))
			goto unlock;

		/*
		 * True if the request is already scheduled (between
		 * qp->s_tail_ack_queue and qp->r_head_ack_queue);
		 */
		if (old_req)
			goto unlock;
	}
	/* Re-process old requests.*/
	qp->s_tail_ack_queue = prev;
	/*
	 * Since the qp->s_tail_ack_queue is modified, the
	 * qp->s_ack_state must be changed to re-initialize
	 * qp->s_ack_rdma_sge; Otherwise, we will end up in
	 * wrong memory region.
	 */
	qp->s_ack_state = OP(ACKNOWLEDGE);
	qp->r_state = e->opcode;
	qp->r_nak_state = 0;
	qp->s_flags |= RVT_S_RESP_PENDING;
	hfi1_schedule_send(qp);
unlock:
	spin_unlock_irqrestore(&qp->s_lock, flags);
done:
	return 1;
}

void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet)
{
	/* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/

	/*
	 * 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ
	 *    (see hfi1_rc_rcv())
	 * 2. Put TID RDMA READ REQ into the response queueu (s_ack_queue)
	 *     - Setup struct tid_rdma_req with request info
	 *     - Initialize struct tid_rdma_flow info;
	 *     - Copy TID entries;
	 * 3. Set the qp->s_ack_state.
	 * 4. Set RVT_S_RESP_PENDING in s_flags.
	 * 5. Kick the send engine (hfi1_schedule_send())
	 */
	struct hfi1_ctxtdata *rcd = packet->rcd;
	struct rvt_qp *qp = packet->qp;
	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
	struct ib_other_headers *ohdr = packet->ohdr;
	struct rvt_ack_entry *e;
	unsigned long flags;
	struct ib_reth *reth;
	struct hfi1_qp_priv *qpriv = qp->priv;
	u32 bth0, psn, len, rkey;
	bool is_fecn;
	u8 next;
	u64 vaddr;
	int diff;
	u8 nack_state = IB_NAK_INVALID_REQUEST;

	bth0 = be32_to_cpu(ohdr->bth[0]);
	if (hfi1_ruc_check_hdr(ibp, packet))
		return;

	is_fecn = process_ecn(qp, packet);
	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));

	if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
		rvt_comm_est(qp);

	if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
		goto nack_inv;

	reth = &ohdr->u.tid_rdma.r_req.reth;
	vaddr = be64_to_cpu(reth->vaddr);
	len = be32_to_cpu(reth->length);
	/* The length needs to be in multiples of PAGE_SIZE */
	if (!len || len & ~PAGE_MASK || len > qpriv->tid_rdma.local.max_len)
		goto nack_inv;

	diff = delta_psn(psn, qp->r_psn);
	if (unlikely(diff)) {
		if (tid_rdma_rcv_error(packet, ohdr, qp, psn, diff))
			return;
		goto send_ack;
	}

	/* We've verified the request, insert it into the ack queue. */
	next = qp->r_head_ack_queue + 1;
	if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
		next = 0;
	spin_lock_irqsave(&qp->s_lock, flags);
	if (unlikely(next == qp->s_tail_ack_queue)) {
		if (!qp->s_ack_queue[next].sent) {
			nack_state = IB_NAK_REMOTE_OPERATIONAL_ERROR;
			goto nack_inv_unlock;
		}
		update_ack_queue(qp, next);
	}
	e = &qp->s_ack_queue[qp->r_head_ack_queue];
	if (e->rdma_sge.mr) {
		rvt_put_mr(e->rdma_sge.mr);
		e->rdma_sge.mr = NULL;
	}

	rkey = be32_to_cpu(reth->rkey);
	qp->r_len = len;

	if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
				  rkey, IB_ACCESS_REMOTE_READ)))
		goto nack_acc;

	/* Accept the request parameters */
	if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, vaddr,
				      len))
		goto nack_inv_unlock;

	qp->r_state = e->opcode;
	qp->r_nak_state = 0;
	/*
	 * We need to increment the MSN here instead of when we
	 * finish sending the result since a duplicate request would
	 * increment it more than once.
	 */
	qp->r_msn++;
	qp->r_psn += e->lpsn - e->psn + 1;

	qp->r_head_ack_queue = next;

	/* Schedule the send tasklet. */
	qp->s_flags |= RVT_S_RESP_PENDING;
	hfi1_schedule_send(qp);

	spin_unlock_irqrestore(&qp->s_lock, flags);
	if (is_fecn)
		goto send_ack;
	return;

nack_inv_unlock:
	spin_unlock_irqrestore(&qp->s_lock, flags);
nack_inv:
	rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
	qp->r_nak_state = nack_state;
	qp->r_ack_psn = qp->r_psn;
	/* Queue NAK for later */
	rc_defered_ack(rcd, qp);
	return;
nack_acc:
	spin_unlock_irqrestore(&qp->s_lock, flags);
	rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
	qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
	qp->r_ack_psn = qp->r_psn;
send_ack:
	hfi1_send_rc_ack(packet, is_fecn);
}