summaryrefslogblamecommitdiffstats
path: root/drivers/media/dvb/frontends/af9013.c
blob: 12e018b4107daec6758c7571ef3bb3bd4e244159 (plain) (tree)
































































































































































































































                                                                               





                                                









































































































































































































































































































                                                                              



                                                                               








                                            

                                                                      
















                                         

                                                                   
















                                                

                                                                          













                                        

                                                                  






















                                                             

                                                                 

























                                                                        

                                                                 











                                    

                                                                          
































































































































































































































































































                                                                         




































                                                                       

                                                                            




























                                                                            
                                                       
















































































































































































                                                                              
                                         







                                                                      
                                          







                                                                      
                                          
























































































































































































































































                                                                              
                                                                     

































                                                                                
                                                                 








                                                                              






















































































































































































                                                                           
/*
 * DVB USB Linux driver for Afatech AF9015 DVB-T USB2.0 receiver
 *
 * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
 *
 * Thanks to Afatech who kindly provided information.
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/firmware.h>

#include "dvb_frontend.h"
#include "af9013_priv.h"
#include "af9013.h"

int af9013_debug;

struct af9013_state {
	struct i2c_adapter *i2c;
	struct dvb_frontend frontend;

	struct af9013_config config;

	u16 signal_strength;
	u32 ber;
	u32 ucblocks;
	u16 snr;
	u32 frequency;
	unsigned long next_statistics_check;
};

static u8 regmask[8] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff };

static int af9013_write_regs(struct af9013_state *state, u8 mbox, u16 reg,
	u8 *val, u8 len)
{
	u8 buf[3+len];
	struct i2c_msg msg = {
		.addr = state->config.demod_address,
		.flags = 0,
		.len = sizeof(buf),
		.buf = buf };

	buf[0] = reg >> 8;
	buf[1] = reg & 0xff;
	buf[2] = mbox;
	memcpy(&buf[3], val, len);

	if (i2c_transfer(state->i2c, &msg, 1) != 1) {
		warn("I2C write failed reg:%04x len:%d", reg, len);
		return -EREMOTEIO;
	}
	return 0;
}

static int af9013_write_ofdm_regs(struct af9013_state *state, u16 reg, u8 *val,
	u8 len)
{
	u8 mbox = (1 << 0)|(1 << 1)|((len - 1) << 2)|(0 << 6)|(0 << 7);
	return af9013_write_regs(state, mbox, reg, val, len);
}

static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
	u8 len)
{
	u8 mbox = (1 << 0)|(1 << 1)|((len - 1) << 2)|(1 << 6)|(1 << 7);
	return af9013_write_regs(state, mbox, reg, val, len);
}

/* write single register */
static int af9013_write_reg(struct af9013_state *state, u16 reg, u8 val)
{
	return af9013_write_ofdm_regs(state, reg, &val, 1);
}

/* read single register */
static int af9013_read_reg(struct af9013_state *state, u16 reg, u8 *val)
{
	u8 obuf[3] = { reg >> 8, reg & 0xff, 0 };
	u8 ibuf[1];
	struct i2c_msg msg[2] = {
		{
			.addr = state->config.demod_address,
			.flags = 0,
			.len = sizeof(obuf),
			.buf = obuf
		}, {
			.addr = state->config.demod_address,
			.flags = I2C_M_RD,
			.len = sizeof(ibuf),
			.buf = ibuf
		}
	};

	if (i2c_transfer(state->i2c, msg, 2) != 2) {
		warn("I2C read failed reg:%04x", reg);
		return -EREMOTEIO;
	}
	*val = ibuf[0];
	return 0;
}

static int af9013_write_reg_bits(struct af9013_state *state, u16 reg, u8 pos,
	u8 len, u8 val)
{
	int ret;
	u8 tmp, mask;

	ret = af9013_read_reg(state, reg, &tmp);
	if (ret)
		return ret;

	mask = regmask[len - 1] << pos;
	tmp = (tmp & ~mask) | ((val << pos) & mask);

	return af9013_write_reg(state, reg, tmp);
}

static int af9013_read_reg_bits(struct af9013_state *state, u16 reg, u8 pos,
	u8 len, u8 *val)
{
	int ret;
	u8 tmp;

	ret = af9013_read_reg(state, reg, &tmp);
	if (ret)
		return ret;
	*val = (tmp >> pos) & regmask[len - 1];
	return 0;
}

static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
{
	int ret;
	u8 pos;
	u16 addr;
	deb_info("%s: gpio:%d gpioval:%02x\n", __func__, gpio, gpioval);

/* GPIO0 & GPIO1 0xd735
   GPIO2 & GPIO3 0xd736 */

	switch (gpio) {
	case 0:
	case 1:
		addr = 0xd735;
		break;
	case 2:
	case 3:
		addr = 0xd736;
		break;

	default:
		err("invalid gpio:%d\n", gpio);
		ret = -EINVAL;
		goto error;
	};

	switch (gpio) {
	case 0:
	case 2:
		pos = 0;
		break;
	case 1:
	case 3:
	default:
		pos = 4;
		break;
	};

	ret = af9013_write_reg_bits(state, addr, pos, 4, gpioval);

error:
	return ret;
}

static u32 af913_div(u32 a, u32 b, u32 x)
{
	u32 r = 0, c = 0, i;
	deb_info("%s: a:%d b:%d x:%d\n", __func__, a, b, x);

	if (a > b) {
		c = a / b;
		a = a - c * b;
	}

	for (i = 0; i < x; i++) {
		if (a >= b) {
			r += 1;
			a -= b;
		}
		a <<= 1;
		r <<= 1;
	}
	r = (c << (u32)x) + r;

	deb_info("%s: a:%d b:%d x:%d r:%d r:%x\n", __func__, a, b, x, r, r);
	return r;
}

static int af9013_set_coeff(struct af9013_state *state, fe_bandwidth_t bw)
{
	int ret = 0;
	u8 i = 0;
	u8 buf[24];
	u32 uninitialized_var(ns_coeff1_2048nu);
	u32 uninitialized_var(ns_coeff1_8191nu);
	u32 uninitialized_var(ns_coeff1_8192nu);
	u32 uninitialized_var(ns_coeff1_8193nu);
	u32 uninitialized_var(ns_coeff2_2k);
	u32 uninitialized_var(ns_coeff2_8k);

	deb_info("%s: adc_clock:%d bw:%d\n", __func__,
		state->config.adc_clock, bw);

	switch (state->config.adc_clock) {
	case 28800: /* 28.800 MHz */
		switch (bw) {
		case BANDWIDTH_6_MHZ:
			ns_coeff1_2048nu = 0x01e79e7a;
			ns_coeff1_8191nu = 0x0079eb6e;
			ns_coeff1_8192nu = 0x0079e79e;
			ns_coeff1_8193nu = 0x0079e3cf;
			ns_coeff2_2k     = 0x00f3cf3d;
			ns_coeff2_8k     = 0x003cf3cf;
			break;
		case BANDWIDTH_7_MHZ:
			ns_coeff1_2048nu = 0x0238e38e;
			ns_coeff1_8191nu = 0x008e3d55;
			ns_coeff1_8192nu = 0x008e38e4;
			ns_coeff1_8193nu = 0x008e3472;
			ns_coeff2_2k     = 0x011c71c7;
			ns_coeff2_8k     = 0x00471c72;
			break;
		case BANDWIDTH_8_MHZ:
			ns_coeff1_2048nu = 0x028a28a3;
			ns_coeff1_8191nu = 0x00a28f3d;
			ns_coeff1_8192nu = 0x00a28a29;
			ns_coeff1_8193nu = 0x00a28514;
			ns_coeff2_2k     = 0x01451451;
			ns_coeff2_8k     = 0x00514514;
			break;
		default:
			ret = -EINVAL;
		}
		break;
	case 20480: /* 20.480 MHz */
		switch (bw) {
		case BANDWIDTH_6_MHZ:
			ns_coeff1_2048nu = 0x02adb6dc;
			ns_coeff1_8191nu = 0x00ab7313;
			ns_coeff1_8192nu = 0x00ab6db7;
			ns_coeff1_8193nu = 0x00ab685c;
			ns_coeff2_2k     = 0x0156db6e;
			ns_coeff2_8k     = 0x0055b6dc;
			break;
		case BANDWIDTH_7_MHZ:
			ns_coeff1_2048nu = 0x03200001;
			ns_coeff1_8191nu = 0x00c80640;
			ns_coeff1_8192nu = 0x00c80000;
			ns_coeff1_8193nu = 0x00c7f9c0;
			ns_coeff2_2k     = 0x01900000;
			ns_coeff2_8k     = 0x00640000;
			break;
		case BANDWIDTH_8_MHZ:
			ns_coeff1_2048nu = 0x03924926;
			ns_coeff1_8191nu = 0x00e4996e;
			ns_coeff1_8192nu = 0x00e49249;
			ns_coeff1_8193nu = 0x00e48b25;
			ns_coeff2_2k     = 0x01c92493;
			ns_coeff2_8k     = 0x00724925;
			break;
		default:
			ret = -EINVAL;
		}
		break;
	case 28000: /* 28.000 MHz */
		switch (bw) {
		case BANDWIDTH_6_MHZ:
			ns_coeff1_2048nu = 0x01f58d10;
			ns_coeff1_8191nu = 0x007d672f;
			ns_coeff1_8192nu = 0x007d6344;
			ns_coeff1_8193nu = 0x007d5f59;
			ns_coeff2_2k     = 0x00fac688;
			ns_coeff2_8k     = 0x003eb1a2;
			break;
		case BANDWIDTH_7_MHZ:
			ns_coeff1_2048nu = 0x02492492;
			ns_coeff1_8191nu = 0x00924db7;
			ns_coeff1_8192nu = 0x00924925;
			ns_coeff1_8193nu = 0x00924492;
			ns_coeff2_2k     = 0x01249249;
			ns_coeff2_8k     = 0x00492492;
			break;
		case BANDWIDTH_8_MHZ:
			ns_coeff1_2048nu = 0x029cbc15;
			ns_coeff1_8191nu = 0x00a7343f;
			ns_coeff1_8192nu = 0x00a72f05;
			ns_coeff1_8193nu = 0x00a729cc;
			ns_coeff2_2k     = 0x014e5e0a;
			ns_coeff2_8k     = 0x00539783;
			break;
		default:
			ret = -EINVAL;
		}
		break;
	case 25000: /* 25.000 MHz */
		switch (bw) {
		case BANDWIDTH_6_MHZ:
			ns_coeff1_2048nu = 0x0231bcb5;
			ns_coeff1_8191nu = 0x008c7391;
			ns_coeff1_8192nu = 0x008c6f2d;
			ns_coeff1_8193nu = 0x008c6aca;
			ns_coeff2_2k     = 0x0118de5b;
			ns_coeff2_8k     = 0x00463797;
			break;
		case BANDWIDTH_7_MHZ:
			ns_coeff1_2048nu = 0x028f5c29;
			ns_coeff1_8191nu = 0x00a3dc29;
			ns_coeff1_8192nu = 0x00a3d70a;
			ns_coeff1_8193nu = 0x00a3d1ec;
			ns_coeff2_2k     = 0x0147ae14;
			ns_coeff2_8k     = 0x0051eb85;
			break;
		case BANDWIDTH_8_MHZ:
			ns_coeff1_2048nu = 0x02ecfb9d;
			ns_coeff1_8191nu = 0x00bb44c1;
			ns_coeff1_8192nu = 0x00bb3ee7;
			ns_coeff1_8193nu = 0x00bb390d;
			ns_coeff2_2k     = 0x01767dce;
			ns_coeff2_8k     = 0x005d9f74;
			break;
		default:
			ret = -EINVAL;
		}
		break;
	default:
		err("invalid xtal");
		return -EINVAL;
	}
	if (ret) {
		err("invalid bandwidth");
		return ret;
	}

	buf[i++] = (u8) ((ns_coeff1_2048nu & 0x03000000) >> 24);
	buf[i++] = (u8) ((ns_coeff1_2048nu & 0x00ff0000) >> 16);
	buf[i++] = (u8) ((ns_coeff1_2048nu & 0x0000ff00) >> 8);
	buf[i++] = (u8) ((ns_coeff1_2048nu & 0x000000ff));
	buf[i++] = (u8) ((ns_coeff2_2k     & 0x01c00000) >> 22);
	buf[i++] = (u8) ((ns_coeff2_2k     & 0x003fc000) >> 14);
	buf[i++] = (u8) ((ns_coeff2_2k     & 0x00003fc0) >> 6);
	buf[i++] = (u8) ((ns_coeff2_2k     & 0x0000003f));
	buf[i++] = (u8) ((ns_coeff1_8191nu & 0x03000000) >> 24);
	buf[i++] = (u8) ((ns_coeff1_8191nu & 0x00ffc000) >> 16);
	buf[i++] = (u8) ((ns_coeff1_8191nu & 0x0000ff00) >> 8);
	buf[i++] = (u8) ((ns_coeff1_8191nu & 0x000000ff));
	buf[i++] = (u8) ((ns_coeff1_8192nu & 0x03000000) >> 24);
	buf[i++] = (u8) ((ns_coeff1_8192nu & 0x00ffc000) >> 16);
	buf[i++] = (u8) ((ns_coeff1_8192nu & 0x0000ff00) >> 8);
	buf[i++] = (u8) ((ns_coeff1_8192nu & 0x000000ff));
	buf[i++] = (u8) ((ns_coeff1_8193nu & 0x03000000) >> 24);
	buf[i++] = (u8) ((ns_coeff1_8193nu & 0x00ffc000) >> 16);
	buf[i++] = (u8) ((ns_coeff1_8193nu & 0x0000ff00) >> 8);
	buf[i++] = (u8) ((ns_coeff1_8193nu & 0x000000ff));
	buf[i++] = (u8) ((ns_coeff2_8k     & 0x01c00000) >> 22);
	buf[i++] = (u8) ((ns_coeff2_8k     & 0x003fc000) >> 14);
	buf[i++] = (u8) ((ns_coeff2_8k     & 0x00003fc0) >> 6);
	buf[i++] = (u8) ((ns_coeff2_8k     & 0x0000003f));

	deb_info("%s: coeff:", __func__);
	debug_dump(buf, sizeof(buf), deb_info);

	/* program */
	for (i = 0; i < sizeof(buf); i++) {
		ret = af9013_write_reg(state, 0xae00 + i, buf[i]);
		if (ret)
			break;
	}

	return ret;
}

static int af9013_set_adc_ctrl(struct af9013_state *state)
{
	int ret;
	u8 buf[3], tmp, i;
	u32 adc_cw;

	deb_info("%s: adc_clock:%d\n", __func__, state->config.adc_clock);

	/* adc frequency type */
	switch (state->config.adc_clock) {
	case 28800: /* 28.800 MHz */
		tmp = 0;
		break;
	case 20480: /* 20.480 MHz */
		tmp = 1;
		break;
	case 28000: /* 28.000 MHz */
		tmp = 2;
		break;
	case 25000: /* 25.000 MHz */
		tmp = 3;
		break;
	default:
		err("invalid xtal");
		return -EINVAL;
	}

	adc_cw = af913_div(state->config.adc_clock*1000, 1000000ul, 19ul);

	buf[0] = (u8) ((adc_cw & 0x000000ff));
	buf[1] = (u8) ((adc_cw & 0x0000ff00) >> 8);
	buf[2] = (u8) ((adc_cw & 0x00ff0000) >> 16);

	deb_info("%s: adc_cw:", __func__);
	debug_dump(buf, sizeof(buf), deb_info);

	/* program */
	for (i = 0; i < sizeof(buf); i++) {
		ret = af9013_write_reg(state, 0xd180 + i, buf[i]);
		if (ret)
			goto error;
	}
	ret = af9013_write_reg_bits(state, 0x9bd2, 0, 4, tmp);
error:
	return ret;
}

static int af9013_set_freq_ctrl(struct af9013_state *state, fe_bandwidth_t bw)
{
	int ret;
	u16 addr;
	u8 buf[3], i, j;
	u32 adc_freq, freq_cw;
	s8 bfs_spec_inv;
	int if_sample_freq;

	for (j = 0; j < 3; j++) {
		if (j == 0) {
			addr = 0xd140; /* fcw normal */
			bfs_spec_inv = state->config.rf_spec_inv ? -1 : 1;
		} else if (j == 1) {
			addr = 0x9be7; /* fcw dummy ram */
			bfs_spec_inv = state->config.rf_spec_inv ? -1 : 1;
		} else {
			addr = 0x9bea; /* fcw inverted */
			bfs_spec_inv = state->config.rf_spec_inv ? 1 : -1;
		}

		adc_freq       = state->config.adc_clock * 1000;
		if_sample_freq = state->config.tuner_if * 1000;

		/* TDA18271 uses different sampling freq for every bw */
		if (state->config.tuner == AF9013_TUNER_TDA18271) {
			switch (bw) {
			case BANDWIDTH_6_MHZ:
				if_sample_freq = 3300000; /* 3.3 MHz */
				break;
			case BANDWIDTH_7_MHZ:
				if_sample_freq = 3800000; /* 3.8 MHz */
				break;
			case BANDWIDTH_8_MHZ:
			default:
				if_sample_freq = 4300000; /* 4.3 MHz */
				break;
			}
		}

		while (if_sample_freq > (adc_freq / 2))
			if_sample_freq = if_sample_freq - adc_freq;

		if (if_sample_freq >= 0)
			bfs_spec_inv = bfs_spec_inv * (-1);
		else
			if_sample_freq = if_sample_freq * (-1);

		freq_cw = af913_div(if_sample_freq, adc_freq, 23ul);

		if (bfs_spec_inv == -1)
			freq_cw = 0x00800000 - freq_cw;

		buf[0] = (u8) ((freq_cw & 0x000000ff));
		buf[1] = (u8) ((freq_cw & 0x0000ff00) >> 8);
		buf[2] = (u8) ((freq_cw & 0x007f0000) >> 16);


		deb_info("%s: freq_cw:", __func__);
		debug_dump(buf, sizeof(buf), deb_info);

		/* program */
		for (i = 0; i < sizeof(buf); i++) {
			ret = af9013_write_reg(state, addr++, buf[i]);
			if (ret)
				goto error;
		}
	}
error:
	return ret;
}

static int af9013_set_ofdm_params(struct af9013_state *state,
	struct dvb_ofdm_parameters *params, u8 *auto_mode)
{
	int ret;
	u8 i, buf[3] = {0, 0, 0};
	*auto_mode = 0; /* set if parameters are requested to auto set */

	/* Try auto-detect transmission parameters in case of AUTO requested or
	   garbage parameters given by application for compatibility.
	   MPlayer seems to provide garbage parameters currently. */

	switch (params->transmission_mode) {
	case TRANSMISSION_MODE_AUTO:
		*auto_mode = 1;
	case TRANSMISSION_MODE_2K:
		break;
	case TRANSMISSION_MODE_8K:
		buf[0] |= (1 << 0);
		break;
	default:
		deb_info("%s: invalid transmission_mode\n", __func__);
		*auto_mode = 1;
	}

	switch (params->guard_interval) {
	case GUARD_INTERVAL_AUTO:
		*auto_mode = 1;
	case GUARD_INTERVAL_1_32:
		break;
	case GUARD_INTERVAL_1_16:
		buf[0] |= (1 << 2);
		break;
	case GUARD_INTERVAL_1_8:
		buf[0] |= (2 << 2);
		break;
	case GUARD_INTERVAL_1_4:
		buf[0] |= (3 << 2);
		break;
	default:
		deb_info("%s: invalid guard_interval\n", __func__);
		*auto_mode = 1;
	}

	switch (params->hierarchy_information) {
	case HIERARCHY_AUTO:
		*auto_mode = 1;
	case HIERARCHY_NONE:
		break;
	case HIERARCHY_1:
		buf[0] |= (1 << 4);
		break;
	case HIERARCHY_2:
		buf[0] |= (2 << 4);
		break;
	case HIERARCHY_4:
		buf[0] |= (3 << 4);
		break;
	default:
		deb_info("%s: invalid hierarchy_information\n", __func__);
		*auto_mode = 1;
	};

	switch (params->constellation) {
	case QAM_AUTO:
		*auto_mode = 1;
	case QPSK:
		break;
	case QAM_16:
		buf[1] |= (1 << 6);
		break;
	case QAM_64:
		buf[1] |= (2 << 6);
		break;
	default:
		deb_info("%s: invalid constellation\n", __func__);
		*auto_mode = 1;
	}

	/* Use HP. How and which case we can switch to LP? */
	buf[1] |= (1 << 4);

	switch (params->code_rate_HP) {
	case FEC_AUTO:
		*auto_mode = 1;
	case FEC_1_2:
		break;
	case FEC_2_3:
		buf[2] |= (1 << 0);
		break;
	case FEC_3_4:
		buf[2] |= (2 << 0);
		break;
	case FEC_5_6:
		buf[2] |= (3 << 0);
		break;
	case FEC_7_8:
		buf[2] |= (4 << 0);
		break;
	default:
		deb_info("%s: invalid code_rate_HP\n", __func__);
		*auto_mode = 1;
	}

	switch (params->code_rate_LP) {
	case FEC_AUTO:
	/* if HIERARCHY_NONE and FEC_NONE then LP FEC is set to FEC_AUTO
	   by dvb_frontend.c for compatibility */
		if (params->hierarchy_information != HIERARCHY_NONE)
			*auto_mode = 1;
	case FEC_1_2:
		break;
	case FEC_2_3:
		buf[2] |= (1 << 3);
		break;
	case FEC_3_4:
		buf[2] |= (2 << 3);
		break;
	case FEC_5_6:
		buf[2] |= (3 << 3);
		break;
	case FEC_7_8:
		buf[2] |= (4 << 3);
		break;
	case FEC_NONE:
		if (params->hierarchy_information == HIERARCHY_AUTO)
			break;
	default:
		deb_info("%s: invalid code_rate_LP\n", __func__);
		*auto_mode = 1;
	}

	switch (params->bandwidth) {
	case BANDWIDTH_6_MHZ:
		break;
	case BANDWIDTH_7_MHZ:
		buf[1] |= (1 << 2);
		break;
	case BANDWIDTH_8_MHZ:
		buf[1] |= (2 << 2);
		break;
	default:
		deb_info("%s: invalid bandwidth\n", __func__);
		buf[1] |= (2 << 2); /* cannot auto-detect BW, try 8 MHz */
	}

	/* program */
	for (i = 0; i < sizeof(buf); i++) {
		ret = af9013_write_reg(state, 0xd3c0 + i, buf[i]);
		if (ret)
			break;
	}

	return ret;
}

static int af9013_reset(struct af9013_state *state, u8 sleep)
{
	int ret;
	u8 tmp, i;
	deb_info("%s\n", __func__);

	/* enable OFDM reset */
	ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 1);
	if (ret)
		goto error;

	/* start reset mechanism */
	ret = af9013_write_reg(state, 0xaeff, 1);
	if (ret)
		goto error;

	/* reset is done when bit 1 is set */
	for (i = 0; i < 150; i++) {
		ret = af9013_read_reg_bits(state, 0xd417, 1, 1, &tmp);
		if (ret)
			goto error;
		if (tmp)
			break; /* reset done */
		msleep(10);
	}
	if (!tmp)
		return -ETIMEDOUT;

	/* don't clear reset when going to sleep */
	if (!sleep) {
		/* clear OFDM reset */
		ret = af9013_write_reg_bits(state, 0xd417, 1, 1, 0);
		if (ret)
			goto error;

		/* disable OFDM reset */
		ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 0);
	}
error:
	return ret;
}

static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
{
	int ret;
	deb_info("%s: onoff:%d\n", __func__, onoff);

	if (onoff) {
		/* power on */
		ret = af9013_write_reg_bits(state, 0xd73a, 3, 1, 0);
		if (ret)
			goto error;
		ret = af9013_write_reg_bits(state, 0xd417, 1, 1, 0);
		if (ret)
			goto error;
		ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 0);
	} else {
		/* power off */
		ret = af9013_reset(state, 1);
		if (ret)
			goto error;
		ret = af9013_write_reg_bits(state, 0xd73a, 3, 1, 1);
	}
error:
	return ret;
}

static int af9013_lock_led(struct af9013_state *state, u8 onoff)
{
	deb_info("%s: onoff:%d\n", __func__, onoff);

	return af9013_write_reg_bits(state, 0xd730, 0, 1, onoff);
}

static int af9013_set_frontend(struct dvb_frontend *fe,
	struct dvb_frontend_parameters *params)
{
	struct af9013_state *state = fe->demodulator_priv;
	int ret;
	u8 auto_mode; /* auto set TPS */

	deb_info("%s: freq:%d bw:%d\n", __func__, params->frequency,
		params->u.ofdm.bandwidth);

	state->frequency = params->frequency;

	/* program CFOE coefficients */
	ret = af9013_set_coeff(state, params->u.ofdm.bandwidth);
	if (ret)
		goto error;

	/* program frequency control */
	ret = af9013_set_freq_ctrl(state, params->u.ofdm.bandwidth);
	if (ret)
		goto error;

	/* clear TPS lock flag (inverted flag) */
	ret = af9013_write_reg_bits(state, 0xd330, 3, 1, 1);
	if (ret)
		goto error;

	/* clear MPEG2 lock flag */
	ret = af9013_write_reg_bits(state, 0xd507, 6, 1, 0);
	if (ret)
		goto error;

	/* empty channel function */
	ret = af9013_write_reg_bits(state, 0x9bfe, 0, 1, 0);
	if (ret)
		goto error;

	/* empty DVB-T channel function */
	ret = af9013_write_reg_bits(state, 0x9bc2, 0, 1, 0);
	if (ret)
		goto error;

	/* program tuner */
	if (fe->ops.tuner_ops.set_params)
		fe->ops.tuner_ops.set_params(fe, params);

	/* program TPS and bandwidth, check if auto mode needed */
	ret = af9013_set_ofdm_params(state, &params->u.ofdm, &auto_mode);
	if (ret)
		goto error;

	if (auto_mode) {
		/* clear easy mode flag */
		ret = af9013_write_reg(state, 0xaefd, 0);
		deb_info("%s: auto TPS\n", __func__);
	} else {
		/* set easy mode flag */
		ret = af9013_write_reg(state, 0xaefd, 1);
		if (ret)
			goto error;
		ret = af9013_write_reg(state, 0xaefe, 0);
		deb_info("%s: manual TPS\n", __func__);
	}
	if (ret)
		goto error;

	/* everything is set, lets try to receive channel - OFSM GO! */
	ret = af9013_write_reg(state, 0xffff, 0);
	if (ret)
		goto error;

error:
	return ret;
}

static int af9013_get_frontend(struct dvb_frontend *fe,
	struct dvb_frontend_parameters *p)
{
	struct af9013_state *state = fe->demodulator_priv;
	int ret;
	u8 i, buf[3];
	deb_info("%s\n", __func__);

	/* read TPS registers */
	for (i = 0; i < 3; i++) {
		ret = af9013_read_reg(state, 0xd3c0 + i, &buf[i]);
		if (ret)
			goto error;
	}

	switch ((buf[1] >> 6) & 3) {
	case 0:
		p->u.ofdm.constellation = QPSK;
		break;
	case 1:
		p->u.ofdm.constellation = QAM_16;
		break;
	case 2:
		p->u.ofdm.constellation = QAM_64;
		break;
	}

	switch ((buf[0] >> 0) & 3) {
	case 0:
		p->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
		break;
	case 1:
		p->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
	}

	switch ((buf[0] >> 2) & 3) {
	case 0:
		p->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
		break;
	case 1:
		p->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
		break;
	case 2:
		p->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
		break;
	case 3:
		p->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
		break;
	}

	switch ((buf[0] >> 4) & 7) {
	case 0:
		p->u.ofdm.hierarchy_information = HIERARCHY_NONE;
		break;
	case 1:
		p->u.ofdm.hierarchy_information = HIERARCHY_1;
		break;
	case 2:
		p->u.ofdm.hierarchy_information = HIERARCHY_2;
		break;
	case 3:
		p->u.ofdm.hierarchy_information = HIERARCHY_4;
		break;
	}

	switch ((buf[2] >> 0) & 7) {
	case 0:
		p->u.ofdm.code_rate_HP = FEC_1_2;
		break;
	case 1:
		p->u.ofdm.code_rate_HP = FEC_2_3;
		break;
	case 2:
		p->u.ofdm.code_rate_HP = FEC_3_4;
		break;
	case 3:
		p->u.ofdm.code_rate_HP = FEC_5_6;
		break;
	case 4:
		p->u.ofdm.code_rate_HP = FEC_7_8;
		break;
	}

	switch ((buf[2] >> 3) & 7) {
	case 0:
		p->u.ofdm.code_rate_LP = FEC_1_2;
		break;
	case 1:
		p->u.ofdm.code_rate_LP = FEC_2_3;
		break;
	case 2:
		p->u.ofdm.code_rate_LP = FEC_3_4;
		break;
	case 3:
		p->u.ofdm.code_rate_LP = FEC_5_6;
		break;
	case 4:
		p->u.ofdm.code_rate_LP = FEC_7_8;
		break;
	}

	switch ((buf[1] >> 2) & 3) {
	case 0:
		p->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
		break;
	case 1:
		p->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
		break;
	case 2:
		p->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
		break;
	}

	p->inversion = INVERSION_AUTO;
	p->frequency = state->frequency;

error:
	return ret;
}

static int af9013_update_ber_unc(struct dvb_frontend *fe)
{
	struct af9013_state *state = fe->demodulator_priv;
	int ret;
	u8 buf[3], i;
	u32 error_bit_count = 0;
	u32 total_bit_count = 0;
	u32 abort_packet_count = 0;

	state->ber = 0;

	/* check if error bit count is ready */
	ret = af9013_read_reg_bits(state, 0xd391, 4, 1, &buf[0]);
	if (ret)
		goto error;
	if (!buf[0])
		goto exit;

	/* get RSD packet abort count */
	for (i = 0; i < 2; i++) {
		ret = af9013_read_reg(state, 0xd38a + i, &buf[i]);
		if (ret)
			goto error;
	}
	abort_packet_count = (buf[1] << 8) + buf[0];

	/* get error bit count */
	for (i = 0; i < 3; i++) {
		ret = af9013_read_reg(state, 0xd387 + i, &buf[i]);
		if (ret)
			goto error;
	}
	error_bit_count = (buf[2] << 16) + (buf[1] << 8) + buf[0];
	error_bit_count = error_bit_count - abort_packet_count * 8 * 8;

	/* get used RSD counting period (10000 RSD packets used) */
	for (i = 0; i < 2; i++) {
		ret = af9013_read_reg(state, 0xd385 + i, &buf[i]);
		if (ret)
			goto error;
	}
	total_bit_count = (buf[1] << 8) + buf[0];
	total_bit_count = total_bit_count - abort_packet_count;
	total_bit_count = total_bit_count * 204 * 8;

	if (total_bit_count)
		state->ber = error_bit_count * 1000000000 / total_bit_count;

	state->ucblocks += abort_packet_count;

	deb_info("%s: err bits:%d total bits:%d abort count:%d\n", __func__,
		error_bit_count, total_bit_count, abort_packet_count);

	/* set BER counting range */
	ret = af9013_write_reg(state, 0xd385, 10000 & 0xff);
	if (ret)
		goto error;
	ret = af9013_write_reg(state, 0xd386, 10000 >> 8);
	if (ret)
		goto error;
	/* reset and start BER counter */
	ret = af9013_write_reg_bits(state, 0xd391, 4, 1, 1);
	if (ret)
		goto error;

exit:
error:
	return ret;
}

static int af9013_update_snr(struct dvb_frontend *fe)
{
	struct af9013_state *state = fe->demodulator_priv;
	int ret;
	u8 buf[3], i, len;
	u32 quant = 0;
	struct snr_table *uninitialized_var(snr_table);

	/* check if quantizer ready (for snr) */
	ret = af9013_read_reg_bits(state, 0xd2e1, 3, 1, &buf[0]);
	if (ret)
		goto error;
	if (buf[0]) {
		/* quantizer ready - read it */
		for (i = 0; i < 3; i++) {
			ret = af9013_read_reg(state, 0xd2e3 + i, &buf[i]);
			if (ret)
				goto error;
		}
		quant = (buf[2] << 16) + (buf[1] << 8) + buf[0];

		/* read current constellation */
		ret = af9013_read_reg(state, 0xd3c1, &buf[0]);
		if (ret)
			goto error;

		switch ((buf[0] >> 6) & 3) {
		case 0:
			len = ARRAY_SIZE(qpsk_snr_table);
			snr_table = qpsk_snr_table;
			break;
		case 1:
			len = ARRAY_SIZE(qam16_snr_table);
			snr_table = qam16_snr_table;
			break;
		case 2:
			len = ARRAY_SIZE(qam64_snr_table);
			snr_table = qam64_snr_table;
			break;
		default:
			len = 0;
			break;
		}

		if (len) {
			for (i = 0; i < len; i++) {
				if (quant < snr_table[i].val) {
					state->snr = snr_table[i].snr * 10;
					break;
				}
			}
		}

		/* set quantizer super frame count */
		ret = af9013_write_reg(state, 0xd2e2, 1);
		if (ret)
			goto error;

		/* check quantizer availability */
		for (i = 0; i < 10; i++) {
			msleep(10);
			ret = af9013_read_reg_bits(state, 0xd2e6, 0, 1,
				&buf[0]);
			if (ret)
				goto error;
			if (!buf[0])
				break;
		}

		/* reset quantizer */
		ret = af9013_write_reg_bits(state, 0xd2e1, 3, 1, 1);
		if (ret)
			goto error;
	}

error:
	return ret;
}

static int af9013_update_signal_strength(struct dvb_frontend *fe)
{
	struct af9013_state *state = fe->demodulator_priv;
	int ret;
	u8 tmp0;
	u8 rf_gain, rf_50, rf_80, if_gain, if_50, if_80;
	int signal_strength;

	deb_info("%s\n", __func__);

	state->signal_strength = 0;

	ret = af9013_read_reg_bits(state, 0x9bee, 0, 1, &tmp0);
	if (ret)
		goto error;
	if (tmp0) {
		ret = af9013_read_reg(state, 0x9bbd, &rf_50);
		if (ret)
			goto error;
		ret = af9013_read_reg(state, 0x9bd0, &rf_80);
		if (ret)
			goto error;
		ret = af9013_read_reg(state, 0x9be2, &if_50);
		if (ret)
			goto error;
		ret = af9013_read_reg(state, 0x9be4, &if_80);
		if (ret)
			goto error;
		ret = af9013_read_reg(state, 0xd07c, &rf_gain);
		if (ret)
			goto error;
		ret = af9013_read_reg(state, 0xd07d, &if_gain);
		if (ret)
			goto error;
		signal_strength = (0xffff / (9 * (rf_50 + if_50) - \
			11 * (rf_80 + if_80))) * (10 * (rf_gain + if_gain) - \
			11 * (rf_80 + if_80));
		if (signal_strength < 0)
			signal_strength = 0;
		else if (signal_strength > 0xffff)
			signal_strength = 0xffff;

		state->signal_strength = signal_strength;
	}

error:
	return ret;
}

static int af9013_update_statistics(struct dvb_frontend *fe)
{
	struct af9013_state *state = fe->demodulator_priv;
	int ret;

	if (time_before(jiffies, state->next_statistics_check))
		return 0;

	/* set minimum statistic update interval */
	state->next_statistics_check = jiffies + msecs_to_jiffies(1200);

	ret = af9013_update_signal_strength(fe);
	if (ret)
		goto error;
	ret = af9013_update_snr(fe);
	if (ret)
		goto error;
	ret = af9013_update_ber_unc(fe);
	if (ret)
		goto error;

error:
	return ret;
}

static int af9013_get_tune_settings(struct dvb_frontend *fe,
	struct dvb_frontend_tune_settings *fesettings)
{
	fesettings->min_delay_ms = 800;
	fesettings->step_size = 0;
	fesettings->max_drift = 0;

	return 0;
}

static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status)
{
	struct af9013_state *state = fe->demodulator_priv;
	int ret = 0;
	u8 tmp;
	*status = 0;

	/* TPS lock */
	ret = af9013_read_reg_bits(state, 0xd330, 3, 1, &tmp);
	if (ret)
		goto error;
	if (tmp)
		*status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL;

	/* MPEG2 lock */
	ret = af9013_read_reg_bits(state, 0xd507, 6, 1, &tmp);
	if (ret)
		goto error;
	if (tmp)
		*status |= FE_HAS_SYNC | FE_HAS_LOCK;

	if (!(*status & FE_HAS_SIGNAL)) {
		/* AGC lock */
		ret = af9013_read_reg_bits(state, 0xd1a0, 6, 1, &tmp);
		if (ret)
			goto error;
		if (tmp)
			*status |= FE_HAS_SIGNAL;
	}

	if (!(*status & FE_HAS_CARRIER)) {
		/* CFO lock */
		ret = af9013_read_reg_bits(state, 0xd333, 7, 1, &tmp);
		if (ret)
			goto error;
		if (tmp)
			*status |= FE_HAS_CARRIER;
	}

	if (!(*status & FE_HAS_CARRIER)) {
		/* SFOE lock */
		ret = af9013_read_reg_bits(state, 0xd334, 6, 1, &tmp);
		if (ret)
			goto error;
		if (tmp)
			*status |= FE_HAS_CARRIER;
	}

	ret = af9013_update_statistics(fe);

error:
	return ret;
}


static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
{
	struct af9013_state *state = fe->demodulator_priv;
	int ret;
	ret = af9013_update_statistics(fe);
	*ber = state->ber;
	return ret;
}

static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
	struct af9013_state *state = fe->demodulator_priv;
	int ret;
	ret = af9013_update_statistics(fe);
	*strength = state->signal_strength;
	return ret;
}

static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
{
	struct af9013_state *state = fe->demodulator_priv;
	int ret;
	ret = af9013_update_statistics(fe);
	*snr = state->snr;
	return ret;
}

static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
	struct af9013_state *state = fe->demodulator_priv;
	int ret;
	ret = af9013_update_statistics(fe);
	*ucblocks = state->ucblocks;
	return ret;
}

static int af9013_sleep(struct dvb_frontend *fe)
{
	struct af9013_state *state = fe->demodulator_priv;
	int ret;
	deb_info("%s\n", __func__);

	ret = af9013_lock_led(state, 0);
	if (ret)
		goto error;

	ret = af9013_power_ctrl(state, 0);
error:
	return ret;
}

static int af9013_init(struct dvb_frontend *fe)
{
	struct af9013_state *state = fe->demodulator_priv;
	int ret, i, len;
	u8 tmp0, tmp1;
	struct regdesc *init;
	deb_info("%s\n", __func__);

	/* reset OFDM */
	ret = af9013_reset(state, 0);
	if (ret)
		goto error;

	/* power on */
	ret = af9013_power_ctrl(state, 1);
	if (ret)
		goto error;

	/* enable ADC */
	ret = af9013_write_reg(state, 0xd73a, 0xa4);
	if (ret)
		goto error;

	/* write API version to firmware */
	for (i = 0; i < sizeof(state->config.api_version); i++) {
		ret = af9013_write_reg(state, 0x9bf2 + i,
			state->config.api_version[i]);
		if (ret)
			goto error;
	}

	/* program ADC control */
	ret = af9013_set_adc_ctrl(state);
	if (ret)
		goto error;

	/* set I2C master clock */
	ret = af9013_write_reg(state, 0xd416, 0x14);
	if (ret)
		goto error;

	/* set 16 embx */
	ret = af9013_write_reg_bits(state, 0xd700, 1, 1, 1);
	if (ret)
		goto error;

	/* set no trigger */
	ret = af9013_write_reg_bits(state, 0xd700, 2, 1, 0);
	if (ret)
		goto error;

	/* set read-update bit for constellation */
	ret = af9013_write_reg_bits(state, 0xd371, 1, 1, 1);
	if (ret)
		goto error;

	/* enable FEC monitor */
	ret = af9013_write_reg_bits(state, 0xd392, 1, 1, 1);
	if (ret)
		goto error;

	/* load OFSM settings */
	deb_info("%s: load ofsm settings\n", __func__);
	len = ARRAY_SIZE(ofsm_init);
	init = ofsm_init;
	for (i = 0; i < len; i++) {
		ret = af9013_write_reg_bits(state, init[i].addr, init[i].pos,
			init[i].len, init[i].val);
		if (ret)
			goto error;
	}

	/* load tuner specific settings */
	deb_info("%s: load tuner specific settings\n", __func__);
	switch (state->config.tuner) {
	case AF9013_TUNER_MXL5003D:
		len = ARRAY_SIZE(tuner_init_mxl5003d);
		init = tuner_init_mxl5003d;
		break;
	case AF9013_TUNER_MXL5005D:
	case AF9013_TUNER_MXL5005R:
		len = ARRAY_SIZE(tuner_init_mxl5005);
		init = tuner_init_mxl5005;
		break;
	case AF9013_TUNER_ENV77H11D5:
		len = ARRAY_SIZE(tuner_init_env77h11d5);
		init = tuner_init_env77h11d5;
		break;
	case AF9013_TUNER_MT2060:
		len = ARRAY_SIZE(tuner_init_mt2060);
		init = tuner_init_mt2060;
		break;
	case AF9013_TUNER_MC44S803:
		len = ARRAY_SIZE(tuner_init_mc44s803);
		init = tuner_init_mc44s803;
		break;
	case AF9013_TUNER_QT1010:
	case AF9013_TUNER_QT1010A:
		len = ARRAY_SIZE(tuner_init_qt1010);
		init = tuner_init_qt1010;
		break;
	case AF9013_TUNER_MT2060_2:
		len = ARRAY_SIZE(tuner_init_mt2060_2);
		init = tuner_init_mt2060_2;
		break;
	case AF9013_TUNER_TDA18271:
		len = ARRAY_SIZE(tuner_init_tda18271);
		init = tuner_init_tda18271;
		break;
	case AF9013_TUNER_UNKNOWN:
	default:
		len = ARRAY_SIZE(tuner_init_unknown);
		init = tuner_init_unknown;
		break;
	}

	for (i = 0; i < len; i++) {
		ret = af9013_write_reg_bits(state, init[i].addr, init[i].pos,
			init[i].len, init[i].val);
		if (ret)
			goto error;
	}

	/* set TS mode */
	deb_info("%s: setting ts mode\n", __func__);
	tmp0 = 0; /* parallel mode */
	tmp1 = 0; /* serial mode */
	switch (state->config.output_mode) {
	case AF9013_OUTPUT_MODE_PARALLEL:
		tmp0 = 1;
		break;
	case AF9013_OUTPUT_MODE_SERIAL:
		tmp1 = 1;
		break;
	case AF9013_OUTPUT_MODE_USB:
		/* usb mode for AF9015 */
	default:
		break;
	}
	ret = af9013_write_reg_bits(state, 0xd500, 1, 1, tmp0); /* parallel */
	if (ret)
		goto error;
	ret = af9013_write_reg_bits(state, 0xd500, 2, 1, tmp1); /* serial */
	if (ret)
		goto error;

	/* enable lock led */
	ret = af9013_lock_led(state, 1);
	if (ret)
		goto error;

error:
	return ret;
}

static struct dvb_frontend_ops af9013_ops;

static int af9013_download_firmware(struct af9013_state *state)
{
	int i, len, packets, remainder, ret;
	const struct firmware *fw;
	u16 addr = 0x5100; /* firmware start address */
	u16 checksum = 0;
	u8 val;
	u8 fw_params[4];
	u8 *data;
	u8 *fw_file = AF9013_DEFAULT_FIRMWARE;

	msleep(100);
	/* check whether firmware is already running */
	ret = af9013_read_reg(state, 0x98be, &val);
	if (ret)
		goto error;
	else
		deb_info("%s: firmware status:%02x\n", __func__, val);

	if (val == 0x0c) /* fw is running, no need for download */
		goto exit;

	info("found a '%s' in cold state, will try to load a firmware",
		af9013_ops.info.name);

	/* request the firmware, this will block and timeout */
	ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
	if (ret) {
		err("did not find the firmware file. (%s) "
			"Please see linux/Documentation/dvb/ for more details" \
			" on firmware-problems. (%d)",
			fw_file, ret);
		goto error;
	}

	info("downloading firmware from file '%s'", fw_file);

	/* calc checksum */
	for (i = 0; i < fw->size; i++)
		checksum += fw->data[i];

	fw_params[0] = checksum >> 8;
	fw_params[1] = checksum & 0xff;
	fw_params[2] = fw->size >> 8;
	fw_params[3] = fw->size & 0xff;

	/* write fw checksum & size */
	ret = af9013_write_ofsm_regs(state, 0x50fc,
		fw_params, sizeof(fw_params));
	if (ret)
		goto error_release;

	#define FW_PACKET_MAX_DATA  16

	packets = fw->size / FW_PACKET_MAX_DATA;
	remainder = fw->size % FW_PACKET_MAX_DATA;
	len = FW_PACKET_MAX_DATA;
	for (i = 0; i <= packets; i++) {
		if (i == packets)  /* set size of the last packet */
			len = remainder;

		data = (u8 *)(fw->data + i * FW_PACKET_MAX_DATA);
		ret = af9013_write_ofsm_regs(state, addr, data, len);
		addr += FW_PACKET_MAX_DATA;

		if (ret) {
			err("firmware download failed at %d with %d", i, ret);
			goto error_release;
		}
	}

	/* request boot firmware */
	ret = af9013_write_reg(state, 0xe205, 1);
	if (ret)
		goto error_release;

	for (i = 0; i < 15; i++) {
		msleep(100);

		/* check firmware status */
		ret = af9013_read_reg(state, 0x98be, &val);
		if (ret)
			goto error_release;

		deb_info("%s: firmware status:%02x\n", __func__, val);

		if (val == 0x0c || val == 0x04) /* success or fail */
			break;
	}

	if (val == 0x04) {
		err("firmware did not run");
		ret = -1;
	} else if (val != 0x0c) {
		err("firmware boot timeout");
		ret = -1;
	}

error_release:
	release_firmware(fw);
error:
exit:
	if (!ret)
		info("found a '%s' in warm state.", af9013_ops.info.name);
	return ret;
}

static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
	int ret;
	struct af9013_state *state = fe->demodulator_priv;
	deb_info("%s: enable:%d\n", __func__, enable);

	if (state->config.output_mode == AF9013_OUTPUT_MODE_USB)
		ret = af9013_write_reg_bits(state, 0xd417, 3, 1, enable);
	else
		ret = af9013_write_reg_bits(state, 0xd607, 2, 1, enable);

	return ret;
}

static void af9013_release(struct dvb_frontend *fe)
{
	struct af9013_state *state = fe->demodulator_priv;
	kfree(state);
}

static struct dvb_frontend_ops af9013_ops;

struct dvb_frontend *af9013_attach(const struct af9013_config *config,
	struct i2c_adapter *i2c)
{
	int ret;
	struct af9013_state *state = NULL;
	u8 buf[3], i;

	/* allocate memory for the internal state */
	state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
	if (state == NULL)
		goto error;

	/* setup the state */
	state->i2c = i2c;
	memcpy(&state->config, config, sizeof(struct af9013_config));

	/* chip version */
	ret = af9013_read_reg_bits(state, 0xd733, 4, 4, &buf[2]);
	if (ret)
		goto error;

	/* ROM version */
	for (i = 0; i < 2; i++) {
		ret = af9013_read_reg(state, 0x116b + i, &buf[i]);
		if (ret)
			goto error;
	}
	deb_info("%s: chip version:%d ROM version:%d.%d\n", __func__,
		buf[2], buf[0], buf[1]);

	/* download firmware */
	if (state->config.output_mode != AF9013_OUTPUT_MODE_USB) {
		ret = af9013_download_firmware(state);
		if (ret)
			goto error;
	}

	/* firmware version */
	for (i = 0; i < 3; i++) {
		ret = af9013_read_reg(state, 0x5103 + i, &buf[i]);
		if (ret)
			goto error;
	}
	info("firmware version:%d.%d.%d", buf[0], buf[1], buf[2]);

	/* settings for mp2if */
	if (state->config.output_mode == AF9013_OUTPUT_MODE_USB) {
		/* AF9015 split PSB to 1.5k + 0.5k */
		ret = af9013_write_reg_bits(state, 0xd50b, 2, 1, 1);
	} else {
		/* AF9013 change the output bit to data7 */
		ret = af9013_write_reg_bits(state, 0xd500, 3, 1, 1);
		if (ret)
			goto error;
		/* AF9013 set mpeg to full speed */
		ret = af9013_write_reg_bits(state, 0xd502, 4, 1, 1);
	}
	if (ret)
		goto error;
	ret = af9013_write_reg_bits(state, 0xd520, 4, 1, 1);
	if (ret)
		goto error;

	/* set GPIOs */
	for (i = 0; i < sizeof(state->config.gpio); i++) {
		ret = af9013_set_gpio(state, i, state->config.gpio[i]);
		if (ret)
			goto error;
	}

	/* create dvb_frontend */
	memcpy(&state->frontend.ops, &af9013_ops,
		sizeof(struct dvb_frontend_ops));
	state->frontend.demodulator_priv = state;

	return &state->frontend;
error:
	kfree(state);
	return NULL;
}
EXPORT_SYMBOL(af9013_attach);

static struct dvb_frontend_ops af9013_ops = {
	.info = {
		.name = "Afatech AF9013 DVB-T",
		.type = FE_OFDM,
		.frequency_min = 174000000,
		.frequency_max = 862000000,
		.frequency_stepsize = 250000,
		.frequency_tolerance = 0,
		.caps =
			FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
			FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
			FE_CAN_QPSK | FE_CAN_QAM_16 |
			FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
			FE_CAN_TRANSMISSION_MODE_AUTO |
			FE_CAN_GUARD_INTERVAL_AUTO |
			FE_CAN_HIERARCHY_AUTO |
			FE_CAN_RECOVER |
			FE_CAN_MUTE_TS
	},

	.release = af9013_release,
	.init = af9013_init,
	.sleep = af9013_sleep,
	.i2c_gate_ctrl = af9013_i2c_gate_ctrl,

	.set_frontend = af9013_set_frontend,
	.get_frontend = af9013_get_frontend,

	.get_tune_settings = af9013_get_tune_settings,

	.read_status = af9013_read_status,
	.read_ber = af9013_read_ber,
	.read_signal_strength = af9013_read_signal_strength,
	.read_snr = af9013_read_snr,
	.read_ucblocks = af9013_read_ucblocks,
};

module_param_named(debug, af9013_debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");

MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
MODULE_LICENSE("GPL");