/*
* HiSilicon SPI Nor Flash Controller Driver
*
* Copyright (c) 2015-2016 HiSilicon Technologies Co., Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/spi-nor.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
/* Hardware register offsets and field definitions */
#define FMC_CFG 0x00
#define FMC_CFG_OP_MODE_MASK BIT_MASK(0)
#define FMC_CFG_OP_MODE_BOOT 0
#define FMC_CFG_OP_MODE_NORMAL 1
#define FMC_CFG_FLASH_SEL(type) (((type) & 0x3) << 1)
#define FMC_CFG_FLASH_SEL_MASK 0x6
#define FMC_ECC_TYPE(type) (((type) & 0x7) << 5)
#define FMC_ECC_TYPE_MASK GENMASK(7, 5)
#define SPI_NOR_ADDR_MODE_MASK BIT_MASK(10)
#define SPI_NOR_ADDR_MODE_3BYTES (0x0 << 10)
#define SPI_NOR_ADDR_MODE_4BYTES (0x1 << 10)
#define FMC_GLOBAL_CFG 0x04
#define FMC_GLOBAL_CFG_WP_ENABLE BIT(6)
#define FMC_SPI_TIMING_CFG 0x08
#define TIMING_CFG_TCSH(nr) (((nr) & 0xf) << 8)
#define TIMING_CFG_TCSS(nr) (((nr) & 0xf) << 4)
#define TIMING_CFG_TSHSL(nr) ((nr) & 0xf)
#define CS_HOLD_TIME 0x6
#define CS_SETUP_TIME 0x6
#define CS_DESELECT_TIME 0xf
#define FMC_INT 0x18
#define FMC_INT_OP_DONE BIT(0)
#define FMC_INT_CLR 0x20
#define FMC_CMD 0x24
#define FMC_CMD_CMD1(cmd) ((cmd) & 0xff)
#define FMC_ADDRL 0x2c
#define FMC_OP_CFG 0x30
#define OP_CFG_FM_CS(cs) ((cs) << 11)
#define OP_CFG_MEM_IF_TYPE(type) (((type) & 0x7) << 7)
#define OP_CFG_ADDR_NUM(addr) (((addr) & 0x7) << 4)
#define OP_CFG_DUMMY_NUM(dummy) ((dummy) & 0xf)
#define FMC_DATA_NUM 0x38
#define FMC_DATA_NUM_CNT(cnt) ((cnt) & GENMASK(13, 0))
#define FMC_OP 0x3c
#define FMC_OP_DUMMY_EN BIT(8)
#define FMC_OP_CMD1_EN BIT(7)
#define FMC_OP_ADDR_EN BIT(6)
#define FMC_OP_WRITE_DATA_EN BIT(5)
#define FMC_OP_READ_DATA_EN BIT(2)
#define FMC_OP_READ_STATUS_EN BIT(1)
#define FMC_OP_REG_OP_START BIT(0)
#define FMC_DMA_LEN 0x40
#define FMC_DMA_LEN_SET(len) ((len) & GENMASK(27, 0))
#define FMC_DMA_SADDR_D0 0x4c
#define HIFMC_DMA_MAX_LEN (4096)
#define HIFMC_DMA_MASK (HIFMC_DMA_MAX_LEN - 1)
#define FMC_OP_DMA 0x68
#define OP_CTRL_RD_OPCODE(code) (((code) & 0xff) << 16)
#define OP_CTRL_WR_OPCODE(code) (((code) & 0xff) << 8)
#define OP_CTRL_RW_OP(op) ((op) << 1)
#define OP_CTRL_DMA_OP_READY BIT(0)
#define FMC_OP_READ 0x0
#define FMC_OP_WRITE 0x1
#define FMC_WAIT_TIMEOUT 1000000
enum hifmc_iftype {
IF_TYPE_STD,
IF_TYPE_DUAL,
IF_TYPE_DIO,
IF_TYPE_QUAD,
IF_TYPE_QIO,
};
struct hifmc_priv {
u32 chipselect;
u32 clkrate;
struct hifmc_host *host;
};
#define HIFMC_MAX_CHIP_NUM 2
struct hifmc_host {
struct device *dev;
struct mutex lock;
void __iomem *regbase;
void __iomem *iobase;
struct clk *clk;
void *buffer;
dma_addr_t dma_buffer;
struct spi_nor *nor[HIFMC_MAX_CHIP_NUM];
u32 num_chip;
};
static inline int hisi_spi_nor_wait_op_finish(struct hifmc_host *host)
{
u32 reg;
return readl_poll_timeout(host->regbase + FMC_INT, reg,
(reg & FMC_INT_OP_DONE), 0, FMC_WAIT_TIMEOUT);
}
static int hisi_spi_nor_get_if_type(enum spi_nor_protocol proto)
{
enum hifmc_iftype if_type;
switch (proto) {
case SNOR_PROTO_1_1_2:
if_type = IF_TYPE_DUAL;
break;
case SNOR_PROTO_1_2_2:
if_type = IF_TYPE_DIO;
break;
case SNOR_PROTO_1_1_4:
if_type = IF_TYPE_QUAD;
break;
case SNOR_PROTO_1_4_4:
if_type = IF_TYPE_QIO;
break;
case SNOR_PROTO_1_1_1:
default:
if_type = IF_TYPE_STD;
break;
}
return if_type;
}
static void hisi_spi_nor_init(struct hifmc_host *host)
{
u32 reg;
reg = TIMING_CFG_TCSH(CS_HOLD_TIME)
| TIMING_CFG_TCSS(CS_SETUP_TIME)
| TIMING_CFG_TSHSL(CS_DESELECT_TIME);
writel(reg, host->regbase + FMC_SPI_TIMING_CFG);
}
static int hisi_spi_nor_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
struct hifmc_priv *priv = nor->priv;
struct hifmc_host *host = priv->host;
int ret;
mutex_lock(&host->lock);
ret = clk_set_rate(host->clk, priv->clkrate);
if (ret)
goto out;
ret = clk_prepare_enable(host->clk);
if (ret)
goto out;
return 0;
out:
mutex_unlock(&host->lock);
return ret;
}
static void hisi_spi_nor_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
struct hifmc_priv *priv = nor->priv;
struct hifmc_host *host = priv->host;
clk_disable_unprepare(host->clk);
mutex_unlock(&host->lock);
}
static int hisi_spi_nor_op_reg(struct spi_nor *nor,
u8 opcode, int len, u8 optype)
{
struct hifmc_priv *priv = nor->priv;
struct hifmc_host *host = priv->host;
u32 reg;
reg = FMC_CMD_CMD1(opcode);
writel(reg, host->regbase + FMC_CMD);
reg = FMC_DATA_NUM_CNT(len);
writel(reg, host->regbase + FMC_DATA_NUM);
reg = OP_CFG_FM_CS(priv->chipselect);
writel(reg, host->regbase + FMC_OP_CFG);
writel(0xff, host->regbase + FMC_INT_CLR);
reg = FMC_OP_CMD1_EN | FMC_OP_REG_OP_START | optype;
writel(reg, host->regbase + FMC_OP);
return hisi_spi_nor_wait_op_finish(host);
}
static int hisi_spi_nor_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
int len)
{
struct hifmc_priv *priv = nor->priv;
struct hifmc_host *host = priv->host;
int ret;
ret = hisi_spi_nor_op_reg(nor, opcode, len, FMC_OP_READ_DATA_EN);
if (ret)
return ret;
memcpy_fromio(buf, host->iobase, len);
return 0;
}
static int hisi_spi_nor_write_reg(struct spi_nor *nor, u8 opcode,
u8 *buf, int len)
{
struct hifmc_priv *priv = nor->priv;
struct hifmc_host *host = priv->host;
if (len)
memcpy_toio(host->iobase, buf, len);
return hisi_spi_nor_op_reg(nor, opcode, len, FMC_OP_WRITE_DATA_EN);
}
static int hisi_spi_nor_dma_transfer(struct spi_nor *nor, loff_t start_off,
dma_addr_t dma_buf, size_t len, u8 op_type)
{
struct hifmc_priv *priv = nor->priv;
struct hifmc_host *host = priv->host;
u8 if_type = 0;
u32 reg;
reg = readl(host->regbase + FMC_CFG);
reg &= ~(FMC_CFG_OP_MODE_MASK | SPI_NOR_ADDR_MODE_MASK);
reg |= FMC_CFG_OP_MODE_NORMAL;
reg |= (nor->addr_width == 4) ? SPI_NOR_ADDR_MODE_4BYTES
: SPI_NOR_ADDR_MODE_3BYTES;
writel(reg, host->regbase + FMC_CFG);
writel(start_off, host->regbase + FMC_ADDRL);
writel(dma_buf, host->regbase + FMC_DMA_SADDR_D0);
writel(FMC_DMA_LEN_SET(len), host->regbase + FMC_DMA_LEN);
reg = OP_CFG_FM_CS(priv->chipselect);
if (op_type == FMC_OP_READ)
if_type = hisi_spi_nor_get_if_type(nor->read_proto);
else
if_type = hisi_spi_nor_get_if_type(nor->write_proto);
reg |= OP_CFG_MEM_IF_TYPE(if_type);
if (op_type == FMC_OP_READ)
reg |= OP_CFG_DUMMY_NUM(nor->read_dummy >> 3);
writel(reg, host->regbase + FMC_OP_CFG);
writel(0xff, host->regbase + FMC_INT_CLR);
reg = OP_CTRL_RW_OP(op_type) | OP_CTRL_DMA_OP_READY;
reg |= (op_type == FMC_OP_READ)
? OP_CTRL_RD_OPCODE(nor->read_opcode)
: OP_CTRL_WR_OPCODE(nor->program_opcode);
writel(reg, host->regbase + FMC_OP_DMA);
return hisi_spi_nor_wait_op_finish(host);
}
static ssize_t hisi_spi_nor_read(struct spi_nor *nor, loff_t from, size_t len,
u_char *read_buf)
{
struct hifmc_priv *priv = nor->priv;
struct hifmc_host *host = priv->host;
size_t offset;
int ret;
for (offset = 0; offset < len; offset += HIFMC_DMA_MAX_LEN) {
size_t trans = min_t(size_t, HIFMC_DMA_MAX_LEN, len - offset);
ret = hisi_spi_nor_dma_transfer(nor,
from + offset, host->dma_buffer, trans, FMC_OP_READ);
if (ret) {
dev_warn(nor->dev, "DMA read timeout\n");
return ret;
}
memcpy(read_buf + offset, host->buffer, trans);
}
return len;
}
static ssize_t hisi_spi_nor_write(struct spi_nor *nor, loff_t to,
size_t len, const u_char *write_buf)
{
struct hifmc_priv *priv = nor->priv;
struct hifmc_host *host = priv->host;
size_t offset;
int ret;
for (offset = 0; offset < len; offset += HIFMC_DMA_MAX_LEN) {
size_t trans = min_t(size_t, HIFMC_DMA_MAX_LEN, len - offset);
memcpy(host->buffer, write_buf + offset, trans);
ret = hisi_spi_nor_dma_transfer(nor,
to + offset, host->dma_buffer, trans, FMC_OP_WRITE);
if (ret) {
dev_warn(nor->dev, "DMA write timeout\n");
return ret;
}
}
return len;
}
/**
* Get spi flash device information and register it as a mtd device.
*/
static int hisi_spi_nor_register(struct device_node *np,
struct hifmc_host *host)
{
const struct spi_nor_hwcaps hwcaps = {
.mask = SNOR_HWCAPS_READ |
SNOR_HWCAPS_READ_FAST |
SNOR_HWCAPS_READ_1_1_2 |
SNOR_HWCAPS_READ_1_1_4 |
SNOR_HWCAPS_PP,
};
struct device *dev = host->dev;
struct spi_nor *nor;
struct hifmc_priv *priv;
struct mtd_info *mtd;
int ret;
nor = devm_kzalloc(dev, sizeof(*nor), GFP_KERNEL);
if (!nor)
return -ENOMEM;
nor->dev = dev;
spi_nor_set_flash_node(nor, np);
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
ret = of_property_read_u32(np, "reg", &priv->chipselect);
if (ret) {
dev_err(dev, "There's no reg property for %pOF\n",
np);
return ret;
}
ret = of_property_read_u32(np, "spi-max-frequency",
&priv->clkrate);
if (ret) {
dev_err(dev, "There's no spi-max-frequency property for %pOF\n",
np);
return ret;
}
priv->host = host;
nor->priv = priv;
nor->prepare = hisi_spi_nor_prep;
nor->unprepare = hisi_spi_nor_unprep;
nor->read_reg = hisi_spi_nor_read_reg;
nor->write_reg = hisi_spi_nor_write_reg;
nor->read = hisi_spi_nor_read;
nor->write = hisi_spi_nor_write;
nor->erase = NULL;
ret = spi_nor_scan(nor, NULL, &hwcaps);
if (ret)
return ret;
mtd = &nor->mtd;
mtd->name = np->name;
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
return ret;
host->nor[host->num_chip] = nor;
host->num_chip++;
return 0;
}
static void hisi_spi_nor_unregister_all(struct hifmc_host *host)
{
int i;
for (i = 0; i < host->num_chip; i++)
mtd_device_unregister(&host->nor[i]->mtd);
}
static int hisi_spi_nor_register_all(struct hifmc_host *host)
{
struct device *dev = host->dev;
struct device_node *np;
int ret;
for_each_available_child_of_node(dev->of_node, np) {
ret = hisi_spi_nor_register(np, host);
if (ret)
goto fail;
if (host->num_chip == HIFMC_MAX_CHIP_NUM) {
dev_warn(dev, "Flash device number exceeds the maximum chipselect number\n");
break;
}
}
return 0;
fail:
hisi_spi_nor_unregister_all(host);
return ret;
}
static int hisi_spi_nor_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct resource *res;
struct hifmc_host *host;
int ret;
host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
if (!host)
return -ENOMEM;
platform_set_drvdata(pdev, host);
host->dev = dev;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "control");
host->regbase = devm_ioremap_resource(dev, res);
if (IS_ERR(host->regbase))
return PTR_ERR(host->regbase);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "memory");
host->iobase = devm_ioremap_resource(dev, res);
if (IS_ERR(host->iobase))
return PTR_ERR(host->iobase);
host->clk = devm_clk_get(dev, NULL);
if (IS_ERR(host->clk))
return PTR_ERR(host->clk);
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (ret) {
dev_warn(dev, "Unable to set dma mask\n");
return ret;
}
host->buffer = dmam_alloc_coherent(dev, HIFMC_DMA_MAX_LEN,
&host->dma_buffer, GFP_KERNEL);
if (!host->buffer)
return -ENOMEM;
ret = clk_prepare_enable(host->clk);
if (ret)
return ret;
mutex_init(&host->lock);
hisi_spi_nor_init(host);
ret = hisi_spi_nor_register_all(host);
if (ret)
mutex_destroy(&host->lock);
clk_disable_unprepare(host->clk);
return ret;
}
static int hisi_spi_nor_remove(struct platform_device *pdev)
{
struct hifmc_host *host = platform_get_drvdata(pdev);
hisi_spi_nor_unregister_all(host);
mutex_destroy(&host->lock);
clk_disable_unprepare(host->clk);
return 0;
}
static const struct of_device_id hisi_spi_nor_dt_ids[] = {
{ .compatible = "hisilicon,fmc-spi-nor"},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, hisi_spi_nor_dt_ids);
static struct platform_driver hisi_spi_nor_driver = {
.driver = {
.name = "hisi-sfc",
.of_match_table = hisi_spi_nor_dt_ids,
},
.probe = hisi_spi_nor_probe,
.remove = hisi_spi_nor_remove,
};
module_platform_driver(hisi_spi_nor_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("HiSilicon SPI Nor Flash Controller Driver");