summaryrefslogblamecommitdiffstats
path: root/drivers/net/hamradio/dmascc.c
blob: 0f8b9afd55b43c2b739713252a4aab37be086f3b (plain) (tree)
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144


























































































































































































































































                                                                             
                                                  





























                                                                         
                                     





























                                                                           




























































































































                                                                                          
                                                    

                                
                                                   
                        
                                      
                               

                                                              








































































































































                                                                                         






                                                       
                                                    







































































































































































































































































































































































































































































































































































                                                                                   
                                                 























































































































































                                                                                         
                                                                        





















































































































































































                                                                              
/*
 * Driver for high-speed SCC boards (those with DMA support)
 * Copyright (C) 1997-2000 Klaus Kudielka
 *
 * S5SCC/DMA support by Janko Koleznik S52HI
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */


#include <linux/module.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/if_arp.h>
#include <linux/in.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/netdevice.h>
#include <linux/rtnetlink.h>
#include <linux/sockios.h>
#include <linux/workqueue.h>
#include <asm/atomic.h>
#include <asm/bitops.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <net/ax25.h>
#include "z8530.h"


/* Number of buffers per channel */

#define NUM_TX_BUF      2	/* NUM_TX_BUF >= 1 (min. 2 recommended) */
#define NUM_RX_BUF      6	/* NUM_RX_BUF >= 1 (min. 2 recommended) */
#define BUF_SIZE        1576	/* BUF_SIZE >= mtu + hard_header_len */


/* Cards supported */

#define HW_PI           { "Ottawa PI", 0x300, 0x20, 0x10, 8, \
                            0, 8, 1843200, 3686400 }
#define HW_PI2          { "Ottawa PI2", 0x300, 0x20, 0x10, 8, \
			    0, 8, 3686400, 7372800 }
#define HW_TWIN         { "Gracilis PackeTwin", 0x200, 0x10, 0x10, 32, \
			    0, 4, 6144000, 6144000 }
#define HW_S5           { "S5SCC/DMA", 0x200, 0x10, 0x10, 32, \
                          0, 8, 4915200, 9830400 }

#define HARDWARE        { HW_PI, HW_PI2, HW_TWIN, HW_S5 }

#define TMR_0_HZ        25600	/* Frequency of timer 0 */

#define TYPE_PI         0
#define TYPE_PI2        1
#define TYPE_TWIN       2
#define TYPE_S5         3
#define NUM_TYPES       4

#define MAX_NUM_DEVS    32


/* SCC chips supported */

#define Z8530           0
#define Z85C30          1
#define Z85230          2

#define CHIPNAMES       { "Z8530", "Z85C30", "Z85230" }


/* I/O registers */

/* 8530 registers relative to card base */
#define SCCB_CMD        0x00
#define SCCB_DATA       0x01
#define SCCA_CMD        0x02
#define SCCA_DATA       0x03

/* 8253/8254 registers relative to card base */
#define TMR_CNT0        0x00
#define TMR_CNT1        0x01
#define TMR_CNT2        0x02
#define TMR_CTRL        0x03

/* Additional PI/PI2 registers relative to card base */
#define PI_DREQ_MASK    0x04

/* Additional PackeTwin registers relative to card base */
#define TWIN_INT_REG    0x08
#define TWIN_CLR_TMR1   0x09
#define TWIN_CLR_TMR2   0x0a
#define TWIN_SPARE_1    0x0b
#define TWIN_DMA_CFG    0x08
#define TWIN_SERIAL_CFG 0x09
#define TWIN_DMA_CLR_FF 0x0a
#define TWIN_SPARE_2    0x0b


/* PackeTwin I/O register values */

/* INT_REG */
#define TWIN_SCC_MSK       0x01
#define TWIN_TMR1_MSK      0x02
#define TWIN_TMR2_MSK      0x04
#define TWIN_INT_MSK       0x07

/* SERIAL_CFG */
#define TWIN_DTRA_ON       0x01
#define TWIN_DTRB_ON       0x02
#define TWIN_EXTCLKA       0x04
#define TWIN_EXTCLKB       0x08
#define TWIN_LOOPA_ON      0x10
#define TWIN_LOOPB_ON      0x20
#define TWIN_EI            0x80

/* DMA_CFG */
#define TWIN_DMA_HDX_T1    0x08
#define TWIN_DMA_HDX_R1    0x0a
#define TWIN_DMA_HDX_T3    0x14
#define TWIN_DMA_HDX_R3    0x16
#define TWIN_DMA_FDX_T3R1  0x1b
#define TWIN_DMA_FDX_T1R3  0x1d


/* Status values */

#define IDLE      0
#define TX_HEAD   1
#define TX_DATA   2
#define TX_PAUSE  3
#define TX_TAIL   4
#define RTS_OFF   5
#define WAIT      6
#define DCD_ON    7
#define RX_ON     8
#define DCD_OFF   9


/* Ioctls */

#define SIOCGSCCPARAM SIOCDEVPRIVATE
#define SIOCSSCCPARAM (SIOCDEVPRIVATE+1)


/* Data types */

struct scc_param {
	int pclk_hz;		/* frequency of BRG input (don't change) */
	int brg_tc;		/* BRG terminal count; BRG disabled if < 0 */
	int nrzi;		/* 0 (nrz), 1 (nrzi) */
	int clocks;		/* see dmascc_cfg documentation */
	int txdelay;		/* [1/TMR_0_HZ] */
	int txtimeout;		/* [1/HZ] */
	int txtail;		/* [1/TMR_0_HZ] */
	int waittime;		/* [1/TMR_0_HZ] */
	int slottime;		/* [1/TMR_0_HZ] */
	int persist;		/* 1 ... 256 */
	int dma;		/* -1 (disable), 0, 1, 3 */
	int txpause;		/* [1/TMR_0_HZ] */
	int rtsoff;		/* [1/TMR_0_HZ] */
	int dcdon;		/* [1/TMR_0_HZ] */
	int dcdoff;		/* [1/TMR_0_HZ] */
};

struct scc_hardware {
	char *name;
	int io_region;
	int io_delta;
	int io_size;
	int num_devs;
	int scc_offset;
	int tmr_offset;
	int tmr_hz;
	int pclk_hz;
};

struct scc_priv {
	int type;
	int chip;
	struct net_device *dev;
	struct scc_info *info;
	struct net_device_stats stats;
	int channel;
	int card_base, scc_cmd, scc_data;
	int tmr_cnt, tmr_ctrl, tmr_mode;
	struct scc_param param;
	char rx_buf[NUM_RX_BUF][BUF_SIZE];
	int rx_len[NUM_RX_BUF];
	int rx_ptr;
	struct work_struct rx_work;
	int rx_head, rx_tail, rx_count;
	int rx_over;
	char tx_buf[NUM_TX_BUF][BUF_SIZE];
	int tx_len[NUM_TX_BUF];
	int tx_ptr;
	int tx_head, tx_tail, tx_count;
	int state;
	unsigned long tx_start;
	int rr0;
	spinlock_t *register_lock;	/* Per scc_info */
	spinlock_t ring_lock;
};

struct scc_info {
	int irq_used;
	int twin_serial_cfg;
	struct net_device *dev[2];
	struct scc_priv priv[2];
	struct scc_info *next;
	spinlock_t register_lock;	/* Per device register lock */
};


/* Function declarations */
static int setup_adapter(int card_base, int type, int n) __init;

static void write_scc(struct scc_priv *priv, int reg, int val);
static void write_scc_data(struct scc_priv *priv, int val, int fast);
static int read_scc(struct scc_priv *priv, int reg);
static int read_scc_data(struct scc_priv *priv);

static int scc_open(struct net_device *dev);
static int scc_close(struct net_device *dev);
static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
static int scc_send_packet(struct sk_buff *skb, struct net_device *dev);
static struct net_device_stats *scc_get_stats(struct net_device *dev);
static int scc_set_mac_address(struct net_device *dev, void *sa);

static inline void tx_on(struct scc_priv *priv);
static inline void rx_on(struct scc_priv *priv);
static inline void rx_off(struct scc_priv *priv);
static void start_timer(struct scc_priv *priv, int t, int r15);
static inline unsigned char random(void);

static inline void z8530_isr(struct scc_info *info);
static irqreturn_t scc_isr(int irq, void *dev_id);
static void rx_isr(struct scc_priv *priv);
static void special_condition(struct scc_priv *priv, int rc);
static void rx_bh(void *arg);
static void tx_isr(struct scc_priv *priv);
static void es_isr(struct scc_priv *priv);
static void tm_isr(struct scc_priv *priv);


/* Initialization variables */

static int io[MAX_NUM_DEVS] __initdata = { 0, };

/* Beware! hw[] is also used in cleanup_module(). */
static struct scc_hardware hw[NUM_TYPES] __initdata_or_module = HARDWARE;
static char ax25_broadcast[7] __initdata =
    { 'Q' << 1, 'S' << 1, 'T' << 1, ' ' << 1, ' ' << 1, ' ' << 1,
'0' << 1 };
static char ax25_test[7] __initdata =
    { 'L' << 1, 'I' << 1, 'N' << 1, 'U' << 1, 'X' << 1, ' ' << 1,
'1' << 1 };


/* Global variables */

static struct scc_info *first;
static unsigned long rand;


MODULE_AUTHOR("Klaus Kudielka");
MODULE_DESCRIPTION("Driver for high-speed SCC boards");
module_param_array(io, int, NULL, 0);
MODULE_LICENSE("GPL");

static void __exit dmascc_exit(void)
{
	int i;
	struct scc_info *info;

	while (first) {
		info = first;

		/* Unregister devices */
		for (i = 0; i < 2; i++)
			unregister_netdev(info->dev[i]);

		/* Reset board */
		if (info->priv[0].type == TYPE_TWIN)
			outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
		write_scc(&info->priv[0], R9, FHWRES);
		release_region(info->dev[0]->base_addr,
			       hw[info->priv[0].type].io_size);

		for (i = 0; i < 2; i++)
			free_netdev(info->dev[i]);

		/* Free memory */
		first = info->next;
		kfree(info);
	}
}

static int __init dmascc_init(void)
{
	int h, i, j, n;
	int base[MAX_NUM_DEVS], tcmd[MAX_NUM_DEVS], t0[MAX_NUM_DEVS],
	    t1[MAX_NUM_DEVS];
	unsigned t_val;
	unsigned long time, start[MAX_NUM_DEVS], delay[MAX_NUM_DEVS],
	    counting[MAX_NUM_DEVS];

	/* Initialize random number generator */
	rand = jiffies;
	/* Cards found = 0 */
	n = 0;
	/* Warning message */
	if (!io[0])
		printk(KERN_INFO "dmascc: autoprobing (dangerous)\n");

	/* Run autodetection for each card type */
	for (h = 0; h < NUM_TYPES; h++) {

		if (io[0]) {
			/* User-specified I/O address regions */
			for (i = 0; i < hw[h].num_devs; i++)
				base[i] = 0;
			for (i = 0; i < MAX_NUM_DEVS && io[i]; i++) {
				j = (io[i] -
				     hw[h].io_region) / hw[h].io_delta;
				if (j >= 0 && j < hw[h].num_devs
				    && hw[h].io_region +
				    j * hw[h].io_delta == io[i]) {
					base[j] = io[i];
				}
			}
		} else {
			/* Default I/O address regions */
			for (i = 0; i < hw[h].num_devs; i++) {
				base[i] =
				    hw[h].io_region + i * hw[h].io_delta;
			}
		}

		/* Check valid I/O address regions */
		for (i = 0; i < hw[h].num_devs; i++)
			if (base[i]) {
				if (!request_region
				    (base[i], hw[h].io_size, "dmascc"))
					base[i] = 0;
				else {
					tcmd[i] =
					    base[i] + hw[h].tmr_offset +
					    TMR_CTRL;
					t0[i] =
					    base[i] + hw[h].tmr_offset +
					    TMR_CNT0;
					t1[i] =
					    base[i] + hw[h].tmr_offset +
					    TMR_CNT1;
				}
			}

		/* Start timers */
		for (i = 0; i < hw[h].num_devs; i++)
			if (base[i]) {
				/* Timer 0: LSB+MSB, Mode 3, TMR_0_HZ */
				outb(0x36, tcmd[i]);
				outb((hw[h].tmr_hz / TMR_0_HZ) & 0xFF,
				     t0[i]);
				outb((hw[h].tmr_hz / TMR_0_HZ) >> 8,
				     t0[i]);
				/* Timer 1: LSB+MSB, Mode 0, HZ/10 */
				outb(0x70, tcmd[i]);
				outb((TMR_0_HZ / HZ * 10) & 0xFF, t1[i]);
				outb((TMR_0_HZ / HZ * 10) >> 8, t1[i]);
				start[i] = jiffies;
				delay[i] = 0;
				counting[i] = 1;
				/* Timer 2: LSB+MSB, Mode 0 */
				outb(0xb0, tcmd[i]);
			}
		time = jiffies;
		/* Wait until counter registers are loaded */
		udelay(2000000 / TMR_0_HZ);

		/* Timing loop */
		while (jiffies - time < 13) {
			for (i = 0; i < hw[h].num_devs; i++)
				if (base[i] && counting[i]) {
					/* Read back Timer 1: latch; read LSB; read MSB */
					outb(0x40, tcmd[i]);
					t_val =
					    inb(t1[i]) + (inb(t1[i]) << 8);
					/* Also check whether counter did wrap */
					if (t_val == 0
					    || t_val > TMR_0_HZ / HZ * 10)
						counting[i] = 0;
					delay[i] = jiffies - start[i];
				}
		}

		/* Evaluate measurements */
		for (i = 0; i < hw[h].num_devs; i++)
			if (base[i]) {
				if ((delay[i] >= 9 && delay[i] <= 11) &&
				    /* Ok, we have found an adapter */
				    (setup_adapter(base[i], h, n) == 0))
					n++;
				else
					release_region(base[i],
						       hw[h].io_size);
			}

	}			/* NUM_TYPES */

	/* If any adapter was successfully initialized, return ok */
	if (n)
		return 0;

	/* If no adapter found, return error */
	printk(KERN_INFO "dmascc: no adapters found\n");
	return -EIO;
}

module_init(dmascc_init);
module_exit(dmascc_exit);

static void __init dev_setup(struct net_device *dev)
{
	dev->type = ARPHRD_AX25;
	dev->hard_header_len = AX25_MAX_HEADER_LEN;
	dev->mtu = 1500;
	dev->addr_len = AX25_ADDR_LEN;
	dev->tx_queue_len = 64;
	memcpy(dev->broadcast, ax25_broadcast, AX25_ADDR_LEN);
	memcpy(dev->dev_addr, ax25_test, AX25_ADDR_LEN);
}

static int __init setup_adapter(int card_base, int type, int n)
{
	int i, irq, chip;
	struct scc_info *info;
	struct net_device *dev;
	struct scc_priv *priv;
	unsigned long time;
	unsigned int irqs;
	int tmr_base = card_base + hw[type].tmr_offset;
	int scc_base = card_base + hw[type].scc_offset;
	char *chipnames[] = CHIPNAMES;

	/* Allocate memory */
	info = kmalloc(sizeof(struct scc_info), GFP_KERNEL | GFP_DMA);
	if (!info) {
		printk(KERN_ERR "dmascc: "
		       "could not allocate memory for %s at %#3x\n",
		       hw[type].name, card_base);
		goto out;
	}

	/* Initialize what is necessary for write_scc and write_scc_data */
	memset(info, 0, sizeof(struct scc_info));

	info->dev[0] = alloc_netdev(0, "", dev_setup);
	if (!info->dev[0]) {
		printk(KERN_ERR "dmascc: "
		       "could not allocate memory for %s at %#3x\n",
		       hw[type].name, card_base);
		goto out1;
	}

	info->dev[1] = alloc_netdev(0, "", dev_setup);
	if (!info->dev[1]) {
		printk(KERN_ERR "dmascc: "
		       "could not allocate memory for %s at %#3x\n",
		       hw[type].name, card_base);
		goto out2;
	}
	spin_lock_init(&info->register_lock);

	priv = &info->priv[0];
	priv->type = type;
	priv->card_base = card_base;
	priv->scc_cmd = scc_base + SCCA_CMD;
	priv->scc_data = scc_base + SCCA_DATA;
	priv->register_lock = &info->register_lock;

	/* Reset SCC */
	write_scc(priv, R9, FHWRES | MIE | NV);

	/* Determine type of chip by enabling SDLC/HDLC enhancements */
	write_scc(priv, R15, SHDLCE);
	if (!read_scc(priv, R15)) {
		/* WR7' not present. This is an ordinary Z8530 SCC. */
		chip = Z8530;
	} else {
		/* Put one character in TX FIFO */
		write_scc_data(priv, 0, 0);
		if (read_scc(priv, R0) & Tx_BUF_EMP) {
			/* TX FIFO not full. This is a Z85230 ESCC with a 4-byte FIFO. */
			chip = Z85230;
		} else {
			/* TX FIFO full. This is a Z85C30 SCC with a 1-byte FIFO. */
			chip = Z85C30;
		}
	}
	write_scc(priv, R15, 0);

	/* Start IRQ auto-detection */
	irqs = probe_irq_on();

	/* Enable interrupts */
	if (type == TYPE_TWIN) {
		outb(0, card_base + TWIN_DMA_CFG);
		inb(card_base + TWIN_CLR_TMR1);
		inb(card_base + TWIN_CLR_TMR2);
		info->twin_serial_cfg = TWIN_EI;
		outb(info->twin_serial_cfg, card_base + TWIN_SERIAL_CFG);
	} else {
		write_scc(priv, R15, CTSIE);
		write_scc(priv, R0, RES_EXT_INT);
		write_scc(priv, R1, EXT_INT_ENAB);
	}

	/* Start timer */
	outb(1, tmr_base + TMR_CNT1);
	outb(0, tmr_base + TMR_CNT1);

	/* Wait and detect IRQ */
	time = jiffies;
	while (jiffies - time < 2 + HZ / TMR_0_HZ);
	irq = probe_irq_off(irqs);

	/* Clear pending interrupt, disable interrupts */
	if (type == TYPE_TWIN) {
		inb(card_base + TWIN_CLR_TMR1);
	} else {
		write_scc(priv, R1, 0);
		write_scc(priv, R15, 0);
		write_scc(priv, R0, RES_EXT_INT);
	}

	if (irq <= 0) {
		printk(KERN_ERR
		       "dmascc: could not find irq of %s at %#3x (irq=%d)\n",
		       hw[type].name, card_base, irq);
		goto out3;
	}

	/* Set up data structures */
	for (i = 0; i < 2; i++) {
		dev = info->dev[i];
		priv = &info->priv[i];
		priv->type = type;
		priv->chip = chip;
		priv->dev = dev;
		priv->info = info;
		priv->channel = i;
		spin_lock_init(&priv->ring_lock);
		priv->register_lock = &info->register_lock;
		priv->card_base = card_base;
		priv->scc_cmd = scc_base + (i ? SCCB_CMD : SCCA_CMD);
		priv->scc_data = scc_base + (i ? SCCB_DATA : SCCA_DATA);
		priv->tmr_cnt = tmr_base + (i ? TMR_CNT2 : TMR_CNT1);
		priv->tmr_ctrl = tmr_base + TMR_CTRL;
		priv->tmr_mode = i ? 0xb0 : 0x70;
		priv->param.pclk_hz = hw[type].pclk_hz;
		priv->param.brg_tc = -1;
		priv->param.clocks = TCTRxCP | RCRTxCP;
		priv->param.persist = 256;
		priv->param.dma = -1;
		INIT_WORK(&priv->rx_work, rx_bh, priv);
		dev->priv = priv;
		sprintf(dev->name, "dmascc%i", 2 * n + i);
		dev->base_addr = card_base;
		dev->irq = irq;
		dev->open = scc_open;
		dev->stop = scc_close;
		dev->do_ioctl = scc_ioctl;
		dev->hard_start_xmit = scc_send_packet;
		dev->get_stats = scc_get_stats;
		dev->hard_header = ax25_hard_header;
		dev->rebuild_header = ax25_rebuild_header;
		dev->set_mac_address = scc_set_mac_address;
	}
	if (register_netdev(info->dev[0])) {
		printk(KERN_ERR "dmascc: could not register %s\n",
		       info->dev[0]->name);
		goto out3;
	}
	if (register_netdev(info->dev[1])) {
		printk(KERN_ERR "dmascc: could not register %s\n",
		       info->dev[1]->name);
		goto out4;
	}


	info->next = first;
	first = info;
	printk(KERN_INFO "dmascc: found %s (%s) at %#3x, irq %d\n",
	       hw[type].name, chipnames[chip], card_base, irq);
	return 0;

      out4:
	unregister_netdev(info->dev[0]);
      out3:
	if (info->priv[0].type == TYPE_TWIN)
		outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
	write_scc(&info->priv[0], R9, FHWRES);
	free_netdev(info->dev[1]);
      out2:
	free_netdev(info->dev[0]);
      out1:
	kfree(info);
      out:
	return -1;
}


/* Driver functions */

static void write_scc(struct scc_priv *priv, int reg, int val)
{
	unsigned long flags;
	switch (priv->type) {
	case TYPE_S5:
		if (reg)
			outb(reg, priv->scc_cmd);
		outb(val, priv->scc_cmd);
		return;
	case TYPE_TWIN:
		if (reg)
			outb_p(reg, priv->scc_cmd);
		outb_p(val, priv->scc_cmd);
		return;
	default:
		spin_lock_irqsave(priv->register_lock, flags);
		outb_p(0, priv->card_base + PI_DREQ_MASK);
		if (reg)
			outb_p(reg, priv->scc_cmd);
		outb_p(val, priv->scc_cmd);
		outb(1, priv->card_base + PI_DREQ_MASK);
		spin_unlock_irqrestore(priv->register_lock, flags);
		return;
	}
}


static void write_scc_data(struct scc_priv *priv, int val, int fast)
{
	unsigned long flags;
	switch (priv->type) {
	case TYPE_S5:
		outb(val, priv->scc_data);
		return;
	case TYPE_TWIN:
		outb_p(val, priv->scc_data);
		return;
	default:
		if (fast)
			outb_p(val, priv->scc_data);
		else {
			spin_lock_irqsave(priv->register_lock, flags);
			outb_p(0, priv->card_base + PI_DREQ_MASK);
			outb_p(val, priv->scc_data);
			outb(1, priv->card_base + PI_DREQ_MASK);
			spin_unlock_irqrestore(priv->register_lock, flags);
		}
		return;
	}
}


static int read_scc(struct scc_priv *priv, int reg)
{
	int rc;
	unsigned long flags;
	switch (priv->type) {
	case TYPE_S5:
		if (reg)
			outb(reg, priv->scc_cmd);
		return inb(priv->scc_cmd);
	case TYPE_TWIN:
		if (reg)
			outb_p(reg, priv->scc_cmd);
		return inb_p(priv->scc_cmd);
	default:
		spin_lock_irqsave(priv->register_lock, flags);
		outb_p(0, priv->card_base + PI_DREQ_MASK);
		if (reg)
			outb_p(reg, priv->scc_cmd);
		rc = inb_p(priv->scc_cmd);
		outb(1, priv->card_base + PI_DREQ_MASK);
		spin_unlock_irqrestore(priv->register_lock, flags);
		return rc;
	}
}


static int read_scc_data(struct scc_priv *priv)
{
	int rc;
	unsigned long flags;
	switch (priv->type) {
	case TYPE_S5:
		return inb(priv->scc_data);
	case TYPE_TWIN:
		return inb_p(priv->scc_data);
	default:
		spin_lock_irqsave(priv->register_lock, flags);
		outb_p(0, priv->card_base + PI_DREQ_MASK);
		rc = inb_p(priv->scc_data);
		outb(1, priv->card_base + PI_DREQ_MASK);
		spin_unlock_irqrestore(priv->register_lock, flags);
		return rc;
	}
}


static int scc_open(struct net_device *dev)
{
	struct scc_priv *priv = dev->priv;
	struct scc_info *info = priv->info;
	int card_base = priv->card_base;

	/* Request IRQ if not already used by other channel */
	if (!info->irq_used) {
		if (request_irq(dev->irq, scc_isr, 0, "dmascc", info)) {
			return -EAGAIN;
		}
	}
	info->irq_used++;

	/* Request DMA if required */
	if (priv->param.dma >= 0) {
		if (request_dma(priv->param.dma, "dmascc")) {
			if (--info->irq_used == 0)
				free_irq(dev->irq, info);
			return -EAGAIN;
		} else {
			unsigned long flags = claim_dma_lock();
			clear_dma_ff(priv->param.dma);
			release_dma_lock(flags);
		}
	}

	/* Initialize local variables */
	priv->rx_ptr = 0;
	priv->rx_over = 0;
	priv->rx_head = priv->rx_tail = priv->rx_count = 0;
	priv->state = IDLE;
	priv->tx_head = priv->tx_tail = priv->tx_count = 0;
	priv->tx_ptr = 0;

	/* Reset channel */
	write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
	/* X1 clock, SDLC mode */
	write_scc(priv, R4, SDLC | X1CLK);
	/* DMA */
	write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
	/* 8 bit RX char, RX disable */
	write_scc(priv, R3, Rx8);
	/* 8 bit TX char, TX disable */
	write_scc(priv, R5, Tx8);
	/* SDLC address field */
	write_scc(priv, R6, 0);
	/* SDLC flag */
	write_scc(priv, R7, FLAG);
	switch (priv->chip) {
	case Z85C30:
		/* Select WR7' */
		write_scc(priv, R15, SHDLCE);
		/* Auto EOM reset */
		write_scc(priv, R7, AUTOEOM);
		write_scc(priv, R15, 0);
		break;
	case Z85230:
		/* Select WR7' */
		write_scc(priv, R15, SHDLCE);
		/* The following bits are set (see 2.5.2.1):
		   - Automatic EOM reset
		   - Interrupt request if RX FIFO is half full
		   This bit should be ignored in DMA mode (according to the
		   documentation), but actually isn't. The receiver doesn't work if
		   it is set. Thus, we have to clear it in DMA mode.
		   - Interrupt/DMA request if TX FIFO is completely empty
		   a) If set, the ESCC behaves as if it had no TX FIFO (Z85C30
		   compatibility).
		   b) If cleared, DMA requests may follow each other very quickly,
		   filling up the TX FIFO.
		   Advantage: TX works even in case of high bus latency.
		   Disadvantage: Edge-triggered DMA request circuitry may miss
		   a request. No more data is delivered, resulting
		   in a TX FIFO underrun.
		   Both PI2 and S5SCC/DMA seem to work fine with TXFIFOE cleared.
		   The PackeTwin doesn't. I don't know about the PI, but let's
		   assume it behaves like the PI2.
		 */
		if (priv->param.dma >= 0) {
			if (priv->type == TYPE_TWIN)
				write_scc(priv, R7, AUTOEOM | TXFIFOE);
			else
				write_scc(priv, R7, AUTOEOM);
		} else {
			write_scc(priv, R7, AUTOEOM | RXFIFOH);
		}
		write_scc(priv, R15, 0);
		break;
	}
	/* Preset CRC, NRZ(I) encoding */
	write_scc(priv, R10, CRCPS | (priv->param.nrzi ? NRZI : NRZ));

	/* Configure baud rate generator */
	if (priv->param.brg_tc >= 0) {
		/* Program BR generator */
		write_scc(priv, R12, priv->param.brg_tc & 0xFF);
		write_scc(priv, R13, (priv->param.brg_tc >> 8) & 0xFF);
		/* BRG source = SYS CLK; enable BRG; DTR REQ function (required by
		   PackeTwin, not connected on the PI2); set DPLL source to BRG */
		write_scc(priv, R14, SSBR | DTRREQ | BRSRC | BRENABL);
		/* Enable DPLL */
		write_scc(priv, R14, SEARCH | DTRREQ | BRSRC | BRENABL);
	} else {
		/* Disable BR generator */
		write_scc(priv, R14, DTRREQ | BRSRC);
	}

	/* Configure clocks */
	if (priv->type == TYPE_TWIN) {
		/* Disable external TX clock receiver */
		outb((info->twin_serial_cfg &=
		      ~(priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
		     card_base + TWIN_SERIAL_CFG);
	}
	write_scc(priv, R11, priv->param.clocks);
	if ((priv->type == TYPE_TWIN) && !(priv->param.clocks & TRxCOI)) {
		/* Enable external TX clock receiver */
		outb((info->twin_serial_cfg |=
		      (priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
		     card_base + TWIN_SERIAL_CFG);
	}

	/* Configure PackeTwin */
	if (priv->type == TYPE_TWIN) {
		/* Assert DTR, enable interrupts */
		outb((info->twin_serial_cfg |= TWIN_EI |
		      (priv->channel ? TWIN_DTRB_ON : TWIN_DTRA_ON)),
		     card_base + TWIN_SERIAL_CFG);
	}

	/* Read current status */
	priv->rr0 = read_scc(priv, R0);
	/* Enable DCD interrupt */
	write_scc(priv, R15, DCDIE);

	netif_start_queue(dev);

	return 0;
}


static int scc_close(struct net_device *dev)
{
	struct scc_priv *priv = dev->priv;
	struct scc_info *info = priv->info;
	int card_base = priv->card_base;

	netif_stop_queue(dev);

	if (priv->type == TYPE_TWIN) {
		/* Drop DTR */
		outb((info->twin_serial_cfg &=
		      (priv->channel ? ~TWIN_DTRB_ON : ~TWIN_DTRA_ON)),
		     card_base + TWIN_SERIAL_CFG);
	}

	/* Reset channel, free DMA and IRQ */
	write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
	if (priv->param.dma >= 0) {
		if (priv->type == TYPE_TWIN)
			outb(0, card_base + TWIN_DMA_CFG);
		free_dma(priv->param.dma);
	}
	if (--info->irq_used == 0)
		free_irq(dev->irq, info);

	return 0;
}


static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	struct scc_priv *priv = dev->priv;

	switch (cmd) {
	case SIOCGSCCPARAM:
		if (copy_to_user
		    (ifr->ifr_data, &priv->param,
		     sizeof(struct scc_param)))
			return -EFAULT;
		return 0;
	case SIOCSSCCPARAM:
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;
		if (netif_running(dev))
			return -EAGAIN;
		if (copy_from_user
		    (&priv->param, ifr->ifr_data,
		     sizeof(struct scc_param)))
			return -EFAULT;
		return 0;
	default:
		return -EINVAL;
	}
}


static int scc_send_packet(struct sk_buff *skb, struct net_device *dev)
{
	struct scc_priv *priv = dev->priv;
	unsigned long flags;
	int i;

	/* Temporarily stop the scheduler feeding us packets */
	netif_stop_queue(dev);

	/* Transfer data to DMA buffer */
	i = priv->tx_head;
	memcpy(priv->tx_buf[i], skb->data + 1, skb->len - 1);
	priv->tx_len[i] = skb->len - 1;

	/* Clear interrupts while we touch our circular buffers */

	spin_lock_irqsave(&priv->ring_lock, flags);
	/* Move the ring buffer's head */
	priv->tx_head = (i + 1) % NUM_TX_BUF;
	priv->tx_count++;

	/* If we just filled up the last buffer, leave queue stopped.
	   The higher layers must wait until we have a DMA buffer
	   to accept the data. */
	if (priv->tx_count < NUM_TX_BUF)
		netif_wake_queue(dev);

	/* Set new TX state */
	if (priv->state == IDLE) {
		/* Assert RTS, start timer */
		priv->state = TX_HEAD;
		priv->tx_start = jiffies;
		write_scc(priv, R5, TxCRC_ENAB | RTS | TxENAB | Tx8);
		write_scc(priv, R15, 0);
		start_timer(priv, priv->param.txdelay, 0);
	}

	/* Turn interrupts back on and free buffer */
	spin_unlock_irqrestore(&priv->ring_lock, flags);
	dev_kfree_skb(skb);

	return 0;
}


static struct net_device_stats *scc_get_stats(struct net_device *dev)
{
	struct scc_priv *priv = dev->priv;

	return &priv->stats;
}


static int scc_set_mac_address(struct net_device *dev, void *sa)
{
	memcpy(dev->dev_addr, ((struct sockaddr *) sa)->sa_data,
	       dev->addr_len);
	return 0;
}


static inline void tx_on(struct scc_priv *priv)
{
	int i, n;
	unsigned long flags;

	if (priv->param.dma >= 0) {
		n = (priv->chip == Z85230) ? 3 : 1;
		/* Program DMA controller */
		flags = claim_dma_lock();
		set_dma_mode(priv->param.dma, DMA_MODE_WRITE);
		set_dma_addr(priv->param.dma,
			     (int) priv->tx_buf[priv->tx_tail] + n);
		set_dma_count(priv->param.dma,
			      priv->tx_len[priv->tx_tail] - n);
		release_dma_lock(flags);
		/* Enable TX underrun interrupt */
		write_scc(priv, R15, TxUIE);
		/* Configure DREQ */
		if (priv->type == TYPE_TWIN)
			outb((priv->param.dma ==
			      1) ? TWIN_DMA_HDX_T1 : TWIN_DMA_HDX_T3,
			     priv->card_base + TWIN_DMA_CFG);
		else
			write_scc(priv, R1,
				  EXT_INT_ENAB | WT_FN_RDYFN |
				  WT_RDY_ENAB);
		/* Write first byte(s) */
		spin_lock_irqsave(priv->register_lock, flags);
		for (i = 0; i < n; i++)
			write_scc_data(priv,
				       priv->tx_buf[priv->tx_tail][i], 1);
		enable_dma(priv->param.dma);
		spin_unlock_irqrestore(priv->register_lock, flags);
	} else {
		write_scc(priv, R15, TxUIE);
		write_scc(priv, R1,
			  EXT_INT_ENAB | WT_FN_RDYFN | TxINT_ENAB);
		tx_isr(priv);
	}
	/* Reset EOM latch if we do not have the AUTOEOM feature */
	if (priv->chip == Z8530)
		write_scc(priv, R0, RES_EOM_L);
}


static inline void rx_on(struct scc_priv *priv)
{
	unsigned long flags;

	/* Clear RX FIFO */
	while (read_scc(priv, R0) & Rx_CH_AV)
		read_scc_data(priv);
	priv->rx_over = 0;
	if (priv->param.dma >= 0) {
		/* Program DMA controller */
		flags = claim_dma_lock();
		set_dma_mode(priv->param.dma, DMA_MODE_READ);
		set_dma_addr(priv->param.dma,
			     (int) priv->rx_buf[priv->rx_head]);
		set_dma_count(priv->param.dma, BUF_SIZE);
		release_dma_lock(flags);
		enable_dma(priv->param.dma);
		/* Configure PackeTwin DMA */
		if (priv->type == TYPE_TWIN) {
			outb((priv->param.dma ==
			      1) ? TWIN_DMA_HDX_R1 : TWIN_DMA_HDX_R3,
			     priv->card_base + TWIN_DMA_CFG);
		}
		/* Sp. cond. intr. only, ext int enable, RX DMA enable */
		write_scc(priv, R1, EXT_INT_ENAB | INT_ERR_Rx |
			  WT_RDY_RT | WT_FN_RDYFN | WT_RDY_ENAB);
	} else {
		/* Reset current frame */
		priv->rx_ptr = 0;
		/* Intr. on all Rx characters and Sp. cond., ext int enable */
		write_scc(priv, R1, EXT_INT_ENAB | INT_ALL_Rx | WT_RDY_RT |
			  WT_FN_RDYFN);
	}
	write_scc(priv, R0, ERR_RES);
	write_scc(priv, R3, RxENABLE | Rx8 | RxCRC_ENAB);
}


static inline void rx_off(struct scc_priv *priv)
{
	/* Disable receiver */
	write_scc(priv, R3, Rx8);
	/* Disable DREQ / RX interrupt */
	if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
		outb(0, priv->card_base + TWIN_DMA_CFG);
	else
		write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
	/* Disable DMA */
	if (priv->param.dma >= 0)
		disable_dma(priv->param.dma);
}


static void start_timer(struct scc_priv *priv, int t, int r15)
{
	unsigned long flags;

	outb(priv->tmr_mode, priv->tmr_ctrl);
	if (t == 0) {
		tm_isr(priv);
	} else if (t > 0) {
		save_flags(flags);
		cli();
		outb(t & 0xFF, priv->tmr_cnt);
		outb((t >> 8) & 0xFF, priv->tmr_cnt);
		if (priv->type != TYPE_TWIN) {
			write_scc(priv, R15, r15 | CTSIE);
			priv->rr0 |= CTS;
		}
		restore_flags(flags);
	}
}


static inline unsigned char random(void)
{
	/* See "Numerical Recipes in C", second edition, p. 284 */
	rand = rand * 1664525L + 1013904223L;
	return (unsigned char) (rand >> 24);
}

static inline void z8530_isr(struct scc_info *info)
{
	int is, i = 100;

	while ((is = read_scc(&info->priv[0], R3)) && i--) {
		if (is & CHARxIP) {
			rx_isr(&info->priv[0]);
		} else if (is & CHATxIP) {
			tx_isr(&info->priv[0]);
		} else if (is & CHAEXT) {
			es_isr(&info->priv[0]);
		} else if (is & CHBRxIP) {
			rx_isr(&info->priv[1]);
		} else if (is & CHBTxIP) {
			tx_isr(&info->priv[1]);
		} else {
			es_isr(&info->priv[1]);
		}
		write_scc(&info->priv[0], R0, RES_H_IUS);
		i++;
	}
	if (i < 0) {
		printk(KERN_ERR "dmascc: stuck in ISR with RR3=0x%02x.\n",
		       is);
	}
	/* Ok, no interrupts pending from this 8530. The INT line should
	   be inactive now. */
}


static irqreturn_t scc_isr(int irq, void *dev_id)
{
	struct scc_info *info = dev_id;

	spin_lock(info->priv[0].register_lock);
	/* At this point interrupts are enabled, and the interrupt under service
	   is already acknowledged, but masked off.

	   Interrupt processing: We loop until we know that the IRQ line is
	   low. If another positive edge occurs afterwards during the ISR,
	   another interrupt will be triggered by the interrupt controller
	   as soon as the IRQ level is enabled again (see asm/irq.h).

	   Bottom-half handlers will be processed after scc_isr(). This is
	   important, since we only have small ringbuffers and want new data
	   to be fetched/delivered immediately. */

	if (info->priv[0].type == TYPE_TWIN) {
		int is, card_base = info->priv[0].card_base;
		while ((is = ~inb(card_base + TWIN_INT_REG)) &
		       TWIN_INT_MSK) {
			if (is & TWIN_SCC_MSK) {
				z8530_isr(info);
			} else if (is & TWIN_TMR1_MSK) {
				inb(card_base + TWIN_CLR_TMR1);
				tm_isr(&info->priv[0]);
			} else {
				inb(card_base + TWIN_CLR_TMR2);
				tm_isr(&info->priv[1]);
			}
		}
	} else
		z8530_isr(info);
	spin_unlock(info->priv[0].register_lock);
	return IRQ_HANDLED;
}


static void rx_isr(struct scc_priv *priv)
{
	if (priv->param.dma >= 0) {
		/* Check special condition and perform error reset. See 2.4.7.5. */
		special_condition(priv, read_scc(priv, R1));
		write_scc(priv, R0, ERR_RES);
	} else {
		/* Check special condition for each character. Error reset not necessary.
		   Same algorithm for SCC and ESCC. See 2.4.7.1 and 2.4.7.4. */
		int rc;
		while (read_scc(priv, R0) & Rx_CH_AV) {
			rc = read_scc(priv, R1);
			if (priv->rx_ptr < BUF_SIZE)
				priv->rx_buf[priv->rx_head][priv->
							    rx_ptr++] =
				    read_scc_data(priv);
			else {
				priv->rx_over = 2;
				read_scc_data(priv);
			}
			special_condition(priv, rc);
		}
	}
}


static void special_condition(struct scc_priv *priv, int rc)
{
	int cb;
	unsigned long flags;

	/* See Figure 2-15. Only overrun and EOF need to be checked. */

	if (rc & Rx_OVR) {
		/* Receiver overrun */
		priv->rx_over = 1;
		if (priv->param.dma < 0)
			write_scc(priv, R0, ERR_RES);
	} else if (rc & END_FR) {
		/* End of frame. Get byte count */
		if (priv->param.dma >= 0) {
			flags = claim_dma_lock();
			cb = BUF_SIZE - get_dma_residue(priv->param.dma) -
			    2;
			release_dma_lock(flags);
		} else {
			cb = priv->rx_ptr - 2;
		}
		if (priv->rx_over) {
			/* We had an overrun */
			priv->stats.rx_errors++;
			if (priv->rx_over == 2)
				priv->stats.rx_length_errors++;
			else
				priv->stats.rx_fifo_errors++;
			priv->rx_over = 0;
		} else if (rc & CRC_ERR) {
			/* Count invalid CRC only if packet length >= minimum */
			if (cb >= 15) {
				priv->stats.rx_errors++;
				priv->stats.rx_crc_errors++;
			}
		} else {
			if (cb >= 15) {
				if (priv->rx_count < NUM_RX_BUF - 1) {
					/* Put good frame in FIFO */
					priv->rx_len[priv->rx_head] = cb;
					priv->rx_head =
					    (priv->rx_head +
					     1) % NUM_RX_BUF;
					priv->rx_count++;
					schedule_work(&priv->rx_work);
				} else {
					priv->stats.rx_errors++;
					priv->stats.rx_over_errors++;
				}
			}
		}
		/* Get ready for new frame */
		if (priv->param.dma >= 0) {
			flags = claim_dma_lock();
			set_dma_addr(priv->param.dma,
				     (int) priv->rx_buf[priv->rx_head]);
			set_dma_count(priv->param.dma, BUF_SIZE);
			release_dma_lock(flags);
		} else {
			priv->rx_ptr = 0;
		}
	}
}


static void rx_bh(void *arg)
{
	struct scc_priv *priv = arg;
	int i = priv->rx_tail;
	int cb;
	unsigned long flags;
	struct sk_buff *skb;
	unsigned char *data;

	spin_lock_irqsave(&priv->ring_lock, flags);
	while (priv->rx_count) {
		spin_unlock_irqrestore(&priv->ring_lock, flags);
		cb = priv->rx_len[i];
		/* Allocate buffer */
		skb = dev_alloc_skb(cb + 1);
		if (skb == NULL) {
			/* Drop packet */
			priv->stats.rx_dropped++;
		} else {
			/* Fill buffer */
			data = skb_put(skb, cb + 1);
			data[0] = 0;
			memcpy(&data[1], priv->rx_buf[i], cb);
			skb->protocol = ax25_type_trans(skb, priv->dev);
			netif_rx(skb);
			priv->dev->last_rx = jiffies;
			priv->stats.rx_packets++;
			priv->stats.rx_bytes += cb;
		}
		spin_lock_irqsave(&priv->ring_lock, flags);
		/* Move tail */
		priv->rx_tail = i = (i + 1) % NUM_RX_BUF;
		priv->rx_count--;
	}
	spin_unlock_irqrestore(&priv->ring_lock, flags);
}


static void tx_isr(struct scc_priv *priv)
{
	int i = priv->tx_tail, p = priv->tx_ptr;

	/* Suspend TX interrupts if we don't want to send anything.
	   See Figure 2-22. */
	if (p == priv->tx_len[i]) {
		write_scc(priv, R0, RES_Tx_P);
		return;
	}

	/* Write characters */
	while ((read_scc(priv, R0) & Tx_BUF_EMP) && p < priv->tx_len[i]) {
		write_scc_data(priv, priv->tx_buf[i][p++], 0);
	}

	/* Reset EOM latch of Z8530 */
	if (!priv->tx_ptr && p && priv->chip == Z8530)
		write_scc(priv, R0, RES_EOM_L);

	priv->tx_ptr = p;
}


static void es_isr(struct scc_priv *priv)
{
	int i, rr0, drr0, res;
	unsigned long flags;

	/* Read status, reset interrupt bit (open latches) */
	rr0 = read_scc(priv, R0);
	write_scc(priv, R0, RES_EXT_INT);
	drr0 = priv->rr0 ^ rr0;
	priv->rr0 = rr0;

	/* Transmit underrun (2.4.9.6). We can't check the TxEOM flag, since
	   it might have already been cleared again by AUTOEOM. */
	if (priv->state == TX_DATA) {
		/* Get remaining bytes */
		i = priv->tx_tail;
		if (priv->param.dma >= 0) {
			disable_dma(priv->param.dma);
			flags = claim_dma_lock();
			res = get_dma_residue(priv->param.dma);
			release_dma_lock(flags);
		} else {
			res = priv->tx_len[i] - priv->tx_ptr;
			priv->tx_ptr = 0;
		}
		/* Disable DREQ / TX interrupt */
		if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
			outb(0, priv->card_base + TWIN_DMA_CFG);
		else
			write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
		if (res) {
			/* Update packet statistics */
			priv->stats.tx_errors++;
			priv->stats.tx_fifo_errors++;
			/* Other underrun interrupts may already be waiting */
			write_scc(priv, R0, RES_EXT_INT);
			write_scc(priv, R0, RES_EXT_INT);
		} else {
			/* Update packet statistics */
			priv->stats.tx_packets++;
			priv->stats.tx_bytes += priv->tx_len[i];
			/* Remove frame from FIFO */
			priv->tx_tail = (i + 1) % NUM_TX_BUF;
			priv->tx_count--;
			/* Inform upper layers */
			netif_wake_queue(priv->dev);
		}
		/* Switch state */
		write_scc(priv, R15, 0);
		if (priv->tx_count &&
		    (jiffies - priv->tx_start) < priv->param.txtimeout) {
			priv->state = TX_PAUSE;
			start_timer(priv, priv->param.txpause, 0);
		} else {
			priv->state = TX_TAIL;
			start_timer(priv, priv->param.txtail, 0);
		}
	}

	/* DCD transition */
	if (drr0 & DCD) {
		if (rr0 & DCD) {
			switch (priv->state) {
			case IDLE:
			case WAIT:
				priv->state = DCD_ON;
				write_scc(priv, R15, 0);
				start_timer(priv, priv->param.dcdon, 0);
			}
		} else {
			switch (priv->state) {
			case RX_ON:
				rx_off(priv);
				priv->state = DCD_OFF;
				write_scc(priv, R15, 0);
				start_timer(priv, priv->param.dcdoff, 0);
			}
		}
	}

	/* CTS transition */
	if ((drr0 & CTS) && (~rr0 & CTS) && priv->type != TYPE_TWIN)
		tm_isr(priv);

}


static void tm_isr(struct scc_priv *priv)
{
	switch (priv->state) {
	case TX_HEAD:
	case TX_PAUSE:
		tx_on(priv);
		priv->state = TX_DATA;
		break;
	case TX_TAIL:
		write_scc(priv, R5, TxCRC_ENAB | Tx8);
		priv->state = RTS_OFF;
		if (priv->type != TYPE_TWIN)
			write_scc(priv, R15, 0);
		start_timer(priv, priv->param.rtsoff, 0);
		break;
	case RTS_OFF:
		write_scc(priv, R15, DCDIE);
		priv->rr0 = read_scc(priv, R0);
		if (priv->rr0 & DCD) {
			priv->stats.collisions++;
			rx_on(priv);
			priv->state = RX_ON;
		} else {
			priv->state = WAIT;
			start_timer(priv, priv->param.waittime, DCDIE);
		}
		break;
	case WAIT:
		if (priv->tx_count) {
			priv->state = TX_HEAD;
			priv->tx_start = jiffies;
			write_scc(priv, R5,
				  TxCRC_ENAB | RTS | TxENAB | Tx8);
			write_scc(priv, R15, 0);
			start_timer(priv, priv->param.txdelay, 0);
		} else {
			priv->state = IDLE;
			if (priv->type != TYPE_TWIN)
				write_scc(priv, R15, DCDIE);
		}
		break;
	case DCD_ON:
	case DCD_OFF:
		write_scc(priv, R15, DCDIE);
		priv->rr0 = read_scc(priv, R0);
		if (priv->rr0 & DCD) {
			rx_on(priv);
			priv->state = RX_ON;
		} else {
			priv->state = WAIT;
			start_timer(priv,
				    random() / priv->param.persist *
				    priv->param.slottime, DCDIE);
		}
		break;
	}
}