summaryrefslogblamecommitdiffstats
path: root/drivers/net/ipg.c
blob: 7f85732f03e9e642327b7f2e46ab7511a5f1ef9b (plain) (tree)
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339


























                                                               

                      























                                                                            
                                                                           

                      



















                                                                                            


























































































































































































































































































































































































































































































































































































































































































































                                                                                
                                                                                
                                                                   
                                                         



















































                                                                         
                                                         


























                                                               
                                              
 


                                                
                                                  

                                                            









                                                                             

                                                                



                                                  
                                                                                

                                                            
                                               


                                                 
                                                         















































































































                                                                              
                                                                         













































































































                                                                                      
                                                     


































































                                                                                
                                                             















                                                                              
                                              











































                                                                      
                                              





































                                                                               
                                                              


















                                                                        
                                              




























                                                                               
                                              



























































































                                                                            
                                                                           

                                                                       
                                                                              







                                                                          
                                                                             



                                                                            
                                                                           



                                                                    
                                                                                



                                                                   
                                                                                



                                                                               
                                                                          








                                                                   
                                                              

                                                          
                                                                             

                                                                           
                                                       





































































                                                                              


                                                                 
















                                                                        
                                                                                
                                                                   
                                                             






















































                                                                                

                             
















                                                               
                                


















































































                                                                                
           
                               
 










                                                          
                                                         

                                                  
                                                                                













                                                                   
                                                                                

                                                                      
                                                         













































































































































































                                                                               
                                                        























































                                                                           
                                      

























































































































































































































































































































































                                                                               
/*
 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
 *
 * Copyright (C) 2003, 2007  IC Plus Corp
 *
 * Original Author:
 *
 *   Craig Rich
 *   Sundance Technology, Inc.
 *   www.sundanceti.com
 *   craig_rich@sundanceti.com
 *
 * Current Maintainer:
 *
 *   Sorbica Shieh.
 *   http://www.icplus.com.tw
 *   sorbica@icplus.com.tw
 *
 *   Jesse Huang
 *   http://www.icplus.com.tw
 *   jesse@icplus.com.tw
 */
#include <linux/crc32.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/mutex.h>

#include <asm/div64.h>

#define IPG_RX_RING_BYTES	(sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
#define IPG_TX_RING_BYTES	(sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
#define IPG_RESET_MASK \
	(IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
	 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
	 IPG_AC_AUTO_INIT)

#define ipg_w32(val32,reg)	iowrite32((val32), ioaddr + (reg))
#define ipg_w16(val16,reg)	iowrite16((val16), ioaddr + (reg))
#define ipg_w8(val8,reg)	iowrite8((val8), ioaddr + (reg))

#define ipg_r32(reg)		ioread32(ioaddr + (reg))
#define ipg_r16(reg)		ioread16(ioaddr + (reg))
#define ipg_r8(reg)		ioread8(ioaddr + (reg))

#define JUMBO_FRAME_4k_ONLY
enum {
	netdev_io_size = 128
};

#include "ipg.h"
#define DRV_NAME	"ipg"

MODULE_AUTHOR("IC Plus Corp. 2003");
MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
MODULE_LICENSE("GPL");

//variable record -- index by leading revision/length
//Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
static unsigned short DefaultPhyParam[] = {
	// 11/12/03 IP1000A v1-3 rev=0x40
	/*--------------------------------------------------------------------------
	(0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
				 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
				 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
	  --------------------------------------------------------------------------*/
	// 12/17/03 IP1000A v1-4 rev=0x40
	(0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
	    0x0000,
	30, 0x005e, 9, 0x0700,
	// 01/09/04 IP1000A v1-5 rev=0x41
	(0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
	    0x0000,
	30, 0x005e, 9, 0x0700,
	0x0000
};

static const char *ipg_brand_name[] = {
	"IC PLUS IP1000 1000/100/10 based NIC",
	"Sundance Technology ST2021 based NIC",
	"Tamarack Microelectronics TC9020/9021 based NIC",
	"Tamarack Microelectronics TC9020/9021 based NIC",
	"D-Link NIC",
	"D-Link NIC IP1000A"
};

static struct pci_device_id ipg_pci_tbl[] __devinitdata = {
	{ PCI_VDEVICE(SUNDANCE,	0x1023), 0 },
	{ PCI_VDEVICE(SUNDANCE,	0x2021), 1 },
	{ PCI_VDEVICE(SUNDANCE,	0x1021), 2 },
	{ PCI_VDEVICE(DLINK,	0x9021), 3 },
	{ PCI_VDEVICE(DLINK,	0x4000), 4 },
	{ PCI_VDEVICE(DLINK,	0x4020), 5 },
	{ 0, }
};

MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);

static inline void __iomem *ipg_ioaddr(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	return sp->ioaddr;
}

#ifdef IPG_DEBUG
static void ipg_dump_rfdlist(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;
	u32 offset;

	IPG_DEBUG_MSG("_dump_rfdlist\n");

	printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
	printk(KERN_INFO "rx_dirty   = %2.2x\n", sp->rx_dirty);
	printk(KERN_INFO "RFDList start address = %16.16lx\n",
	       (unsigned long) sp->rxd_map);
	printk(KERN_INFO "RFDListPtr register   = %8.8x%8.8x\n",
	       ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));

	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
		offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
		printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
		       offset, (unsigned long) sp->rxd[i].next_desc);
		offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
		printk(KERN_INFO "%2.2x %4.4x RFS        = %16.16lx\n", i,
		       offset, (unsigned long) sp->rxd[i].rfs);
		offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
		printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
		       offset, (unsigned long) sp->rxd[i].frag_info);
	}
}

static void ipg_dump_tfdlist(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;
	u32 offset;

	IPG_DEBUG_MSG("_dump_tfdlist\n");

	printk(KERN_INFO "tx_current         = %2.2x\n", sp->tx_current);
	printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
	printk(KERN_INFO "TFDList start address = %16.16lx\n",
	       (unsigned long) sp->txd_map);
	printk(KERN_INFO "TFDListPtr register   = %8.8x%8.8x\n",
	       ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));

	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
		offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
		printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
		       offset, (unsigned long) sp->txd[i].next_desc);

		offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
		printk(KERN_INFO "%2.2x %4.4x TFC        = %16.16lx\n", i,
		       offset, (unsigned long) sp->txd[i].tfc);
		offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
		printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
		       offset, (unsigned long) sp->txd[i].frag_info);
	}
}
#endif

static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
{
	ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
	ndelay(IPG_PC_PHYCTRLWAIT_NS);
}

static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
{
	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
}

static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
{
	phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;

	ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
}

static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
{
	ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
		phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
}

static u16 read_phy_bit(void __iomem * ioaddr, u8 phyctrlpolarity)
{
	u16 bit_data;

	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);

	bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;

	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);

	return bit_data;
}

/*
 * Read a register from the Physical Layer device located
 * on the IPG NIC, using the IPG PHYCTRL register.
 */
static int mdio_read(struct net_device * dev, int phy_id, int phy_reg)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	/*
	 * The GMII mangement frame structure for a read is as follows:
	 *
	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
	 *
	 * <32 1s> = 32 consecutive logic 1 values
	 * A = bit of Physical Layer device address (MSB first)
	 * R = bit of register address (MSB first)
	 * z = High impedance state
	 * D = bit of read data (MSB first)
	 *
	 * Transmission order is 'Preamble' field first, bits transmitted
	 * left to right (first to last).
	 */
	struct {
		u32 field;
		unsigned int len;
	} p[] = {
		{ GMII_PREAMBLE,	32 },	/* Preamble */
		{ GMII_ST,		2  },	/* ST */
		{ GMII_READ,		2  },	/* OP */
		{ phy_id,		5  },	/* PHYAD */
		{ phy_reg,		5  },	/* REGAD */
		{ 0x0000,		2  },	/* TA */
		{ 0x0000,		16 },	/* DATA */
		{ 0x0000,		1  }	/* IDLE */
	};
	unsigned int i, j;
	u8 polarity, data;

	polarity  = ipg_r8(PHY_CTRL);
	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);

	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
	for (j = 0; j < 5; j++) {
		for (i = 0; i < p[j].len; i++) {
			/* For each variable length field, the MSB must be
			 * transmitted first. Rotate through the field bits,
			 * starting with the MSB, and move each bit into the
			 * the 1st (2^1) bit position (this is the bit position
			 * corresponding to the MgmtData bit of the PhyCtrl
			 * register for the IPG).
			 *
			 * Example: ST = 01;
			 *
			 *          First write a '0' to bit 1 of the PhyCtrl
			 *          register, then write a '1' to bit 1 of the
			 *          PhyCtrl register.
			 *
			 * To do this, right shift the MSB of ST by the value:
			 * [field length - 1 - #ST bits already written]
			 * then left shift this result by 1.
			 */
			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
			data &= IPG_PC_MGMTDATA;
			data |= polarity | IPG_PC_MGMTDIR;

			ipg_drive_phy_ctl_low_high(ioaddr, data);
		}
	}

	send_three_state(ioaddr, polarity);

	read_phy_bit(ioaddr, polarity);

	/*
	 * For a read cycle, the bits for the next two fields (TA and
	 * DATA) are driven by the PHY (the IPG reads these bits).
	 */
	for (i = 0; i < p[6].len; i++) {
		p[6].field |=
		    (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
	}

	send_three_state(ioaddr, polarity);
	send_three_state(ioaddr, polarity);
	send_three_state(ioaddr, polarity);
	send_end(ioaddr, polarity);

	/* Return the value of the DATA field. */
	return p[6].field;
}

/*
 * Write to a register from the Physical Layer device located
 * on the IPG NIC, using the IPG PHYCTRL register.
 */
static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	/*
	 * The GMII mangement frame structure for a read is as follows:
	 *
	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
	 *
	 * <32 1s> = 32 consecutive logic 1 values
	 * A = bit of Physical Layer device address (MSB first)
	 * R = bit of register address (MSB first)
	 * z = High impedance state
	 * D = bit of write data (MSB first)
	 *
	 * Transmission order is 'Preamble' field first, bits transmitted
	 * left to right (first to last).
	 */
	struct {
		u32 field;
		unsigned int len;
	} p[] = {
		{ GMII_PREAMBLE,	32 },	/* Preamble */
		{ GMII_ST,		2  },	/* ST */
		{ GMII_WRITE,		2  },	/* OP */
		{ phy_id,		5  },	/* PHYAD */
		{ phy_reg,		5  },	/* REGAD */
		{ 0x0002,		2  },	/* TA */
		{ val & 0xffff,		16 },	/* DATA */
		{ 0x0000,		1  }	/* IDLE */
	};
	unsigned int i, j;
	u8 polarity, data;

	polarity  = ipg_r8(PHY_CTRL);
	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);

	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
	for (j = 0; j < 7; j++) {
		for (i = 0; i < p[j].len; i++) {
			/* For each variable length field, the MSB must be
			 * transmitted first. Rotate through the field bits,
			 * starting with the MSB, and move each bit into the
			 * the 1st (2^1) bit position (this is the bit position
			 * corresponding to the MgmtData bit of the PhyCtrl
			 * register for the IPG).
			 *
			 * Example: ST = 01;
			 *
			 *          First write a '0' to bit 1 of the PhyCtrl
			 *          register, then write a '1' to bit 1 of the
			 *          PhyCtrl register.
			 *
			 * To do this, right shift the MSB of ST by the value:
			 * [field length - 1 - #ST bits already written]
			 * then left shift this result by 1.
			 */
			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
			data &= IPG_PC_MGMTDATA;
			data |= polarity | IPG_PC_MGMTDIR;

			ipg_drive_phy_ctl_low_high(ioaddr, data);
		}
	}

	/* The last cycle is a tri-state, so read from the PHY. */
	for (j = 7; j < 8; j++) {
		for (i = 0; i < p[j].len; i++) {
			ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);

			p[j].field |= ((ipg_r8(PHY_CTRL) &
				IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);

			ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
		}
	}
}

/* Set LED_Mode JES20040127EEPROM */
static void ipg_set_led_mode(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	u32 mode;

	mode = ipg_r32(ASIC_CTRL);
	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);

	if ((sp->LED_Mode & 0x03) > 1)
		mode |= IPG_AC_LED_MODE_BIT_1;	/* Write Asic Control Bit 29 */

	if ((sp->LED_Mode & 0x01) == 1)
		mode |= IPG_AC_LED_MODE;	/* Write Asic Control Bit 14 */

	if ((sp->LED_Mode & 0x08) == 8)
		mode |= IPG_AC_LED_SPEED;	/* Write Asic Control Bit 27 */

	ipg_w32(mode, ASIC_CTRL);
}

/* Set PHYSet JES20040127EEPROM */
static void ipg_set_phy_set(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	int physet;

	physet = ipg_r8(PHY_SET);
	physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
	physet |= ((sp->LED_Mode & 0x70) >> 4);
	ipg_w8(physet, PHY_SET);
}

static int ipg_reset(struct net_device *dev, u32 resetflags)
{
	/* Assert functional resets via the IPG AsicCtrl
	 * register as specified by the 'resetflags' input
	 * parameter.
	 */
	void __iomem *ioaddr = ipg_ioaddr(dev);	//JES20040127EEPROM:
	unsigned int timeout_count = 0;

	IPG_DEBUG_MSG("_reset\n");

	ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);

	/* Delay added to account for problem with 10Mbps reset. */
	mdelay(IPG_AC_RESETWAIT);

	while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
		mdelay(IPG_AC_RESETWAIT);
		if (++timeout_count > IPG_AC_RESET_TIMEOUT)
			return -ETIME;
	}
	/* Set LED Mode in Asic Control JES20040127EEPROM */
	ipg_set_led_mode(dev);

	/* Set PHYSet Register Value JES20040127EEPROM */
	ipg_set_phy_set(dev);
	return 0;
}

/* Find the GMII PHY address. */
static int ipg_find_phyaddr(struct net_device *dev)
{
	unsigned int phyaddr, i;

	for (i = 0; i < 32; i++) {
		u32 status;

		/* Search for the correct PHY address among 32 possible. */
		phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;

		/* 10/22/03 Grace change verify from GMII_PHY_STATUS to
		   GMII_PHY_ID1
		 */

		status = mdio_read(dev, phyaddr, MII_BMSR);

		if ((status != 0xFFFF) && (status != 0))
			return phyaddr;
	}

	return 0x1f;
}

/*
 * Configure IPG based on result of IEEE 802.3 PHY
 * auto-negotiation.
 */
static int ipg_config_autoneg(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int txflowcontrol;
	unsigned int rxflowcontrol;
	unsigned int fullduplex;
	unsigned int gig;
	u32 mac_ctrl_val;
	u32 asicctrl;
	u8 phyctrl;

	IPG_DEBUG_MSG("_config_autoneg\n");

	asicctrl = ipg_r32(ASIC_CTRL);
	phyctrl = ipg_r8(PHY_CTRL);
	mac_ctrl_val = ipg_r32(MAC_CTRL);

	/* Set flags for use in resolving auto-negotation, assuming
	 * non-1000Mbps, half duplex, no flow control.
	 */
	fullduplex = 0;
	txflowcontrol = 0;
	rxflowcontrol = 0;
	gig = 0;

	/* To accomodate a problem in 10Mbps operation,
	 * set a global flag if PHY running in 10Mbps mode.
	 */
	sp->tenmbpsmode = 0;

	printk(KERN_INFO "%s: Link speed = ", dev->name);

	/* Determine actual speed of operation. */
	switch (phyctrl & IPG_PC_LINK_SPEED) {
	case IPG_PC_LINK_SPEED_10MBPS:
		printk("10Mbps.\n");
		printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
		       dev->name);
		sp->tenmbpsmode = 1;
		break;
	case IPG_PC_LINK_SPEED_100MBPS:
		printk("100Mbps.\n");
		break;
	case IPG_PC_LINK_SPEED_1000MBPS:
		printk("1000Mbps.\n");
		gig = 1;
		break;
	default:
		printk("undefined!\n");
		return 0;
	}

	if (phyctrl & IPG_PC_DUPLEX_STATUS) {
		fullduplex = 1;
		txflowcontrol = 1;
		rxflowcontrol = 1;
	}

	/* Configure full duplex, and flow control. */
	if (fullduplex == 1) {
		/* Configure IPG for full duplex operation. */
		printk(KERN_INFO "%s: setting full duplex, ", dev->name);

		mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;

		if (txflowcontrol == 1) {
			printk("TX flow control");
			mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
		} else {
			printk("no TX flow control");
			mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
		}

		if (rxflowcontrol == 1) {
			printk(", RX flow control.");
			mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
		} else {
			printk(", no RX flow control.");
			mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
		}

		printk("\n");
	} else {
		/* Configure IPG for half duplex operation. */
	        printk(KERN_INFO "%s: setting half duplex, "
		       "no TX flow control, no RX flow control.\n", dev->name);

		mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
			~IPG_MC_TX_FLOW_CONTROL_ENABLE &
			~IPG_MC_RX_FLOW_CONTROL_ENABLE;
	}
	ipg_w32(mac_ctrl_val, MAC_CTRL);
	return 0;
}

/* Determine and configure multicast operation and set
 * receive mode for IPG.
 */
static void ipg_nic_set_multicast_list(struct net_device *dev)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	struct dev_mc_list *mc_list_ptr;
	unsigned int hashindex;
	u32 hashtable[2];
	u8 receivemode;

	IPG_DEBUG_MSG("_nic_set_multicast_list\n");

	receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;

	if (dev->flags & IFF_PROMISC) {
		/* NIC to be configured in promiscuous mode. */
		receivemode = IPG_RM_RECEIVEALLFRAMES;
	} else if ((dev->flags & IFF_ALLMULTI) ||
		   (dev->flags & IFF_MULTICAST &
		    (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) {
		/* NIC to be configured to receive all multicast
		 * frames. */
		receivemode |= IPG_RM_RECEIVEMULTICAST;
	} else if (dev->flags & IFF_MULTICAST & (dev->mc_count > 0)) {
		/* NIC to be configured to receive selected
		 * multicast addresses. */
		receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
	}

	/* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
	 * The IPG applies a cyclic-redundancy-check (the same CRC
	 * used to calculate the frame data FCS) to the destination
	 * address all incoming multicast frames whose destination
	 * address has the multicast bit set. The least significant
	 * 6 bits of the CRC result are used as an addressing index
	 * into the hash table. If the value of the bit addressed by
	 * this index is a 1, the frame is passed to the host system.
	 */

	/* Clear hashtable. */
	hashtable[0] = 0x00000000;
	hashtable[1] = 0x00000000;

	/* Cycle through all multicast addresses to filter. */
	for (mc_list_ptr = dev->mc_list;
	     mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) {
		/* Calculate CRC result for each multicast address. */
		hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr,
				     ETH_ALEN);

		/* Use only the least significant 6 bits. */
		hashindex = hashindex & 0x3F;

		/* Within "hashtable", set bit number "hashindex"
		 * to a logic 1.
		 */
		set_bit(hashindex, (void *)hashtable);
	}

	/* Write the value of the hashtable, to the 4, 16 bit
	 * HASHTABLE IPG registers.
	 */
	ipg_w32(hashtable[0], HASHTABLE_0);
	ipg_w32(hashtable[1], HASHTABLE_1);

	ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);

	IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
}

static int ipg_io_config(struct net_device *dev)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	u32 origmacctrl;
	u32 restoremacctrl;

	IPG_DEBUG_MSG("_io_config\n");

	origmacctrl = ipg_r32(MAC_CTRL);

	restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;

	/* Based on compilation option, determine if FCS is to be
	 * stripped on receive frames by IPG.
	 */
	if (!IPG_STRIP_FCS_ON_RX)
		restoremacctrl |= IPG_MC_RCV_FCS;

	/* Determine if transmitter and/or receiver are
	 * enabled so we may restore MACCTRL correctly.
	 */
	if (origmacctrl & IPG_MC_TX_ENABLED)
		restoremacctrl |= IPG_MC_TX_ENABLE;

	if (origmacctrl & IPG_MC_RX_ENABLED)
		restoremacctrl |= IPG_MC_RX_ENABLE;

	/* Transmitter and receiver must be disabled before setting
	 * IFSSelect.
	 */
	ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
		IPG_MC_RSVD_MASK, MAC_CTRL);

	/* Now that transmitter and receiver are disabled, write
	 * to IFSSelect.
	 */
	ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);

	/* Set RECEIVEMODE register. */
	ipg_nic_set_multicast_list(dev);

	ipg_w16(IPG_MAX_RXFRAME_SIZE, MAX_FRAME_SIZE);

	ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
	ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
	ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
	ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
	ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
	ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
	ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
		 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
		 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
		 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
	ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
	ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);

	/* IPG multi-frag frame bug workaround.
	 * Per silicon revision B3 eratta.
	 */
	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);

	/* IPG TX poll now bug workaround.
	 * Per silicon revision B3 eratta.
	 */
	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);

	/* IPG RX poll now bug workaround.
	 * Per silicon revision B3 eratta.
	 */
	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);

	/* Now restore MACCTRL to original setting. */
	ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);

	/* Disable unused RMON statistics. */
	ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);

	/* Disable unused MIB statistics. */
	ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
		IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
		IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
		IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
		IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
		IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);

	return 0;
}

/*
 * Create a receive buffer within system memory and update
 * NIC private structure appropriately.
 */
static int ipg_get_rxbuff(struct net_device *dev, int entry)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	struct ipg_rx *rxfd = sp->rxd + entry;
	struct sk_buff *skb;
	u64 rxfragsize;

	IPG_DEBUG_MSG("_get_rxbuff\n");

	skb = netdev_alloc_skb(dev, IPG_RXSUPPORT_SIZE + NET_IP_ALIGN);
	if (!skb) {
		sp->RxBuff[entry] = NULL;
		return -ENOMEM;
	}

	/* Adjust the data start location within the buffer to
	 * align IP address field to a 16 byte boundary.
	 */
	skb_reserve(skb, NET_IP_ALIGN);

	/* Associate the receive buffer with the IPG NIC. */
	skb->dev = dev;

	/* Save the address of the sk_buff structure. */
	sp->RxBuff[entry] = skb;

	rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
		sp->rx_buf_sz, PCI_DMA_FROMDEVICE));

	/* Set the RFD fragment length. */
	rxfragsize = IPG_RXFRAG_SIZE;
	rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);

	return 0;
}

static int init_rfdlist(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;

	IPG_DEBUG_MSG("_init_rfdlist\n");

	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
		struct ipg_rx *rxfd = sp->rxd + i;

		if (sp->RxBuff[i]) {
			pci_unmap_single(sp->pdev,
				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
			dev_kfree_skb_irq(sp->RxBuff[i]);
			sp->RxBuff[i] = NULL;
		}

		/* Clear out the RFS field. */
		rxfd->rfs = 0x0000000000000000;

		if (ipg_get_rxbuff(dev, i) < 0) {
			/*
			 * A receive buffer was not ready, break the
			 * RFD list here.
			 */
			IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");

			/* Just in case we cannot allocate a single RFD.
			 * Should not occur.
			 */
			if (i == 0) {
				printk(KERN_ERR "%s: No memory available"
					" for RFD list.\n", dev->name);
				return -ENOMEM;
			}
		}

		rxfd->next_desc = cpu_to_le64(sp->rxd_map +
			sizeof(struct ipg_rx)*(i + 1));
	}
	sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);

	sp->rx_current = 0;
	sp->rx_dirty = 0;

	/* Write the location of the RFDList to the IPG. */
	ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
	ipg_w32(0x00000000, RFD_LIST_PTR_1);

	return 0;
}

static void init_tfdlist(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;

	IPG_DEBUG_MSG("_init_tfdlist\n");

	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
		struct ipg_tx *txfd = sp->txd + i;

		txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);

		if (sp->TxBuff[i]) {
			dev_kfree_skb_irq(sp->TxBuff[i]);
			sp->TxBuff[i] = NULL;
		}

		txfd->next_desc = cpu_to_le64(sp->txd_map +
			sizeof(struct ipg_tx)*(i + 1));
	}
	sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);

	sp->tx_current = 0;
	sp->tx_dirty = 0;

	/* Write the location of the TFDList to the IPG. */
	IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
		       (u32) sp->txd_map);
	ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
	ipg_w32(0x00000000, TFD_LIST_PTR_1);

	sp->ResetCurrentTFD = 1;
}

/*
 * Free all transmit buffers which have already been transfered
 * via DMA to the IPG.
 */
static void ipg_nic_txfree(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int released, pending, dirty;

	IPG_DEBUG_MSG("_nic_txfree\n");

	pending = sp->tx_current - sp->tx_dirty;
	dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;

	for (released = 0; released < pending; released++) {
		struct sk_buff *skb = sp->TxBuff[dirty];
		struct ipg_tx *txfd = sp->txd + dirty;

		IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);

		/* Look at each TFD's TFC field beginning
		 * at the last freed TFD up to the current TFD.
		 * If the TFDDone bit is set, free the associated
		 * buffer.
		 */
		if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
                        break;

		/* Free the transmit buffer. */
		if (skb) {
			pci_unmap_single(sp->pdev,
				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
				skb->len, PCI_DMA_TODEVICE);

			dev_kfree_skb_irq(skb);

			sp->TxBuff[dirty] = NULL;
		}
		dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
	}

	sp->tx_dirty += released;

	if (netif_queue_stopped(dev) &&
	    (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
		netif_wake_queue(dev);
	}
}

static void ipg_tx_timeout(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;

	ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
		  IPG_AC_FIFO);

	spin_lock_irq(&sp->lock);

	/* Re-configure after DMA reset. */
	if (ipg_io_config(dev) < 0) {
		printk(KERN_INFO "%s: Error during re-configuration.\n",
		       dev->name);
	}

	init_tfdlist(dev);

	spin_unlock_irq(&sp->lock);

	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
		MAC_CTRL);
}

/*
 * For TxComplete interrupts, free all transmit
 * buffers which have already been transfered via DMA
 * to the IPG.
 */
static void ipg_nic_txcleanup(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;

	IPG_DEBUG_MSG("_nic_txcleanup\n");

	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
		/* Reading the TXSTATUS register clears the
		 * TX_COMPLETE interrupt.
		 */
		u32 txstatusdword = ipg_r32(TX_STATUS);

		IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);

		/* Check for Transmit errors. Error bits only valid if
		 * TX_COMPLETE bit in the TXSTATUS register is a 1.
		 */
		if (!(txstatusdword & IPG_TS_TX_COMPLETE))
			break;

		/* If in 10Mbps mode, indicate transmit is ready. */
		if (sp->tenmbpsmode) {
			netif_wake_queue(dev);
		}

		/* Transmit error, increment stat counters. */
		if (txstatusdword & IPG_TS_TX_ERROR) {
			IPG_DEBUG_MSG("Transmit error.\n");
			sp->stats.tx_errors++;
		}

		/* Late collision, re-enable transmitter. */
		if (txstatusdword & IPG_TS_LATE_COLLISION) {
			IPG_DEBUG_MSG("Late collision on transmit.\n");
			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
				IPG_MC_RSVD_MASK, MAC_CTRL);
		}

		/* Maximum collisions, re-enable transmitter. */
		if (txstatusdword & IPG_TS_TX_MAX_COLL) {
			IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
				IPG_MC_RSVD_MASK, MAC_CTRL);
		}

		/* Transmit underrun, reset and re-enable
		 * transmitter.
		 */
		if (txstatusdword & IPG_TS_TX_UNDERRUN) {
			IPG_DEBUG_MSG("Transmitter underrun.\n");
			sp->stats.tx_fifo_errors++;
			ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
				  IPG_AC_NETWORK | IPG_AC_FIFO);

			/* Re-configure after DMA reset. */
			if (ipg_io_config(dev) < 0) {
				printk(KERN_INFO
				       "%s: Error during re-configuration.\n",
				       dev->name);
			}
			init_tfdlist(dev);

			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
				IPG_MC_RSVD_MASK, MAC_CTRL);
		}
	}

	ipg_nic_txfree(dev);
}

/* Provides statistical information about the IPG NIC. */
static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	u16 temp1;
	u16 temp2;

	IPG_DEBUG_MSG("_nic_get_stats\n");

	/* Check to see if the NIC has been initialized via nic_open,
	 * before trying to read statistic registers.
	 */
	if (!test_bit(__LINK_STATE_START, &dev->state))
		return &sp->stats;

	sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
	sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
	sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
	sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
	temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
	sp->stats.rx_errors += temp1;
	sp->stats.rx_missed_errors += temp1;
	temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
		ipg_r32(IPG_LATECOLLISIONS);
	temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
	sp->stats.collisions += temp1;
	sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
	sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
		ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
	sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);

	/* detailed tx_errors */
	sp->stats.tx_carrier_errors += temp2;

	/* detailed rx_errors */
	sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
		ipg_r16(IPG_FRAMETOOLONGERRRORS);
	sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);

	/* Unutilized IPG statistic registers. */
	ipg_r32(IPG_MCSTFRAMESRCVDOK);

	return &sp->stats;
}

/* Restore used receive buffers. */
static int ipg_nic_rxrestore(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	const unsigned int curr = sp->rx_current;
	unsigned int dirty = sp->rx_dirty;

	IPG_DEBUG_MSG("_nic_rxrestore\n");

	for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
		unsigned int entry = dirty % IPG_RFDLIST_LENGTH;

		/* rx_copybreak may poke hole here and there. */
		if (sp->RxBuff[entry])
			continue;

		/* Generate a new receive buffer to replace the
		 * current buffer (which will be released by the
		 * Linux system).
		 */
		if (ipg_get_rxbuff(dev, entry) < 0) {
			IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");

			break;
		}

		/* Reset the RFS field. */
		sp->rxd[entry].rfs = 0x0000000000000000;
	}
	sp->rx_dirty = dirty;

	return 0;
}

#ifdef JUMBO_FRAME

/* use jumboindex and jumbosize to control jumbo frame status
   initial status is jumboindex=-1 and jumbosize=0
   1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
   2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
   3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
                previous receiving and need to continue dumping the current one
*/
enum {
	NormalPacket,
	ErrorPacket
};

enum {
	Frame_NoStart_NoEnd	= 0,
	Frame_WithStart		= 1,
	Frame_WithEnd		= 10,
	Frame_WithStart_WithEnd = 11
};

inline void ipg_nic_rx_free_skb(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;

	if (sp->RxBuff[entry]) {
		struct ipg_rx *rxfd = sp->rxd + entry;

		pci_unmap_single(sp->pdev,
			le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
			sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
		dev_kfree_skb_irq(sp->RxBuff[entry]);
		sp->RxBuff[entry] = NULL;
	}
}

inline int ipg_nic_rx_check_frame_type(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
	int type = Frame_NoStart_NoEnd;

	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
		type += Frame_WithStart;
	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
		type += Frame_WithEnd;
	return type;
}

inline int ipg_nic_rx_check_error(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
	struct ipg_rx *rxfd = sp->rxd + entry;

	if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
	     (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
	      IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
	      IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
		IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
			      (unsigned long) rxfd->rfs);

		/* Increment general receive error statistic. */
		sp->stats.rx_errors++;

		/* Increment detailed receive error statistics. */
		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
			IPG_DEBUG_MSG("RX FIFO overrun occured.\n");

			sp->stats.rx_fifo_errors++;
		}

		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
			IPG_DEBUG_MSG("RX runt occured.\n");
			sp->stats.rx_length_errors++;
		}

		/* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
		 * error count handled by a IPG statistic register.
		 */

		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
			IPG_DEBUG_MSG("RX alignment error occured.\n");
			sp->stats.rx_frame_errors++;
		}

		/* Do nothing for IPG_RFS_RXFCSERROR, error count
		 * handled by a IPG statistic register.
		 */

		/* Free the memory associated with the RX
		 * buffer since it is erroneous and we will
		 * not pass it to higher layer processes.
		 */
		if (sp->RxBuff[entry]) {
			pci_unmap_single(sp->pdev,
				le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);

			dev_kfree_skb_irq(sp->RxBuff[entry]);
			sp->RxBuff[entry] = NULL;
		}
		return ErrorPacket;
	}
	return NormalPacket;
}

static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
					  struct ipg_nic_private *sp,
					  struct ipg_rx *rxfd, unsigned entry)
{
	struct SJumbo *jumbo = &sp->Jumbo;
	struct sk_buff *skb;
	int framelen;

	if (jumbo->FoundStart) {
		dev_kfree_skb_irq(jumbo->skb);
		jumbo->FoundStart = 0;
		jumbo->CurrentSize = 0;
		jumbo->skb = NULL;
	}

	// 1: found error, 0 no error
	if (ipg_nic_rx_check_error(dev) != NormalPacket)
		return;

	skb = sp->RxBuff[entry];
	if (!skb)
		return;

	// accept this frame and send to upper layer
	framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
	if (framelen > IPG_RXFRAG_SIZE)
		framelen = IPG_RXFRAG_SIZE;

	skb_put(skb, framelen);
	skb->protocol = eth_type_trans(skb, dev);
	skb->ip_summed = CHECKSUM_NONE;
	netif_rx(skb);
	dev->last_rx = jiffies;
	sp->RxBuff[entry] = NULL;
}

static void ipg_nic_rx_with_start(struct net_device *dev,
				  struct ipg_nic_private *sp,
				  struct ipg_rx *rxfd, unsigned entry)
{
	struct SJumbo *jumbo = &sp->Jumbo;
	struct pci_dev *pdev = sp->pdev;
	struct sk_buff *skb;

	// 1: found error, 0 no error
	if (ipg_nic_rx_check_error(dev) != NormalPacket)
		return;

	// accept this frame and send to upper layer
	skb = sp->RxBuff[entry];
	if (!skb)
		return;

	if (jumbo->FoundStart)
		dev_kfree_skb_irq(jumbo->skb);

	pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
			 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);

	skb_put(skb, IPG_RXFRAG_SIZE);

	jumbo->FoundStart = 1;
	jumbo->CurrentSize = IPG_RXFRAG_SIZE;
	jumbo->skb = skb;

	sp->RxBuff[entry] = NULL;
	dev->last_rx = jiffies;
}

static void ipg_nic_rx_with_end(struct net_device *dev,
				struct ipg_nic_private *sp,
				struct ipg_rx *rxfd, unsigned entry)
{
	struct SJumbo *jumbo = &sp->Jumbo;

	//1: found error, 0 no error
	if (ipg_nic_rx_check_error(dev) == NormalPacket) {
		struct sk_buff *skb = sp->RxBuff[entry];

		if (!skb)
			return;

		if (jumbo->FoundStart) {
			int framelen, endframelen;

			framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;

			endframeLen = framelen - jumbo->CurrentSize;
			/*
			if (framelen > IPG_RXFRAG_SIZE)
				framelen=IPG_RXFRAG_SIZE;
			 */
			if (framelen > IPG_RXSUPPORT_SIZE)
				dev_kfree_skb_irq(jumbo->skb);
			else {
				memcpy(skb_put(jumbo->skb, endframeLen),
				       skb->data, endframeLen);

				jumbo->skb->protocol =
				    eth_type_trans(jumbo->skb, dev);

				jumbo->skb->ip_summed = CHECKSUM_NONE;
				netif_rx(jumbo->skb);
			}
		}

		dev->last_rx = jiffies;
		jumbo->FoundStart = 0;
		jumbo->CurrentSize = 0;
		jumbo->skb = NULL;

		ipg_nic_rx_free_skb(dev);
	} else {
		dev_kfree_skb_irq(jumbo->skb);
		jumbo->FoundStart = 0;
		jumbo->CurrentSize = 0;
		jumbo->skb = NULL;
	}
}

static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
				       struct ipg_nic_private *sp,
				       struct ipg_rx *rxfd, unsigned entry)
{
	struct SJumbo *jumbo = &sp->Jumbo;

	//1: found error, 0 no error
	if (ipg_nic_rx_check_error(dev) == NormalPacket) {
		struct sk_buff *skb = sp->RxBuff[entry];

		if (skb) {
			if (jumbo->FoundStart) {
				jumbo->CurrentSize += IPG_RXFRAG_SIZE;
				if (jumbo->CurrentSize <= IPG_RXSUPPORT_SIZE) {
					memcpy(skb_put(jumbo->skb,
						       IPG_RXFRAG_SIZE),
					       skb->data, IPG_RXFRAG_SIZE);
				}
			}
			dev->last_rx = jiffies;
			ipg_nic_rx_free_skb(dev);
		}
	} else {
		dev_kfree_skb_irq(jumbo->skb);
		jumbo->FoundStart = 0;
		jumbo->CurrentSize = 0;
		jumbo->skb = NULL;
	}
}

static int ipg_nic_rx(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int curr = sp->rx_current;
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;

	IPG_DEBUG_MSG("_nic_rx\n");

	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
		struct ipg_rx *rxfd = sp->rxd + entry;

		if (!(rxfd->rfs & le64_to_cpu(IPG_RFS_RFDDONE)))
			break;

		switch (ipg_nic_rx_check_frame_type(dev)) {
		case Frame_WithStart_WithEnd:
			ipg_nic_rx_with_start_and_end(dev, tp, rxfd, entry);
			break;
		case Frame_WithStart:
			ipg_nic_rx_with_start(dev, tp, rxfd, entry);
			break;
		case Frame_WithEnd:
			ipg_nic_rx_with_end(dev, tp, rxfd, entry);
			break;
		case Frame_NoStart_NoEnd:
			ipg_nic_rx_no_start_no_end(dev, tp, rxfd, entry);
			break;
		}
	}

	sp->rx_current = curr;

	if (i == IPG_MAXRFDPROCESS_COUNT) {
		/* There are more RFDs to process, however the
		 * allocated amount of RFD processing time has
		 * expired. Assert Interrupt Requested to make
		 * sure we come back to process the remaining RFDs.
		 */
		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
	}

	ipg_nic_rxrestore(dev);

	return 0;
}

#else
static int ipg_nic_rx(struct net_device *dev)
{
	/* Transfer received Ethernet frames to higher network layers. */
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int curr = sp->rx_current;
	void __iomem *ioaddr = sp->ioaddr;
	struct ipg_rx *rxfd;
	unsigned int i;

	IPG_DEBUG_MSG("_nic_rx\n");

#define __RFS_MASK \
	cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)

	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
		struct sk_buff *skb = sp->RxBuff[entry];
		unsigned int framelen;

		rxfd = sp->rxd + entry;

		if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
			break;

		/* Get received frame length. */
		framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;

		/* Check for jumbo frame arrival with too small
		 * RXFRAG_SIZE.
		 */
		if (framelen > IPG_RXFRAG_SIZE) {
			IPG_DEBUG_MSG
			    ("RFS FrameLen > allocated fragment size.\n");

			framelen = IPG_RXFRAG_SIZE;
		}

		if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
		       (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
			IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
			IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {

			IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
				      (unsigned long int) rxfd->rfs);

			/* Increment general receive error statistic. */
			sp->stats.rx_errors++;

			/* Increment detailed receive error statistics. */
			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
				IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
				sp->stats.rx_fifo_errors++;
			}

			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
				IPG_DEBUG_MSG("RX runt occured.\n");
				sp->stats.rx_length_errors++;
			}

			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
			/* Do nothing, error count handled by a IPG
			 * statistic register.
			 */

			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
				IPG_DEBUG_MSG("RX alignment error occured.\n");
				sp->stats.rx_frame_errors++;
			}

			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
			/* Do nothing, error count handled by a IPG
			 * statistic register.
			 */

			/* Free the memory associated with the RX
			 * buffer since it is erroneous and we will
			 * not pass it to higher layer processes.
			 */
			if (skb) {
				__le64 info = rxfd->frag_info;

				pci_unmap_single(sp->pdev,
					le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
					sp->rx_buf_sz, PCI_DMA_FROMDEVICE);

				dev_kfree_skb_irq(skb);
			}
		} else {

			/* Adjust the new buffer length to accomodate the size
			 * of the received frame.
			 */
			skb_put(skb, framelen);

			/* Set the buffer's protocol field to Ethernet. */
			skb->protocol = eth_type_trans(skb, dev);

			/* If the frame contains an IP/TCP/UDP frame,
			 * determine if upper layer must check IP/TCP/UDP
			 * checksums.
			 *
			 * NOTE: DO NOT RELY ON THE TCP/UDP CHECKSUM
			 *       VERIFICATION FOR SILICON REVISIONS B3
			 *       AND EARLIER!
			 *
			 if ((le64_to_cpu(rxfd->rfs &
			     (IPG_RFS_TCPDETECTED | IPG_RFS_UDPDETECTED |
			      IPG_RFS_IPDETECTED))) &&
			    !(le64_to_cpu(rxfd->rfs &
			      (IPG_RFS_TCPERROR | IPG_RFS_UDPERROR |
			       IPG_RFS_IPERROR)))) {
				 * Indicate IP checksums were performed
				 * by the IPG.
				 *
				skb->ip_summed = CHECKSUM_UNNECESSARY;
			 } else
			 */
			 {
				/* The IPG encountered an error with (or
				 * there were no) IP/TCP/UDP checksums.
				 * This may or may not indicate an invalid
				 * IP/TCP/UDP frame was received. Let the
				 * upper layer decide.
				 */
				skb->ip_summed = CHECKSUM_NONE;
			}

			/* Hand off frame for higher layer processing.
			 * The function netif_rx() releases the sk_buff
			 * when processing completes.
			 */
			netif_rx(skb);

			/* Record frame receive time (jiffies = Linux
			 * kernel current time stamp).
			 */
			dev->last_rx = jiffies;
		}

		/* Assure RX buffer is not reused by IPG. */
		sp->RxBuff[entry] = NULL;
	}

	/*
	 * If there are more RFDs to proces and the allocated amount of RFD
	 * processing time has expired, assert Interrupt Requested to make
	 * sure we come back to process the remaining RFDs.
	 */
	if (i == IPG_MAXRFDPROCESS_COUNT)
		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);

#ifdef IPG_DEBUG
	/* Check if the RFD list contained no receive frame data. */
	if (!i)
		sp->EmptyRFDListCount++;
#endif
	while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
	       !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
		 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
		unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;

		rxfd = sp->rxd + entry;

		IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");

		/* An unexpected event, additional code needed to handle
		 * properly. So for the time being, just disregard the
		 * frame.
		 */

		/* Free the memory associated with the RX
		 * buffer since it is erroneous and we will
		 * not pass it to higher layer processes.
		 */
		if (sp->RxBuff[entry]) {
			pci_unmap_single(sp->pdev,
				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
			dev_kfree_skb_irq(sp->RxBuff[entry]);
		}

		/* Assure RX buffer is not reused by IPG. */
		sp->RxBuff[entry] = NULL;
	}

	sp->rx_current = curr;

	/* Check to see if there are a minimum number of used
	 * RFDs before restoring any (should improve performance.)
	 */
	if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
		ipg_nic_rxrestore(dev);

	return 0;
}
#endif

static void ipg_reset_after_host_error(struct work_struct *work)
{
	struct ipg_nic_private *sp =
		container_of(work, struct ipg_nic_private, task.work);
	struct net_device *dev = sp->dev;

	IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL));

	/*
	 * Acknowledge HostError interrupt by resetting
	 * IPG DMA and HOST.
	 */
	ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);

	init_rfdlist(dev);
	init_tfdlist(dev);

	if (ipg_io_config(dev) < 0) {
		printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
		       dev->name);
		schedule_delayed_work(&sp->task, HZ);
	}
}

static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
{
	struct net_device *dev = dev_inst;
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int handled = 0;
	u16 status;

	IPG_DEBUG_MSG("_interrupt_handler\n");

#ifdef JUMBO_FRAME
	ipg_nic_rxrestore(dev);
#endif
	spin_lock(&sp->lock);

	/* Get interrupt source information, and acknowledge
	 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
	 * IntRequested, MacControlFrame, LinkEvent) interrupts
	 * if issued. Also, all IPG interrupts are disabled by
	 * reading IntStatusAck.
	 */
	status = ipg_r16(INT_STATUS_ACK);

	IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);

	/* Shared IRQ of remove event. */
	if (!(status & IPG_IS_RSVD_MASK))
		goto out_enable;

	handled = 1;

	if (unlikely(!netif_running(dev)))
		goto out_unlock;

	/* If RFDListEnd interrupt, restore all used RFDs. */
	if (status & IPG_IS_RFD_LIST_END) {
		IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");

		/* The RFD list end indicates an RFD was encountered
		 * with a 0 NextPtr, or with an RFDDone bit set to 1
		 * (indicating the RFD is not read for use by the
		 * IPG.) Try to restore all RFDs.
		 */
		ipg_nic_rxrestore(dev);

#ifdef IPG_DEBUG
		/* Increment the RFDlistendCount counter. */
		sp->RFDlistendCount++;
#endif
	}

	/* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
	 * IntRequested interrupt, process received frames. */
	if ((status & IPG_IS_RX_DMA_PRIORITY) ||
	    (status & IPG_IS_RFD_LIST_END) ||
	    (status & IPG_IS_RX_DMA_COMPLETE) ||
	    (status & IPG_IS_INT_REQUESTED)) {
#ifdef IPG_DEBUG
		/* Increment the RFD list checked counter if interrupted
		 * only to check the RFD list. */
		if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
				IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
			       (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
				IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
				IPG_IS_UPDATE_STATS)))
			sp->RFDListCheckedCount++;
#endif

		ipg_nic_rx(dev);
	}

	/* If TxDMAComplete interrupt, free used TFDs. */
	if (status & IPG_IS_TX_DMA_COMPLETE)
		ipg_nic_txfree(dev);

	/* TxComplete interrupts indicate one of numerous actions.
	 * Determine what action to take based on TXSTATUS register.
	 */
	if (status & IPG_IS_TX_COMPLETE)
		ipg_nic_txcleanup(dev);

	/* If UpdateStats interrupt, update Linux Ethernet statistics */
	if (status & IPG_IS_UPDATE_STATS)
		ipg_nic_get_stats(dev);

	/* If HostError interrupt, reset IPG. */
	if (status & IPG_IS_HOST_ERROR) {
		IPG_DDEBUG_MSG("HostError Interrupt\n");

		schedule_delayed_work(&sp->task, 0);
	}

	/* If LinkEvent interrupt, resolve autonegotiation. */
	if (status & IPG_IS_LINK_EVENT) {
		if (ipg_config_autoneg(dev) < 0)
			printk(KERN_INFO "%s: Auto-negotiation error.\n",
			       dev->name);
	}

	/* If MACCtrlFrame interrupt, do nothing. */
	if (status & IPG_IS_MAC_CTRL_FRAME)
		IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");

	/* If RxComplete interrupt, do nothing. */
	if (status & IPG_IS_RX_COMPLETE)
		IPG_DEBUG_MSG("RxComplete interrupt.\n");

	/* If RxEarly interrupt, do nothing. */
	if (status & IPG_IS_RX_EARLY)
		IPG_DEBUG_MSG("RxEarly interrupt.\n");

out_enable:
	/* Re-enable IPG interrupts. */
	ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
		IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
		IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
out_unlock:
	spin_unlock(&sp->lock);

	return IRQ_RETVAL(handled);
}

static void ipg_rx_clear(struct ipg_nic_private *sp)
{
	unsigned int i;

	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
		if (sp->RxBuff[i]) {
			struct ipg_rx *rxfd = sp->rxd + i;

			dev_kfree_skb_irq(sp->RxBuff[i]);
			sp->RxBuff[i] = NULL;
			pci_unmap_single(sp->pdev,
				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
		}
	}
}

static void ipg_tx_clear(struct ipg_nic_private *sp)
{
	unsigned int i;

	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
		if (sp->TxBuff[i]) {
			struct ipg_tx *txfd = sp->txd + i;

			pci_unmap_single(sp->pdev,
				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
				sp->TxBuff[i]->len, PCI_DMA_TODEVICE);

			dev_kfree_skb_irq(sp->TxBuff[i]);

			sp->TxBuff[i] = NULL;
		}
	}
}

static int ipg_nic_open(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	struct pci_dev *pdev = sp->pdev;
	int rc;

	IPG_DEBUG_MSG("_nic_open\n");

	sp->rx_buf_sz = IPG_RXSUPPORT_SIZE;

	/* Check for interrupt line conflicts, and request interrupt
	 * line for IPG.
	 *
	 * IMPORTANT: Disable IPG interrupts prior to registering
	 *            IRQ.
	 */
	ipg_w16(0x0000, INT_ENABLE);

	/* Register the interrupt line to be used by the IPG within
	 * the Linux system.
	 */
	rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED,
			 dev->name, dev);
	if (rc < 0) {
		printk(KERN_INFO "%s: Error when requesting interrupt.\n",
		       dev->name);
		goto out;
	}

	dev->irq = pdev->irq;

	rc = -ENOMEM;

	sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
				     &sp->rxd_map, GFP_KERNEL);
	if (!sp->rxd)
		goto err_free_irq_0;

	sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
				     &sp->txd_map, GFP_KERNEL);
	if (!sp->txd)
		goto err_free_rx_1;

	rc = init_rfdlist(dev);
	if (rc < 0) {
		printk(KERN_INFO "%s: Error during configuration.\n",
		       dev->name);
		goto err_free_tx_2;
	}

	init_tfdlist(dev);

	rc = ipg_io_config(dev);
	if (rc < 0) {
		printk(KERN_INFO "%s: Error during configuration.\n",
		       dev->name);
		goto err_release_tfdlist_3;
	}

	/* Resolve autonegotiation. */
	if (ipg_config_autoneg(dev) < 0)
		printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);

#ifdef JUMBO_FRAME
	/* initialize JUMBO Frame control variable */
	sp->Jumbo.FoundStart = 0;
	sp->Jumbo.CurrentSize = 0;
	sp->Jumbo.skb = 0;
	dev->mtu = IPG_TXFRAG_SIZE;
#endif

	/* Enable transmit and receive operation of the IPG. */
	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
		 IPG_MC_RSVD_MASK, MAC_CTRL);

	netif_start_queue(dev);
out:
	return rc;

err_release_tfdlist_3:
	ipg_tx_clear(sp);
	ipg_rx_clear(sp);
err_free_tx_2:
	dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
err_free_rx_1:
	dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
err_free_irq_0:
	free_irq(pdev->irq, dev);
	goto out;
}

static int ipg_nic_stop(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	struct pci_dev *pdev = sp->pdev;

	IPG_DEBUG_MSG("_nic_stop\n");

	netif_stop_queue(dev);

	IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount);
	IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount);
	IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount);
	IPG_DUMPTFDLIST(dev);

	do {
		(void) ipg_r16(INT_STATUS_ACK);

		ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);

		synchronize_irq(pdev->irq);
	} while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);

	ipg_rx_clear(sp);

	ipg_tx_clear(sp);

	pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
	pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);

	free_irq(pdev->irq, dev);

	return 0;
}

static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
	unsigned long flags;
	struct ipg_tx *txfd;

	IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");

	/* If in 10Mbps mode, stop the transmit queue so
	 * no more transmit frames are accepted.
	 */
	if (sp->tenmbpsmode)
		netif_stop_queue(dev);

	if (sp->ResetCurrentTFD) {
		sp->ResetCurrentTFD = 0;
		entry = 0;
	}

	txfd = sp->txd + entry;

	sp->TxBuff[entry] = skb;

	/* Clear all TFC fields, except TFDDONE. */
	txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);

	/* Specify the TFC field within the TFD. */
	txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
		(IPG_TFC_FRAMEID & cpu_to_le64(sp->tx_current)) |
		(IPG_TFC_FRAGCOUNT & (1 << 24)));

	/* Request TxComplete interrupts at an interval defined
	 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
	 * Request TxComplete interrupt for every frame
	 * if in 10Mbps mode to accomodate problem with 10Mbps
	 * processing.
	 */
	if (sp->tenmbpsmode)
		txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
	txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
	/* Based on compilation option, determine if FCS is to be
	 * appended to transmit frame by IPG.
	 */
	if (!(IPG_APPEND_FCS_ON_TX))
		txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);

	/* Based on compilation option, determine if IP, TCP and/or
	 * UDP checksums are to be added to transmit frame by IPG.
	 */
	if (IPG_ADD_IPCHECKSUM_ON_TX)
		txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);

	if (IPG_ADD_TCPCHECKSUM_ON_TX)
		txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);

	if (IPG_ADD_UDPCHECKSUM_ON_TX)
		txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);

	/* Based on compilation option, determine if VLAN tag info is to be
	 * inserted into transmit frame by IPG.
	 */
	if (IPG_INSERT_MANUAL_VLAN_TAG) {
		txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
			((u64) IPG_MANUAL_VLAN_VID << 32) |
			((u64) IPG_MANUAL_VLAN_CFI << 44) |
			((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
	}

	/* The fragment start location within system memory is defined
	 * by the sk_buff structure's data field. The physical address
	 * of this location within the system's virtual memory space
	 * is determined using the IPG_HOST2BUS_MAP function.
	 */
	txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
		skb->len, PCI_DMA_TODEVICE));

	/* The length of the fragment within system memory is defined by
	 * the sk_buff structure's len field.
	 */
	txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
		((u64) (skb->len & 0xffff) << 48));

	/* Clear the TFDDone bit last to indicate the TFD is ready
	 * for transfer to the IPG.
	 */
	txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);

	spin_lock_irqsave(&sp->lock, flags);

	sp->tx_current++;

	mmiowb();

	ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);

	if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
		netif_stop_queue(dev);

	spin_unlock_irqrestore(&sp->lock, flags);

	return NETDEV_TX_OK;
}

static void ipg_set_phy_default_param(unsigned char rev,
				      struct net_device *dev, int phy_address)
{
	unsigned short length;
	unsigned char revision;
	unsigned short *phy_param;
	unsigned short address, value;

	phy_param = &DefaultPhyParam[0];
	length = *phy_param & 0x00FF;
	revision = (unsigned char)((*phy_param) >> 8);
	phy_param++;
	while (length != 0) {
		if (rev == revision) {
			while (length > 1) {
				address = *phy_param;
				value = *(phy_param + 1);
				phy_param += 2;
				mdio_write(dev, phy_address, address, value);
				length -= 4;
			}
			break;
		} else {
			phy_param += length / 2;
			length = *phy_param & 0x00FF;
			revision = (unsigned char)((*phy_param) >> 8);
			phy_param++;
		}
	}
}

/* JES20040127EEPROM */
static int read_eeprom(struct net_device *dev, int eep_addr)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	unsigned int i;
	int ret = 0;
	u16 value;

	value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
	ipg_w16(value, EEPROM_CTRL);

	for (i = 0; i < 1000; i++) {
		u16 data;

		mdelay(10);
		data = ipg_r16(EEPROM_CTRL);
		if (!(data & IPG_EC_EEPROM_BUSY)) {
			ret = ipg_r16(EEPROM_DATA);
			break;
		}
	}
	return ret;
}

static void ipg_init_mii(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	struct mii_if_info *mii_if = &sp->mii_if;
	int phyaddr;

	mii_if->dev          = dev;
	mii_if->mdio_read    = mdio_read;
	mii_if->mdio_write   = mdio_write;
	mii_if->phy_id_mask  = 0x1f;
	mii_if->reg_num_mask = 0x1f;

	mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);

	if (phyaddr != 0x1f) {
		u16 mii_phyctrl, mii_1000cr;
		u8 revisionid = 0;

		mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
		mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
			GMII_PHY_1000BASETCONTROL_PreferMaster;
		mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);

		mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);

		/* Set default phyparam */
		pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
		ipg_set_phy_default_param(revisionid, dev, phyaddr);

		/* Reset PHY */
		mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
		mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);

	}
}

static int ipg_hw_init(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;
	int rc;

	/* Read/Write and Reset EEPROM Value Jesse20040128EEPROM_VALUE */
	/* Read LED Mode Configuration from EEPROM */
	sp->LED_Mode = read_eeprom(dev, 6);

	/* Reset all functions within the IPG. Do not assert
	 * RST_OUT as not compatible with some PHYs.
	 */
	rc = ipg_reset(dev, IPG_RESET_MASK);
	if (rc < 0)
		goto out;

	ipg_init_mii(dev);

	/* Read MAC Address from EEPROM */
	for (i = 0; i < 3; i++)
		sp->station_addr[i] = read_eeprom(dev, 16 + i);

	for (i = 0; i < 3; i++)
		ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);

	/* Set station address in ethernet_device structure. */
	dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
	dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
	dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
	dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
	dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
	dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
out:
	return rc;
}

static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int rc;

	mutex_lock(&sp->mii_mutex);
	rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
	mutex_unlock(&sp->mii_mutex);

	return rc;
}

static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
{
	/* Function to accomodate changes to Maximum Transfer Unit
	 * (or MTU) of IPG NIC. Cannot use default function since
	 * the default will not allow for MTU > 1500 bytes.
	 */

	IPG_DEBUG_MSG("_nic_change_mtu\n");

	/* Check that the new MTU value is between 68 (14 byte header, 46
	 * byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which
	 * corresponds to the MAXFRAMESIZE register in the IPG.
	 */
	if ((new_mtu < 68) || (new_mtu > IPG_MAX_RXFRAME_SIZE))
		return -EINVAL;

	dev->mtu = new_mtu;

	return 0;
}

static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int rc;

	mutex_lock(&sp->mii_mutex);
	rc = mii_ethtool_gset(&sp->mii_if, cmd);
	mutex_unlock(&sp->mii_mutex);

	return rc;
}

static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int rc;

	mutex_lock(&sp->mii_mutex);
	rc = mii_ethtool_sset(&sp->mii_if, cmd);
	mutex_unlock(&sp->mii_mutex);

	return rc;
}

static int ipg_nway_reset(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int rc;

	mutex_lock(&sp->mii_mutex);
	rc = mii_nway_restart(&sp->mii_if);
	mutex_unlock(&sp->mii_mutex);

	return rc;
}

static struct ethtool_ops ipg_ethtool_ops = {
	.get_settings = ipg_get_settings,
	.set_settings = ipg_set_settings,
	.nway_reset   = ipg_nway_reset,
};

static void ipg_remove(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct ipg_nic_private *sp = netdev_priv(dev);

	IPG_DEBUG_MSG("_remove\n");

	/* Un-register Ethernet device. */
	unregister_netdev(dev);

	pci_iounmap(pdev, sp->ioaddr);

	pci_release_regions(pdev);

	free_netdev(dev);
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
}

static int __devinit ipg_probe(struct pci_dev *pdev,
			       const struct pci_device_id *id)
{
	unsigned int i = id->driver_data;
	struct ipg_nic_private *sp;
	struct net_device *dev;
	void __iomem *ioaddr;
	int rc;

	rc = pci_enable_device(pdev);
	if (rc < 0)
		goto out;

	printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);

	pci_set_master(pdev);

	rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK);
	if (rc < 0) {
		rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
		if (rc < 0) {
			printk(KERN_ERR "%s: DMA config failed.\n",
			       pci_name(pdev));
			goto err_disable_0;
		}
	}

	/*
	 * Initialize net device.
	 */
	dev = alloc_etherdev(sizeof(struct ipg_nic_private));
	if (!dev) {
		printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
		rc = -ENOMEM;
		goto err_disable_0;
	}

	sp = netdev_priv(dev);
	spin_lock_init(&sp->lock);
	mutex_init(&sp->mii_mutex);

	/* Declare IPG NIC functions for Ethernet device methods.
	 */
	dev->open = &ipg_nic_open;
	dev->stop = &ipg_nic_stop;
	dev->hard_start_xmit = &ipg_nic_hard_start_xmit;
	dev->get_stats = &ipg_nic_get_stats;
	dev->set_multicast_list = &ipg_nic_set_multicast_list;
	dev->do_ioctl = ipg_ioctl;
	dev->tx_timeout = ipg_tx_timeout;
	dev->change_mtu = &ipg_nic_change_mtu;

	SET_NETDEV_DEV(dev, &pdev->dev);
	SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);

	rc = pci_request_regions(pdev, DRV_NAME);
	if (rc)
		goto err_free_dev_1;

	ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
	if (!ioaddr) {
		printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
		rc = -EIO;
		goto err_release_regions_2;
	}

	/* Save the pointer to the PCI device information. */
	sp->ioaddr = ioaddr;
	sp->pdev = pdev;
	sp->dev = dev;

	INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);

	pci_set_drvdata(pdev, dev);

	rc = ipg_hw_init(dev);
	if (rc < 0)
		goto err_unmap_3;

	rc = register_netdev(dev);
	if (rc < 0)
		goto err_unmap_3;

	printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
out:
	return rc;

err_unmap_3:
	pci_iounmap(pdev, ioaddr);
err_release_regions_2:
	pci_release_regions(pdev);
err_free_dev_1:
	free_netdev(dev);
err_disable_0:
	pci_disable_device(pdev);
	goto out;
}

static struct pci_driver ipg_pci_driver = {
	.name		= IPG_DRIVER_NAME,
	.id_table	= ipg_pci_tbl,
	.probe		= ipg_probe,
	.remove		= __devexit_p(ipg_remove),
};

static int __init ipg_init_module(void)
{
	return pci_register_driver(&ipg_pci_driver);
}

static void __exit ipg_exit_module(void)
{
	pci_unregister_driver(&ipg_pci_driver);
}

module_init(ipg_init_module);
module_exit(ipg_exit_module);