/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2015 - 2017 Intel Deutschland GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* The full GNU General Public License is included in this distribution
* in the file called COPYING.
*
* Contact Information:
* Intel Linux Wireless <linuxwifi@intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2015 - 2017 Intel Deutschland GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#ifndef __iwl_fw_api_tof_h__
#define __iwl_fw_api_tof_h__
/* ToF sub-group command IDs */
enum iwl_mvm_tof_sub_grp_ids {
TOF_RANGE_REQ_CMD = 0x1,
TOF_CONFIG_CMD = 0x2,
TOF_RANGE_ABORT_CMD = 0x3,
TOF_RANGE_REQ_EXT_CMD = 0x4,
TOF_RESPONDER_CONFIG_CMD = 0x5,
TOF_NW_INITIATED_RES_SEND_CMD = 0x6,
TOF_NEIGHBOR_REPORT_REQ_CMD = 0x7,
TOF_NEIGHBOR_REPORT_RSP_NOTIF = 0xFC,
TOF_NW_INITIATED_REQ_RCVD_NOTIF = 0xFD,
TOF_RANGE_RESPONSE_NOTIF = 0xFE,
TOF_MCSI_DEBUG_NOTIF = 0xFB,
};
/**
* struct iwl_tof_config_cmd - ToF configuration
* @tof_disabled: 0 enabled, 1 - disabled
* @one_sided_disabled: 0 enabled, 1 - disabled
* @is_debug_mode: 1 debug mode, 0 - otherwise
* @is_buf_required: 1 channel estimation buffer required, 0 - otherwise
*/
struct iwl_tof_config_cmd {
__le32 sub_grp_cmd_id;
u8 tof_disabled;
u8 one_sided_disabled;
u8 is_debug_mode;
u8 is_buf_required;
} __packed;
/**
* struct iwl_tof_responder_config_cmd - ToF AP mode (for debug)
* @burst_period: future use: (currently hard coded in the LMAC)
* The interval between two sequential bursts.
* @min_delta_ftm: future use: (currently hard coded in the LMAC)
* The minimum delay between two sequential FTM Responses
* in the same burst.
* @burst_duration: future use: (currently hard coded in the LMAC)
* The total time for all FTMs handshake in the same burst.
* Affect the time events duration in the LMAC.
* @num_of_burst_exp: future use: (currently hard coded in the LMAC)
* The number of bursts for the current ToF request. Affect
* the number of events allocations in the current iteration.
* @get_ch_est: for xVT only, NA for driver
* @abort_responder: when set to '1' - Responder will terminate its activity
* (all other fields in the command are ignored)
* @recv_sta_req_params: 1 - Responder will ignore the other Responder's
* params and use the recomended Initiator params.
* 0 - otherwise
* @channel_num: current AP Channel
* @bandwidth: current AP Bandwidth: 0 20MHz, 1 40MHz, 2 80MHz
* @rate: current AP rate
* @ctrl_ch_position: coding of the control channel position relative to
* the center frequency:
*
* 40 MHz
* 0 below center, 1 above center
*
* 80 MHz
* bits [0..1]
* * 0 the near 20MHz to the center,
* * 1 the far 20MHz to the center
* bit[2]
* as above 40MHz
* @ftm_per_burst: FTMs per Burst
* @ftm_resp_ts_avail: '0' - we don't measure over the Initial FTM Response,
* '1' - we measure over the Initial FTM Response
* @asap_mode: ASAP / Non ASAP mode for the current WLS station
* @sta_id: index of the AP STA when in AP mode
* @tsf_timer_offset_msecs: The dictated time offset (mSec) from the AP's TSF
* @toa_offset: Artificial addition [0.1nsec] for the ToA - to be used for debug
* purposes, simulating station movement by adding various values
* to this field
* @bssid: Current AP BSSID
*/
struct iwl_tof_responder_config_cmd {
__le32 sub_grp_cmd_id;
__le16 burst_period;
u8 min_delta_ftm;
u8 burst_duration;
u8 num_of_burst_exp;
u8 get_ch_est;
u8 abort_responder;
u8 recv_sta_req_params;
u8 channel_num;
u8 bandwidth;
u8 rate;
u8 ctrl_ch_position;
u8 ftm_per_burst;
u8 ftm_resp_ts_avail;
u8 asap_mode;
u8 sta_id;
__le16 tsf_timer_offset_msecs;
__le16 toa_offset;
u8 bssid[ETH_ALEN];
} __packed;
/**
* struct iwl_tof_range_request_ext_cmd - extended range req for WLS
* @tsf_timer_offset_msec: the recommended time offset (mSec) from the AP's TSF
* @reserved: reserved
* @min_delta_ftm: Minimal time between two consecutive measurements,
* in units of 100us. 0 means no preference by station
* @ftm_format_and_bw20M: FTM Channel Spacing/Format for 20MHz: recommended
* value be sent to the AP
* @ftm_format_and_bw40M: FTM Channel Spacing/Format for 40MHz: recommended
* value to be sent to the AP
* @ftm_format_and_bw80M: FTM Channel Spacing/Format for 80MHz: recommended
* value to be sent to the AP
*/
struct iwl_tof_range_req_ext_cmd {
__le32 sub_grp_cmd_id;
__le16 tsf_timer_offset_msec;
__le16 reserved;
u8 min_delta_ftm;
u8 ftm_format_and_bw20M;
u8 ftm_format_and_bw40M;
u8 ftm_format_and_bw80M;
} __packed;
#define IWL_MVM_TOF_MAX_APS 21
/**
* struct iwl_tof_range_req_ap_entry - AP configuration parameters
* @channel_num: Current AP Channel
* @bandwidth: Current AP Bandwidth: 0 20MHz, 1 40MHz, 2 80MHz
* @tsf_delta_direction: TSF relatively to the subject AP
* @ctrl_ch_position: Coding of the control channel position relative to the
* center frequency.
* 40MHz 0 below center, 1 above center
* 80MHz bits [0..1]: 0 the near 20MHz to the center,
* 1 the far 20MHz to the center
* bit[2] as above 40MHz
* @bssid: AP's bss id
* @measure_type: Measurement type: 0 - two sided, 1 - One sided
* @num_of_bursts: Recommended value to be sent to the AP. 2s Exponent of the
* number of measurement iterations (min 2^0 = 1, max 2^14)
* @burst_period: Recommended value to be sent to the AP. Measurement
* periodicity In units of 100ms. ignored if num_of_bursts = 0
* @samples_per_burst: 2-sided: the number of FTMs pairs in single Burst (1-31)
* 1-sided: how many rts/cts pairs should be used per burst.
* @retries_per_sample: Max number of retries that the LMAC should send
* in case of no replies by the AP.
* @tsf_delta: TSF Delta in units of microseconds.
* The difference between the AP TSF and the device local clock.
* @location_req: Location Request Bit[0] LCI should be sent in the FTMR
* Bit[1] Civic should be sent in the FTMR
* @asap_mode: 0 - non asap mode, 1 - asap mode (not relevant for one sided)
* @enable_dyn_ack: Enable Dynamic ACK BW.
* 0 Initiator interact with regular AP
* 1 Initiator interact with Responder machine: need to send the
* Initiator Acks with HT 40MHz / 80MHz, since the Responder should
* use it for its ch est measurement (this flag will be set when we
* configure the opposite machine to be Responder).
* @rssi: Last received value
* leagal values: -128-0 (0x7f). above 0x0 indicating an invalid value.
*/
struct iwl_tof_range_req_ap_entry {
u8 channel_num;
u8 bandwidth;
u8 tsf_delta_direction;
u8 ctrl_ch_position;
u8 bssid[ETH_ALEN];
u8 measure_type;
u8 num_of_bursts;
__le16 burst_period;
u8 samples_per_burst;
u8 retries_per_sample;
__le32 tsf_delta;
u8 location_req;
u8 asap_mode;
u8 enable_dyn_ack;
s8 rssi;
} __packed;
/**
* enum iwl_tof_response_mode
* @IWL_MVM_TOF_RESPOSE_ASAP: report each AP measurement separately as soon as
* possible (not supported for this release)
* @IWL_MVM_TOF_RESPOSE_TIMEOUT: report all AP measurements as a batch upon
* timeout expiration
* @IWL_MVM_TOF_RESPOSE_COMPLETE: report all AP measurements as a batch at the
* earlier of: measurements completion / timeout
* expiration.
*/
enum iwl_tof_response_mode {
IWL_MVM_TOF_RESPOSE_ASAP = 1,
IWL_MVM_TOF_RESPOSE_TIMEOUT,
IWL_MVM_TOF_RESPOSE_COMPLETE,
};
/**
* struct iwl_tof_range_req_cmd - start measurement cmd
* @request_id: A Token incremented per request. The same Token will be
* sent back in the range response
* @initiator: 0- NW initiated, 1 - Client Initiated
* @one_sided_los_disable: '0'- run ML-Algo for both ToF/OneSided,
* '1' - run ML-Algo for ToF only
* @req_timeout: Requested timeout of the response in units of 100ms.
* This is equivalent to the session time configured to the
* LMAC in Initiator Request
* @report_policy: Supported partially for this release: For current release -
* the range report will be uploaded as a batch when ready or
* when the session is done (successfully / partially).
* one of iwl_tof_response_mode.
* @num_of_ap: Number of APs to measure (error if > IWL_MVM_TOF_MAX_APS)
* @macaddr_random: '0' Use default source MAC address (i.e. p2_p),
* '1' Use MAC Address randomization according to the below
* @macaddr_mask: Bits set to 0 shall be copied from the MAC address template.
* Bits set to 1 shall be randomized by the UMAC
* @ap: per-AP request data
*/
struct iwl_tof_range_req_cmd {
__le32 sub_grp_cmd_id;
u8 request_id;
u8 initiator;
u8 one_sided_los_disable;
u8 req_timeout;
u8 report_policy;
u8 los_det_disable;
u8 num_of_ap;
u8 macaddr_random;
u8 macaddr_template[ETH_ALEN];
u8 macaddr_mask[ETH_ALEN];
struct iwl_tof_range_req_ap_entry ap[IWL_MVM_TOF_MAX_APS];
} __packed;
/**
* struct iwl_tof_gen_resp_cmd - generic ToF response
*/
struct iwl_tof_gen_resp_cmd {
__le32 sub_grp_cmd_id;
u8 data[];
} __packed;
/**
* struct iwl_tof_range_rsp_ap_entry_ntfy - AP parameters (response)
* @bssid: BSSID of the AP
* @measure_status: current APs measurement status, one of
* &enum iwl_tof_entry_status.
* @measure_bw: Current AP Bandwidth: 0 20MHz, 1 40MHz, 2 80MHz
* @rtt: The Round Trip Time that took for the last measurement for
* current AP [nSec]
* @rtt_variance: The Variance of the RTT values measured for current AP
* @rtt_spread: The Difference between the maximum and the minimum RTT
* values measured for current AP in the current session [nsec]
* @rssi: RSSI as uploaded in the Channel Estimation notification
* @rssi_spread: The Difference between the maximum and the minimum RSSI values
* measured for current AP in the current session
* @reserved: reserved
* @range: Measured range [cm]
* @range_variance: Measured range variance [cm]
* @timestamp: The GP2 Clock [usec] where Channel Estimation notification was
* uploaded by the LMAC
*/
struct iwl_tof_range_rsp_ap_entry_ntfy {
u8 bssid[ETH_ALEN];
u8 measure_status;
u8 measure_bw;
__le32 rtt;
__le32 rtt_variance;
__le32 rtt_spread;
s8 rssi;
u8 rssi_spread;
__le16 reserved;
__le32 range;
__le32 range_variance;
__le32 timestamp;
} __packed;
/**
* struct iwl_tof_range_rsp_ntfy -
* @request_id: A Token ID of the corresponding Range request
* @request_status: status of current measurement session
* @last_in_batch: reprot policy (when not all responses are uploaded at once)
* @num_of_aps: Number of APs to measure (error if > IWL_MVM_TOF_MAX_APS)
* @ap: per-AP data
*/
struct iwl_tof_range_rsp_ntfy {
u8 request_id;
u8 request_status;
u8 last_in_batch;
u8 num_of_aps;
struct iwl_tof_range_rsp_ap_entry_ntfy ap[IWL_MVM_TOF_MAX_APS];
} __packed;
#define IWL_MVM_TOF_MCSI_BUF_SIZE (245)
/**
* struct iwl_tof_mcsi_notif - used for debug
* @token: token ID for the current session
* @role: '0' - initiator, '1' - responder
* @reserved: reserved
* @initiator_bssid: initiator machine
* @responder_bssid: responder machine
* @mcsi_buffer: debug data
*/
struct iwl_tof_mcsi_notif {
u8 token;
u8 role;
__le16 reserved;
u8 initiator_bssid[ETH_ALEN];
u8 responder_bssid[ETH_ALEN];
u8 mcsi_buffer[IWL_MVM_TOF_MCSI_BUF_SIZE * 4];
} __packed;
/**
* struct iwl_tof_neighbor_report_notif
* @bssid: BSSID of the AP which sent the report
* @request_token: same token as the corresponding request
* @status:
* @report_ie_len: the length of the response frame starting from the Element ID
* @data: the IEs
*/
struct iwl_tof_neighbor_report {
u8 bssid[ETH_ALEN];
u8 request_token;
u8 status;
__le16 report_ie_len;
u8 data[];
} __packed;
/**
* struct iwl_tof_range_abort_cmd
* @request_id: corresponds to a range request
* @reserved: reserved
*/
struct iwl_tof_range_abort_cmd {
__le32 sub_grp_cmd_id;
u8 request_id;
u8 reserved[3];
} __packed;
#endif