/*
* SPI bus via the Blackfin SPORT peripheral
*
* Enter bugs at http://blackfin.uclinux.org/
*
* Copyright 2009-2011 Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/gpio.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/irq.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/workqueue.h>
#include <asm/portmux.h>
#include <asm/bfin5xx_spi.h>
#include <asm/blackfin.h>
#include <asm/bfin_sport.h>
#include <asm/cacheflush.h>
#define DRV_NAME "bfin-sport-spi"
#define DRV_DESC "SPI bus via the Blackfin SPORT"
MODULE_AUTHOR("Cliff Cai");
MODULE_DESCRIPTION(DRV_DESC);
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:bfin-sport-spi");
enum bfin_sport_spi_state {
START_STATE,
RUNNING_STATE,
DONE_STATE,
ERROR_STATE,
};
struct bfin_sport_spi_master_data;
struct bfin_sport_transfer_ops {
void (*write) (struct bfin_sport_spi_master_data *);
void (*read) (struct bfin_sport_spi_master_data *);
void (*duplex) (struct bfin_sport_spi_master_data *);
};
struct bfin_sport_spi_master_data {
/* Driver model hookup */
struct device *dev;
/* SPI framework hookup */
struct spi_master *master;
/* Regs base of SPI controller */
struct sport_register __iomem *regs;
int err_irq;
/* Pin request list */
u16 *pin_req;
/* Driver message queue */
struct workqueue_struct *workqueue;
struct work_struct pump_messages;
spinlock_t lock;
struct list_head queue;
int busy;
bool run;
/* Message Transfer pump */
struct tasklet_struct pump_transfers;
/* Current message transfer state info */
enum bfin_sport_spi_state state;
struct spi_message *cur_msg;
struct spi_transfer *cur_transfer;
struct bfin_sport_spi_slave_data *cur_chip;
union {
void *tx;
u8 *tx8;
u16 *tx16;
};
void *tx_end;
union {
void *rx;
u8 *rx8;
u16 *rx16;
};
void *rx_end;
int cs_change;
struct bfin_sport_transfer_ops *ops;
};
struct bfin_sport_spi_slave_data {
u16 ctl_reg;
u16 baud;
u16 cs_chg_udelay; /* Some devices require > 255usec delay */
u32 cs_gpio;
u16 idle_tx_val;
struct bfin_sport_transfer_ops *ops;
};
static void
bfin_sport_spi_enable(struct bfin_sport_spi_master_data *drv_data)
{
bfin_write_or(&drv_data->regs->tcr1, TSPEN);
bfin_write_or(&drv_data->regs->rcr1, TSPEN);
SSYNC();
}
static void
bfin_sport_spi_disable(struct bfin_sport_spi_master_data *drv_data)
{
bfin_write_and(&drv_data->regs->tcr1, ~TSPEN);
bfin_write_and(&drv_data->regs->rcr1, ~TSPEN);
SSYNC();
}
/* Caculate the SPI_BAUD register value based on input HZ */
static u16
bfin_sport_hz_to_spi_baud(u32 speed_hz)
{
u_long clk, sclk = get_sclk();
int div = (sclk / (2 * speed_hz)) - 1;
if (div < 0)
div = 0;
clk = sclk / (2 * (div + 1));
if (clk > speed_hz)
div++;
return div;
}
/* Chip select operation functions for cs_change flag */
static void
bfin_sport_spi_cs_active(struct bfin_sport_spi_slave_data *chip)
{
gpio_direction_output(chip->cs_gpio, 0);
}
static void
bfin_sport_spi_cs_deactive(struct bfin_sport_spi_slave_data *chip)
{
gpio_direction_output(chip->cs_gpio, 1);
/* Move delay here for consistency */
if (chip->cs_chg_udelay)
udelay(chip->cs_chg_udelay);
}
static void
bfin_sport_spi_stat_poll_complete(struct bfin_sport_spi_master_data *drv_data)
{
unsigned long timeout = jiffies + HZ;
while (!(bfin_read(&drv_data->regs->stat) & RXNE)) {
if (!time_before(jiffies, timeout))
break;
}
}
static void
bfin_sport_spi_u8_writer(struct bfin_sport_spi_master_data *drv_data)
{
u16 dummy;
while (drv_data->tx < drv_data->tx_end) {
bfin_write(&drv_data->regs->tx16, *drv_data->tx8++);
bfin_sport_spi_stat_poll_complete(drv_data);
dummy = bfin_read(&drv_data->regs->rx16);
}
}
static void
bfin_sport_spi_u8_reader(struct bfin_sport_spi_master_data *drv_data)
{
u16 tx_val = drv_data->cur_chip->idle_tx_val;
while (drv_data->rx < drv_data->rx_end) {
bfin_write(&drv_data->regs->tx16, tx_val);
bfin_sport_spi_stat_poll_complete(drv_data);
*drv_data->rx8++ = bfin_read(&drv_data->regs->rx16);
}
}
static void
bfin_sport_spi_u8_duplex(struct bfin_sport_spi_master_data *drv_data)
{
while (drv_data->rx < drv_data->rx_end) {
bfin_write(&drv_data->regs->tx16, *drv_data->tx8++);
bfin_sport_spi_stat_poll_complete(drv_data);
*drv_data->rx8++ = bfin_read(&drv_data->regs->rx16);
}
}
static struct bfin_sport_transfer_ops bfin_sport_transfer_ops_u8 = {
.write = bfin_sport_spi_u8_writer,
.read = bfin_sport_spi_u8_reader,
.duplex = bfin_sport_spi_u8_duplex,
};
static void
bfin_sport_spi_u16_writer(struct bfin_sport_spi_master_data *drv_data)
{
u16 dummy;
while (drv_data->tx < drv_data->tx_end) {
bfin_write(&drv_data->regs->tx16, *drv_data->tx16++);
bfin_sport_spi_stat_poll_complete(drv_data);
dummy = bfin_read(&drv_data->regs->rx16);
}
}
static void
bfin_sport_spi_u16_reader(struct bfin_sport_spi_master_data *drv_data)
{
u16 tx_val = drv_data->cur_chip->idle_tx_val;
while (drv_data->rx < drv_data->rx_end) {
bfin_write(&drv_data->regs->tx16, tx_val);
bfin_sport_spi_stat_poll_complete(drv_data);
*drv_data->rx16++ = bfin_read(&drv_data->regs->rx16);
}
}
static void
bfin_sport_spi_u16_duplex(struct bfin_sport_spi_master_data *drv_data)
{
while (drv_data->rx < drv_data->rx_end) {
bfin_write(&drv_data->regs->tx16, *drv_data->tx16++);
bfin_sport_spi_stat_poll_complete(drv_data);
*drv_data->rx16++ = bfin_read(&drv_data->regs->rx16);
}
}
static struct bfin_sport_transfer_ops bfin_sport_transfer_ops_u16 = {
.write = bfin_sport_spi_u16_writer,
.read = bfin_sport_spi_u16_reader,
.duplex = bfin_sport_spi_u16_duplex,
};
/* stop controller and re-config current chip */
static void
bfin_sport_spi_restore_state(struct bfin_sport_spi_master_data *drv_data)
{
struct bfin_sport_spi_slave_data *chip = drv_data->cur_chip;
bfin_sport_spi_disable(drv_data);
dev_dbg(drv_data->dev, "restoring spi ctl state\n");
bfin_write(&drv_data->regs->tcr1, chip->ctl_reg);
bfin_write(&drv_data->regs->tclkdiv, chip->baud);
SSYNC();
bfin_write(&drv_data->regs->rcr1, chip->ctl_reg & ~(ITCLK | ITFS));
SSYNC();
bfin_sport_spi_cs_active(chip);
}
/* test if there is more transfer to be done */
static enum bfin_sport_spi_state
bfin_sport_spi_next_transfer(struct bfin_sport_spi_master_data *drv_data)
{
struct spi_message *msg = drv_data->cur_msg;
struct spi_transfer *trans = drv_data->cur_transfer;
/* Move to next transfer */
if (trans->transfer_list.next != &msg->transfers) {
drv_data->cur_transfer =
list_entry(trans->transfer_list.next,
struct spi_transfer, transfer_list);
return RUNNING_STATE;
}
return DONE_STATE;
}
/*
* caller already set message->status;
* dma and pio irqs are blocked give finished message back
*/
static void
bfin_sport_spi_giveback(struct bfin_sport_spi_master_data *drv_data)
{
struct bfin_sport_spi_slave_data *chip = drv_data->cur_chip;
unsigned long flags;
struct spi_message *msg;
spin_lock_irqsave(&drv_data->lock, flags);
msg = drv_data->cur_msg;
drv_data->state = START_STATE;
drv_data->cur_msg = NULL;
drv_data->cur_transfer = NULL;
drv_data->cur_chip = NULL;
queue_work(drv_data->workqueue, &drv_data->pump_messages);
spin_unlock_irqrestore(&drv_data->lock, flags);
if (!drv_data->cs_change)
bfin_sport_spi_cs_deactive(chip);
if (msg->complete)
msg->complete(msg->context);
}
static irqreturn_t
sport_err_handler(int irq, void *dev_id)
{
struct bfin_sport_spi_master_data *drv_data = dev_id;
u16 status;
dev_dbg(drv_data->dev, "%s enter\n", __func__);
status = bfin_read(&drv_data->regs->stat) & (TOVF | TUVF | ROVF | RUVF);
if (status) {
bfin_write(&drv_data->regs->stat, status);
SSYNC();
bfin_sport_spi_disable(drv_data);
dev_err(drv_data->dev, "status error:%s%s%s%s\n",
status & TOVF ? " TOVF" : "",
status & TUVF ? " TUVF" : "",
status & ROVF ? " ROVF" : "",
status & RUVF ? " RUVF" : "");
}
return IRQ_HANDLED;
}
static void
bfin_sport_spi_pump_transfers(unsigned long data)
{
struct bfin_sport_spi_master_data *drv_data = (void *)data;
struct spi_message *message = NULL;
struct spi_transfer *transfer = NULL;
struct spi_transfer *previous = NULL;
struct bfin_sport_spi_slave_data *chip = NULL;
unsigned int bits_per_word;
u32 tranf_success = 1;
u32 transfer_speed;
u8 full_duplex = 0;
/* Get current state information */
message = drv_data->cur_msg;
transfer = drv_data->cur_transfer;
chip = drv_data->cur_chip;
if (transfer->speed_hz)
transfer_speed = bfin_sport_hz_to_spi_baud(transfer->speed_hz);
else
transfer_speed = chip->baud;
bfin_write(&drv_data->regs->tclkdiv, transfer_speed);
SSYNC();
/*
* if msg is error or done, report it back using complete() callback
*/
/* Handle for abort */
if (drv_data->state == ERROR_STATE) {
dev_dbg(drv_data->dev, "transfer: we've hit an error\n");
message->status = -EIO;
bfin_sport_spi_giveback(drv_data);
return;
}
/* Handle end of message */
if (drv_data->state == DONE_STATE) {
dev_dbg(drv_data->dev, "transfer: all done!\n");
message->status = 0;
bfin_sport_spi_giveback(drv_data);
return;
}
/* Delay if requested at end of transfer */
if (drv_data->state == RUNNING_STATE) {
dev_dbg(drv_data->dev, "transfer: still running ...\n");
previous = list_entry(transfer->transfer_list.prev,
struct spi_transfer, transfer_list);
if (previous->delay_usecs)
udelay(previous->delay_usecs);
}
if (transfer->len == 0) {
/* Move to next transfer of this msg */
drv_data->state = bfin_sport_spi_next_transfer(drv_data);
/* Schedule next transfer tasklet */
tasklet_schedule(&drv_data->pump_transfers);
}
if (transfer->tx_buf != NULL) {
drv_data->tx = (void *)transfer->tx_buf;
drv_data->tx_end = drv_data->tx + transfer->len;
dev_dbg(drv_data->dev, "tx_buf is %p, tx_end is %p\n",
transfer->tx_buf, drv_data->tx_end);
} else
drv_data->tx = NULL;
if (transfer->rx_buf != NULL) {
full_duplex = transfer->tx_buf != NULL;
drv_data->rx = transfer->rx_buf;
drv_data->rx_end = drv_data->rx + transfer->len;
dev_dbg(drv_data->dev, "rx_buf is %p, rx_end is %p\n",
transfer->rx_buf, drv_data->rx_end);
} else
drv_data->rx = NULL;
drv_data->cs_change = transfer->cs_change;
/* Bits per word setup */
bits_per_word = transfer->bits_per_word;
if (bits_per_word == 16)
drv_data->ops = &bfin_sport_transfer_ops_u16;
else
drv_data->ops = &bfin_sport_transfer_ops_u8;
bfin_write(&drv_data->regs->tcr2, bits_per_word - 1);
bfin_write(&drv_data->regs->tfsdiv, bits_per_word - 1);
bfin_write(&drv_data->regs->rcr2, bits_per_word - 1);
drv_data->state = RUNNING_STATE;
if (drv_data->cs_change)
bfin_sport_spi_cs_active(chip);
dev_dbg(drv_data->dev,
"now pumping a transfer: width is %d, len is %d\n",
bits_per_word, transfer->len);
/* PIO mode write then read */
dev_dbg(drv_data->dev, "doing IO transfer\n");
bfin_sport_spi_enable(drv_data);
if (full_duplex) {
/* full duplex mode */
BUG_ON((drv_data->tx_end - drv_data->tx) !=
(drv_data->rx_end - drv_data->rx));
drv_data->ops->duplex(drv_data);
if (drv_data->tx != drv_data->tx_end)
tranf_success = 0;
} else if (drv_data->tx != NULL) {
/* write only half duplex */
drv_data->ops->write(drv_data);
if (drv_data->tx != drv_data->tx_end)
tranf_success = 0;
} else if (drv_data->rx != NULL) {
/* read only half duplex */
drv_data->ops->read(drv_data);
if (drv_data->rx != drv_data->rx_end)
tranf_success = 0;
}
bfin_sport_spi_disable(drv_data);
if (!tranf_success) {
dev_dbg(drv_data->dev, "IO write error!\n");
drv_data->state = ERROR_STATE;
} else {
/* Update total byte transferred */
message->actual_length += transfer->len;
/* Move to next transfer of this msg */
drv_data->state = bfin_sport_spi_next_transfer(drv_data);
if (drv_data->cs_change)
bfin_sport_spi_cs_deactive(chip);
}
/* Schedule next transfer tasklet */
tasklet_schedule(&drv_data->pump_transfers);
}
/* pop a msg from queue and kick off real transfer */
static void
bfin_sport_spi_pump_messages(struct work_struct *work)
{
struct bfin_sport_spi_master_data *drv_data;
unsigned long flags;
struct spi_message *next_msg;
drv_data = container_of(work, struct bfin_sport_spi_master_data, pump_messages);
/* Lock queue and check for queue work */
spin_lock_irqsave(&drv_data->lock, flags);
if (list_empty(&drv_data->queue) || !drv_data->run) {
/* pumper kicked off but no work to do */
drv_data->busy = 0;
spin_unlock_irqrestore(&drv_data->lock, flags);
return;
}
/* Make sure we are not already running a message */
if (drv_data->cur_msg) {
spin_unlock_irqrestore(&drv_data->lock, flags);
return;
}
/* Extract head of queue */
next_msg = list_entry(drv_data->queue.next,
struct spi_message, queue);
drv_data->cur_msg = next_msg;
/* Setup the SSP using the per chip configuration */
drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
list_del_init(&drv_data->cur_msg->queue);
/* Initialize message state */
drv_data->cur_msg->state = START_STATE;
drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
struct spi_transfer, transfer_list);
bfin_sport_spi_restore_state(drv_data);
dev_dbg(drv_data->dev, "got a message to pump, "
"state is set to: baud %d, cs_gpio %i, ctl 0x%x\n",
drv_data->cur_chip->baud, drv_data->cur_chip->cs_gpio,
drv_data->cur_chip->ctl_reg);
dev_dbg(drv_data->dev,
"the first transfer len is %d\n",
drv_data->cur_transfer->len);
/* Mark as busy and launch transfers */
tasklet_schedule(&drv_data->pump_transfers);
drv_data->busy = 1;
spin_unlock_irqrestore(&drv_data->lock, flags);
}
/*
* got a msg to transfer, queue it in drv_data->queue.
* And kick off message pumper
*/
static int
bfin_sport_spi_transfer(struct spi_device *spi, struct spi_message *msg)
{
struct bfin_sport_spi_master_data *drv_data = spi_master_get_devdata(spi->master);
unsigned long flags;
spin_lock_irqsave(&drv_data->lock, flags);
if (!drv_data->run) {
spin_unlock_irqrestore(&drv_data->lock, flags);
return -ESHUTDOWN;
}
msg->actual_length = 0;
msg->status = -EINPROGRESS;
msg->state = START_STATE;
dev_dbg(&spi->dev, "adding an msg in transfer()\n");
list_add_tail(&msg->queue, &drv_data->queue);
if (drv_data->run && !drv_data->busy)
queue_work(drv_data->workqueue, &drv_data->pump_messages);
spin_unlock_irqrestore(&drv_data->lock, flags);
return 0;
}
/* Called every time common spi devices change state */
static int
bfin_sport_spi_setup(struct spi_device *spi)
{
struct bfin_sport_spi_slave_data *chip, *first = NULL;
int ret;
/* Only alloc (or use chip_info) on first setup */
chip = spi_get_ctldata(spi);
if (chip == NULL) {
struct bfin5xx_spi_chip *chip_info;
chip = first = kzalloc(sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
/* platform chip_info isn't required */
chip_info = spi->controller_data;
if (chip_info) {
/*
* DITFS and TDTYPE are only thing we don't set, but
* they probably shouldn't be changed by people.
*/
if (chip_info->ctl_reg || chip_info->enable_dma) {
ret = -EINVAL;
dev_err(&spi->dev, "don't set ctl_reg/enable_dma fields\n");
goto error;
}
chip->cs_chg_udelay = chip_info->cs_chg_udelay;
chip->idle_tx_val = chip_info->idle_tx_val;
}
}
/* translate common spi framework into our register
* following configure contents are same for tx and rx.
*/
if (spi->mode & SPI_CPHA)
chip->ctl_reg &= ~TCKFE;
else
chip->ctl_reg |= TCKFE;
if (spi->mode & SPI_LSB_FIRST)
chip->ctl_reg |= TLSBIT;
else
chip->ctl_reg &= ~TLSBIT;
/* Sport in master mode */
chip->ctl_reg |= ITCLK | ITFS | TFSR | LATFS | LTFS;
chip->baud = bfin_sport_hz_to_spi_baud(spi->max_speed_hz);
chip->cs_gpio = spi->chip_select;
ret = gpio_request(chip->cs_gpio, spi->modalias);
if (ret)
goto error;
dev_dbg(&spi->dev, "setup spi chip %s, width is %d\n",
spi->modalias, spi->bits_per_word);
dev_dbg(&spi->dev, "ctl_reg is 0x%x, GPIO is %i\n",
chip->ctl_reg, spi->chip_select);
spi_set_ctldata(spi, chip);
bfin_sport_spi_cs_deactive(chip);
return ret;
error:
kfree(first);
return ret;
}
/*
* callback for spi framework.
* clean driver specific data
*/
static void
bfin_sport_spi_cleanup(struct spi_device *spi)
{
struct bfin_sport_spi_slave_data *chip = spi_get_ctldata(spi);
if (!chip)
return;
gpio_free(chip->cs_gpio);
kfree(chip);
}
static int
bfin_sport_spi_init_queue(struct bfin_sport_spi_master_data *drv_data)
{
INIT_LIST_HEAD(&drv_data->queue);
spin_lock_init(&drv_data->lock);
drv_data->run = false;
drv_data->busy = 0;
/* init transfer tasklet */
tasklet_init(&drv_data->pump_transfers,
bfin_sport_spi_pump_transfers, (unsigned long)drv_data);
/* init messages workqueue */
INIT_WORK(&drv_data->pump_messages, bfin_sport_spi_pump_messages);
drv_data->workqueue =
create_singlethread_workqueue(dev_name(drv_data->master->dev.parent));
if (drv_data->workqueue == NULL)
return -EBUSY;
return 0;
}
static int
bfin_sport_spi_start_queue(struct bfin_sport_spi_master_data *drv_data)
{
unsigned long flags;
spin_lock_irqsave(&drv_data->lock, flags);
if (drv_data->run || drv_data->busy) {
spin_unlock_irqrestore(&drv_data->lock, flags);
return -EBUSY;
}
drv_data->run = true;
drv_data->cur_msg = NULL;
drv_data->cur_transfer = NULL;
drv_data->cur_chip = NULL;
spin_unlock_irqrestore(&drv_data->lock, flags);
queue_work(drv_data->workqueue, &drv_data->pump_messages);
return 0;
}
static inline int
bfin_sport_spi_stop_queue(struct bfin_sport_spi_master_data *drv_data)
{
unsigned long flags;
unsigned limit = 500;
int status = 0;
spin_lock_irqsave(&drv_data->lock, flags);
/*
* This is a bit lame, but is optimized for the common execution path.
* A wait_queue on the drv_data->busy could be used, but then the common
* execution path (pump_messages) would be required to call wake_up or
* friends on every SPI message. Do this instead
*/
drv_data->run = false;
while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
spin_unlock_irqrestore(&drv_data->lock, flags);
msleep(10);
spin_lock_irqsave(&drv_data->lock, flags);
}
if (!list_empty(&drv_data->queue) || drv_data->busy)
status = -EBUSY;
spin_unlock_irqrestore(&drv_data->lock, flags);
return status;
}
static inline int
bfin_sport_spi_destroy_queue(struct bfin_sport_spi_master_data *drv_data)
{
int status;
status = bfin_sport_spi_stop_queue(drv_data);
if (status)
return status;
destroy_workqueue(drv_data->workqueue);
return 0;
}
static int bfin_sport_spi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct bfin5xx_spi_master *platform_info;
struct spi_master *master;
struct resource *res, *ires;
struct bfin_sport_spi_master_data *drv_data;
int status;
platform_info = dev_get_platdata(dev);
/* Allocate master with space for drv_data */
master = spi_alloc_master(dev, sizeof(*master) + 16);
if (!master) {
dev_err(dev, "cannot alloc spi_master\n");
return -ENOMEM;
}
drv_data = spi_master_get_devdata(master);
drv_data->master = master;
drv_data->dev = dev;
drv_data->pin_req = platform_info->pin_req;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
master->bus_num = pdev->id;
master->num_chipselect = platform_info->num_chipselect;
master->cleanup = bfin_sport_spi_cleanup;
master->setup = bfin_sport_spi_setup;
master->transfer = bfin_sport_spi_transfer;
/* Find and map our resources */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL) {
dev_err(dev, "cannot get IORESOURCE_MEM\n");
status = -ENOENT;
goto out_error_get_res;
}
drv_data->regs = ioremap(res->start, resource_size(res));
if (drv_data->regs == NULL) {
dev_err(dev, "cannot map registers\n");
status = -ENXIO;
goto out_error_ioremap;
}
ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!ires) {
dev_err(dev, "cannot get IORESOURCE_IRQ\n");
status = -ENODEV;
goto out_error_get_ires;
}
drv_data->err_irq = ires->start;
/* Initial and start queue */
status = bfin_sport_spi_init_queue(drv_data);
if (status) {
dev_err(dev, "problem initializing queue\n");
goto out_error_queue_alloc;
}
status = bfin_sport_spi_start_queue(drv_data);
if (status) {
dev_err(dev, "problem starting queue\n");
goto out_error_queue_alloc;
}
status = request_irq(drv_data->err_irq, sport_err_handler,
0, "sport_spi_err", drv_data);
if (status) {
dev_err(dev, "unable to request sport err irq\n");
goto out_error_irq;
}
status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
if (status) {
dev_err(dev, "requesting peripherals failed\n");
goto out_error_peripheral;
}
/* Register with the SPI framework */
platform_set_drvdata(pdev, drv_data);
status = spi_register_master(master);
if (status) {
dev_err(dev, "problem registering spi master\n");
goto out_error_master;
}
dev_info(dev, "%s, regs_base@%p\n", DRV_DESC, drv_data->regs);
return 0;
out_error_master:
peripheral_free_list(drv_data->pin_req);
out_error_peripheral:
free_irq(drv_data->err_irq, drv_data);
out_error_irq:
out_error_queue_alloc:
bfin_sport_spi_destroy_queue(drv_data);
out_error_get_ires:
iounmap(drv_data->regs);
out_error_ioremap:
out_error_get_res:
spi_master_put(master);
return status;
}
/* stop hardware and remove the driver */
static int bfin_sport_spi_remove(struct platform_device *pdev)
{
struct bfin_sport_spi_master_data *drv_data = platform_get_drvdata(pdev);
int status = 0;
if (!drv_data)
return 0;
/* Remove the queue */
status = bfin_sport_spi_destroy_queue(drv_data);
if (status)
return status;
/* Disable the SSP at the peripheral and SOC level */
bfin_sport_spi_disable(drv_data);
/* Disconnect from the SPI framework */
spi_unregister_master(drv_data->master);
peripheral_free_list(drv_data->pin_req);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int bfin_sport_spi_suspend(struct device *dev)
{
struct bfin_sport_spi_master_data *drv_data = dev_get_drvdata(dev);
int status;
status = bfin_sport_spi_stop_queue(drv_data);
if (status)
return status;
/* stop hardware */
bfin_sport_spi_disable(drv_data);
return status;
}
static int bfin_sport_spi_resume(struct device *dev)
{
struct bfin_sport_spi_master_data *drv_data = dev_get_drvdata(dev);
int status;
/* Enable the SPI interface */
bfin_sport_spi_enable(drv_data);
/* Start the queue running */
status = bfin_sport_spi_start_queue(drv_data);
if (status)
dev_err(drv_data->dev, "problem resuming queue\n");
return status;
}
static SIMPLE_DEV_PM_OPS(bfin_sport_spi_pm_ops, bfin_sport_spi_suspend,
bfin_sport_spi_resume);
#define BFIN_SPORT_SPI_PM_OPS (&bfin_sport_spi_pm_ops)
#else
#define BFIN_SPORT_SPI_PM_OPS NULL
#endif
static struct platform_driver bfin_sport_spi_driver = {
.driver = {
.name = DRV_NAME,
.pm = BFIN_SPORT_SPI_PM_OPS,
},
.probe = bfin_sport_spi_probe,
.remove = bfin_sport_spi_remove,
};
module_platform_driver(bfin_sport_spi_driver);