summaryrefslogblamecommitdiffstats
path: root/drivers/staging/csr/csr_wifi_hip_card_sdio.c
blob: 78fc5c47b614b45338015f70d94c91facb333f9a (plain) (tree)
1
2
3
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027

                                                                              
                                                    


































                                                                              






























                                                                              
          








                                                 
                                    







                                  


                                  















































                                                                                            
                             
 
                                  



























                                                                              
                                                     






















































































































                                                                                                    


                                  




























                                                                                      
                                              





































                                                                               
                                                    





















































































































































                                                                                     
                                                               
 
                   




















































































                                                                                                 
                     

                     

                                 
                                           

                 

                           


















































































                                                                                            
                  
                  



























































































                                                                                                                               
                                                                                                                     























                                                                                                                                  
                          




























































































































































































                                                                                                                             
          
                
                 















































                                                                                           
                      
                                                            














































































                                                                                                                        
          
                
                 










































                                                                                             
                                                            





















































                                                                                                 
                                                                   
 
          
                     

































































































                                                                                                                 
                                          

































































                                                                                
                     
          


































































































































                                                                                                             
                      




































































                                                                                                                        
                   






                                                              

                                                                               



                                               

                                                                         









                                                                    
                                                            









                                                                                 
                                                            





































                                                                                         
                                            







                                                                                                     





                                                                          





















































































































                                                                                         
                                           






                                                     
                                           













                                                     
          






                                                                               

                                                                               



                                               

                                                                         






















                                                                              
                
































































































































                                                                                        
         





































                                                                                 
              












                                                                                      
                                           












                                                                                 
                                         















                                                                        
                                                                     














































































                                                                                                    
         















































                                                                                                               
                                                                      
                                                                                                   
          
              
                                                                                                  





















                                                                                                                            
                            


                                                                                  
                                                                                           


































































































                                                                                                       
                                                            
 
                                                
















































                                                                                                            














                                                                              
                                                                                  
 
                                                
































                                                                                      
                                     

















                                                                              
                                              
 
                 































                                                                              
                                                  
 
          



























                                                                                                  
                                                                




































































































                                                                                            
                         
                
            
























































                                                                                      
                                             



































































































































































































































































































































                                                                                           
               



                                       


                                  























































































                                                                                    
                                                         




                                                                                        
                                                                      




































                                                                                           
                  














































                                                                              
                  














































                                                                              
                                                 

                
               





































                                                                                              
            
























































                                                                                      
                                                   

                
                  




































                                                                                         
                                                   
                                              
                                                 
                  









































































































                                                                                                                     
                                                                                                                                               
















































                                                                                                              
                                                             
 
           









































                                                                                  
               
























































                                                                              
               





































                                                                                         
              
                    













































































































                                                                                                     
                                                     


















































































                                                                               
                                         

                                   
                                               

               
                                        














                                                         
                                                                                      












































































































                                                                                 
                                                          
 
             
                
               















                                                                                                    
                     















































                                                                                         
                  
          
                    

              
                  
 
                                                    































                                                                                               
                                                                                                 




































                                                                                              
/*****************************************************************************

            (c) Cambridge Silicon Radio Limited 2012
            All rights reserved and confidential information of CSR

            Refer to LICENSE.txt included with this source for details
            on the license terms.

*****************************************************************************/

/*
 * ---------------------------------------------------------------------------
 * FILE: csr_wifi_hip_card_sdio.c
 *
 * PURPOSE: Implementation of the Card API for SDIO.
 *
 * NOTES:
 *      CardInit() is called from the SDIO probe callback when a card is
 *      inserted. This performs the basic SDIO initialisation, enabling i/o
 *      etc.
 *
 * ---------------------------------------------------------------------------
 */
#include "csr_wifi_hip_unifi.h"
#include "csr_wifi_hip_conversions.h"
#include "csr_wifi_hip_unifiversion.h"
#include "csr_wifi_hip_card.h"
#include "csr_wifi_hip_card_sdio.h"
#include "csr_wifi_hip_chiphelper.h"


/* Time to wait between attempts to read MAILBOX0 */
#define MAILBOX1_TIMEOUT                10  /* in millisecs */
#define MAILBOX1_ATTEMPTS               200 /* 2 seconds */

#define MAILBOX2_TIMEOUT                5   /* in millisecs */
#define MAILBOX2_ATTEMPTS               10  /* 50ms */

#define RESET_SETTLE_DELAY              25  /* in millisecs */

static CsrResult card_init_slots(card_t *card);
static CsrResult card_hw_init(card_t *card);
static CsrResult firmware_present_in_flash(card_t *card);
static void bootstrap_chip_hw(card_t *card);
static CsrResult unifi_reset_hardware(card_t *card);
static CsrResult unifi_hip_init(card_t *card);
static CsrResult card_access_panic(card_t *card);
static CsrResult unifi_read_chip_version(card_t *card);

/*
 * ---------------------------------------------------------------------------
 *  unifi_alloc_card
 *
 *      Allocate and initialise the card context structure.
 *
 *  Arguments:
 *      sdio            Pointer to SDIO context pointer to pass to low
 *                      level i/o functions.
 *      ospriv          Pointer to O/S private struct to pass when calling
 *                      callbacks to the higher level system.
 *
 *  Returns:
 *      Pointer to card struct, which represents the driver context or
 *      NULL if the allocation failed.
 * ---------------------------------------------------------------------------
 */
card_t* unifi_alloc_card(CsrSdioFunction *sdio, void *ospriv)
{
    card_t *card;
    u32 i;

    func_enter();


    card = (card_t *)CsrMemAlloc(sizeof(card_t));
    if (card == NULL)
    {
        return NULL;
    }
    memset(card, 0, sizeof(card_t));


    card->sdio_if = sdio;
    card->ospriv  = ospriv;

    card->unifi_interrupt_seq = 1;

    /* Make these invalid. */
    card->proc_select = (u32)(-1);
    card->dmem_page = (u32)(-1);
    card->pmem_page = (u32)(-1);

    card->bh_reason_host = 0;
    card->bh_reason_unifi = 0;

    for (i = 0; i < sizeof(card->tx_q_paused_flag) / sizeof(card->tx_q_paused_flag[0]); i++)
    {
        card->tx_q_paused_flag[i] = 0;
    }
    card->memory_resources_allocated = 0;

    card->low_power_mode = UNIFI_LOW_POWER_DISABLED;
    card->periodic_wake_mode = UNIFI_PERIODIC_WAKE_HOST_DISABLED;

    card->host_state = UNIFI_HOST_STATE_AWAKE;
    card->intmode = CSR_WIFI_INTMODE_DEFAULT;

    /*
     * Memory resources for buffers are allocated when the chip is initialised
     * because we need configuration information from the firmware.
     */

    /*
     * Initialise wait queues and lists
     */
    card->fh_command_queue.q_body = card->fh_command_q_body;
    card->fh_command_queue.q_length = UNIFI_SOFT_COMMAND_Q_LENGTH;

    for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
    {
        card->fh_traffic_queue[i].q_body = card->fh_traffic_q_body[i];
        card->fh_traffic_queue[i].q_length = UNIFI_SOFT_TRAFFIC_Q_LENGTH;
    }


    /* Initialise mini-coredump pointers in case no coredump buffers
     * are requested by the OS layer.
     */
    card->request_coredump_on_reset = 0;
    card->dump_next_write = NULL;
    card->dump_cur_read = NULL;
    card->dump_buf = NULL;

#ifdef UNIFI_DEBUG
    /* Determine offset of LSB in pointer for later alignment sanity check.
     * Synergy integer types have specific widths, which cause compiler
     * warnings when casting pointer types, e.g. on 64-bit systems.
     */
    {
        u32 val = 0x01234567;

        if (*((u8 *)&val) == 0x01)
        {
            card->lsb = sizeof(void *) - 1;     /* BE */
        }
        else
        {
            card->lsb = 0;                      /* LE */
        }
    }
#endif
    func_exit();
    return card;
} /* unifi_alloc_card() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_init_card
 *
 *      Reset the hardware and perform HIP initialization
 *
 *  Arguments:
 *      card        Pointer to card struct
 *
 *  Returns:
 *      CsrResult code
 *      CSR_RESULT_SUCCESS if successful
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_init_card(card_t *card, s32 led_mask)
{
    CsrResult r;

    func_enter();

    if (card == NULL)
    {
        func_exit_r(CSR_WIFI_HIP_RESULT_INVALID_VALUE);
        return CSR_WIFI_HIP_RESULT_INVALID_VALUE;
    }

    r = unifi_init(card);
    if (r != CSR_RESULT_SUCCESS)
    {
        func_exit_r(r);
        return r;
    }

    r = unifi_hip_init(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        func_exit_r(r);
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to start host protocol.\n");
        func_exit_r(r);
        return r;
    }

    func_exit();
    return CSR_RESULT_SUCCESS;
}


/*
 * ---------------------------------------------------------------------------
 *  unifi_init
 *
 *      Init the hardware.
 *
 *  Arguments:
 *      card        Pointer to card struct
 *
 *  Returns:
 *      CsrResult code
 *      CSR_RESULT_SUCCESS if successful
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_init(card_t *card)
{
    CsrResult r;
    CsrResult csrResult;

    func_enter();

    if (card == NULL)
    {
        func_exit_r(CSR_WIFI_HIP_RESULT_INVALID_VALUE);
        return CSR_WIFI_HIP_RESULT_INVALID_VALUE;
    }

    /*
     * Disable the SDIO interrupts while initialising UniFi.
     * Re-enable them when f/w is running.
     */
    csrResult = CsrSdioInterruptDisable(card->sdio_if);
    if (csrResult == CSR_SDIO_RESULT_NO_DEVICE)
    {
        return CSR_WIFI_HIP_RESULT_NO_DEVICE;
    }

    /*
     * UniFi's PLL may start with a slow clock (~ 1 MHz) so initially
     * set the SDIO bus clock to a similar value or SDIO accesses may
     * fail.
     */
    csrResult = CsrSdioMaxBusClockFrequencySet(card->sdio_if, UNIFI_SDIO_CLOCK_SAFE_HZ);
    if (csrResult != CSR_RESULT_SUCCESS)
    {
        r = ConvertCsrSdioToCsrHipResult(card, csrResult);
        func_exit_r(r);
        return r;
    }
    card->sdio_clock_speed = UNIFI_SDIO_CLOCK_SAFE_HZ;

    /*
     * Reset UniFi. Note, this only resets the WLAN function part of the chip,
     * the SDIO interface is not reset.
     */
    unifi_trace(card->ospriv, UDBG1, "Resetting UniFi\n");
    r = unifi_reset_hardware(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to reset UniFi\n");
        func_exit_r(r);
        return r;
    }

    /* Reset the power save mode, to be active until the MLME-reset is complete */
    r = unifi_configure_low_power_mode(card,
                                       UNIFI_LOW_POWER_DISABLED, UNIFI_PERIODIC_WAKE_HOST_DISABLED);
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to set power save mode\n");
        func_exit_r(r);
        return r;
    }

    /*
     * Set initial value of page registers.
     * The page registers will be maintained by unifi_read...() and
     * unifi_write...().
     */
    card->proc_select = (u32)(-1);
    card->dmem_page = (u32)(-1);
    card->pmem_page = (u32)(-1);
    r = unifi_write_direct16(card, ChipHelper_HOST_WINDOW3_PAGE(card->helper) * 2, 0);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to write SHARED_DMEM_PAGE\n");
        func_exit_r(r);
        return r;
    }
    r = unifi_write_direct16(card, ChipHelper_HOST_WINDOW2_PAGE(card->helper) * 2, 0);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to write PROG_MEM2_PAGE\n");
        func_exit_r(r);
        return r;
    }

    /*
     * If the driver has reset UniFi due to previous SDIO failure, this may
     * have been due to a chip watchdog reset. In this case, the driver may
     * have requested a mini-coredump which needs to be captured now the
     * SDIO interface is alive.
     */
    (void)unifi_coredump_handle_request(card);

    /*
     * Probe to see if the UniFi has ROM/flash to boot from. CSR6xxx should do.
     */
    r = firmware_present_in_flash(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r == CSR_WIFI_HIP_RESULT_NOT_FOUND)
    {
        unifi_error(card->ospriv, "No firmware found\n");
    }
    else if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Probe for Flash failed\n");
    }

    func_exit_r(r);
    return r;
} /* unifi_init() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_download
 *
 *      Load the firmware.
 *
 *  Arguments:
 *      card        Pointer to card struct
 *      led_mask    Loader LED mask
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS on success
 *      CsrResult error code on failure.
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_download(card_t *card, s32 led_mask)
{
    CsrResult r;
    void *dlpriv;

    func_enter();

    if (card == NULL)
    {
        func_exit_r(CSR_WIFI_HIP_RESULT_INVALID_VALUE);
        return CSR_WIFI_HIP_RESULT_INVALID_VALUE;
    }

    /* Set the loader led mask */
    card->loader_led_mask = led_mask;

    /* Get the firmware file information */
    unifi_trace(card->ospriv, UDBG1, "downloading firmware...\n");

    dlpriv = unifi_dl_fw_read_start(card, UNIFI_FW_STA);
    if (dlpriv == NULL)
    {
        func_exit_r(CSR_WIFI_HIP_RESULT_NOT_FOUND);
        return CSR_WIFI_HIP_RESULT_NOT_FOUND;
    }

    /* Download the firmware. */
    r = unifi_dl_firmware(card, dlpriv);
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to download firmware\n");
        func_exit_r(r);
        return r;
    }

    /* Free the firmware file information. */
    unifi_fw_read_stop(card->ospriv, dlpriv);

    func_exit();

    return CSR_RESULT_SUCCESS;
} /* unifi_download() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_hip_init
 *
 *      This function performs the f/w initialisation sequence as described
 *      in the Unifi Host Interface Protocol Specification.
 *      It allocates memory for host-side slot data and signal queues.
 *
 *  Arguments:
 *      card        Pointer to card struct
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS on success or else a CSR error code
 *
 *  Notes:
 *      The firmware must have been downloaded.
 * ---------------------------------------------------------------------------
 */
static CsrResult unifi_hip_init(card_t *card)
{
    CsrResult r;
    CsrResult csrResult;

    func_enter();

    r = card_hw_init(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to establish communication with UniFi\n");
        func_exit_r(r);
        return r;
    }
#ifdef CSR_PRE_ALLOC_NET_DATA
    /* if there is any preallocated netdata left from the prev session free it now */
    prealloc_netdata_free(card);
#endif
    /*
     * Allocate memory for host-side slot data and signal queues.
     * We need the config info read from the firmware to know how much
     * memory to allocate.
     */
    r = card_init_slots(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Init slots failed: %d\n", r);
        func_exit_r(r);
        return r;
    }

    unifi_trace(card->ospriv, UDBG2, "Sending first UniFi interrupt\n");

    r = unifi_set_host_state(card, UNIFI_HOST_STATE_AWAKE);
    if (r != CSR_RESULT_SUCCESS)
    {
        func_exit_r(r);
        return r;
    }

    /* Enable the SDIO interrupts now that the f/w is running. */
    csrResult = CsrSdioInterruptEnable(card->sdio_if);
    if (csrResult == CSR_SDIO_RESULT_NO_DEVICE)
    {
        return CSR_WIFI_HIP_RESULT_NO_DEVICE;
    }

    /* Signal the UniFi to start handling messages */
    r = CardGenInt(card);
    if (r != CSR_RESULT_SUCCESS)
    {
        func_exit_r(r);
        return r;
    }

    func_exit();

    return CSR_RESULT_SUCCESS;
} /* unifi_hip_init() */


/*
 * ---------------------------------------------------------------------------
 *  _build_sdio_config_data
 *
 *      Unpack the SDIO configuration information from a buffer read from
 *      UniFi into a host structure.
 *      The data is byte-swapped for a big-endian host if necessary by the
 *      UNPACK... macros.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      cfg_data        Destination structure to unpack into.
 *      cfg_data_buf    Source buffer to read from. This should be the raw
 *                      data read from UniFi.
 *
 *  Returns:
 *      None.
 * ---------------------------------------------------------------------------
 */
static void _build_sdio_config_data(sdio_config_data_t *cfg_data,
                                    const u8     *cfg_data_buf)
{
    s16 offset = 0;

    cfg_data->version = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->sdio_ctrl_offset = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->fromhost_sigbuf_handle = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->tohost_sigbuf_handle = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->num_fromhost_sig_frags = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->num_tohost_sig_frags = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->num_fromhost_data_slots = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->num_tohost_data_slots = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->data_slot_size = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->initialised = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->overlay_size = CSR_GET_UINT32_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT32;

    cfg_data->data_slot_round = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->sig_frag_size = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
    offset += SIZEOF_UINT16;

    cfg_data->tohost_signal_padding = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(cfg_data_buf + offset);
} /* _build_sdio_config_data() */


/*
 * - Function ----------------------------------------------------------------
 * card_hw_init()
 *
 *      Perform the initialisation procedure described in the UniFi Host
 *      Interface Protocol document (section 3.3.8) and read the run-time
 *      configuration information from the UniFi. This is stuff like number
 *      of bulk data slots etc.
 *
 *      The card enumeration and SD initialisation has already been done by
 *      the SDIO library, see card_sdio_init().
 *
 *      The initialisation is done when firmware is ready, i.e. this may need
 *      to be called after a f/w download operation.
 *
 *      The initialisation procedure goes like this:
 *       - Wait for UniFi to start-up by polling SHARED_MAILBOX1
 *       - Find the symbol table and look up SLT_SDIO_SLOT_CONFIG
 *       - Read the config structure
 *       - Check the "SDIO initialised" flag, if not zero do a h/w reset and
 *         start again
 *       - Decide the number of bulk data slots to allocate, allocate them and
 *         set "SDIO initialised" flag (and generate an interrupt) to say so.
 *
 * Arguments:
 *      card        Pointer to card struct
 *
 * Returns:
 *      CSR_RESULT_SUCEESS on success,
 *      a CSR error code on failure
 *
 * Notes:
 *      All data in the f/w is stored in a little endian format, without any
 *      padding bytes. Every read from this memory has to be transformed in
 *      host (cpu specific) format, before it is stored in driver's parameters
 *      or/and structures. Athough unifi_card_read16() and unifi_read32() do perform
 *      the convertion internally, unifi_readn() does not.
 * ---------------------------------------------------------------------------
 */
static CsrResult card_hw_init(card_t *card)
{
    u32 slut_address;
    u16 initialised;
    u16 finger_print;
    symbol_t slut;
    sdio_config_data_t *cfg_data;
    u8 cfg_data_buf[SDIO_CONFIG_DATA_SIZE];
    CsrResult r;
    void *dlpriv;
    s16 major, minor;
    s16 search_4slut_again;
    CsrResult csrResult;

    func_enter();

    /*
     * The device revision from the TPLMID_MANF and TPLMID_CARD fields
     * of the CIS are available as
     *   card->sdio_if->pDevice->ManfID
     *   card->sdio_if->pDevice->AppID
     */

    /*
     * Run in a loop so we can patch.
     */
    do
    {
        /* Reset these each time around the loop. */
        search_4slut_again = 0;
        cfg_data = NULL;

        r = card_wait_for_firmware_to_start(card, &slut_address);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "Firmware hasn't started\n");
            func_exit_r(r);
            return r;
        }
        unifi_trace(card->ospriv, UDBG4, "SLUT addr 0x%lX\n", slut_address);

        /*
         * Firmware has started, but doesn't know full clock configuration yet
         * as some of the information may be in the MIB. Therefore we set an
         * initial SDIO clock speed, faster than UNIFI_SDIO_CLOCK_SAFE_HZ, for
         * the patch download and subsequent firmware initialisation, and
         * full speed UNIFI_SDIO_CLOCK_MAX_HZ will be set once the f/w tells us
         * that it is ready.
         */
        csrResult = CsrSdioMaxBusClockFrequencySet(card->sdio_if, UNIFI_SDIO_CLOCK_INIT_HZ);
        if (csrResult != CSR_RESULT_SUCCESS)
        {
            r = ConvertCsrSdioToCsrHipResult(card, csrResult);
            func_exit_r(r);
            return r;
        }
        card->sdio_clock_speed = UNIFI_SDIO_CLOCK_INIT_HZ;

        /*
         * Check the SLUT fingerprint.
         * The slut_address is a generic pointer so we must use unifi_card_read16().
         */
        unifi_trace(card->ospriv, UDBG4, "Looking for SLUT finger print\n");
        finger_print = 0;
        r = unifi_card_read16(card, slut_address, &finger_print);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "Failed to read SLUT finger print\n");
            func_exit_r(r);
            return r;
        }

        if (finger_print != SLUT_FINGERPRINT)
        {
            unifi_error(card->ospriv, "Failed to find Symbol lookup table fingerprint\n");
            func_exit_r(CSR_RESULT_FAILURE);
            return CSR_RESULT_FAILURE;
        }

        /* Symbol table starts imedately after the fingerprint */
        slut_address += 2;

        /* Search the table until either the end marker is found, or the
         * loading of patch firmware invalidates the current table.
         */
        while (!search_4slut_again)
        {
            u16 s;
            u32 l;

            r = unifi_card_read16(card, slut_address, &s);
            if (r != CSR_RESULT_SUCCESS)
            {
                func_exit_r(r);
                return r;
            }
            slut_address += 2;

            if (s == CSR_SLT_END)
            {
                unifi_trace(card->ospriv, UDBG3, "  found CSR_SLT_END\n");
                break;
            }

            r = unifi_read32(card, slut_address, &l);
            if (r != CSR_RESULT_SUCCESS)
            {
                func_exit_r(r);
                return r;
            }
            slut_address += 4;

            slut.id = s;
            slut.obj = l;

            unifi_trace(card->ospriv, UDBG3, "  found SLUT id %02d.%08lx\n", slut.id, slut.obj);
            switch (slut.id)
            {
                case CSR_SLT_SDIO_SLOT_CONFIG:
                    cfg_data = &card->config_data;
                    /*
                     * unifi_card_readn reads n bytes from the card, where data is stored
                     * in a little endian format, without any padding bytes. So, we
                     * can not just pass the cfg_data pointer or use the
                     * sizeof(sdio_config_data_t) since the structure in the host can
                     * be big endian formatted or have padding bytes for alignment.
                     * We use a char buffer to read the data from the card.
                     */
                    r = unifi_card_readn(card, slut.obj, cfg_data_buf, SDIO_CONFIG_DATA_SIZE);
                    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
                    {
                        return r;
                    }
                    if (r != CSR_RESULT_SUCCESS)
                    {
                        unifi_error(card->ospriv, "Failed to read config data\n");
                        func_exit_r(r);
                        return r;
                    }
                    /* .. and then we copy the data to the host structure */
                    _build_sdio_config_data(cfg_data, cfg_data_buf);

                    /* Make sure the from host data slots are what we expect
                        we reserve 2 for commands and there should be at least
                        1 left for each access category */
                    if ((cfg_data->num_fromhost_data_slots < UNIFI_RESERVED_COMMAND_SLOTS)
                        || (cfg_data->num_fromhost_data_slots - UNIFI_RESERVED_COMMAND_SLOTS) / UNIFI_NO_OF_TX_QS == 0)
                    {
                        unifi_error(card->ospriv, "From host data slots %d\n", cfg_data->num_fromhost_data_slots);
                        unifi_error(card->ospriv, "need to be (queues * x + 2) (UNIFI_RESERVED_COMMAND_SLOTS for commands)\n");
                        func_exit_r(CSR_RESULT_FAILURE);
                        return CSR_RESULT_FAILURE;
                    }

                    /* Configure SDIO to-block-size padding */
                    if (card->sdio_io_block_pad)
                    {
                    /*
                     * Firmware limits the maximum padding size via data_slot_round.
                     * Therefore when padding to whole block sizes, the block size
                     * must be configured correctly by adjusting CSR_WIFI_HIP_SDIO_BLOCK_SIZE.
                     */
                        if (cfg_data->data_slot_round < card->sdio_io_block_size)
                        {
                            unifi_error(card->ospriv,
                                        "Configuration error: Block size of %d exceeds f/w data_slot_round of %d\n",
                                        card->sdio_io_block_size, cfg_data->data_slot_round);
                            return CSR_WIFI_HIP_RESULT_INVALID_VALUE;
                        }

                        /*
                         * To force the To-Host signals to be rounded up to the SDIO block
                         * size, we need to write the To-Host Signal Padding Fragments
                         * field of the SDIO configuration in UniFi.
                         */
                        if ((card->sdio_io_block_size % cfg_data->sig_frag_size) != 0)
                        {
                            unifi_error(card->ospriv, "Configuration error: Can not pad to-host signals.\n");
                            func_exit_r(CSR_WIFI_HIP_RESULT_INVALID_VALUE);
                            return CSR_WIFI_HIP_RESULT_INVALID_VALUE;
                        }
                        cfg_data->tohost_signal_padding = (u16) (card->sdio_io_block_size / cfg_data->sig_frag_size);
                        unifi_info(card->ospriv, "SDIO block size %d requires %d padding chunks\n",
                                   card->sdio_io_block_size, cfg_data->tohost_signal_padding);
                        r = unifi_card_write16(card, slut.obj + SDIO_TO_HOST_SIG_PADDING_OFFSET, cfg_data->tohost_signal_padding);
                        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
                        {
                            return r;
                        }
                        if (r != CSR_RESULT_SUCCESS)
                        {
                            unifi_error(card->ospriv, "Failed to write To-Host Signal Padding Fragments\n");
                            func_exit_r(r);
                            return r;
                        }
                    }

                    /* Reconstruct the Generic Pointer address of the
                     * SDIO Control Data Struct.
                     */
                    card->sdio_ctrl_addr = cfg_data->sdio_ctrl_offset | (UNIFI_SH_DMEM << 24);
                    card->init_flag_addr = slut.obj + SDIO_INIT_FLAG_OFFSET;
                    break;

                case CSR_SLT_BUILD_ID_NUMBER:
                {
                    u32 n;
                    r = unifi_read32(card, slut.obj, &n);
                    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
                    {
                        return r;
                    }
                    if (r != CSR_RESULT_SUCCESS)
                    {
                        unifi_error(card->ospriv, "Failed to read build id\n");
                        func_exit_r(r);
                        return r;
                    }
                    card->build_id = n;
                }
                break;

                case CSR_SLT_BUILD_ID_STRING:
                    r = unifi_readnz(card, slut.obj, card->build_id_string,
                                     sizeof(card->build_id_string));
                    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
                    {
                        return r;
                    }
                    if (r != CSR_RESULT_SUCCESS)
                    {
                        unifi_error(card->ospriv, "Failed to read build string\n");
                        func_exit_r(r);
                        return r;
                    }
                    break;

                case CSR_SLT_PERSISTENT_STORE_DB:
                    break;

                case CSR_SLT_BOOT_LOADER_CONTROL:

                    /* This command copies most of the station firmware
                     * image from ROM into program RAM.  It also clears
                     * out the zerod data and sets up the initialised
                     * data. */
                    r = unifi_do_loader_op(card, slut.obj + 6, UNIFI_BOOT_LOADER_LOAD_STA);
                    if (r != CSR_RESULT_SUCCESS)
                    {
                        unifi_error(card->ospriv, "Failed to write loader load image command\n");
                        func_exit_r(r);
                        return r;
                    }

                    dlpriv = unifi_dl_fw_read_start(card, UNIFI_FW_STA);

                    /* dlpriv might be NULL, we still need to do the do_loader_op step. */
                    if (dlpriv != NULL)
                    {
                    /* Download the firmware. */
                        r = unifi_dl_patch(card, dlpriv, slut.obj);

                    /* Free the firmware file information. */
                        unifi_fw_read_stop(card->ospriv, dlpriv);

                        if (r != CSR_RESULT_SUCCESS)
                        {
                            unifi_error(card->ospriv, "Failed to patch firmware\n");
                            func_exit_r(r);
                            return r;
                        }
                    }

                    /* This command starts the firmware image that we want (the
                    * station by default) with any patches required applied. */
                    r = unifi_do_loader_op(card, slut.obj + 6, UNIFI_BOOT_LOADER_RESTART);
                    if (r != CSR_RESULT_SUCCESS)
                    {
                        unifi_error(card->ospriv, "Failed to write loader restart command\n");
                        func_exit_r(r);
                        return r;
                    }

                    /* The now running patch f/w defines a new SLUT data structure -
                     * the current one is no longer valid. We must drop out of the
                     * processing loop and enumerate the new SLUT (which may appear
                     * at a different offset).
                     */
                    search_4slut_again = 1;
                    break;

                case CSR_SLT_PANIC_DATA_PHY:
                    card->panic_data_phy_addr = slut.obj;
                    break;

                case CSR_SLT_PANIC_DATA_MAC:
                    card->panic_data_mac_addr = slut.obj;
                    break;

                default:
                    /* do nothing */
                    break;
            }
        } /* while */
    } while (search_4slut_again);

    /* Did we find the Config Data ? */
    if (cfg_data == NULL)
    {
        unifi_error(card->ospriv, "Failed to find SDIO_SLOT_CONFIG Symbol\n");
        func_exit_r(CSR_RESULT_FAILURE);
        return CSR_RESULT_FAILURE;
    }

    /*
     * Has ths card already been initialised?
     * If so, return an error so we do a h/w reset and start again.
     */
    r = unifi_card_read16(card, card->init_flag_addr, &initialised);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to read init flag at %08lx\n",
                    card->init_flag_addr);
        func_exit_r(r);
        return r;
    }
    if (initialised != 0)
    {
        func_exit_r(CSR_RESULT_FAILURE);
        return CSR_RESULT_FAILURE;
    }


    /*
     * Now check the UniFi firmware version
     */
    major = (cfg_data->version >> 8) & 0xFF;
    minor = cfg_data->version & 0xFF;
    unifi_info(card->ospriv, "UniFi f/w protocol version %d.%d (driver %d.%d)\n",
               major, minor,
               UNIFI_HIP_MAJOR_VERSION, UNIFI_HIP_MINOR_VERSION);

    unifi_info(card->ospriv, "Firmware build %u: %s\n",
               card->build_id, card->build_id_string);

    if (major != UNIFI_HIP_MAJOR_VERSION)
    {
        unifi_error(card->ospriv, "UniFi f/w protocol major version (%d) is different from driver (v%d.%d)\n",
                    major, UNIFI_HIP_MAJOR_VERSION, UNIFI_HIP_MINOR_VERSION);
#ifndef CSR_WIFI_DISABLE_HIP_VERSION_CHECK
        func_exit_r(CSR_RESULT_FAILURE);
        return CSR_RESULT_FAILURE;
#endif
    }
    if (minor < UNIFI_HIP_MINOR_VERSION)
    {
        unifi_error(card->ospriv, "UniFi f/w protocol version (v%d.%d) is older than minimum required by driver (v%d.%d).\n",
                    major, minor,
                    UNIFI_HIP_MAJOR_VERSION, UNIFI_HIP_MINOR_VERSION);
#ifndef CSR_WIFI_DISABLE_HIP_VERSION_CHECK
        func_exit_r(CSR_RESULT_FAILURE);
        return CSR_RESULT_FAILURE;
#endif
    }

    /* Read panic codes from a previous firmware panic. If the firmware has
     * not panicked since power was applied (e.g. power-off hard reset)
     * the stored panic codes will not be updated.
     */
    unifi_read_panic(card);

    func_exit();
    return CSR_RESULT_SUCCESS;
} /* card_hw_init() */


/*
 * ---------------------------------------------------------------------------
 *  card_wait_for_unifi_to_reset
 *
 *      Waits for a reset to complete by polling the WLAN function enable
 *      bit (which is cleared on reset).
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS on success, CSR error code on failure.
 * ---------------------------------------------------------------------------
 */
static CsrResult card_wait_for_unifi_to_reset(card_t *card)
{
    s16 i;
    CsrResult r;
    u8 io_enable;
    CsrResult csrResult;

    func_enter();

    r = CSR_RESULT_SUCCESS;
    for (i = 0; i < MAILBOX2_ATTEMPTS; i++)
    {
        unifi_trace(card->ospriv, UDBG1, "waiting for reset to complete, attempt %d\n", i);
        if (card->chip_id > SDIO_CARD_ID_UNIFI_2)
        {
            /* It's quite likely that this read will timeout for the
             * first few tries - especially if we have reset via
             * DBG_RESET.
             */
#if defined (CSR_WIFI_HIP_DEBUG_OFFLINE) && defined (CSR_WIFI_HIP_SDIO_TRACE)
            unifi_debug_log_to_buf("m0@%02X=", SDIO_IO_READY);
#endif
            csrResult = CsrSdioF0Read8(card->sdio_if, SDIO_IO_READY, &io_enable);
#if defined (CSR_WIFI_HIP_DEBUG_OFFLINE) && defined (CSR_WIFI_HIP_SDIO_TRACE)
            if (csrResult != CSR_RESULT_SUCCESS)
            {
                unifi_debug_log_to_buf("error=%X\n", csrResult);
            }
            else
            {
                unifi_debug_log_to_buf("%X\n", io_enable);
            }
#endif
            if (csrResult == CSR_SDIO_RESULT_NO_DEVICE)
            {
                return CSR_WIFI_HIP_RESULT_NO_DEVICE;
            }
            r = CSR_RESULT_SUCCESS;
            if (csrResult != CSR_RESULT_SUCCESS)
            {
                r = ConvertCsrSdioToCsrHipResult(card, csrResult);
            }
        }
        else
        {
            r = sdio_read_f0(card, SDIO_IO_ENABLE, &io_enable);
        }
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r == CSR_RESULT_SUCCESS)
        {
            u16 mbox2;
            s16 enabled = io_enable & (1 << card->function);

            if (!enabled)
            {
                unifi_trace(card->ospriv, UDBG1,
                            "Reset complete (function %d is disabled) in ~ %u msecs\n",
                            card->function, i * MAILBOX2_TIMEOUT);

                /* Enable WLAN function and verify MAILBOX2 is zero'd */
                csrResult = CsrSdioFunctionEnable(card->sdio_if);
                if (csrResult != CSR_RESULT_SUCCESS)
                {
                    r = ConvertCsrSdioToCsrHipResult(card, csrResult);
                    unifi_error(card->ospriv, "CsrSdioFunctionEnable failed %d\n", r);
                    break;
                }
            }

            r = unifi_read_direct16(card, ChipHelper_SDIO_HIP_HANDSHAKE(card->helper) * 2, &mbox2);
            if (r != CSR_RESULT_SUCCESS)
            {
                unifi_error(card->ospriv, "read HIP_HANDSHAKE failed %d\n", r);
                break;
            }
            if (mbox2 != 0)
            {
                unifi_error(card->ospriv, "MAILBOX2 non-zero after reset (mbox2 = %04x)\n", mbox2);
                r = CSR_RESULT_FAILURE;
            }
            break;
        }
        else
        {
            if (card->chip_id > SDIO_CARD_ID_UNIFI_2)
            {
                /* We ignore read failures for the first few reads,
                 * they are probably benign. */
                if (i > MAILBOX2_ATTEMPTS / 4)
                {
                    unifi_trace(card->ospriv, UDBG1, "Failed to read CCCR IO Ready register while polling for reset\n");
                }
            }
            else
            {
                unifi_trace(card->ospriv, UDBG1, "Failed to read CCCR IO Enable register while polling for reset\n");
            }
        }
        CsrThreadSleep(MAILBOX2_TIMEOUT);
    }

    if (r == CSR_RESULT_SUCCESS && i == MAILBOX2_ATTEMPTS)
    {
        unifi_trace(card->ospriv, UDBG1, "Timeout waiting for UniFi to complete reset\n");
        r = CSR_RESULT_FAILURE;
    }

    func_exit();
    return r;
} /* card_wait_for_unifi_to_reset() */


/*
 * ---------------------------------------------------------------------------
 *  card_wait_for_unifi_to_disable
 *
 *      Waits for the function to become disabled by polling the
 *      IO_READY bit.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS on success, CSR error code on failure.
 *
 *  Notes: This function can only be used with
 *         card->chip_id > SDIO_CARD_ID_UNIFI_2
 * ---------------------------------------------------------------------------
 */
static CsrResult card_wait_for_unifi_to_disable(card_t *card)
{
    s16 i;
    CsrResult r;
    u8 io_enable;
    CsrResult csrResult;

    func_enter();

    if (card->chip_id <= SDIO_CARD_ID_UNIFI_2)
    {
        unifi_error(card->ospriv,
                    "Function reset method not supported for chip_id=%d\n",
                    card->chip_id);
        func_exit();
        return CSR_RESULT_FAILURE;
    }

    r = CSR_RESULT_SUCCESS;
    for (i = 0; i < MAILBOX2_ATTEMPTS; i++)
    {
        unifi_trace(card->ospriv, UDBG1, "waiting for disable to complete, attempt %d\n", i);

        /*
         * It's quite likely that this read will timeout for the
         * first few tries - especially if we have reset via
         * DBG_RESET.
         */
#if defined (CSR_WIFI_HIP_DEBUG_OFFLINE) && defined (CSR_WIFI_HIP_SDIO_TRACE)
        unifi_debug_log_to_buf("r0@%02X=", SDIO_IO_READY);
#endif
        csrResult = CsrSdioF0Read8(card->sdio_if, SDIO_IO_READY, &io_enable);
#if defined (CSR_WIFI_HIP_DEBUG_OFFLINE) && defined (CSR_WIFI_HIP_SDIO_TRACE)
        if (csrResult != CSR_RESULT_SUCCESS)
        {
            unifi_debug_log_to_buf("error=%X\n", csrResult);
        }
        else
        {
            unifi_debug_log_to_buf("%X\n", io_enable);
        }
#endif
        if (csrResult == CSR_SDIO_RESULT_NO_DEVICE)
        {
            return CSR_WIFI_HIP_RESULT_NO_DEVICE;
        }
        if (csrResult == CSR_RESULT_SUCCESS)
        {
            s16 enabled = io_enable & (1 << card->function);
            r = CSR_RESULT_SUCCESS;
            if (!enabled)
            {
                unifi_trace(card->ospriv, UDBG1,
                            "Disable complete (function %d is disabled) in ~ %u msecs\n",
                            card->function, i * MAILBOX2_TIMEOUT);

                break;
            }
        }
        else
        {
            /*
             * We ignore read failures for the first few reads,
             * they are probably benign.
             */
            r = ConvertCsrSdioToCsrHipResult(card, csrResult);
            if (i > (MAILBOX2_ATTEMPTS / 4))
            {
                unifi_trace(card->ospriv, UDBG1,
                            "Failed to read CCCR IO Ready register while polling for disable\n");
            }
        }
        CsrThreadSleep(MAILBOX2_TIMEOUT);
    }

    if ((r == CSR_RESULT_SUCCESS) && (i == MAILBOX2_ATTEMPTS))
    {
        unifi_trace(card->ospriv, UDBG1, "Timeout waiting for UniFi to complete disable\n");
        r = CSR_RESULT_FAILURE;
    }

    func_exit();
    return r;
} /* card_wait_for_unifi_to_reset() */


/*
 * ---------------------------------------------------------------------------
 *  card_wait_for_firmware_to_start
 *
 *      Polls the MAILBOX1 register for a non-zero value.
 *      Then reads MAILBOX0 and forms the two values into a 32-bit address
 *      which is returned to the caller.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      paddr           Pointer to receive the UniFi address formed
 *                      by concatenating MAILBOX1 and MAILBOX0.
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS on success, CSR error code on failure.
 * ---------------------------------------------------------------------------
 */
CsrResult card_wait_for_firmware_to_start(card_t *card, u32 *paddr)
{
    s32 i;
    u16 mbox0, mbox1;
    CsrResult r;

    func_enter();

    /*
     * Wait for UniFi to initialise its data structures by polling
     * the SHARED_MAILBOX1 register.
     * Experience shows this is typically 120ms.
     */
    CsrThreadSleep(MAILBOX1_TIMEOUT);

    mbox1 = 0;
    unifi_trace(card->ospriv, UDBG1, "waiting for MAILBOX1 to be non-zero...\n");
    for (i = 0; i < MAILBOX1_ATTEMPTS; i++)
    {
        r = unifi_read_direct16(card, ChipHelper_MAILBOX1(card->helper) * 2, &mbox1);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            /* These reads can fail if UniFi isn't up yet, so try again */
            unifi_warning(card->ospriv, "Failed to read UniFi Mailbox1 register\n");
        }

        if ((r == CSR_RESULT_SUCCESS) && (mbox1 != 0))
        {
            unifi_trace(card->ospriv, UDBG1, "MAILBOX1 ready (0x%04X) in %u millisecs\n",
                        mbox1, i * MAILBOX1_TIMEOUT);

            /* Read the MAILBOX1 again in case we caught the value as it
             * changed. */
            r = unifi_read_direct16(card, ChipHelper_MAILBOX1(card->helper) * 2, &mbox1);
            if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
            {
                return r;
            }
            if (r != CSR_RESULT_SUCCESS)
            {
                unifi_error(card->ospriv, "Failed to read UniFi Mailbox1 register for second time\n");
                func_exit_r(r);
                return r;
            }
            unifi_trace(card->ospriv, UDBG1, "MAILBOX1 value=0x%04X\n", mbox1);

            break;
        }

        CsrThreadSleep(MAILBOX1_TIMEOUT);
        if ((i % 100) == 99)
        {
            unifi_trace(card->ospriv, UDBG2, "MAILBOX1 not ready (0x%X), still trying...\n", mbox1);
        }
    }

    if ((r == CSR_RESULT_SUCCESS) && (mbox1 == 0))
    {
        unifi_trace(card->ospriv, UDBG1, "Timeout waiting for firmware to start, Mailbox1 still 0 after %d ms\n",
                    MAILBOX1_ATTEMPTS * MAILBOX1_TIMEOUT);
        func_exit_r(CSR_RESULT_FAILURE);
        return CSR_RESULT_FAILURE;
    }


    /*
     * Complete the reset handshake by setting MAILBOX2 to 0xFFFF
     */
    r = unifi_write_direct16(card, ChipHelper_SDIO_HIP_HANDSHAKE(card->helper) * 2, 0xFFFF);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to write f/w startup handshake to MAILBOX2\n");
        func_exit_r(r);
        return r;
    }


    /*
     * Read the Symbol Look Up Table (SLUT) offset.
     * Top 16 bits are in mbox1, read the lower 16 bits from mbox0.
     */
    mbox0 = 0;
    r = unifi_read_direct16(card, ChipHelper_MAILBOX0(card->helper) * 2, &mbox0);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to read UniFi Mailbox0 register\n");
        func_exit_r(r);
        return r;
    }

    *paddr = (((u32)mbox1 << 16) | mbox0);

    func_exit();
    return CSR_RESULT_SUCCESS;
} /* card_wait_for_firmware_to_start() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_capture_panic
 *
 *      Attempt to capture panic codes from the firmware. This may involve
 *      warm reset of the chip to regain access following a watchdog reset.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS if panic codes were captured, or none available
 *      CSR_RESULT_FAILURE if the driver could not access function 1
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_capture_panic(card_t *card)
{
    func_enter();

    /* The firmware must have previously initialised to read the panic addresses
     * from the SLUT
     */
    if (!card->panic_data_phy_addr || !card->panic_data_mac_addr)
    {
        func_exit();
        return CSR_RESULT_SUCCESS;
    }

    /* Ensure we can access function 1 following a panic/watchdog reset */
    if (card_access_panic(card) == CSR_RESULT_SUCCESS)
    {
        /* Read the panic codes */
        unifi_read_panic(card);
    }
    else
    {
        unifi_info(card->ospriv, "Unable to read panic codes");
    }

    func_exit();
    return CSR_RESULT_SUCCESS;
}


/*
 * ---------------------------------------------------------------------------
 *  card_access_panic
 *      Attempt to read the WLAN SDIO function in order to read panic codes
 *      and perform various reset steps to regain access if the read fails.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS if panic codes can be read
 *      CSR error code if panic codes can not be read
 * ---------------------------------------------------------------------------
 */
static CsrResult card_access_panic(card_t *card)
{
    u16 data_u16 = 0;
    s32 i;
    CsrResult r, sr;

    func_enter();

    /* A chip version of zero means that the version never got succesfully read
     * during reset. In this case give up because it will not be possible to
     * verify the chip version.
     */
    if (!card->chip_version)
    {
        unifi_info(card->ospriv, "Unknown chip version\n");
        return CSR_RESULT_FAILURE;
    }

    /* Ensure chip is awake or access to function 1 will fail */
    r = unifi_set_host_state(card, UNIFI_HOST_STATE_AWAKE);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "unifi_set_host_state() failed %d\n", r);
        return CSR_RESULT_FAILURE; /* Card is probably unpowered */
    }
    CsrThreadSleep(20);

    for (i = 0; i < 3; i++)
    {
        sr = CsrSdioRead16(card->sdio_if, CHIP_HELPER_UNIFI_GBL_CHIP_VERSION * 2, &data_u16);
        if (sr != CSR_RESULT_SUCCESS || data_u16 != card->chip_version)
        {
            unifi_info(card->ospriv, "Failed to read valid chip version sr=%d (0x%04x want 0x%04x) try %d\n",
                       sr, data_u16, card->chip_version, i);

            /* Set clock speed low */
            sr = CsrSdioMaxBusClockFrequencySet(card->sdio_if, UNIFI_SDIO_CLOCK_SAFE_HZ);
            if (sr != CSR_RESULT_SUCCESS)
            {
                unifi_error(card->ospriv, "CsrSdioMaxBusClockFrequencySet() failed1 %d\n", sr);
                r = ConvertCsrSdioToCsrHipResult(card, sr);
            }
            card->sdio_clock_speed = UNIFI_SDIO_CLOCK_SAFE_HZ;

            /* First try re-enabling function in case a f/w watchdog reset disabled it */
            if (i == 0)
            {
                unifi_info(card->ospriv, "Try function enable\n");
                sr = CsrSdioFunctionEnable(card->sdio_if);
                if (sr != CSR_RESULT_SUCCESS)
                {
                    r = ConvertCsrSdioToCsrHipResult(card, sr);
                    unifi_error(card->ospriv, "CsrSdioFunctionEnable failed %d (HIP %d)\n", sr, r);
                }
                continue;
            }

            /* Second try, set awake */
            unifi_info(card->ospriv, "Try set awake\n");

            /* Ensure chip is awake */
            r = unifi_set_host_state(card, UNIFI_HOST_STATE_AWAKE);
            if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
            {
                return r;
            }
            if (r != CSR_RESULT_SUCCESS)
            {
                unifi_error(card->ospriv, "unifi_set_host_state() failed2 %d\n", r);
            }

            /* Set clock speed low in case setting the host state raised it, which
             * would only happen if host state was previously TORPID
             */
            sr = CsrSdioMaxBusClockFrequencySet(card->sdio_if, UNIFI_SDIO_CLOCK_SAFE_HZ);
            if (sr != CSR_RESULT_SUCCESS)
            {
                unifi_error(card->ospriv, "CsrSdioMaxBusClockFrequencySet() failed2 %d\n", sr);
            }
            card->sdio_clock_speed = UNIFI_SDIO_CLOCK_SAFE_HZ;

            if (i == 1)
            {
                continue;
            }

            /* Perform a s/w reset to preserve as much as the card state as possible,
             * (mainly the preserve RAM). The context will be lost for coredump - but as we
             * were unable to access the WLAN function for panic, the coredump would have
             * also failed without a reset.
             */
            unifi_info(card->ospriv, "Try s/w reset\n");

            r = unifi_card_hard_reset(card);
            if (r != CSR_RESULT_SUCCESS)
            {
                unifi_error(card->ospriv, "unifi_card_hard_reset() failed %d\n", r);
            }
        }
        else
        {
            if (i > 0)
            {
                unifi_info(card->ospriv, "Read chip version 0x%x after %d retries\n", data_u16, i);
            }
            break;
        }
    }

    r = ConvertCsrSdioToCsrHipResult(card, sr);
    func_exit_r(r);
    return r;
}


/*
 * ---------------------------------------------------------------------------
 *  unifi_read_panic
 *      Reads, saves and prints panic codes stored by the firmware in UniFi's
 *      preserve RAM by the last panic that occurred since chip was powered.
 *      Nothing is saved if the panic codes are read as zero.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 * ---------------------------------------------------------------------------
 */
void unifi_read_panic(card_t *card)
{
    CsrResult r;
    u16 p_code, p_arg;

    func_enter();

    /* The firmware must have previously initialised to read the panic addresses
     * from the SLUT
     */
    if (!card->panic_data_phy_addr || !card->panic_data_mac_addr)
    {
        return;
    }

    /* Get the panic data from PHY */
    r = unifi_card_read16(card, card->panic_data_phy_addr, &p_code);
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "capture_panic: unifi_read16 %08x failed %d\n", card->panic_data_phy_addr, r);
        p_code = 0;
    }
    if (p_code)
    {
        r = unifi_card_read16(card, card->panic_data_phy_addr + 2, &p_arg);
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "capture_panic: unifi_read16 %08x failed %d\n", card->panic_data_phy_addr + 2, r);
        }
        unifi_error(card->ospriv, "Last UniFi PHY PANIC %04x arg %04x\n", p_code, p_arg);
        card->last_phy_panic_code = p_code;
        card->last_phy_panic_arg = p_arg;
    }

    /* Get the panic data from MAC */
    r = unifi_card_read16(card, card->panic_data_mac_addr, &p_code);
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "capture_panic: unifi_read16 %08x failed %d\n", card->panic_data_mac_addr, r);
        p_code = 0;
    }
    if (p_code)
    {
        r = unifi_card_read16(card, card->panic_data_mac_addr + 2, &p_arg);
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "capture_panic: unifi_read16 %08x failed %d\n", card->panic_data_mac_addr + 2, r);
        }
        unifi_error(card->ospriv, "Last UniFi MAC PANIC %04x arg %04x\n", p_code, p_arg);
        card->last_mac_panic_code = p_code;
        card->last_mac_panic_arg = p_arg;
    }

    func_exit();
}


/*
 * ---------------------------------------------------------------------------
 *  card_allocate_memory_resources
 *
 *      Allocates memory for the from-host, to-host bulk data slots,
 *      soft queue buffers and bulk data buffers.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS on success, CSR error code on failure.
 * ---------------------------------------------------------------------------
 */
static CsrResult card_allocate_memory_resources(card_t *card)
{
    s16 n, i, k, r;
    sdio_config_data_t *cfg_data;

    func_enter();

    /* Reset any state carried forward from a previous life */
    card->fh_command_queue.q_rd_ptr = 0;
    card->fh_command_queue.q_wr_ptr = 0;
    (void)CsrSnprintf(card->fh_command_queue.name, UNIFI_QUEUE_NAME_MAX_LENGTH,
                      "fh_cmd_q");
    for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
    {
        card->fh_traffic_queue[i].q_rd_ptr = 0;
        card->fh_traffic_queue[i].q_wr_ptr = 0;
        (void)CsrSnprintf(card->fh_traffic_queue[i].name,
                          UNIFI_QUEUE_NAME_MAX_LENGTH, "fh_data_q%d", i);
    }
#ifndef CSR_WIFI_HIP_TA_DISABLE
    unifi_ta_sampling_init(card);
#endif
    /* Convenience short-cut */
    cfg_data = &card->config_data;

    /*
     * Allocate memory for the from-host and to-host signal buffers.
     */
    card->fh_buffer.buf = CsrMemAllocDma(UNIFI_FH_BUF_SIZE);
    if (card->fh_buffer.buf == NULL)
    {
        unifi_error(card->ospriv, "Failed to allocate memory for F-H signals\n");
        func_exit_r(CSR_WIFI_HIP_RESULT_NO_MEMORY);
        return CSR_WIFI_HIP_RESULT_NO_MEMORY;
    }
    card->fh_buffer.bufsize = UNIFI_FH_BUF_SIZE;
    card->fh_buffer.ptr = card->fh_buffer.buf;
    card->fh_buffer.count = 0;

    card->th_buffer.buf = CsrMemAllocDma(UNIFI_FH_BUF_SIZE);
    if (card->th_buffer.buf == NULL)
    {
        unifi_error(card->ospriv, "Failed to allocate memory for T-H signals\n");
        func_exit_r(CSR_WIFI_HIP_RESULT_NO_MEMORY);
        return CSR_WIFI_HIP_RESULT_NO_MEMORY;
    }
    card->th_buffer.bufsize = UNIFI_FH_BUF_SIZE;
    card->th_buffer.ptr = card->th_buffer.buf;
    card->th_buffer.count = 0;


    /*
     * Allocate memory for the from-host and to-host bulk data slots.
     * This is done as separate CsrPmemAllocs because lots of smaller
     * allocations are more likely to succeed than one huge one.
     */

    /* Allocate memory for the array of pointers */
    n = cfg_data->num_fromhost_data_slots;

    unifi_trace(card->ospriv, UDBG3, "Alloc from-host resources, %d slots.\n", n);
    card->from_host_data =
        (slot_desc_t *)CsrMemAlloc(n * sizeof(slot_desc_t));
    if (card->from_host_data == NULL)
    {
        unifi_error(card->ospriv, "Failed to allocate memory for F-H bulk data array\n");
        func_exit_r(CSR_WIFI_HIP_RESULT_NO_MEMORY);
        return CSR_WIFI_HIP_RESULT_NO_MEMORY;
    }

    /* Initialise from-host bulk data slots */
    for (i = 0; i < n; i++)
    {
        UNIFI_INIT_BULK_DATA(&card->from_host_data[i].bd);
    }

    /* Allocate memory for the array used for slot host tag mapping */
    card->fh_slot_host_tag_record =
        (u32 *)CsrMemAlloc(n * sizeof(u32));

    if (card->fh_slot_host_tag_record == NULL)
    {
        unifi_error(card->ospriv, "Failed to allocate memory for F-H slot host tag mapping array\n");
        func_exit_r(CSR_WIFI_HIP_RESULT_NO_MEMORY);
        return CSR_WIFI_HIP_RESULT_NO_MEMORY;
    }

    /* Initialise host tag entries for from-host bulk data slots */
    for (i = 0; i < n; i++)
    {
        card->fh_slot_host_tag_record[i] = CSR_WIFI_HIP_RESERVED_HOST_TAG;
    }


    /* Allocate memory for the array of pointers */
    n = cfg_data->num_tohost_data_slots;

    unifi_trace(card->ospriv, UDBG3, "Alloc to-host resources, %d slots.\n", n);
    card->to_host_data =
        (bulk_data_desc_t *)CsrMemAlloc(n * sizeof(bulk_data_desc_t));
    if (card->to_host_data == NULL)
    {
        unifi_error(card->ospriv, "Failed to allocate memory for T-H bulk data array\n");
        func_exit_r(CSR_WIFI_HIP_RESULT_NO_MEMORY);
        return CSR_WIFI_HIP_RESULT_NO_MEMORY;
    }

    /* Initialise to-host bulk data slots */
    for (i = 0; i < n; i++)
    {
        UNIFI_INIT_BULK_DATA(&card->to_host_data[i]);
    }

    /*
     * Initialise buffers for soft Q
     */
    for (i = 0; i < UNIFI_SOFT_COMMAND_Q_LENGTH; i++)
    {
        for (r = 0; r < UNIFI_MAX_DATA_REFERENCES; r++)
        {
            UNIFI_INIT_BULK_DATA(&card->fh_command_q_body[i].bulkdata[r]);
        }
    }

    for (k = 0; k < UNIFI_NO_OF_TX_QS; k++)
    {
        for (i = 0; i < UNIFI_SOFT_TRAFFIC_Q_LENGTH; i++)
        {
            for (r = 0; r < UNIFI_MAX_DATA_REFERENCES; r++)
            {
                UNIFI_INIT_BULK_DATA(&card->fh_traffic_q_body[k][i].bulkdata[r]);
            }
        }
    }

    card->memory_resources_allocated = 1;

    func_exit();
    return CSR_RESULT_SUCCESS;
} /* card_allocate_memory_resources() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_free_bulk_data
 *
 *      Free the data associated to a bulk data structure.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      bulk_data_slot  Pointer to bulk data structure
 *
 *  Returns:
 *      None.
 *
 * ---------------------------------------------------------------------------
 */
static void unifi_free_bulk_data(card_t *card, bulk_data_desc_t *bulk_data_slot)
{
    if (bulk_data_slot->data_length != 0)
    {
        unifi_net_data_free(card->ospriv, bulk_data_slot);
    }
} /* unifi_free_bulk_data() */


/*
 * ---------------------------------------------------------------------------
 *  card_free_memory_resources
 *
 *      Frees memory allocated for the from-host, to-host bulk data slots,
 *      soft queue buffers and bulk data buffers.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      None.
 * ---------------------------------------------------------------------------
 */
static void card_free_memory_resources(card_t *card)
{
    func_enter();

    unifi_trace(card->ospriv, UDBG1, "Freeing card memory resources.\n");

    /* Clear our internal queues */
    unifi_cancel_pending_signals(card);


    if (card->to_host_data)
    {
        CsrMemFree(card->to_host_data);
        card->to_host_data = NULL;
    }

    if (card->from_host_data)
    {
        CsrMemFree(card->from_host_data);
        card->from_host_data = NULL;
    }

    /* free the memory for slot host tag mapping array */
    if (card->fh_slot_host_tag_record)
    {
        CsrMemFree(card->fh_slot_host_tag_record);
        card->fh_slot_host_tag_record = NULL;
    }

    if (card->fh_buffer.buf)
    {
        CsrMemFreeDma(card->fh_buffer.buf);
    }
    card->fh_buffer.ptr = card->fh_buffer.buf = NULL;
    card->fh_buffer.bufsize = 0;
    card->fh_buffer.count = 0;

    if (card->th_buffer.buf)
    {
        CsrMemFreeDma(card->th_buffer.buf);
    }
    card->th_buffer.ptr = card->th_buffer.buf = NULL;
    card->th_buffer.bufsize = 0;
    card->th_buffer.count = 0;


    card->memory_resources_allocated = 0;

    func_exit();
} /* card_free_memory_resources() */


static void card_init_soft_queues(card_t *card)
{
    s16 i;

    func_enter();

    unifi_trace(card->ospriv, UDBG1, "Initialising internal signal queues.\n");
    /* Reset any state carried forward from a previous life */
    card->fh_command_queue.q_rd_ptr = 0;
    card->fh_command_queue.q_wr_ptr = 0;
    (void)CsrSnprintf(card->fh_command_queue.name, UNIFI_QUEUE_NAME_MAX_LENGTH,
                      "fh_cmd_q");
    for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
    {
        card->fh_traffic_queue[i].q_rd_ptr = 0;
        card->fh_traffic_queue[i].q_wr_ptr = 0;
        (void)CsrSnprintf(card->fh_traffic_queue[i].name,
                          UNIFI_QUEUE_NAME_MAX_LENGTH, "fh_data_q%d", i);
    }
#ifndef CSR_WIFI_HIP_TA_DISABLE
    unifi_ta_sampling_init(card);
#endif
    func_exit();
}


/*
 * ---------------------------------------------------------------------------
 *  unifi_cancel_pending_signals
 *
 *      Free the signals and associated bulk data, pending in the core.
 *
 *  Arguments:
 *      card        Pointer to card struct
 *
 *  Returns:
 *      None.
 * ---------------------------------------------------------------------------
 */
void unifi_cancel_pending_signals(card_t *card)
{
    s16 i, n, r;
    func_enter();

    unifi_trace(card->ospriv, UDBG1, "Canceling pending signals.\n");

    if (card->to_host_data)
    {
        /*
         * Free any bulk data buffers allocated for the t-h slots
         * This will clear all buffers that did not make it to
         * unifi_receive_event() before cancel was request.
         */
        n = card->config_data.num_tohost_data_slots;
        unifi_trace(card->ospriv, UDBG3, "Freeing to-host resources, %d slots.\n", n);
        for (i = 0; i < n; i++)
        {
            unifi_free_bulk_data(card, &card->to_host_data[i]);
        }
    }

    /*
     * If any of the from-host bulk data has reached the card->from_host_data
     * but not UniFi, we need to free the buffers here.
     */
    if (card->from_host_data)
    {
        /* Free any bulk data buffers allocated for the f-h slots */
        n = card->config_data.num_fromhost_data_slots;
        unifi_trace(card->ospriv, UDBG3, "Freeing from-host resources, %d slots.\n", n);
        for (i = 0; i < n; i++)
        {
            unifi_free_bulk_data(card, &card->from_host_data[i].bd);
        }

        for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
        {
            card->dynamic_slot_data.from_host_used_slots[i] = 0;
            card->dynamic_slot_data.from_host_max_slots[i] = 0;
            card->dynamic_slot_data.from_host_reserved_slots[i] = 0;
        }
    }

    /*
     * Free any bulk data buffers allocated in the soft queues.
     * This covers the case where a bulk data pointer has reached the soft queue
     * but not the card->from_host_data.
     */
    unifi_trace(card->ospriv, UDBG3, "Freeing cmd q resources.\n");
    for (i = 0; i < UNIFI_SOFT_COMMAND_Q_LENGTH; i++)
    {
        for (r = 0; r < UNIFI_MAX_DATA_REFERENCES; r++)
        {
            unifi_free_bulk_data(card, &card->fh_command_q_body[i].bulkdata[r]);
        }
    }

    unifi_trace(card->ospriv, UDBG3, "Freeing traffic q resources.\n");
    for (n = 0; n < UNIFI_NO_OF_TX_QS; n++)
    {
        for (i = 0; i < UNIFI_SOFT_TRAFFIC_Q_LENGTH; i++)
        {
            for (r = 0; r < UNIFI_MAX_DATA_REFERENCES; r++)
            {
                unifi_free_bulk_data(card, &card->fh_traffic_q_body[n][i].bulkdata[r]);
            }
        }
    }

    card_init_soft_queues(card);

    func_exit();
} /* unifi_cancel_pending_signals() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_free_card
 *
 *      Free the memory allocated for the card structure and buffers.
 *
 *  Notes:
 *      The porting layer is responsible for freeing any mini-coredump buffers
 *      allocated when it called unifi_coredump_init(), by calling
 *      unifi_coredump_free() before calling this function.
 *
 *  Arguments:
 *      card        Pointer to card struct
 *
 *  Returns:
 *      None.
 * ---------------------------------------------------------------------------
 */
void unifi_free_card(card_t *card)
{
    func_enter();
#ifdef CSR_PRE_ALLOC_NET_DATA
    prealloc_netdata_free(card);
#endif
    /* Free any memory allocated. */
    card_free_memory_resources(card);

    /* Warn if caller didn't free coredump buffers */
    if (card->dump_buf)
    {
        unifi_error(card->ospriv, "Caller should call unifi_coredump_free()\n");
        unifi_coredump_free(card); /* free anyway to prevent memory leak */
    }

    CsrMemFree(card);

    func_exit();
} /* unifi_free_card() */


/*
 * ---------------------------------------------------------------------------
 *  card_init_slots
 *
 *      Allocate memory for host-side slot data and signal queues.
 *
 * Arguments:
 *      card            Pointer to card object
 *
 * Returns:
 *      CSR error code.
 * ---------------------------------------------------------------------------
 */
static CsrResult card_init_slots(card_t *card)
{
    CsrResult r;
    u8 i;

    func_enter();

    /* Allocate the buffers we need, only once. */
    if (card->memory_resources_allocated == 1)
    {
        card_free_memory_resources(card);
    }
    else
    {
        /* Initialise our internal command and traffic queues */
        card_init_soft_queues(card);
    }

    r = card_allocate_memory_resources(card);
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to allocate card memory resources.\n");
        card_free_memory_resources(card);
        func_exit_r(r);
        return r;
    }

    if (card->sdio_ctrl_addr == 0)
    {
        unifi_error(card->ospriv, "Failed to find config struct!\n");
        func_exit_r(CSR_WIFI_HIP_RESULT_INVALID_VALUE);
        return CSR_WIFI_HIP_RESULT_INVALID_VALUE;
    }

    /*
     * Set initial counts.
     */

    card->from_host_data_head = 0;

    /* Get initial signal counts from UniFi, in case it has not been reset. */
    {
        u16 s;

        /* Get the from-host-signals-written count */
        r = unifi_card_read16(card, card->sdio_ctrl_addr + 0, &s);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "Failed to read from-host sig written count\n");
            func_exit_r(r);
            return r;
        }
        card->from_host_signals_w = (s16)s;

        /* Get the to-host-signals-written count */
        r = unifi_card_read16(card, card->sdio_ctrl_addr + 6, &s);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "Failed to read to-host sig read count\n");
            func_exit_r(r);
            return r;
        }
        card->to_host_signals_r = (s16)s;
    }

    /* Set Initialised flag. */
    r = unifi_card_write16(card, card->init_flag_addr, 0x0001);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to write initialised flag\n");
        func_exit_r(r);
        return r;
    }

    /* Dynamic queue reservation */
    memset(&card->dynamic_slot_data, 0, sizeof(card_dynamic_slot_t));

    for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
    {
        card->dynamic_slot_data.from_host_max_slots[i] = card->config_data.num_fromhost_data_slots -
                                                         UNIFI_RESERVED_COMMAND_SLOTS;
        card->dynamic_slot_data.queue_stable[i] = FALSE;
    }

    card->dynamic_slot_data.packets_interval = UNIFI_PACKETS_INTERVAL;

    func_exit();
    return CSR_RESULT_SUCCESS;
} /* card_init_slots() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_set_udi_hook
 *
 *      Registers the udi hook that reports the sent signals to the core.
 *
 *  Arguments:
 *      card            Pointer to the card context struct
 *      udi_fn          Pointer to the callback function.
 *
 *  Returns:
 *      CSR_WIFI_HIP_RESULT_INVALID_VALUE if the card pointer is invalid,
 *      CSR_RESULT_SUCCESS on success.
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_set_udi_hook(card_t *card, udi_func_t udi_fn)
{
    if (card == NULL)
    {
        return CSR_WIFI_HIP_RESULT_INVALID_VALUE;
    }

    if (card->udi_hook == NULL)
    {
        card->udi_hook = udi_fn;
    }

    return CSR_RESULT_SUCCESS;
} /* unifi_set_udi_hook() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_remove_udi_hook
 *
 *      Removes the udi hook that reports the sent signals from the core.
 *
 *  Arguments:
 *      card            Pointer to the card context struct
 *      udi_fn          Pointer to the callback function.
 *
 *  Returns:
 *      CSR_WIFI_HIP_RESULT_INVALID_VALUE if the card pointer is invalid,
 *      CSR_RESULT_SUCCESS on success.
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_remove_udi_hook(card_t *card, udi_func_t udi_fn)
{
    if (card == NULL)
    {
        return CSR_WIFI_HIP_RESULT_INVALID_VALUE;
    }

    if (card->udi_hook == udi_fn)
    {
        card->udi_hook = NULL;
    }

    return CSR_RESULT_SUCCESS;
} /* unifi_remove_udi_hook() */


static void CardReassignDynamicReservation(card_t *card)
{
    u8 i;

    func_enter();

    unifi_trace(card->ospriv, UDBG5, "Packets Txed %d %d %d %d\n",
                card->dynamic_slot_data.packets_txed[0],
                card->dynamic_slot_data.packets_txed[1],
                card->dynamic_slot_data.packets_txed[2],
                card->dynamic_slot_data.packets_txed[3]);

    /* Clear reservation and recalculate max slots */
    for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
    {
        card->dynamic_slot_data.queue_stable[i] = FALSE;
        card->dynamic_slot_data.from_host_reserved_slots[i] = 0;
        card->dynamic_slot_data.from_host_max_slots[i] = card->config_data.num_fromhost_data_slots -
                                                         UNIFI_RESERVED_COMMAND_SLOTS;
        card->dynamic_slot_data.packets_txed[i] = 0;

        unifi_trace(card->ospriv, UDBG5, "CardReassignDynamicReservation: queue %d reserved %d Max %d\n", i,
                    card->dynamic_slot_data.from_host_reserved_slots[i],
                    card->dynamic_slot_data.from_host_max_slots[i]);
    }

    card->dynamic_slot_data.total_packets_txed = 0;
    func_exit();
}


/* Algorithm to dynamically reserve slots. The logic is based mainly on the outstanding queue
 * length. Slots are reserved for particular queues during an interval and cleared after the interval.
 * Each queue has three associated variables.. a) used slots - the number of slots currently occupied
 * by the queue b) reserved slots - number of slots reserved specifically for the queue c) max slots - total
 * slots that this queue can actually use (may be higher than reserved slots and is dependent on reserved slots
 * for other queues).
 * This function is called when there are no slots available for a queue. It checks to see if there are enough
 * unreserved slots sufficient for this request. If available these slots are reserved for the queue.
 * If there are not enough unreserved slots, a fair share for each queue is calculated based on the total slots
 * and the number of active queues (any queue with existing reservation is considered active). Queues needing
 * less than their fair share are allowed to have the previously reserved slots. The remaining slots are
 * distributed evenly among queues that need more than the fair share
 *
 * A better scheme would take current bandwidth per AC into consideration when reserving slots. An
 * implementation scheme could consider the relative time/service period for slots in an AC. If the firmware
 * services other ACs faster than a particular AC (packets wait in the slots longer) then it is fair to reserve
 * less slots for the AC
 */
static void CardCheckDynamicReservation(card_t *card, unifi_TrafficQueue queue)
{
    u16 q_len, active_queues = 0, excess_queue_slots, div_extra_slots,
              queue_fair_share, reserved_slots = 0, q, excess_need_queues = 0, unmovable_slots = 0;
    s32 i;
    q_t *sigq;
    u16 num_data_slots = card->config_data.num_fromhost_data_slots - UNIFI_RESERVED_COMMAND_SLOTS;

    func_enter();

    /* Calculate the pending queue length */
    sigq = &card->fh_traffic_queue[queue];
    q_len = CSR_WIFI_HIP_Q_SLOTS_USED(sigq);

    if (q_len <= card->dynamic_slot_data.from_host_reserved_slots[queue])
    {
        unifi_trace(card->ospriv, UDBG5, "queue %d q_len %d already has that many reserved slots, exiting\n", queue, q_len);
        func_exit();
        return;
    }

    /* Upper limit */
    if (q_len > num_data_slots)
    {
        q_len = num_data_slots;
    }

    for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
    {
        if (i != (s32)queue)
        {
            reserved_slots += card->dynamic_slot_data.from_host_reserved_slots[i];
        }
        if ((i == (s32)queue) || (card->dynamic_slot_data.from_host_reserved_slots[i] > 0))
        {
            active_queues++;
        }
    }

    unifi_trace(card->ospriv, UDBG5, "CardCheckDynamicReservation: queue %d q_len %d\n", queue, q_len);
    unifi_trace(card->ospriv, UDBG5, "Active queues %d reserved slots on other queues %d\n",
                active_queues, reserved_slots);

    if (reserved_slots + q_len <= num_data_slots)
    {
        card->dynamic_slot_data.from_host_reserved_slots[queue] = q_len;
        if (q_len == num_data_slots)
        {
            /* This is the common case when just 1 stream is going */
            card->dynamic_slot_data.queue_stable[queue] = TRUE;
        }
    }
    else
    {
        queue_fair_share = num_data_slots / active_queues;
        unifi_trace(card->ospriv, UDBG5, "queue fair share %d\n", queue_fair_share);

        /* Evenly distribute slots among active queues */
        /* Find out the queues that need excess of fair share. Also find slots allocated
         * to queues less than their fair share, these slots cannot be reallocated (unmovable slots) */

        card->dynamic_slot_data.from_host_reserved_slots[queue] = q_len;

        for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
        {
            if (card->dynamic_slot_data.from_host_reserved_slots[i] > queue_fair_share)
            {
                excess_need_queues++;
            }
            else
            {
                unmovable_slots += card->dynamic_slot_data.from_host_reserved_slots[i];
            }
        }

        unifi_trace(card->ospriv, UDBG5, "Excess need queues %d\n", excess_need_queues);

        /* Now find the slots per excess demand queue */
        excess_queue_slots = (num_data_slots - unmovable_slots) / excess_need_queues;
        div_extra_slots = (num_data_slots - unmovable_slots) - excess_queue_slots * excess_need_queues;
        for (i = UNIFI_NO_OF_TX_QS - 1; i >= 0; i--)
        {
            if (card->dynamic_slot_data.from_host_reserved_slots[i] > excess_queue_slots)
            {
                card->dynamic_slot_data.from_host_reserved_slots[i] = excess_queue_slots;
                if (div_extra_slots > 0)
                {
                    card->dynamic_slot_data.from_host_reserved_slots[i]++;
                    div_extra_slots--;
                }
                /* No more slots will be allocated to this queue during the current interval */
                card->dynamic_slot_data.queue_stable[i] = TRUE;
                unifi_trace(card->ospriv, UDBG5, "queue stable %d\n", i);
            }
        }
    }

    /* Redistribute max slots */
    for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
    {
        reserved_slots = 0;
        for (q = 0; q < UNIFI_NO_OF_TX_QS; q++)
        {
            if (i != q)
            {
                reserved_slots += card->dynamic_slot_data.from_host_reserved_slots[q];
            }
        }

        card->dynamic_slot_data.from_host_max_slots[i] = num_data_slots - reserved_slots;
        unifi_trace(card->ospriv, UDBG5, "queue %d reserved %d Max %d\n", i,
                    card->dynamic_slot_data.from_host_reserved_slots[i],
                    card->dynamic_slot_data.from_host_max_slots[i]);
    }

    func_exit();
}


/*
 * ---------------------------------------------------------------------------
 *  CardClearFromHostDataSlot
 *
 *      Clear a the given data slot, making it available again.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *      slot            Index of the signal slot to clear.
 *
 *  Returns:
 *      None.
 * ---------------------------------------------------------------------------
 */
void CardClearFromHostDataSlot(card_t *card, const s16 slot)
{
    u8 queue = card->from_host_data[slot].queue;
    const void *os_data_ptr = card->from_host_data[slot].bd.os_data_ptr;

    func_enter();

    if (card->from_host_data[slot].bd.data_length == 0)
    {
        unifi_warning(card->ospriv,
                      "Surprise: request to clear an already free FH data slot: %d\n",
                      slot);
        func_exit();
        return;
    }

    if (os_data_ptr == NULL)
    {
        unifi_warning(card->ospriv,
                      "Clearing FH data slot %d: has null payload, len=%d\n",
                      slot, card->from_host_data[slot].bd.data_length);
    }

    /* Free card->from_host_data[slot].bd.os_net_ptr here. */
    /* Mark slot as free by setting length to 0. */
    unifi_free_bulk_data(card, &card->from_host_data[slot].bd);
    if (queue < UNIFI_NO_OF_TX_QS)
    {
        if (card->dynamic_slot_data.from_host_used_slots[queue] == 0)
        {
            unifi_error(card->ospriv, "Goofed up used slots q = %d used slots = %d\n",
                        queue,
                        card->dynamic_slot_data.from_host_used_slots[queue]);
        }
        else
        {
            card->dynamic_slot_data.from_host_used_slots[queue]--;
        }
        card->dynamic_slot_data.packets_txed[queue]++;
        card->dynamic_slot_data.total_packets_txed++;
        if (card->dynamic_slot_data.total_packets_txed >= card->dynamic_slot_data.packets_interval)
        {
            CardReassignDynamicReservation(card);
        }
    }

    unifi_trace(card->ospriv, UDBG4, "CardClearFromHostDataSlot: slot %d recycled %p\n", slot, os_data_ptr);

    func_exit();
} /* CardClearFromHostDataSlot() */


#ifdef CSR_WIFI_REQUEUE_PACKET_TO_HAL
/*
 * ---------------------------------------------------------------------------
 *  CardClearFromHostDataSlotWithoutFreeingBulkData
 *
 *      Clear the given data slot with out freeing the bulk data.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *      slot            Index of the signal slot to clear.
 *
 *  Returns:
 *      None.
 * ---------------------------------------------------------------------------
 */
void CardClearFromHostDataSlotWithoutFreeingBulkData(card_t *card, const s16 slot)
{
    u8 queue = card->from_host_data[slot].queue;

    /* Initialise the from_host data slot so it can be re-used,
     * Set length field in from_host_data array to 0.
     */
    UNIFI_INIT_BULK_DATA(&card->from_host_data[slot].bd);

    queue = card->from_host_data[slot].queue;

    if (queue < UNIFI_NO_OF_TX_QS)
    {
        if (card->dynamic_slot_data.from_host_used_slots[queue] == 0)
        {
            unifi_error(card->ospriv, "Goofed up used slots q = %d used slots = %d\n",
                        queue,
                        card->dynamic_slot_data.from_host_used_slots[queue]);
        }
        else
        {
            card->dynamic_slot_data.from_host_used_slots[queue]--;
        }
        card->dynamic_slot_data.packets_txed[queue]++;
        card->dynamic_slot_data.total_packets_txed++;
        if (card->dynamic_slot_data.total_packets_txed >=
            card->dynamic_slot_data.packets_interval)
        {
            CardReassignDynamicReservation(card);
        }
    }
} /* CardClearFromHostDataSlotWithoutFreeingBulkData() */


#endif

u16 CardGetDataSlotSize(card_t *card)
{
    return card->config_data.data_slot_size;
} /* CardGetDataSlotSize() */


/*
 * ---------------------------------------------------------------------------
 *  CardGetFreeFromHostDataSlots
 *
 *      Retrieve the number of from-host bulk data slots available.
 *
 *  Arguments:
 *      card            Pointer to the card context struct
 *
 *  Returns:
 *      Number of free from-host bulk data slots.
 * ---------------------------------------------------------------------------
 */
u16 CardGetFreeFromHostDataSlots(card_t *card)
{
    u16 i, n = 0;

    func_enter();

    /* First two slots reserved for MLME */
    for (i = 0; i < card->config_data.num_fromhost_data_slots; i++)
    {
        if (card->from_host_data[i].bd.data_length == 0)
        {
            /* Free slot */
            n++;
        }
    }

    func_exit();
    return n;
} /* CardGetFreeFromHostDataSlots() */


/*
 * ---------------------------------------------------------------------------
 *  CardAreAllFromHostDataSlotsEmpty
 *
 *      Returns the state of from-host bulk data slots.
 *
 *  Arguments:
 *      card            Pointer to the card context struct
 *
 *  Returns:
 *      1       The from-host bulk data slots are all empty (available).
 *      0       Some or all the from-host bulk data slots are in use.
 * ---------------------------------------------------------------------------
 */
u16 CardAreAllFromHostDataSlotsEmpty(card_t *card)
{
    u16 i;

    for (i = 0; i < card->config_data.num_fromhost_data_slots; i++)
    {
        if (card->from_host_data[i].bd.data_length != 0)
        {
            return 0;
        }
    }

    return 1;
} /* CardGetFreeFromHostDataSlots() */


static CsrResult unifi_identify_hw(card_t *card)
{
    func_enter();

    card->chip_id = card->sdio_if->sdioId.cardId;
    card->function = card->sdio_if->sdioId.sdioFunction;
    card->sdio_io_block_size = card->sdio_if->blockSize;

    /* If SDIO controller doesn't support byte mode CMD53, pad transfers to block sizes */
    card->sdio_io_block_pad = (card->sdio_if->features & CSR_SDIO_FEATURE_BYTE_MODE)?FALSE : TRUE;

    /*
     * Setup the chip helper so that we can access the registers (and
     * also tell what sub-type of HIP we should use).
     */
    card->helper = ChipHelper_GetVersionSdio((u8)card->chip_id);
    if (!card->helper)
    {
        unifi_error(card->ospriv, "Null ChipHelper\n");
    }

    unifi_info(card->ospriv, "Chip ID 0x%02X  Function %u  Block Size %u  Name %s(%s)\n",
               card->chip_id, card->function, card->sdio_io_block_size,
               ChipHelper_MarketingName(card->helper),
               ChipHelper_FriendlyName(card->helper));

    func_exit();
    return CSR_RESULT_SUCCESS;
} /* unifi_identify_hw() */


static CsrResult unifi_prepare_hw(card_t *card)
{
    CsrResult r;
    CsrResult csrResult;
    enum unifi_host_state old_state = card->host_state;

    func_enter();

    r = unifi_identify_hw(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to identify hw\n");
        func_exit_r(r);
        return r;
    }

    unifi_trace(card->ospriv, UDBG1,
                "%s mode SDIO\n", card->sdio_io_block_pad?"Block" : "Byte");
    /*
     * Chip must be a awake or blocks that are asleep may not get
     * reset.  We can only do this after we have read the chip_id.
     */
    r = unifi_set_host_state(card, UNIFI_HOST_STATE_AWAKE);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }

    if (old_state == UNIFI_HOST_STATE_TORPID)
    {
        /* Ensure the initial clock rate is set; if a reset occured when the chip was
         * TORPID, unifi_set_host_state() may have raised it to MAX.
         */
        csrResult = CsrSdioMaxBusClockFrequencySet(card->sdio_if, UNIFI_SDIO_CLOCK_INIT_HZ);
        if (csrResult != CSR_RESULT_SUCCESS)
        {
            r = ConvertCsrSdioToCsrHipResult(card, csrResult);
            func_exit_r(r);
            return r;
        }
        card->sdio_clock_speed = UNIFI_SDIO_CLOCK_INIT_HZ;
    }

    /*
     * The WLAN function must be enabled to access MAILBOX2 and DEBUG_RST
     * registers.
     */
    csrResult = CsrSdioFunctionEnable(card->sdio_if);
    if (csrResult == CSR_SDIO_RESULT_NO_DEVICE)
    {
        return CSR_WIFI_HIP_RESULT_NO_DEVICE;
    }
    if (csrResult != CSR_RESULT_SUCCESS)
    {
        r = ConvertCsrSdioToCsrHipResult(card, csrResult);
        /* Can't enable WLAN function. Try resetting the SDIO block. */
        unifi_error(card->ospriv, "Failed to re-enable function %d.\n", card->function);
        func_exit_r(r);
        return r;
    }

    /*
     * Poke some registers to make sure the PLL has started,
     * otherwise memory accesses are likely to fail.
     */
    bootstrap_chip_hw(card);

    /* Try to read the chip version from register. */
    r = unifi_read_chip_version(card);
    if (r != CSR_RESULT_SUCCESS)
    {
        func_exit_r(r);
        return r;
    }

    func_exit();
    return CSR_RESULT_SUCCESS;
} /* unifi_prepare_hw() */


static CsrResult unifi_read_chip_version(card_t *card)
{
    u32 gbl_chip_version;
    CsrResult r;
    u16 ver;

    func_enter();

    gbl_chip_version = ChipHelper_GBL_CHIP_VERSION(card->helper);

    /* Try to read the chip version from register. */
    if (gbl_chip_version != 0)
    {
        r = unifi_read_direct16(card, gbl_chip_version * 2, &ver);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "Failed to read GBL_CHIP_VERSION\n");
            func_exit_r(r);
            return r;
        }
        card->chip_version = ver;
    }
    else
    {
        unifi_info(card->ospriv, "Unknown Chip ID, cannot locate GBL_CHIP_VERSION\n");
        r = CSR_RESULT_FAILURE;
    }

    unifi_info(card->ospriv, "Chip Version 0x%04X\n", card->chip_version);

    func_exit_r(r);
    return r;
} /* unifi_read_chip_version() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_reset_hardware
 *
 *      Execute the UniFi reset sequence.
 *
 *      Note: This may fail if the chip is going TORPID so retry at
 *      least once.
 *
 *  Arguments:
 *      card - pointer to card context structure
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS on success, CSR error otherwise.
 *
 *  Notes:
 *      Some platforms (e.g. Windows Vista) do not allow access to registers
 *      that are necessary for a software soft reset.
 * ---------------------------------------------------------------------------
 */
static CsrResult unifi_reset_hardware(card_t *card)
{
    CsrResult r;
    u16 new_block_size = UNIFI_IO_BLOCK_SIZE;
    CsrResult csrResult;

    func_enter();

    /* Errors returned by unifi_prepare_hw() are not critical at this point */
    r = unifi_prepare_hw(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }

    /* First try SDIO controller reset, which may power cycle the UniFi, assert
     * its reset line, or not be implemented depending on the platform.
     */
    unifi_info(card->ospriv, "Calling CsrSdioHardReset\n");
    csrResult = CsrSdioHardReset(card->sdio_if);
    if (csrResult == CSR_RESULT_SUCCESS)
    {
        unifi_info(card->ospriv, "CsrSdioHardReset succeeded on reseting UniFi\n");
        r = unifi_prepare_hw(card);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "unifi_prepare_hw failed after hard reset\n");
            func_exit_r(r);
            return r;
        }
    }
    else if (csrResult == CSR_SDIO_RESULT_NO_DEVICE)
    {
        return CSR_WIFI_HIP_RESULT_NO_DEVICE;
    }
    else
    {
        /* Falling back to software hard reset methods */
        unifi_info(card->ospriv, "Falling back to software hard reset\n");
        r = unifi_card_hard_reset(card);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "software hard reset failed\n");
            func_exit_r(r);
            return r;
        }

        /* If we fell back to unifi_card_hard_reset() methods, chip version may
         * not have been read. (Note in the unlikely event that it is zero,
         * it will be harmlessly read again)
         */
        if (card->chip_version == 0)
        {
            r = unifi_read_chip_version(card);
            if (r != CSR_RESULT_SUCCESS)
            {
                func_exit_r(r);
                return r;
            }
        }
    }

#ifdef CSR_WIFI_HIP_SDIO_BLOCK_SIZE
    new_block_size = CSR_WIFI_HIP_SDIO_BLOCK_SIZE;
#endif

    /* After hard reset, we need to restore the SDIO block size */
    csrResult = CsrSdioBlockSizeSet(card->sdio_if, new_block_size);
    r = ConvertCsrSdioToCsrHipResult(card, csrResult);

    /* Warn if a different block size was achieved by the transport */
    if (card->sdio_if->blockSize != new_block_size)
    {
        unifi_info(card->ospriv,
                   "Actually got block size %d\n", card->sdio_if->blockSize);
    }

    /* sdio_io_block_size always needs be updated from the achieved block size,
     * as it is used by the OS layer to allocate memory in unifi_net_malloc().
     * Controllers which don't support block mode (e.g. CSPI) will report a
     * block size of zero.
     */
    if (card->sdio_if->blockSize == 0)
    {
        unifi_info(card->ospriv, "Block size 0, block mode not available\n");

        /* Set sdio_io_block_size to 1 so that unifi_net_data_malloc() has a
         * sensible rounding value. Elsewhere padding will already be
         * disabled because the controller supports byte mode.
         */
        card->sdio_io_block_size = 1;

        /* Controller features must declare support for byte mode */
        if (!(card->sdio_if->features & CSR_SDIO_FEATURE_BYTE_MODE))
        {
            unifi_error(card->ospriv, "Requires byte mode\n");
            r = CSR_WIFI_HIP_RESULT_INVALID_VALUE;
        }
    }
    else
    {
        /* Padding will be enabled if CSR_SDIO_FEATURE_BYTE_MODE isn't set */
        card->sdio_io_block_size = card->sdio_if->blockSize;
    }


    func_exit_r(r);
    return r;
} /* unifi_reset_hardware() */


/*
 * ---------------------------------------------------------------------------
 *  card_reset_method_io_enable
 *
 *      Issue a hard reset to the hw writing the IO_ENABLE.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *
 *  Returns:
 *      0 on success,
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE   if the card was ejected
 *      CSR_RESULT_FAILURE         if an SDIO error occurred or if a response
 *                                 was not seen in the expected time
 * ---------------------------------------------------------------------------
 */
static CsrResult card_reset_method_io_enable(card_t *card)
{
    CsrResult r;
    CsrResult csrResult;

    func_enter();

    /*
     * This resets only function 1, so should be used in
     * preference to the method below (CSR_FUNC_EN)
     */
    unifi_trace(card->ospriv, UDBG1, "Hard reset (IO_ENABLE)\n");

    csrResult = CsrSdioFunctionDisable(card->sdio_if);
    if (csrResult == CSR_SDIO_RESULT_NO_DEVICE)
    {
        return CSR_WIFI_HIP_RESULT_NO_DEVICE;
    }
    if (csrResult != CSR_RESULT_SUCCESS)
    {
        r = ConvertCsrSdioToCsrHipResult(card, csrResult);
        unifi_warning(card->ospriv, "SDIO error writing IO_ENABLE: %d\n", r);
    }
    else
    {
        /* Delay here to let the reset take affect. */
        CsrThreadSleep(RESET_SETTLE_DELAY);

        r = card_wait_for_unifi_to_disable(card);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }

        if (r == CSR_RESULT_SUCCESS)
        {
            r = card_wait_for_unifi_to_reset(card);
            if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
            {
                return r;
            }
        }
    }

    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_trace(card->ospriv, UDBG1, "Hard reset (CSR_FUNC_EN)\n");

        r = sdio_write_f0(card, SDIO_CSR_FUNC_EN, 0);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_warning(card->ospriv, "SDIO error writing SDIO_CSR_FUNC_EN: %d\n", r);
            func_exit_r(r);
            return r;
        }
        else
        {
            /* Delay here to let the reset take affect. */
            CsrThreadSleep(RESET_SETTLE_DELAY);

            r = card_wait_for_unifi_to_reset(card);
            if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
            {
                return r;
            }
        }
    }

    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_warning(card->ospriv, "card_reset_method_io_enable failed to reset UniFi\n");
    }

    func_exit();
    return r;
} /* card_reset_method_io_enable() */


/*
 * ---------------------------------------------------------------------------
 *  card_reset_method_dbg_reset
 *
 *      Issue a hard reset to the hw writing the DBG_RESET.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS         on success,
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE   if the card was ejected
 *      CSR_RESULT_FAILURE         if an SDIO error occurred or if a response
 *                                 was not seen in the expected time
 * ---------------------------------------------------------------------------
 */
static CsrResult card_reset_method_dbg_reset(card_t *card)
{
    CsrResult r;

    func_enter();

    /*
     * Prepare UniFi for h/w reset
     */
    if (card->host_state == UNIFI_HOST_STATE_TORPID)
    {
        r = unifi_set_host_state(card, UNIFI_HOST_STATE_DROWSY);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "Failed to set UNIFI_HOST_STATE_DROWSY\n");
            func_exit_r(r);
            return r;
        }
        CsrThreadSleep(5);
    }

    r = unifi_card_stop_processor(card, UNIFI_PROC_BOTH);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Can't stop processors\n");
        func_exit();
        return r;
    }

    unifi_trace(card->ospriv, UDBG1, "Hard reset (DBG_RESET)\n");

    /*
     * This register write may fail. The debug reset resets
     * parts of the Function 0 sections of the chip, and
     * therefore the response cannot be sent back to the host.
     */
    r = unifi_write_direct_8_or_16(card, ChipHelper_DBG_RESET(card->helper) * 2, 1);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_warning(card->ospriv, "SDIO error writing DBG_RESET: %d\n", r);
        func_exit_r(r);
        return r;
    }

    /* Delay here to let the reset take affect. */
    CsrThreadSleep(RESET_SETTLE_DELAY);

    r = card_wait_for_unifi_to_reset(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_warning(card->ospriv, "card_reset_method_dbg_reset failed to reset UniFi\n");
    }

    func_exit();
    return r;
} /* card_reset_method_dbg_reset() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_card_hard_reset
 *
 *      Issue reset to hardware, by writing to registers on the card.
 *      Power to the card is preserved.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS         on success,
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE   if the card was ejected
 *      CSR_RESULT_FAILURE         if an SDIO error occurred or if a response
 *                                 was not seen in the expected time
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_card_hard_reset(card_t *card)
{
    CsrResult r;
    const struct chip_helper_reset_values *init_data;
    u32 chunks;

    func_enter();

    /* Clear cache of page registers */
    card->proc_select = (u32)(-1);
    card->dmem_page = (u32)(-1);
    card->pmem_page = (u32)(-1);

    /*
     * We need to have a valid card->helper before we use software hard reset.
     * If unifi_identify_hw() fails to get the card ID, it probably means
     * that there is no way to talk to the h/w.
     */
    r = unifi_identify_hw(card);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "unifi_card_hard_reset failed to identify h/w\n");
        func_exit();
        return r;
    }

    /* Search for some reset code. */
    chunks = ChipHelper_HostResetSequence(card->helper, &init_data);
    if (chunks != 0)
    {
        unifi_error(card->ospriv,
                    "Hard reset (Code download) is unsupported\n");

        func_exit_r(CSR_RESULT_FAILURE);
        return CSR_RESULT_FAILURE;
    }

    if (card->chip_id > SDIO_CARD_ID_UNIFI_2)
    {
        /* The HIP spec considers this a bus-specific reset.
         * This resets only function 1, so should be used in
         * preference to the method below (CSR_FUNC_EN)
         * If this method fails, it means that the f/w is probably
         * not running. In this case, try the DBG_RESET method.
         */
        r = card_reset_method_io_enable(card);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r == CSR_RESULT_SUCCESS)
        {
            func_exit();
            return r;
        }
    }

    /* Software hard reset */
    r = card_reset_method_dbg_reset(card);

    func_exit_r(r);
    return r;
} /* unifi_card_hard_reset() */


/*
 * ---------------------------------------------------------------------------
 *
 *  CardGenInt
 *
 *      Prod the card.
 *      This function causes an internal interrupt to be raised in the
 *      UniFi chip. It is used to signal the firmware that some action has
 *      been completed.
 *      The UniFi Host Interface asks that the value used increments for
 *      debugging purposes.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS         on success,
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE   if the card was ejected
 *      CSR_RESULT_FAILURE         if an SDIO error occurred or if a response
 *                                 was not seen in the expected time
 * ---------------------------------------------------------------------------
 */
CsrResult CardGenInt(card_t *card)
{
    CsrResult r;

    func_enter();

    if (card->chip_id > SDIO_CARD_ID_UNIFI_2)
    {
        r = sdio_write_f0(card, SDIO_CSR_FROM_HOST_SCRATCH0,
                          (u8)card->unifi_interrupt_seq);
    }
    else
    {
        r = unifi_write_direct_8_or_16(card,
                                       ChipHelper_SHARED_IO_INTERRUPT(card->helper) * 2,
                                       (u8)card->unifi_interrupt_seq);
    }
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "SDIO error writing UNIFI_SHARED_IO_INTERRUPT: %d\n", r);
        func_exit_r(r);
        return r;
    }

    card->unifi_interrupt_seq++;

    func_exit();
    return CSR_RESULT_SUCCESS;
} /* CardGenInt() */


/*
 * ---------------------------------------------------------------------------
 *  CardEnableInt
 *
 *      Enable the outgoing SDIO interrupt from UniFi to the host.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS            on success,
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE      if the card was ejected
 *      CSR_RESULT_FAILURE            if an SDIO error occurred,
 * ---------------------------------------------------------------------------
 */
CsrResult CardEnableInt(card_t *card)
{
    CsrResult r;
    u8 int_enable;

    r = sdio_read_f0(card, SDIO_INT_ENABLE, &int_enable);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "SDIO error reading SDIO_INT_ENABLE\n");
        return r;
    }

    int_enable |= (1 << card->function) | UNIFI_SD_INT_ENABLE_IENM;

    r = sdio_write_f0(card, SDIO_INT_ENABLE, int_enable);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "SDIO error writing SDIO_INT_ENABLE\n");
        return r;
    }

    return CSR_RESULT_SUCCESS;
} /* CardEnableInt() */


/*
 * ---------------------------------------------------------------------------
 *  CardDisableInt
 *
 *      Disable the outgoing SDIO interrupt from UniFi to the host.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS            on success,
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE      if the card was ejected
 *      CSR_RESULT_FAILURE            if an SDIO error occurred,
 * ---------------------------------------------------------------------------
 */
CsrResult CardDisableInt(card_t *card)
{
    CsrResult r;
    u8 int_enable;

    r = sdio_read_f0(card, SDIO_INT_ENABLE, &int_enable);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "SDIO error reading SDIO_INT_ENABLE\n");
        return r;
    }

    int_enable &= ~(1 << card->function);

    r = sdio_write_f0(card, SDIO_INT_ENABLE, int_enable);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "SDIO error writing SDIO_INT_ENABLE\n");
        return r;
    }

    return CSR_RESULT_SUCCESS;
} /* CardDisableInt() */


/*
 * ---------------------------------------------------------------------------
 *  CardPendingInt
 *
 *      Determine whether UniFi is currently asserting the SDIO interrupt
 *      request.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *      pintr           Pointer to location to write interrupt status,
 *                          TRUE if interrupt pending,
 *                          FALSE if no interrupt pending.
 *  Returns:
 *      CSR_RESULT_SUCCESS            interrupt status read successfully
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE      if the card was ejected
 *      CSR_RESULT_FAILURE            if an SDIO error occurred,
 * ---------------------------------------------------------------------------
 */
CsrResult CardPendingInt(card_t *card, u8 *pintr)
{
    CsrResult r;
    u8 pending;

    *pintr = FALSE;

    r = sdio_read_f0(card, SDIO_INT_PENDING, &pending);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "SDIO error reading SDIO_INT_PENDING\n");
        return r;
    }

    *pintr = (pending & (1 << card->function))?TRUE : FALSE;

    return CSR_RESULT_SUCCESS;
} /* CardPendingInt() */


/*
 * ---------------------------------------------------------------------------
 *  CardClearInt
 *
 *      Clear the UniFi SDIO interrupt request.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS          if pending interrupt was cleared, or no pending interrupt.
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE    if the card was ejected
 *      CSR_RESULT_FAILURE          if an SDIO error occurred,
 * ---------------------------------------------------------------------------
 */
CsrResult CardClearInt(card_t *card)
{
    CsrResult r;
    u8 intr;

    if (card->chip_id > SDIO_CARD_ID_UNIFI_2)
    {
        /* CardPendingInt() sets intr, if there is a pending interrupt */
        r = CardPendingInt(card, &intr);
        if (intr == FALSE)
        {
            return r;
        }

        r = sdio_write_f0(card, SDIO_CSR_HOST_INT_CLEAR, 1);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "SDIO error writing SDIO_CSR_HOST_INT_CLEAR\n");
        }
    }
    else
    {
        r = unifi_write_direct_8_or_16(card,
                                       ChipHelper_SDIO_HOST_INT(card->helper) * 2,
                                       0);
        if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
        {
            return r;
        }
        if (r != CSR_RESULT_SUCCESS)
        {
            unifi_error(card->ospriv, "SDIO error writing UNIFI_SDIO_HOST_INT\n");
        }
    }

    return r;
} /* CardClearInt() */


/*
 * ---------------------------------------------------------------------------
 *  CardIntEnabled
 *
 *      Determine whether UniFi is currently asserting the SDIO interrupt
 *      request.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *      enabled         Pointer to location to write interrupt enable status,
 *                          TRUE if interrupts enabled,
 *                          FALSE if interupts disabled.
 *
 *  Returns:
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE      if the card was ejected
 *      CSR_RESULT_FAILURE            if an SDIO error occurred,
 * ---------------------------------------------------------------------------
 */
CsrResult CardIntEnabled(card_t *card, u8 *enabled)
{
    CsrResult r;
    u8 int_enable;

    r = sdio_read_f0(card, SDIO_INT_ENABLE, &int_enable);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "SDIO error reading SDIO_INT_ENABLE\n");
        return r;
    }

    *enabled = (int_enable & (1 << card->function))?TRUE : FALSE;

    return CSR_RESULT_SUCCESS;
} /* CardIntEnabled() */


/*
 * ---------------------------------------------------------------------------
 *  CardWriteBulkData
 *      Allocate slot in the pending bulkdata arrays and assign it to a signal's
 *      bulkdata reference. The slot is then ready for UniFi's bulkdata commands
 *      to transfer the data to/from the host.
 *
 *  Arguments:
 *      card            Pointer to Card object
 *      csptr           Pending signal pointer, including bulkdata ref
 *      queue           Traffic queue that this signal is using
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS if a free slot was assigned
 *      CSR_RESULT_FAILURE if no slot was available
 * ---------------------------------------------------------------------------
 */
CsrResult CardWriteBulkData(card_t *card, card_signal_t *csptr, unifi_TrafficQueue queue)
{
    u16 i, slots[UNIFI_MAX_DATA_REFERENCES], j = 0;
    u8 *packed_sigptr, num_slots_required = 0;
    bulk_data_desc_t *bulkdata = csptr->bulkdata;
    s16 h, nslots;

    func_enter();

    /* Count the number of slots required */
    for (i = 0; i < UNIFI_MAX_DATA_REFERENCES; i++)
    {
        if (bulkdata[i].data_length != 0)
        {
            num_slots_required++;
        }
    }

    /* Get the slot numbers */
    if (num_slots_required != 0)
    {
        /* Last 2 slots for MLME */
        if (queue == UNIFI_TRAFFIC_Q_MLME)
        {
            h = card->config_data.num_fromhost_data_slots - UNIFI_RESERVED_COMMAND_SLOTS;
            for (i = 0; i < card->config_data.num_fromhost_data_slots; i++)
            {
                if (card->from_host_data[h].bd.data_length == 0)
                {
                    /* Free data slot, claim it */
                    slots[j++] = h;
                    if (j == num_slots_required)
                    {
                        break;
                    }
                }

                if (++h >= card->config_data.num_fromhost_data_slots)
                {
                    h = 0;
                }
            }
        }
        else
        {
            if (card->dynamic_slot_data.from_host_used_slots[queue]
                < card->dynamic_slot_data.from_host_max_slots[queue])
            {
                /* Data commands get a free slot only after a few checks */
                nslots = card->config_data.num_fromhost_data_slots - UNIFI_RESERVED_COMMAND_SLOTS;

                h = card->from_host_data_head;

                for (i = 0; i < nslots; i++)
                {
                    if (card->from_host_data[h].bd.data_length == 0)
                    {
                        /* Free data slot, claim it */
                        slots[j++] = h;
                        if (j == num_slots_required)
                        {
                            break;
                        }
                    }

                    if (++h >= nslots)
                    {
                        h = 0;
                    }
                }
                card->from_host_data_head = h;
            }
        }

        /* Required number of slots are not available, bail out */
        if (j != num_slots_required)
        {
            unifi_trace(card->ospriv, UDBG5, "CardWriteBulkData: didn't find free slot/s\n");

            /* If we haven't already reached the stable state we can ask for reservation */
            if ((queue != UNIFI_TRAFFIC_Q_MLME) && (card->dynamic_slot_data.queue_stable[queue] == FALSE))
            {
                CardCheckDynamicReservation(card, queue);
            }

            for (i = 0; i < card->config_data.num_fromhost_data_slots; i++)
            {
                unifi_trace(card->ospriv, UDBG5, "fh data slot %d: %d\n", i, card->from_host_data[i].bd.data_length);
            }
            func_exit();
            return CSR_RESULT_FAILURE;
        }
    }

    packed_sigptr = csptr->sigbuf;

    /* Fill in the slots with data */
    j = 0;
    for (i = 0; i < UNIFI_MAX_DATA_REFERENCES; i++)
    {
        if (bulkdata[i].data_length == 0)
        {
            /* Zero-out the DATAREF in the signal */
            SET_PACKED_DATAREF_SLOT(packed_sigptr, i, 0);
            SET_PACKED_DATAREF_LEN(packed_sigptr, i, 0);
        }
        else
        {
            /*
             * Fill in the slot number in the SIGNAL structure but
             * preserve the offset already in there
             */
            SET_PACKED_DATAREF_SLOT(packed_sigptr, i, slots[j] | (((u16)packed_sigptr[SIZEOF_SIGNAL_HEADER + (i * SIZEOF_DATAREF) + 1]) << 8));
            SET_PACKED_DATAREF_LEN(packed_sigptr, i, bulkdata[i].data_length);

            /* Do not copy the data, just store the information to them */
            card->from_host_data[slots[j]].bd.os_data_ptr = bulkdata[i].os_data_ptr;
            card->from_host_data[slots[j]].bd.os_net_buf_ptr = bulkdata[i].os_net_buf_ptr;
            card->from_host_data[slots[j]].bd.data_length = bulkdata[i].data_length;
            card->from_host_data[slots[j]].bd.net_buf_length = bulkdata[i].net_buf_length;
            card->from_host_data[slots[j]].queue = queue;

            unifi_trace(card->ospriv, UDBG4, "CardWriteBulkData sig=0x%x, fh slot %d = %p\n",
                        GET_SIGNAL_ID(packed_sigptr), i, bulkdata[i].os_data_ptr);

            /* Sanity-check that the bulk data desc being assigned to the slot
             * actually has a payload.
             */
            if (!bulkdata[i].os_data_ptr)
            {
                unifi_error(card->ospriv, "Assign null os_data_ptr (len=%d) fh slot %d, i=%d, q=%d, sig=0x%x",
                            bulkdata[i].data_length, slots[j], i, queue, GET_SIGNAL_ID(packed_sigptr));
            }

            j++;
            if (queue < UNIFI_NO_OF_TX_QS)
            {
                card->dynamic_slot_data.from_host_used_slots[queue]++;
            }
        }
    }

    func_exit();

    return CSR_RESULT_SUCCESS;
} /*  CardWriteBulkData() */


/*
 * ---------------------------------------------------------------------------
 *  card_find_data_slot
 *
 *      Dereference references to bulk data slots into pointers to real data.
 *
 *  Arguments:
 *      card            Pointer to the card struct.
 *      slot            Slot number from a signal structure
 *
 *  Returns:
 *      Pointer to entry in bulk_data_slot array.
 * ---------------------------------------------------------------------------
 */
bulk_data_desc_t* card_find_data_slot(card_t *card, s16 slot)
{
    s16 sn;
    bulk_data_desc_t *bd;

    sn = slot & 0x7FFF;

    /* ?? check sanity of slot number ?? */

    if (slot & SLOT_DIR_TO_HOST)
    {
        bd = &card->to_host_data[sn];
    }
    else
    {
        bd = &card->from_host_data[sn].bd;
    }

    return bd;
} /* card_find_data_slot() */


/*
 * ---------------------------------------------------------------------------
 *  firmware_present_in_flash
 *
 *      Probe for external Flash that looks like it might contain firmware.
 *
 *      If Flash is not present, reads always return 0x0008.
 *      If Flash is present, but empty, reads return 0xFFFF.
 *      Anything else is considered to be firmware.
 *
 *  Arguments:
 *      card        Pointer to card struct
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS                 firmware is present in ROM or flash
 *      CSR_WIFI_HIP_RESULT_NOT_FOUND      firmware is not present in ROM or flash
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE      if the card was ejected
 *      CSR_RESULT_FAILURE                 if an SDIO error occurred
 * ---------------------------------------------------------------------------
 */
static CsrResult firmware_present_in_flash(card_t *card)
{
    CsrResult r;
    u16 m1, m5;

    if (ChipHelper_HasRom(card->helper))
    {
        return CSR_RESULT_SUCCESS;
    }
    if (!ChipHelper_HasFlash(card->helper))
    {
        return CSR_WIFI_HIP_RESULT_NOT_FOUND;
    }

    /*
     * Examine the Flash locations that are the power-on default reset
     * vectors of the XAP processors.
     * These are words 1 and 5 in Flash.
     */
    r = unifi_card_read16(card, UNIFI_MAKE_GP(EXT_FLASH, 2), &m1);
    if (r != CSR_RESULT_SUCCESS)
    {
        return r;
    }

    r = unifi_card_read16(card, UNIFI_MAKE_GP(EXT_FLASH, 10), &m5);
    if (r != CSR_RESULT_SUCCESS)
    {
        return r;
    }

    /* Check for uninitialised/missing flash */
    if ((m1 == 0x0008) || (m1 == 0xFFFF) ||
        (m1 == 0x0004) || (m5 == 0x0004) ||
        (m5 == 0x0008) || (m5 == 0xFFFF))
    {
        return CSR_WIFI_HIP_RESULT_NOT_FOUND;
    }

    return CSR_RESULT_SUCCESS;
} /* firmware_present_in_flash() */


/*
 * ---------------------------------------------------------------------------
 *  bootstrap_chip_hw
 *
 *      Perform chip specific magic to "Get It Working" TM.  This will
 *      increase speed of PLLs in analogue and maybe enable some
 *      on-chip regulators.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      None.
 * ---------------------------------------------------------------------------
 */
static void bootstrap_chip_hw(card_t *card)
{
    const struct chip_helper_init_values *vals;
    u32 i, len;
    void *sdio = card->sdio_if;
    CsrResult csrResult;

    len = ChipHelper_ClockStartupSequence(card->helper, &vals);
    if (len != 0)
    {
        for (i = 0; i < len; i++)
        {
            csrResult = CsrSdioWrite16(sdio, vals[i].addr * 2, vals[i].value);
            if (csrResult != CSR_RESULT_SUCCESS)
            {
                unifi_warning(card->ospriv, "Failed to write bootstrap value %d\n", i);
                /* Might not be fatal */
            }

            CsrThreadSleep(1);
        }
    }
} /* bootstrap_chip_hw() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_card_stop_processor
 *
 *      Stop the UniFi XAP processors.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      which           One of UNIFI_PROC_MAC, UNIFI_PROC_PHY, UNIFI_PROC_BOTH
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS if successful, or CSR error code
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_card_stop_processor(card_t *card, enum unifi_dbg_processors_select which)
{
    CsrResult r = CSR_RESULT_SUCCESS;
    u8 status;
    s16 retry = 100;

    while (retry--)
    {
        /* Select both XAPs */
        r = unifi_set_proc_select(card, which);
        if (r != CSR_RESULT_SUCCESS)
        {
            break;
        }

        /* Stop processors */
        r = unifi_write_direct16(card, ChipHelper_DBG_EMU_CMD(card->helper) * 2, 2);
        if (r != CSR_RESULT_SUCCESS)
        {
            break;
        }

        /* Read status */
        r = unifi_read_direct_8_or_16(card,
                                      ChipHelper_DBG_HOST_STOP_STATUS(card->helper) * 2,
                                      &status);
        if (r != CSR_RESULT_SUCCESS)
        {
            break;
        }

        if ((status & 1) == 1)
        {
            /* Success! */
            return CSR_RESULT_SUCCESS;
        }

        /* Processors didn't stop, try again */
    }

    if (r != CSR_RESULT_SUCCESS)
    {
        /* An SDIO error occurred */
        unifi_error(card->ospriv, "Failed to stop processors: SDIO error\n");
    }
    else
    {
        /* If we reach here, we didn't the status in time. */
        unifi_error(card->ospriv, "Failed to stop processors: timeout waiting for stopped status\n");
        r = CSR_RESULT_FAILURE;
    }

    return r;
} /* unifi_card_stop_processor() */


/*
 * ---------------------------------------------------------------------------
 *  card_start_processor
 *
 *      Start the UniFi XAP processors.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      which           One of UNIFI_PROC_MAC, UNIFI_PROC_PHY, UNIFI_PROC_BOTH
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS or CSR error code
 * ---------------------------------------------------------------------------
 */
CsrResult card_start_processor(card_t *card, enum unifi_dbg_processors_select which)
{
    CsrResult r;

    /* Select both XAPs */
    r = unifi_set_proc_select(card, which);
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "unifi_set_proc_select failed: %d.\n", r);
        return r;
    }


    r = unifi_write_direct_8_or_16(card,
                                   ChipHelper_DBG_EMU_CMD(card->helper) * 2, 8);
    if (r != CSR_RESULT_SUCCESS)
    {
        return r;
    }

    r = unifi_write_direct_8_or_16(card,
                                   ChipHelper_DBG_EMU_CMD(card->helper) * 2, 0);
    if (r != CSR_RESULT_SUCCESS)
    {
        return r;
    }

    return CSR_RESULT_SUCCESS;
} /* card_start_processor() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_set_interrupt_mode
 *
 *      Configure the interrupt processing mode used by the HIP
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      mode            Interrupt mode to apply
 *
 *  Returns:
 *      None
 * ---------------------------------------------------------------------------
 */
void unifi_set_interrupt_mode(card_t *card, u32 mode)
{
    if (mode == CSR_WIFI_INTMODE_RUN_BH_ONCE)
    {
        unifi_info(card->ospriv, "Scheduled interrupt mode");
    }
    card->intmode = mode;
} /* unifi_set_interrupt_mode() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_start_processors
 *
 *      Start all UniFi XAP processors.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS on success, CSR error code on error
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_start_processors(card_t *card)
{
    return card_start_processor(card, UNIFI_PROC_BOTH);
} /* unifi_start_processors() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_request_max_sdio_clock
 *
 *      Requests that the maximum SDIO clock rate is set at the next suitable
 *      opportunity (e.g. when the BH next runs, so as not to interfere with
 *      any current operation).
 *
 *  Arguments:
 *      card            Pointer to card struct
 *
 *  Returns:
 *      None
 * ---------------------------------------------------------------------------
 */
void unifi_request_max_sdio_clock(card_t *card)
{
    card->request_max_clock = 1;
} /* unifi_request_max_sdio_clock() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_set_host_state
 *
 *      Set the host deep-sleep state.
 *
 *      If transitioning to TORPID, the SDIO driver will be notified
 *      that the SD bus will be unused (idle) and conversely, when
 *      transitioning from TORPID that the bus will be used (active).
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      state           New deep-sleep state.
 *
 *  Returns:
 *      CSR_RESULT_SUCCESS            on success
 *      CSR_WIFI_HIP_RESULT_NO_DEVICE      if the card was ejected
 *      CSR_RESULT_FAILURE            if an SDIO error occurred
 *
 *  Notes:
 *      We need to reduce the SDIO clock speed before trying to wake up the
 *      chip. Actually, in the implementation below we reduce the clock speed
 *      not just before we try to wake up the chip, but when we put the chip to
 *      deep sleep. This means that if the f/w wakes up on its' own, we waste
 *      a reduce/increace cycle. However, trying to eliminate this overhead is
 *      proved difficult, as the current state machine in the HIP lib does at
 *      least a CMD52 to disable the interrupts before we configure the host
 *      state.
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_set_host_state(card_t *card, enum unifi_host_state state)
{
    CsrResult r = CSR_RESULT_SUCCESS;
    CsrResult csrResult;
    static const char *const states[] = {
        "AWAKE", "DROWSY", "TORPID"
    };
    static const u8 state_csr_host_wakeup[] = {
        1, 3, 0
    };
    static const u8 state_io_abort[] = {
        0, 2, 3
    };

    unifi_trace(card->ospriv, UDBG4, "State %s to %s\n",
                states[card->host_state], states[state]);

    if (card->host_state == UNIFI_HOST_STATE_TORPID)
    {
        CsrSdioFunctionActive(card->sdio_if);
    }

    /* Write the new state to UniFi. */
    if (card->chip_id > SDIO_CARD_ID_UNIFI_2)
    {
        r = sdio_write_f0(card, SDIO_CSR_HOST_WAKEUP,
                          (u8)((card->function << 4) | state_csr_host_wakeup[state]));
    }
    else
    {
        r = sdio_write_f0(card, SDIO_IO_ABORT, state_io_abort[state]);
    }

    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to write UniFi deep sleep state\n");
    }
    else
    {
        /*
         * If the chip was in state TORPID then we can now increase
         * the maximum bus clock speed.
         */
        if (card->host_state == UNIFI_HOST_STATE_TORPID)
        {
            csrResult = CsrSdioMaxBusClockFrequencySet(card->sdio_if,
                                                       UNIFI_SDIO_CLOCK_MAX_HZ);
            r = ConvertCsrSdioToCsrHipResult(card, csrResult);
            /* Non-fatal error */
            if (r != CSR_RESULT_SUCCESS && r != CSR_WIFI_HIP_RESULT_NO_DEVICE)
            {
                unifi_warning(card->ospriv,
                              "Failed to increase the SDIO clock speed\n");
            }
            else
            {
                card->sdio_clock_speed = UNIFI_SDIO_CLOCK_MAX_HZ;
            }
        }

        /*
         * Cache the current state in the card structure to avoid
         * unnecessary SDIO reads.
         */
        card->host_state = state;

        if (state == UNIFI_HOST_STATE_TORPID)
        {
            /*
             * If the chip is now in state TORPID then we must now decrease
             * the maximum bus clock speed.
             */
            csrResult = CsrSdioMaxBusClockFrequencySet(card->sdio_if,
                                                       UNIFI_SDIO_CLOCK_SAFE_HZ);
            r = ConvertCsrSdioToCsrHipResult(card, csrResult);
            if (r != CSR_RESULT_SUCCESS && r != CSR_WIFI_HIP_RESULT_NO_DEVICE)
            {
                unifi_warning(card->ospriv,
                              "Failed to decrease the SDIO clock speed\n");
            }
            else
            {
                card->sdio_clock_speed = UNIFI_SDIO_CLOCK_SAFE_HZ;
            }
            CsrSdioFunctionIdle(card->sdio_if);
        }
    }

    return r;
} /* unifi_set_host_state() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_card_info
 *
 *      Update the card information data structure
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      card_info       Pointer to info structure to update
 *
 *  Returns:
 *      None
 * ---------------------------------------------------------------------------
 */
void unifi_card_info(card_t *card, card_info_t *card_info)
{
    card_info->chip_id = card->chip_id;
    card_info->chip_version = card->chip_version;
    card_info->fw_build = card->build_id;
    card_info->fw_hip_version = card->config_data.version;
    card_info->sdio_block_size = card->sdio_io_block_size;
} /* unifi_card_info() */


/*
 * ---------------------------------------------------------------------------
 *  unifi_check_io_status
 *
 *      Check UniFi for spontaneous reset and pending interrupt.
 *
 *  Arguments:
 *      card            Pointer to card struct
 *      status          Pointer to location to write chip status:
 *                        0 if UniFi is running, and no interrupt pending
 *                        1 if UniFi has spontaneously reset
 *                        2 if there is a pending interrupt
 *  Returns:
 *      CSR_RESULT_SUCCESS if OK, or CSR error
 * ---------------------------------------------------------------------------
 */
CsrResult unifi_check_io_status(card_t *card, s32 *status)
{
    u8 io_en;
    CsrResult r;
    u8 pending;

    *status = 0;

    r = sdio_read_f0(card, SDIO_IO_ENABLE, &io_en);
    if (r == CSR_WIFI_HIP_RESULT_NO_DEVICE)
    {
        return r;
    }
    if (r != CSR_RESULT_SUCCESS)
    {
        unifi_error(card->ospriv, "Failed to read SDIO_IO_ENABLE to check for spontaneous reset\n");
        return r;
    }

    if ((io_en & (1 << card->function)) == 0)
    {
        s32 fw_count;
        *status = 1;
        unifi_error(card->ospriv, "UniFi has spontaneously reset.\n");

        /*
         * These reads are very likely to fail. We want to know if the function is really
         * disabled or the SDIO driver just returns rubbish.
         */
        fw_count = unifi_read_shared_count(card, card->sdio_ctrl_addr + 4);
        if (fw_count < 0)
        {
            unifi_error(card->ospriv, "Failed to read to-host sig written count\n");
        }
        else
        {
            unifi_error(card->ospriv, "thsw: %u (driver thinks is %u)\n",
                        fw_count, card->to_host_signals_w);
        }
        fw_count = unifi_read_shared_count(card, card->sdio_ctrl_addr + 2);
        if (fw_count < 0)
        {
            unifi_error(card->ospriv, "Failed to read from-host sig read count\n");
        }
        else
        {
            unifi_error(card->ospriv, "fhsr: %u (driver thinks is %u)\n",
                        fw_count, card->from_host_signals_r);
        }

        return r;
    }

    unifi_info(card->ospriv, "UniFi function %d is enabled.\n", card->function);

    /* See if we missed an SDIO interrupt */
    r = CardPendingInt(card, &pending);
    if (pending)
    {
        unifi_error(card->ospriv, "There is an unhandled pending interrupt.\n");
        *status = 2;
        return r;
    }

    return r;
} /* unifi_check_io_status() */


void unifi_get_hip_qos_info(card_t *card, unifi_HipQosInfo *hipqosinfo)
{
    s32 count_fhr;
    s16 t;
    u32 occupied_fh;

    q_t *sigq;
    u16 nslots, i;

    memset(hipqosinfo, 0, sizeof(unifi_HipQosInfo));

    nslots = card->config_data.num_fromhost_data_slots;

    for (i = 0; i < nslots; i++)
    {
        if (card->from_host_data[i].bd.data_length == 0)
        {
            hipqosinfo->free_fh_bulkdata_slots++;
        }
    }

    for (i = 0; i < UNIFI_NO_OF_TX_QS; i++)
    {
        sigq = &card->fh_traffic_queue[i];
        t = sigq->q_wr_ptr - sigq->q_rd_ptr;
        if (t < 0)
        {
            t += sigq->q_length;
        }
        hipqosinfo->free_fh_sig_queue_slots[i] = (sigq->q_length - t) - 1;
    }

    count_fhr = unifi_read_shared_count(card, card->sdio_ctrl_addr + 2);
    if (count_fhr < 0)
    {
        unifi_error(card->ospriv, "Failed to read from-host sig read count - %d\n", count_fhr);
        hipqosinfo->free_fh_fw_slots = 0xfa;
        return;
    }

    occupied_fh = (card->from_host_signals_w - count_fhr) % 128;

    hipqosinfo->free_fh_fw_slots = (u16)(card->config_data.num_fromhost_sig_frags - occupied_fh);
}



CsrResult ConvertCsrSdioToCsrHipResult(card_t *card, CsrResult csrResult)
{
    CsrResult r = CSR_RESULT_FAILURE;

    switch (csrResult)
    {
        case CSR_RESULT_SUCCESS:
            r = CSR_RESULT_SUCCESS;
            break;
        /* Timeout errors */
        case CSR_SDIO_RESULT_TIMEOUT:
        /* Integrity errors */
        case CSR_SDIO_RESULT_CRC_ERROR:
            r = CSR_RESULT_FAILURE;
            break;
        case CSR_SDIO_RESULT_NO_DEVICE:
            r = CSR_WIFI_HIP_RESULT_NO_DEVICE;
            break;
        case CSR_SDIO_RESULT_INVALID_VALUE:
            r = CSR_WIFI_HIP_RESULT_INVALID_VALUE;
            break;
        case CSR_RESULT_FAILURE:
            r = CSR_RESULT_FAILURE;
            break;
        default:
            unifi_warning(card->ospriv, "Unrecognised csrResult error code: %d\n", csrResult);
            break;
    }

    return r;
} /* ConvertCsrSdioToCsrHipResult() */