summaryrefslogblamecommitdiffstats
path: root/drivers/staging/rtl8188eu/hal/rtl8188e_hal_init.c
blob: 5a22c6df4d06d3f123c7e7b93a0640850fe0bd5c (plain) (tree)
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498




















                                                                                
                           
                          







































                                                                             
                        
















































































































































































                                                                                                        
                                


                                                                                                                                   
                                  

























































































































                                                                                                                               
                                        





                                                                        
                                  









                                                                                                     
                                          


                                                              
                            

























































































































































































                                                                                                                                                            
                          







                                                                                                  
                                                                              
 
                                
                                  
                                                         
 
                                                     

                                 


                                                               

                                 

                                       




                                                                   
         
 

                                                                   

                                 
         

                                                          

                             




























                                                                         

                                                              
                                                                      




                                                                     



                                                                                   














                                                                                                              
                                  

























                                                                                                      
     















                                                                 

                                 









































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                                                             
















                                                                                                                             


























































































































































                                                                                                                                                     
                                                                                             













































































































































































                                                                                                                      














































































































































































































































































                                                                                                                                                   
                                                                  
















































































                                                                                                                                                            
                                                             
















































































































                                                                                                                                      
                                                                                            














































































                                                                                                                                                             
/******************************************************************************
 *
 * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
 *
 *
 ******************************************************************************/
#define _HAL_INIT_C_

#include <linux/firmware.h>
#include <linux/vmalloc.h>
#include <drv_types.h>
#include <rtw_efuse.h>

#include <rtl8188e_hal.h>

#include <rtw_iol.h>

#include <usb_ops.h>

static void iol_mode_enable(struct adapter *padapter, u8 enable)
{
	u8 reg_0xf0 = 0;

	if (enable) {
		/* Enable initial offload */
		reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG);
		rtw_write8(padapter, REG_SYS_CFG, reg_0xf0|SW_OFFLOAD_EN);

		if (!padapter->bFWReady) {
			DBG_88E("bFWReady == false call reset 8051...\n");
			_8051Reset88E(padapter);
		}

	} else {
		/* disable initial offload */
		reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG);
		rtw_write8(padapter, REG_SYS_CFG, reg_0xf0 & ~SW_OFFLOAD_EN);
	}
}

static s32 iol_execute(struct adapter *padapter, u8 control)
{
	s32 status = _FAIL;
	u8 reg_0x88 = 0;
	u32 start = 0, passing_time = 0;

	control = control&0x0f;
	reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0);
	rtw_write8(padapter, REG_HMEBOX_E0,  reg_0x88|control);

	start = jiffies;
	while ((reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0)) & control &&
	       (passing_time = rtw_get_passing_time_ms(start)) < 1000) {
		;
	}

	reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0);
	status = (reg_0x88 & control) ? _FAIL : _SUCCESS;
	if (reg_0x88 & control<<4)
		status = _FAIL;
	return status;
}

static s32 iol_InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy)
{
	s32 rst = _SUCCESS;
	iol_mode_enable(padapter, 1);
	rtw_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy);
	rst = iol_execute(padapter, CMD_INIT_LLT);
	iol_mode_enable(padapter, 0);
	return rst;
}

static void
efuse_phymap_to_logical(u8 *phymap, u16 _offset, u16 _size_byte, u8  *pbuf)
{
	u8 *efuseTbl = NULL;
	u8 rtemp8;
	u16	eFuse_Addr = 0;
	u8 offset, wren;
	u16	i, j;
	u16	**eFuseWord = NULL;
	u16	efuse_utilized = 0;
	u8 u1temp = 0;

	efuseTbl = (u8 *)rtw_zmalloc(EFUSE_MAP_LEN_88E);
	if (efuseTbl == NULL) {
		DBG_88E("%s: alloc efuseTbl fail!\n", __func__);
		goto exit;
	}

	eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
	if (eFuseWord == NULL) {
		DBG_88E("%s: alloc eFuseWord fail!\n", __func__);
		goto exit;
	}

	/*  0. Refresh efuse init map as all oxFF. */
	for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
			eFuseWord[i][j] = 0xFFFF;

	/*  */
	/*  1. Read the first byte to check if efuse is empty!!! */
	/*  */
	/*  */
	rtemp8 = *(phymap+eFuse_Addr);
	if (rtemp8 != 0xFF) {
		efuse_utilized++;
		eFuse_Addr++;
	} else {
		DBG_88E("EFUSE is empty efuse_Addr-%d efuse_data =%x\n", eFuse_Addr, rtemp8);
		goto exit;
	}

	/*  */
	/*  2. Read real efuse content. Filter PG header and every section data. */
	/*  */
	while ((rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
		/*  Check PG header for section num. */
		if ((rtemp8 & 0x1F) == 0x0F) {		/* extended header */
			u1temp = ((rtemp8 & 0xE0) >> 5);
			rtemp8 = *(phymap+eFuse_Addr);
			if ((rtemp8 & 0x0F) == 0x0F) {
				eFuse_Addr++;
				rtemp8 = *(phymap+eFuse_Addr);

				if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
					eFuse_Addr++;
				continue;
			} else {
				offset = ((rtemp8 & 0xF0) >> 1) | u1temp;
				wren = (rtemp8 & 0x0F);
				eFuse_Addr++;
			}
		} else {
			offset = ((rtemp8 >> 4) & 0x0f);
			wren = (rtemp8 & 0x0f);
		}

		if (offset < EFUSE_MAX_SECTION_88E) {
			/*  Get word enable value from PG header */
			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
				/*  Check word enable condition in the section */
				if (!(wren & 0x01)) {
					rtemp8 = *(phymap+eFuse_Addr);
					eFuse_Addr++;
					efuse_utilized++;
					eFuseWord[offset][i] = (rtemp8 & 0xff);
					if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
						break;
					rtemp8 = *(phymap+eFuse_Addr);
					eFuse_Addr++;
					efuse_utilized++;
					eFuseWord[offset][i] |= (((u16)rtemp8 << 8) & 0xff00);

					if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
						break;
				}
				wren >>= 1;
			}
		}
		/*  Read next PG header */
		rtemp8 = *(phymap+eFuse_Addr);

		if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
			efuse_utilized++;
			eFuse_Addr++;
		}
	}

	/*  */
	/*  3. Collect 16 sections and 4 word unit into Efuse map. */
	/*  */
	for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) {
		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
			efuseTbl[(i*8)+(j*2)] = (eFuseWord[i][j] & 0xff);
			efuseTbl[(i*8)+((j*2)+1)] = ((eFuseWord[i][j] >> 8) & 0xff);
		}
	}

	/*  */
	/*  4. Copy from Efuse map to output pointer memory!!! */
	/*  */
	for (i = 0; i < _size_byte; i++)
		pbuf[i] = efuseTbl[_offset+i];

	/*  */
	/*  5. Calculate Efuse utilization. */
	/*  */

exit:
	kfree(efuseTbl);

	if (eFuseWord)
		rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
}

static void efuse_read_phymap_from_txpktbuf(
	struct adapter  *adapter,
	int bcnhead,	/* beacon head, where FW store len(2-byte) and efuse physical map. */
	u8 *content,	/* buffer to store efuse physical map */
	u16 *size	/* for efuse content: the max byte to read. will update to byte read */
	)
{
	u16 dbg_addr = 0;
	u32 start  = 0, passing_time = 0;
	u8 reg_0x143 = 0;
	u32 lo32 = 0, hi32 = 0;
	u16 len = 0, count = 0;
	int i = 0;
	u16 limit = *size;

	u8 *pos = content;

	if (bcnhead < 0) /* if not valid */
		bcnhead = rtw_read8(adapter, REG_TDECTRL+1);

	DBG_88E("%s bcnhead:%d\n", __func__, bcnhead);

	rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);

	dbg_addr = bcnhead*128/8; /* 8-bytes addressing */

	while (1) {
		rtw_write16(adapter, REG_PKTBUF_DBG_ADDR, dbg_addr+i);

		rtw_write8(adapter, REG_TXPKTBUF_DBG, 0);
		start = jiffies;
		while (!(reg_0x143 = rtw_read8(adapter, REG_TXPKTBUF_DBG)) &&
		       (passing_time = rtw_get_passing_time_ms(start)) < 1000) {
			DBG_88E("%s polling reg_0x143:0x%02x, reg_0x106:0x%02x\n", __func__, reg_0x143, rtw_read8(adapter, 0x106));
			msleep(1);
		}

		lo32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_L);
		hi32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_H);

		if (i == 0) {
			u8 lenc[2];
			u16 lenbak, aaabak;
			u16 aaa;
			lenc[0] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L);
			lenc[1] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L+1);

			aaabak = le16_to_cpup((__le16 *)lenc);
			lenbak = le16_to_cpu(*((__le16 *)lenc));
			aaa = le16_to_cpup((__le16 *)&lo32);
			len = le16_to_cpu(*((__le16 *)&lo32));

			limit = (len-2 < limit) ? len-2 : limit;

			DBG_88E("%s len:%u, lenbak:%u, aaa:%u, aaabak:%u\n", __func__, len, lenbak, aaa, aaabak);

			memcpy(pos, ((u8 *)&lo32)+2, (limit >= count+2) ? 2 : limit-count);
			count += (limit >= count+2) ? 2 : limit-count;
			pos = content+count;

		} else {
			memcpy(pos, ((u8 *)&lo32), (limit >= count+4) ? 4 : limit-count);
			count += (limit >= count+4) ? 4 : limit-count;
			pos = content+count;
		}

		if (limit > count && len-2 > count) {
			memcpy(pos, (u8 *)&hi32, (limit >= count+4) ? 4 : limit-count);
			count += (limit >= count+4) ? 4 : limit-count;
			pos = content+count;
		}

		if (limit <= count || len-2 <= count)
			break;
		i++;
	}
	rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS);
	DBG_88E("%s read count:%u\n", __func__, count);
	*size = count;
}

static s32 iol_read_efuse(struct adapter *padapter, u8 txpktbuf_bndy, u16 offset, u16 size_byte, u8 *logical_map)
{
	s32 status = _FAIL;
	u8 physical_map[512];
	u16 size = 512;

	rtw_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy);
	_rtw_memset(physical_map, 0xFF, 512);
	rtw_write8(padapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
	status = iol_execute(padapter, CMD_READ_EFUSE_MAP);
	if (status == _SUCCESS)
		efuse_read_phymap_from_txpktbuf(padapter, txpktbuf_bndy, physical_map, &size);
	efuse_phymap_to_logical(physical_map, offset, size_byte, logical_map);
	return status;
}

s32 rtl8188e_iol_efuse_patch(struct adapter *padapter)
{
	s32	result = _SUCCESS;

	DBG_88E("==> %s\n", __func__);
	if (rtw_IOL_applied(padapter)) {
		iol_mode_enable(padapter, 1);
		result = iol_execute(padapter, CMD_READ_EFUSE_MAP);
		if (result == _SUCCESS)
			result = iol_execute(padapter, CMD_EFUSE_PATCH);

		iol_mode_enable(padapter, 0);
	}
	return result;
}

static s32 iol_ioconfig(struct adapter *padapter, u8 iocfg_bndy)
{
	s32 rst = _SUCCESS;

	rtw_write8(padapter, REG_TDECTRL+1, iocfg_bndy);
	rst = iol_execute(padapter, CMD_IOCONFIG);
	return rst;
}

static int rtl8188e_IOL_exec_cmds_sync(struct adapter *adapter, struct xmit_frame *xmit_frame, u32 max_wating_ms, u32 bndy_cnt)
{
	struct pkt_attrib *pattrib = &xmit_frame->attrib;
	u8 i;
	int ret = _FAIL;

	if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS)
		goto exit;
	if (rtw_usb_bulk_size_boundary(adapter, TXDESC_SIZE+pattrib->last_txcmdsz)) {
		if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS)
			goto exit;
	}

	dump_mgntframe_and_wait(adapter, xmit_frame, max_wating_ms);

	iol_mode_enable(adapter, 1);
	for (i = 0; i < bndy_cnt; i++) {
		u8 page_no = 0;
		page_no = i*2;
		ret = iol_ioconfig(adapter, page_no);
		if (ret != _SUCCESS)
			break;
	}
	iol_mode_enable(adapter, 0);
exit:
	/* restore BCN_HEAD */
	rtw_write8(adapter, REG_TDECTRL+1, 0);
	return ret;
}

void rtw_IOL_cmd_tx_pkt_buf_dump(struct adapter *Adapter, int data_len)
{
	u32 fifo_data, reg_140;
	u32 addr, rstatus, loop = 0;
	u16 data_cnts = (data_len/8)+1;
	u8 *pbuf = vzalloc(data_len+10);
	DBG_88E("###### %s ######\n", __func__);

	rtw_write8(Adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
	if (pbuf) {
		for (addr = 0; addr < data_cnts; addr++) {
			rtw_write32(Adapter, 0x140, addr);
			msleep(1);
			loop = 0;
			do {
				rstatus = (reg_140 = rtw_read32(Adapter, REG_PKTBUF_DBG_CTRL)&BIT24);
				if (rstatus) {
					fifo_data = rtw_read32(Adapter, REG_PKTBUF_DBG_DATA_L);
					memcpy(pbuf+(addr*8), &fifo_data, 4);

					fifo_data = rtw_read32(Adapter, REG_PKTBUF_DBG_DATA_H);
					memcpy(pbuf+(addr*8+4), &fifo_data, 4);
				}
				msleep(1);
			} while (!rstatus && (loop++ < 10));
		}
		rtw_IOL_cmd_buf_dump(Adapter, data_len, pbuf);
		vfree(pbuf);
	}
	DBG_88E("###### %s ######\n", __func__);
}

static void _FWDownloadEnable(struct adapter *padapter, bool enable)
{
	u8 tmp;

	if (enable) {
		/*  MCU firmware download enable. */
		tmp = rtw_read8(padapter, REG_MCUFWDL);
		rtw_write8(padapter, REG_MCUFWDL, tmp | 0x01);

		/*  8051 reset */
		tmp = rtw_read8(padapter, REG_MCUFWDL+2);
		rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
	} else {
		/*  MCU firmware download disable. */
		tmp = rtw_read8(padapter, REG_MCUFWDL);
		rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);

		/*  Reserved for fw extension. */
		rtw_write8(padapter, REG_MCUFWDL+1, 0x00);
	}
}

#define MAX_REG_BOLCK_SIZE	196

static int _BlockWrite(struct adapter *padapter, void *buffer, u32 buffSize)
{
	int ret = _SUCCESS;
	u32	blockSize_p1 = 4;	/*  (Default) Phase #1 : PCI muse use 4-byte write to download FW */
	u32	blockSize_p2 = 8;	/*  Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
	u32	blockSize_p3 = 1;	/*  Phase #3 : Use 1-byte, the remnant of FW image. */
	u32	blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
	u32	remainSize_p1 = 0, remainSize_p2 = 0;
	u8 *bufferPtr	= (u8 *)buffer;
	u32	i = 0, offset = 0;

	blockSize_p1 = MAX_REG_BOLCK_SIZE;

	/* 3 Phase #1 */
	blockCount_p1 = buffSize / blockSize_p1;
	remainSize_p1 = buffSize % blockSize_p1;

	if (blockCount_p1) {
		RT_TRACE(_module_hal_init_c_, _drv_notice_,
			 ("_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) blockCount_p1(%d) remainSize_p1(%d)\n",
			 buffSize, blockSize_p1, blockCount_p1, remainSize_p1));
	}

	for (i = 0; i < blockCount_p1; i++) {
		ret = rtw_writeN(padapter, (FW_8188E_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1));
		if (ret == _FAIL)
			goto exit;
	}

	/* 3 Phase #2 */
	if (remainSize_p1) {
		offset = blockCount_p1 * blockSize_p1;

		blockCount_p2 = remainSize_p1/blockSize_p2;
		remainSize_p2 = remainSize_p1%blockSize_p2;

		if (blockCount_p2) {
				RT_TRACE(_module_hal_init_c_, _drv_notice_,
					 ("_BlockWrite: [P2] buffSize_p2(%d) blockSize_p2(%d) blockCount_p2(%d) remainSize_p2(%d)\n",
					 (buffSize-offset), blockSize_p2 , blockCount_p2, remainSize_p2));
		}

		for (i = 0; i < blockCount_p2; i++) {
			ret = rtw_writeN(padapter, (FW_8188E_START_ADDRESS + offset + i*blockSize_p2), blockSize_p2, (bufferPtr + offset + i*blockSize_p2));

			if (ret == _FAIL)
				goto exit;
		}
	}

	/* 3 Phase #3 */
	if (remainSize_p2) {
		offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);

		blockCount_p3 = remainSize_p2 / blockSize_p3;

		RT_TRACE(_module_hal_init_c_, _drv_notice_,
			 ("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) blockCount_p3(%d)\n",
			 (buffSize-offset), blockSize_p3, blockCount_p3));

		for (i = 0; i < blockCount_p3; i++) {
			ret = rtw_write8(padapter, (FW_8188E_START_ADDRESS + offset + i), *(bufferPtr + offset + i));

			if (ret == _FAIL)
				goto exit;
		}
	}

exit:
	return ret;
}

static int _PageWrite(struct adapter *padapter, u32 page, void *buffer, u32 size)
{
	u8 value8;
	u8 u8Page = (u8)(page & 0x07);

	value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page;
	rtw_write8(padapter, REG_MCUFWDL+2, value8);

	return _BlockWrite(padapter, buffer, size);
}

static int _WriteFW(struct adapter *padapter, void *buffer, u32 size)
{
	/*  Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
	/*  We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */
	int ret = _SUCCESS;
	u32	pageNums, remainSize;
	u32	page, offset;
	u8 *bufferPtr = (u8 *)buffer;

	pageNums = size / MAX_PAGE_SIZE;
	remainSize = size % MAX_PAGE_SIZE;

	for (page = 0; page < pageNums; page++) {
		offset = page * MAX_PAGE_SIZE;
		ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_PAGE_SIZE);

		if (ret == _FAIL)
			goto exit;
	}
	if (remainSize) {
		offset = pageNums * MAX_PAGE_SIZE;
		page = pageNums;
		ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);

		if (ret == _FAIL)
			goto exit;
	}
	RT_TRACE(_module_hal_init_c_, _drv_info_, ("_WriteFW Done- for Normal chip.\n"));
exit:
	return ret;
}

void _8051Reset88E(struct adapter *padapter)
{
	u8 u1bTmp;

	u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
	rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
	rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp|(BIT2));
	DBG_88E("=====> _8051Reset88E(): 8051 reset success .\n");
}

static s32 _FWFreeToGo(struct adapter *padapter)
{
	u32	counter = 0;
	u32	value32;

	/*  polling CheckSum report */
	do {
		value32 = rtw_read32(padapter, REG_MCUFWDL);
		if (value32 & FWDL_ChkSum_rpt)
			break;
	} while (counter++ < POLLING_READY_TIMEOUT_COUNT);

	if (counter >= POLLING_READY_TIMEOUT_COUNT) {
		DBG_88E("%s: chksum report fail! REG_MCUFWDL:0x%08x\n", __func__, value32);
		return _FAIL;
	}
	DBG_88E("%s: Checksum report OK! REG_MCUFWDL:0x%08x\n", __func__, value32);

	value32 = rtw_read32(padapter, REG_MCUFWDL);
	value32 |= MCUFWDL_RDY;
	value32 &= ~WINTINI_RDY;
	rtw_write32(padapter, REG_MCUFWDL, value32);

	_8051Reset88E(padapter);

	/*  polling for FW ready */
	counter = 0;
	do {
		value32 = rtw_read32(padapter, REG_MCUFWDL);
		if (value32 & WINTINI_RDY) {
			DBG_88E("%s: Polling FW ready success!! REG_MCUFWDL:0x%08x\n", __func__, value32);
			return _SUCCESS;
		}
		udelay(5);
	} while (counter++ < POLLING_READY_TIMEOUT_COUNT);

	DBG_88E("%s: Polling FW ready fail!! REG_MCUFWDL:0x%08x\n", __func__, value32);
	return _FAIL;
}

#define IS_FW_81xxC(padapter)	(((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)

static int load_firmware(struct rt_firmware *pFirmware, struct device *device)
{
	int rtstatus = _SUCCESS;
	const struct firmware *fw;
	const char fw_name[] = "rtlwifi/rtl8188eufw.bin";

	if (request_firmware(&fw, fw_name, device)) {
		rtstatus = _FAIL;
		goto exit;
	}
	if (!fw) {
		pr_err("Firmware %s not available\n", fw_name);
		rtstatus = _FAIL;
		goto exit;
	}
	if (fw->size > FW_8188E_SIZE) {
		rtstatus = _FAIL;
		RT_TRACE(_module_hal_init_c_, _drv_err_,
			 ("Firmware size exceed 0x%X. Check it.\n",
			 FW_8188E_SIZE));
		goto exit;
	}

	pFirmware->szFwBuffer = kzalloc(FW_8188E_SIZE, GFP_KERNEL);
	if (!pFirmware->szFwBuffer) {
		rtstatus = _FAIL;
		goto exit;
	}
	memcpy(pFirmware->szFwBuffer, fw->data, fw->size);
	pFirmware->ulFwLength = fw->size;
	release_firmware(fw);

	DBG_88E_LEVEL(_drv_info_,
		      "+%s: !bUsedWoWLANFw, FmrmwareLen:%d+\n", __func__,
		      pFirmware->ulFwLength);
exit:
	return rtstatus;
}

s32 rtl8188e_FirmwareDownload(struct adapter *padapter)
{
	s32	rtStatus = _SUCCESS;
	u8 writeFW_retry = 0;
	u32 fwdl_start_time;
	struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter);
	struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
	struct device *device = dvobj_to_dev(dvobj);
	struct rt_firmware_hdr *pFwHdr = NULL;
	u8 *pFirmwareBuf;
	u32 FirmwareLen;
	static int log_version;

	RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __func__));
	if (!dvobj->firmware.szFwBuffer)
		rtStatus = load_firmware(&dvobj->firmware, device);
	if (rtStatus == _FAIL) {
		dvobj->firmware.szFwBuffer = NULL;
		goto Exit;
	}
	pFirmwareBuf = dvobj->firmware.szFwBuffer;
	FirmwareLen = dvobj->firmware.ulFwLength;

	/*  To Check Fw header. Added by tynli. 2009.12.04. */
	pFwHdr = (struct rt_firmware_hdr *)dvobj->firmware.szFwBuffer;

	pHalData->FirmwareVersion =  le16_to_cpu(pFwHdr->Version);
	pHalData->FirmwareSubVersion = pFwHdr->Subversion;
	pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature);

	if (!log_version++)
		pr_info("%sFirmware Version %d, SubVersion %d, Signature 0x%x\n",
			DRIVER_PREFIX, pHalData->FirmwareVersion,
			pHalData->FirmwareSubVersion, pHalData->FirmwareSignature);

	if (IS_FW_HEADER_EXIST(pFwHdr)) {
		/*  Shift 32 bytes for FW header */
		pFirmwareBuf = pFirmwareBuf + 32;
		FirmwareLen = FirmwareLen - 32;
	}

	/*  Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
	/*  or it will cause download Fw fail. 2010.02.01. by tynli. */
	if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */
		rtw_write8(padapter, REG_MCUFWDL, 0x00);
		_8051Reset88E(padapter);
	}

	_FWDownloadEnable(padapter, true);
	fwdl_start_time = jiffies;
	while (1) {
		/* reset the FWDL chksum */
		rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL) | FWDL_ChkSum_rpt);

		rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);

		if (rtStatus == _SUCCESS ||
		    (rtw_get_passing_time_ms(fwdl_start_time) > 500 && writeFW_retry++ >= 3))
			break;

		DBG_88E("%s writeFW_retry:%u, time after fwdl_start_time:%ums\n",
			__func__, writeFW_retry, rtw_get_passing_time_ms(fwdl_start_time)
		);
	}
	_FWDownloadEnable(padapter, false);
	if (_SUCCESS != rtStatus) {
		DBG_88E("DL Firmware failed!\n");
		goto Exit;
	}

	rtStatus = _FWFreeToGo(padapter);
	if (_SUCCESS != rtStatus) {
		DBG_88E("DL Firmware failed!\n");
		goto Exit;
	}
	RT_TRACE(_module_hal_init_c_, _drv_info_, ("Firmware is ready to run!\n"));
Exit:
	return rtStatus;
}

void rtl8188e_InitializeFirmwareVars(struct adapter *padapter)
{
	struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter);

	/*  Init Fw LPS related. */
	padapter->pwrctrlpriv.bFwCurrentInPSMode = false;

	/*  Init H2C counter. by tynli. 2009.12.09. */
	pHalData->LastHMEBoxNum = 0;
}

static void rtl8188e_free_hal_data(struct adapter *padapter)
{
	kfree(padapter->HalData);
	padapter->HalData = NULL;
}

/*  */
/*			Efuse related code */
/*  */
enum{
		VOLTAGE_V25						= 0x03,
		LDOE25_SHIFT						= 28 ,
	};

static bool
hal_EfusePgPacketWrite2ByteHeader(
		struct adapter *pAdapter,
		u8 efuseType,
		u16				*pAddr,
		struct pgpkt *pTargetPkt,
		bool bPseudoTest);
static bool
hal_EfusePgPacketWrite1ByteHeader(
		struct adapter *pAdapter,
		u8 efuseType,
		u16				*pAddr,
		struct pgpkt *pTargetPkt,
		bool bPseudoTest);
static bool
hal_EfusePgPacketWriteData(
		struct adapter *pAdapter,
		u8 efuseType,
		u16				*pAddr,
		struct pgpkt *pTargetPkt,
		bool bPseudoTest);

static void
hal_EfusePowerSwitch_RTL8188E(
		struct adapter *pAdapter,
		u8 bWrite,
		u8 PwrState)
{
	u8 tempval;
	u16	tmpV16;

	if (PwrState) {
		rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON);

		/*  1.2V Power: From VDDON with Power Cut(0x0000h[15]), defualt valid */
		tmpV16 = rtw_read16(pAdapter, REG_SYS_ISO_CTRL);
		if (!(tmpV16 & PWC_EV12V)) {
			tmpV16 |= PWC_EV12V;
			 rtw_write16(pAdapter, REG_SYS_ISO_CTRL, tmpV16);
		}
		/*  Reset: 0x0000h[28], default valid */
		tmpV16 =  rtw_read16(pAdapter, REG_SYS_FUNC_EN);
		if (!(tmpV16 & FEN_ELDR)) {
			tmpV16 |= FEN_ELDR;
			rtw_write16(pAdapter, REG_SYS_FUNC_EN, tmpV16);
		}

		/*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
		tmpV16 = rtw_read16(pAdapter, REG_SYS_CLKR);
		if ((!(tmpV16 & LOADER_CLK_EN))  || (!(tmpV16 & ANA8M))) {
			tmpV16 |= (LOADER_CLK_EN | ANA8M);
			rtw_write16(pAdapter, REG_SYS_CLKR, tmpV16);
		}

		if (bWrite) {
			/*  Enable LDO 2.5V before read/write action */
			tempval = rtw_read8(pAdapter, EFUSE_TEST+3);
			tempval &= 0x0F;
			tempval |= (VOLTAGE_V25 << 4);
			rtw_write8(pAdapter, EFUSE_TEST+3, (tempval | 0x80));
		}
	} else {
		rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);

		if (bWrite) {
			/*  Disable LDO 2.5V after read/write action */
			tempval = rtw_read8(pAdapter, EFUSE_TEST+3);
			rtw_write8(pAdapter, EFUSE_TEST+3, (tempval & 0x7F));
		}
	}
}

static void
rtl8188e_EfusePowerSwitch(
		struct adapter *pAdapter,
		u8 bWrite,
		u8 PwrState)
{
	hal_EfusePowerSwitch_RTL8188E(pAdapter, bWrite, PwrState);
}


static void Hal_EfuseReadEFuse88E(struct adapter *Adapter,
	u16			_offset,
	u16			_size_byte,
	u8 *pbuf,
		bool bPseudoTest
	)
{
	u8 *efuseTbl = NULL;
	u8 rtemp8[1];
	u16	eFuse_Addr = 0;
	u8 offset, wren;
	u16	i, j;
	u16	**eFuseWord = NULL;
	u16	efuse_utilized = 0;
	u8 u1temp = 0;

	/*  */
	/*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
	/*  */
	if ((_offset + _size_byte) > EFUSE_MAP_LEN_88E) {/*  total E-Fuse table is 512bytes */
		DBG_88E("Hal_EfuseReadEFuse88E(): Invalid offset(%#x) with read bytes(%#x)!!\n", _offset, _size_byte);
		goto exit;
	}

	efuseTbl = (u8 *)rtw_zmalloc(EFUSE_MAP_LEN_88E);
	if (efuseTbl == NULL) {
		DBG_88E("%s: alloc efuseTbl fail!\n", __func__);
		goto exit;
	}

	eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
	if (eFuseWord == NULL) {
		DBG_88E("%s: alloc eFuseWord fail!\n", __func__);
		goto exit;
	}

	/*  0. Refresh efuse init map as all oxFF. */
	for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
			eFuseWord[i][j] = 0xFFFF;

	/*  */
	/*  1. Read the first byte to check if efuse is empty!!! */
	/*  */
	/*  */
	ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
	if (*rtemp8 != 0xFF) {
		efuse_utilized++;
		eFuse_Addr++;
	} else {
		DBG_88E("EFUSE is empty efuse_Addr-%d efuse_data =%x\n", eFuse_Addr, *rtemp8);
		goto exit;
	}

	/*  */
	/*  2. Read real efuse content. Filter PG header and every section data. */
	/*  */
	while ((*rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
		/*  Check PG header for section num. */
		if ((*rtemp8 & 0x1F) == 0x0F) {		/* extended header */
			u1temp = ((*rtemp8 & 0xE0) >> 5);

			ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);

			if ((*rtemp8 & 0x0F) == 0x0F) {
				eFuse_Addr++;
				ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);

				if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
					eFuse_Addr++;
				continue;
			} else {
				offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
				wren = (*rtemp8 & 0x0F);
				eFuse_Addr++;
			}
		} else {
			offset = ((*rtemp8 >> 4) & 0x0f);
			wren = (*rtemp8 & 0x0f);
		}

		if (offset < EFUSE_MAX_SECTION_88E) {
			/*  Get word enable value from PG header */

			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
				/*  Check word enable condition in the section */
				if (!(wren & 0x01)) {
					ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
					eFuse_Addr++;
					efuse_utilized++;
					eFuseWord[offset][i] = (*rtemp8 & 0xff);
					if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
						break;
					ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
					eFuse_Addr++;
					efuse_utilized++;
					eFuseWord[offset][i] |= (((u16)*rtemp8 << 8) & 0xff00);
					if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
						break;
				}
				wren >>= 1;
			}
		}

		/*  Read next PG header */
		ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);

		if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
			efuse_utilized++;
			eFuse_Addr++;
		}
	}

	/*  3. Collect 16 sections and 4 word unit into Efuse map. */
	for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) {
		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
			efuseTbl[(i*8)+(j*2)] = (eFuseWord[i][j] & 0xff);
			efuseTbl[(i*8)+((j*2)+1)] = ((eFuseWord[i][j] >> 8) & 0xff);
		}
	}

	/*  4. Copy from Efuse map to output pointer memory!!! */
	for (i = 0; i < _size_byte; i++)
		pbuf[i] = efuseTbl[_offset+i];

	/*  5. Calculate Efuse utilization. */
	rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&eFuse_Addr);

exit:
	kfree(efuseTbl);

	if (eFuseWord)
		rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
}

static void ReadEFuseByIC(struct adapter *Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, bool bPseudoTest)
{
	if (!bPseudoTest) {
		int ret = _FAIL;
		if (rtw_IOL_applied(Adapter)) {
			rtw_hal_power_on(Adapter);

			iol_mode_enable(Adapter, 1);
			ret = iol_read_efuse(Adapter, 0, _offset, _size_byte, pbuf);
			iol_mode_enable(Adapter, 0);

			if (_SUCCESS == ret)
				goto exit;
		}
	}
	Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf, bPseudoTest);

exit:
	return;
}

static void ReadEFuse_Pseudo(struct adapter *Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, bool bPseudoTest)
{
	Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf, bPseudoTest);
}

static void rtl8188e_ReadEFuse(struct adapter *Adapter, u8 efuseType,
			       u16 _offset, u16 _size_byte, u8 *pbuf,
			       bool bPseudoTest)
{
	if (bPseudoTest)
		ReadEFuse_Pseudo (Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest);
	else
		ReadEFuseByIC(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest);
}

/* Do not support BT */
static void Hal_EFUSEGetEfuseDefinition88E(struct adapter *pAdapter, u8 efuseType, u8 type, void *pOut)
{
	switch (type) {
	case TYPE_EFUSE_MAX_SECTION:
		{
			u8 *pMax_section;
			pMax_section = (u8 *)pOut;
			*pMax_section = EFUSE_MAX_SECTION_88E;
		}
		break;
	case TYPE_EFUSE_REAL_CONTENT_LEN:
		{
			u16 *pu2Tmp;
			pu2Tmp = (u16 *)pOut;
			*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
		}
		break;
	case TYPE_EFUSE_CONTENT_LEN_BANK:
		{
			u16 *pu2Tmp;
			pu2Tmp = (u16 *)pOut;
			*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
		}
		break;
	case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
		{
			u16 *pu2Tmp;
			pu2Tmp = (u16 *)pOut;
			*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
		}
		break;
	case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
		{
			u16 *pu2Tmp;
			pu2Tmp = (u16 *)pOut;
			*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
		}
		break;
	case TYPE_EFUSE_MAP_LEN:
		{
			u16 *pu2Tmp;
			pu2Tmp = (u16 *)pOut;
			*pu2Tmp = (u16)EFUSE_MAP_LEN_88E;
		}
		break;
	case TYPE_EFUSE_PROTECT_BYTES_BANK:
		{
			u8 *pu1Tmp;
			pu1Tmp = (u8 *)pOut;
			*pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_88E);
		}
		break;
	default:
		{
			u8 *pu1Tmp;
			pu1Tmp = (u8 *)pOut;
			*pu1Tmp = 0;
		}
		break;
	}
}

static void Hal_EFUSEGetEfuseDefinition_Pseudo88E(struct adapter *pAdapter, u8 efuseType, u8 type, void *pOut)
{
	switch (type) {
	case TYPE_EFUSE_MAX_SECTION:
		{
			u8 *pMax_section;
			pMax_section = (u8 *)pOut;
			*pMax_section = EFUSE_MAX_SECTION_88E;
		}
		break;
	case TYPE_EFUSE_REAL_CONTENT_LEN:
		{
			u16 *pu2Tmp;
			pu2Tmp = (u16 *)pOut;
			*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
		}
		break;
	case TYPE_EFUSE_CONTENT_LEN_BANK:
		{
			u16 *pu2Tmp;
			pu2Tmp = (u16 *)pOut;
			*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
		}
		break;
	case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
		{
			u16 *pu2Tmp;
			pu2Tmp = (u16 *)pOut;
			*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
		}
		break;
	case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
		{
			u16 *pu2Tmp;
			pu2Tmp = (u16 *)pOut;
			*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
		}
		break;
	case TYPE_EFUSE_MAP_LEN:
		{
			u16 *pu2Tmp;
			pu2Tmp = (u16 *)pOut;
			*pu2Tmp = (u16)EFUSE_MAP_LEN_88E;
		}
		break;
	case TYPE_EFUSE_PROTECT_BYTES_BANK:
		{
			u8 *pu1Tmp;
			pu1Tmp = (u8 *)pOut;
			*pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_88E);
		}
		break;
	default:
		{
			u8 *pu1Tmp;
			pu1Tmp = (u8 *)pOut;
			*pu1Tmp = 0;
		}
		break;
	}
}

static void rtl8188e_EFUSE_GetEfuseDefinition(struct adapter *pAdapter, u8 efuseType, u8 type, void *pOut, bool bPseudoTest)
{
	if (bPseudoTest)
		Hal_EFUSEGetEfuseDefinition_Pseudo88E(pAdapter, efuseType, type, pOut);
	else
		Hal_EFUSEGetEfuseDefinition88E(pAdapter, efuseType, type, pOut);
}

static u8 Hal_EfuseWordEnableDataWrite(struct adapter *pAdapter, u16 efuse_addr, u8 word_en, u8 *data, bool bPseudoTest)
{
	u16	tmpaddr = 0;
	u16	start_addr = efuse_addr;
	u8 badworden = 0x0F;
	u8 tmpdata[8];

	_rtw_memset((void *)tmpdata, 0xff, PGPKT_DATA_SIZE);

	if (!(word_en&BIT0)) {
		tmpaddr = start_addr;
		efuse_OneByteWrite(pAdapter, start_addr++, data[0], bPseudoTest);
		efuse_OneByteWrite(pAdapter, start_addr++, data[1], bPseudoTest);

		efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[0], bPseudoTest);
		efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[1], bPseudoTest);
		if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
			badworden &= (~BIT0);
	}
	if (!(word_en&BIT1)) {
		tmpaddr = start_addr;
		efuse_OneByteWrite(pAdapter, start_addr++, data[2], bPseudoTest);
		efuse_OneByteWrite(pAdapter, start_addr++, data[3], bPseudoTest);

		efuse_OneByteRead(pAdapter, tmpaddr    , &tmpdata[2], bPseudoTest);
		efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[3], bPseudoTest);
		if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
			badworden &= (~BIT1);
	}
	if (!(word_en&BIT2)) {
		tmpaddr = start_addr;
		efuse_OneByteWrite(pAdapter, start_addr++, data[4], bPseudoTest);
		efuse_OneByteWrite(pAdapter, start_addr++, data[5], bPseudoTest);

		efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[4], bPseudoTest);
		efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[5], bPseudoTest);
		if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
			badworden &= (~BIT2);
	}
	if (!(word_en&BIT3)) {
		tmpaddr = start_addr;
		efuse_OneByteWrite(pAdapter, start_addr++, data[6], bPseudoTest);
		efuse_OneByteWrite(pAdapter, start_addr++, data[7], bPseudoTest);

		efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[6], bPseudoTest);
		efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[7], bPseudoTest);
		if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
			badworden &= (~BIT3);
	}
	return badworden;
}

static u8 Hal_EfuseWordEnableDataWrite_Pseudo(struct adapter *pAdapter, u16 efuse_addr, u8 word_en, u8 *data, bool bPseudoTest)
{
	u8 ret;

	ret = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest);
	return ret;
}

static u8 rtl8188e_Efuse_WordEnableDataWrite(struct adapter *pAdapter, u16 efuse_addr, u8 word_en, u8 *data, bool bPseudoTest)
{
	u8 ret = 0;

	if (bPseudoTest)
		ret = Hal_EfuseWordEnableDataWrite_Pseudo (pAdapter, efuse_addr, word_en, data, bPseudoTest);
	else
		ret = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest);
	return ret;
}

static u16 hal_EfuseGetCurrentSize_8188e(struct adapter *pAdapter, bool bPseudoTest)
{
	int	bContinual = true;
	u16	efuse_addr = 0;
	u8 hoffset = 0, hworden = 0;
	u8 efuse_data, word_cnts = 0;

	if (bPseudoTest)
		efuse_addr = (u16)(fakeEfuseUsedBytes);
	else
		rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);

	while (bContinual &&
	       efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data, bPseudoTest) &&
	       AVAILABLE_EFUSE_ADDR(efuse_addr)) {
		if (efuse_data != 0xFF) {
			if ((efuse_data&0x1F) == 0x0F) {		/* extended header */
				hoffset = efuse_data;
				efuse_addr++;
				efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data, bPseudoTest);
				if ((efuse_data & 0x0F) == 0x0F) {
					efuse_addr++;
					continue;
				} else {
					hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
					hworden = efuse_data & 0x0F;
				}
			} else {
				hoffset = (efuse_data>>4) & 0x0F;
				hworden =  efuse_data & 0x0F;
			}
			word_cnts = Efuse_CalculateWordCnts(hworden);
			/* read next header */
			efuse_addr = efuse_addr + (word_cnts*2)+1;
		} else {
			bContinual = false;
		}
	}

	if (bPseudoTest)
		fakeEfuseUsedBytes = efuse_addr;
	else
		rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);

	return efuse_addr;
}

static u16 Hal_EfuseGetCurrentSize_Pseudo(struct adapter *pAdapter, bool bPseudoTest)
{
	u16	ret = 0;

	ret = hal_EfuseGetCurrentSize_8188e(pAdapter, bPseudoTest);
	return ret;
}

static u16 rtl8188e_EfuseGetCurrentSize(struct adapter *pAdapter, u8 efuseType, bool bPseudoTest)
{
	u16	ret = 0;

	if (bPseudoTest)
		ret = Hal_EfuseGetCurrentSize_Pseudo(pAdapter, bPseudoTest);
	else
		ret = hal_EfuseGetCurrentSize_8188e(pAdapter, bPseudoTest);
	return ret;
}

static int hal_EfusePgPacketRead_8188e(struct adapter *pAdapter, u8 offset, u8 *data, bool bPseudoTest)
{
	u8 ReadState = PG_STATE_HEADER;
	int	bContinual = true;
	int	bDataEmpty = true;
	u8 efuse_data, word_cnts = 0;
	u16	efuse_addr = 0;
	u8 hoffset = 0, hworden = 0;
	u8 tmpidx = 0;
	u8 tmpdata[8];
	u8 max_section = 0;
	u8 tmp_header = 0;

	EFUSE_GetEfuseDefinition(pAdapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, (void *)&max_section, bPseudoTest);

	if (data == NULL)
		return false;
	if (offset > max_section)
		return false;

	_rtw_memset((void *)data, 0xff, sizeof(u8)*PGPKT_DATA_SIZE);
	_rtw_memset((void *)tmpdata, 0xff, sizeof(u8)*PGPKT_DATA_SIZE);

	/*  <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
	/*  Skip dummy parts to prevent unexpected data read from Efuse. */
	/*  By pass right now. 2009.02.19. */
	while (bContinual && AVAILABLE_EFUSE_ADDR(efuse_addr)) {
		/*   Header Read ------------- */
		if (ReadState & PG_STATE_HEADER) {
			if (efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
				if (EXT_HEADER(efuse_data)) {
					tmp_header = efuse_data;
					efuse_addr++;
					efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data, bPseudoTest);
					if (!ALL_WORDS_DISABLED(efuse_data)) {
						hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
						hworden = efuse_data & 0x0F;
					} else {
						DBG_88E("Error, All words disabled\n");
						efuse_addr++;
						continue;
					}
				} else {
					hoffset = (efuse_data>>4) & 0x0F;
					hworden =  efuse_data & 0x0F;
				}
				word_cnts = Efuse_CalculateWordCnts(hworden);
				bDataEmpty = true;

				if (hoffset == offset) {
					for (tmpidx = 0; tmpidx < word_cnts*2; tmpidx++) {
						if (efuse_OneByteRead(pAdapter, efuse_addr+1+tmpidx, &efuse_data, bPseudoTest)) {
							tmpdata[tmpidx] = efuse_data;
							if (efuse_data != 0xff)
								bDataEmpty = false;
						}
					}
					if (bDataEmpty == false) {
						ReadState = PG_STATE_DATA;
					} else {/* read next header */
						efuse_addr = efuse_addr + (word_cnts*2)+1;
						ReadState = PG_STATE_HEADER;
					}
				} else {/* read next header */
					efuse_addr = efuse_addr + (word_cnts*2)+1;
					ReadState = PG_STATE_HEADER;
				}
			} else {
				bContinual = false;
			}
		} else if (ReadState & PG_STATE_DATA) {
		/*   Data section Read ------------- */
			efuse_WordEnableDataRead(hworden, tmpdata, data);
			efuse_addr = efuse_addr + (word_cnts*2)+1;
			ReadState = PG_STATE_HEADER;
		}

	}

	if ((data[0] == 0xff) && (data[1] == 0xff) && (data[2] == 0xff)  && (data[3] == 0xff) &&
	    (data[4] == 0xff) && (data[5] == 0xff) && (data[6] == 0xff)  && (data[7] == 0xff))
		return false;
	else
		return true;
}

static int Hal_EfusePgPacketRead(struct adapter *pAdapter, u8 offset, u8 *data, bool bPseudoTest)
{
	int	ret;

	ret = hal_EfusePgPacketRead_8188e(pAdapter, offset, data, bPseudoTest);
	return ret;
}

static int Hal_EfusePgPacketRead_Pseudo(struct adapter *pAdapter, u8 offset, u8 *data, bool bPseudoTest)
{
	int	ret;

	ret = hal_EfusePgPacketRead_8188e(pAdapter, offset, data, bPseudoTest);
	return ret;
}

static int rtl8188e_Efuse_PgPacketRead(struct adapter *pAdapter, u8 offset, u8 *data, bool bPseudoTest)
{
	int	ret;

	if (bPseudoTest)
		ret = Hal_EfusePgPacketRead_Pseudo (pAdapter, offset, data, bPseudoTest);
	else
		ret = Hal_EfusePgPacketRead(pAdapter, offset, data, bPseudoTest);
	return ret;
}

static bool hal_EfuseFixHeaderProcess(struct adapter *pAdapter, u8 efuseType, struct pgpkt *pFixPkt, u16 *pAddr, bool bPseudoTest)
{
	u8 originaldata[8], badworden = 0;
	u16	efuse_addr = *pAddr;
	u32	PgWriteSuccess = 0;

	_rtw_memset((void *)originaldata, 0xff, 8);

	if (Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata, bPseudoTest)) {
		/* check if data exist */
		badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pFixPkt->word_en, originaldata, bPseudoTest);

		if (badworden != 0xf) {	/*  write fail */
			PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata, bPseudoTest);

			if (!PgWriteSuccess)
				return false;
			else
				efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
		} else {
			efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) + 1;
		}
	} else {
		efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) + 1;
	}
	*pAddr = efuse_addr;
	return true;
}

static bool hal_EfusePgPacketWrite2ByteHeader(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt, bool bPseudoTest)
{
	bool bRet = false;
	u16	efuse_addr = *pAddr, efuse_max_available_len = 0;
	u8 pg_header = 0, tmp_header = 0, pg_header_temp = 0;
	u8 repeatcnt = 0;

	EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, (void *)&efuse_max_available_len, bPseudoTest);

	while (efuse_addr < efuse_max_available_len) {
		pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
		efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
		efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);

		while (tmp_header == 0xFF) {
			if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
				return false;

			efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
			efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
		}

		/* to write ext_header */
		if (tmp_header == pg_header) {
			efuse_addr++;
			pg_header_temp = pg_header;
			pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;

			efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
			efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);

			while (tmp_header == 0xFF) {
				if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
					return false;

				efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
				efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
			}

			if ((tmp_header & 0x0F) == 0x0F) {	/* word_en PG fail */
				if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
					return false;
				} else {
					efuse_addr++;
					continue;
				}
			} else if (pg_header != tmp_header) {	/* offset PG fail */
				struct pgpkt	fixPkt;
				fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1);
				fixPkt.word_en = tmp_header & 0x0F;
				fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
				if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
					return false;
			} else {
				bRet = true;
				break;
			}
		} else if ((tmp_header & 0x1F) == 0x0F) {		/* wrong extended header */
			efuse_addr += 2;
			continue;
		}
	}

	*pAddr = efuse_addr;
	return bRet;
}

static bool hal_EfusePgPacketWrite1ByteHeader(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt, bool bPseudoTest)
{
	bool bRet = false;
	u8 pg_header = 0, tmp_header = 0;
	u16	efuse_addr = *pAddr;
	u8 repeatcnt = 0;

	pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;

	efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
	efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);

	while (tmp_header == 0xFF) {
		if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
			return false;
		efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
		efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
	}

	if (pg_header == tmp_header) {
		bRet = true;
	} else {
		struct pgpkt	fixPkt;
		fixPkt.offset = (tmp_header>>4) & 0x0F;
		fixPkt.word_en = tmp_header & 0x0F;
		fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
		if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
			return false;
	}

	*pAddr = efuse_addr;
	return bRet;
}

static bool hal_EfusePgPacketWriteData(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt, bool bPseudoTest)
{
	u16	efuse_addr = *pAddr;
	u8 badworden = 0;
	u32	PgWriteSuccess = 0;

	badworden = 0x0f;
	badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
	if (badworden == 0x0F) {
		/*  write ok */
		return true;
	} else {
		/* reorganize other pg packet */
		PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
		if (!PgWriteSuccess)
			return false;
		else
			return true;
	}
}

static bool
hal_EfusePgPacketWriteHeader(
				struct adapter *pAdapter,
				u8 efuseType,
				u16				*pAddr,
				struct pgpkt *pTargetPkt,
				bool bPseudoTest)
{
	bool bRet = false;

	if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
		bRet = hal_EfusePgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
	else
		bRet = hal_EfusePgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);

	return bRet;
}

static bool wordEnMatched(struct pgpkt *pTargetPkt, struct pgpkt *pCurPkt,
			  u8 *pWden)
{
	u8 match_word_en = 0x0F;	/*  default all words are disabled */

	/*  check if the same words are enabled both target and current PG packet */
	if (((pTargetPkt->word_en & BIT0) == 0) &&
	    ((pCurPkt->word_en & BIT0) == 0))
		match_word_en &= ~BIT0;				/*  enable word 0 */
	if (((pTargetPkt->word_en & BIT1) == 0) &&
	    ((pCurPkt->word_en & BIT1) == 0))
		match_word_en &= ~BIT1;				/*  enable word 1 */
	if (((pTargetPkt->word_en & BIT2) == 0) &&
	    ((pCurPkt->word_en & BIT2) == 0))
		match_word_en &= ~BIT2;				/*  enable word 2 */
	if (((pTargetPkt->word_en & BIT3) == 0) &&
	    ((pCurPkt->word_en & BIT3) == 0))
		match_word_en &= ~BIT3;				/*  enable word 3 */

	*pWden = match_word_en;

	if (match_word_en != 0xf)
		return true;
	else
		return false;
}

static bool hal_EfuseCheckIfDatafollowed(struct adapter *pAdapter, u8 word_cnts, u16 startAddr, bool bPseudoTest)
{
	bool bRet = false;
	u8 i, efuse_data;

	for (i = 0; i < (word_cnts*2); i++) {
		if (efuse_OneByteRead(pAdapter, (startAddr+i), &efuse_data, bPseudoTest) && (efuse_data != 0xFF))
			bRet = true;
	}
	return bRet;
}

static bool hal_EfusePartialWriteCheck(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt, bool bPseudoTest)
{
	bool bRet = false;
	u8 i, efuse_data = 0, cur_header = 0;
	u8 matched_wden = 0, badworden = 0;
	u16	startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
	struct pgpkt curPkt;

	EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, (void *)&efuse_max_available_len, bPseudoTest);
	EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_REAL_CONTENT_LEN, (void *)&efuse_max, bPseudoTest);

	if (efuseType == EFUSE_WIFI) {
		if (bPseudoTest) {
			startAddr = (u16)(fakeEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN);
		} else {
			rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
			startAddr %= EFUSE_REAL_CONTENT_LEN;
		}
	} else {
		if (bPseudoTest)
			startAddr = (u16)(fakeBTEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN);
		else
			startAddr = (u16)(BTEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN);
	}

	while (1) {
		if (startAddr >= efuse_max_available_len) {
			bRet = false;
			break;
		}

		if (efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
			if (EXT_HEADER(efuse_data)) {
				cur_header = efuse_data;
				startAddr++;
				efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest);
				if (ALL_WORDS_DISABLED(efuse_data)) {
					bRet = false;
					break;
				} else {
					curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
					curPkt.word_en = efuse_data & 0x0F;
				}
			} else {
				cur_header  =  efuse_data;
				curPkt.offset = (cur_header>>4) & 0x0F;
				curPkt.word_en = cur_header & 0x0F;
			}

			curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
			/*  if same header is found but no data followed */
			/*  write some part of data followed by the header. */
			if ((curPkt.offset == pTargetPkt->offset) &&
			    (!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr+1, bPseudoTest)) &&
			    wordEnMatched(pTargetPkt, &curPkt, &matched_wden)) {
				/*  Here to write partial data */
				badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
				if (badworden != 0x0F) {
					u32	PgWriteSuccess = 0;
					/*  if write fail on some words, write these bad words again */

					PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);

					if (!PgWriteSuccess) {
						bRet = false;	/*  write fail, return */
						break;
					}
				}
				/*  partial write ok, update the target packet for later use */
				for (i = 0; i < 4; i++) {
					if ((matched_wden & (0x1<<i)) == 0)	/*  this word has been written */
						pTargetPkt->word_en |= (0x1<<i);	/*  disable the word */
				}
				pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
			}
			/*  read from next header */
			startAddr = startAddr + (curPkt.word_cnts*2) + 1;
		} else {
			/*  not used header, 0xff */
			*pAddr = startAddr;
			bRet = true;
			break;
		}
	}
	return bRet;
}

static bool
hal_EfusePgCheckAvailableAddr(
		struct adapter *pAdapter,
		u8 efuseType,
		bool bPseudoTest
	)
{
	u16	efuse_max_available_len = 0;

	/* Change to check TYPE_EFUSE_MAP_LEN , because 8188E raw 256, logic map over 256. */
	EFUSE_GetEfuseDefinition(pAdapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (void *)&efuse_max_available_len, false);

	if (Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= efuse_max_available_len)
		return false;
	return true;
}

static void hal_EfuseConstructPGPkt(u8 offset, u8 word_en, u8 *pData, struct pgpkt *pTargetPkt)
{
	_rtw_memset((void *)pTargetPkt->data, 0xFF, sizeof(u8)*8);
	pTargetPkt->offset = offset;
	pTargetPkt->word_en = word_en;
	efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
	pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
}

static bool hal_EfusePgPacketWrite_8188e(struct adapter *pAdapter, u8 offset, u8 word_en, u8 *pData, bool bPseudoTest)
{
	struct pgpkt	targetPkt;
	u16			startAddr = 0;
	u8 efuseType = EFUSE_WIFI;

	if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest))
		return false;

	hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);

	if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
		return false;

	if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
		return false;

	if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
		return false;

	return true;
}

static int Hal_EfusePgPacketWrite_Pseudo(struct adapter *pAdapter, u8 offset, u8 word_en, u8 *data, bool bPseudoTest)
{
	int ret;

	ret = hal_EfusePgPacketWrite_8188e(pAdapter, offset, word_en, data, bPseudoTest);
	return ret;
}

static int Hal_EfusePgPacketWrite(struct adapter *pAdapter, u8 offset, u8 word_en, u8 *data, bool bPseudoTest)
{
	int	ret = 0;
	ret = hal_EfusePgPacketWrite_8188e(pAdapter, offset, word_en, data, bPseudoTest);

	return ret;
}

static int rtl8188e_Efuse_PgPacketWrite(struct adapter *pAdapter, u8 offset, u8 word_en, u8 *data, bool bPseudoTest)
{
	int	ret;

	if (bPseudoTest)
		ret = Hal_EfusePgPacketWrite_Pseudo (pAdapter, offset, word_en, data, bPseudoTest);
	else
		ret = Hal_EfusePgPacketWrite(pAdapter, offset, word_en, data, bPseudoTest);
	return ret;
}

static struct HAL_VERSION ReadChipVersion8188E(struct adapter *padapter)
{
	u32				value32;
	struct HAL_VERSION		ChipVersion;
	struct hal_data_8188e	*pHalData;

	pHalData = GET_HAL_DATA(padapter);

	value32 = rtw_read32(padapter, REG_SYS_CFG);
	ChipVersion.ICType = CHIP_8188E;
	ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);

	ChipVersion.RFType = RF_TYPE_1T1R;
	ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
	ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /*  IC version (CUT) */

	/*  For regulator mode. by tynli. 2011.01.14 */
	pHalData->RegulatorMode = ((value32 & TRP_BT_EN) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);

	ChipVersion.ROMVer = 0;	/*  ROM code version. */
	pHalData->MultiFunc = RT_MULTI_FUNC_NONE;

	dump_chip_info(ChipVersion);

	pHalData->VersionID = ChipVersion;

	if (IS_1T2R(ChipVersion)) {
		pHalData->rf_type = RF_1T2R;
		pHalData->NumTotalRFPath = 2;
	} else if (IS_2T2R(ChipVersion)) {
		pHalData->rf_type = RF_2T2R;
		pHalData->NumTotalRFPath = 2;
	} else{
		pHalData->rf_type = RF_1T1R;
		pHalData->NumTotalRFPath = 1;
	}

	MSG_88E("RF_Type is %x!!\n", pHalData->rf_type);

	return ChipVersion;
}

static void rtl8188e_read_chip_version(struct adapter *padapter)
{
	ReadChipVersion8188E(padapter);
}

static void rtl8188e_GetHalODMVar(struct adapter *Adapter, enum hal_odm_variable eVariable, void *pValue1, bool bSet)
{
}

static void rtl8188e_SetHalODMVar(struct adapter *Adapter, enum hal_odm_variable eVariable, void *pValue1, bool bSet)
{
	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);
	struct odm_dm_struct *podmpriv = &pHalData->odmpriv;
	switch (eVariable) {
	case HAL_ODM_STA_INFO:
		{
			struct sta_info *psta = (struct sta_info *)pValue1;
			if (bSet) {
				DBG_88E("### Set STA_(%d) info\n", psta->mac_id);
				ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, psta);
				ODM_RAInfo_Init(podmpriv, psta->mac_id);
			} else {
				DBG_88E("### Clean STA_(%d) info\n", psta->mac_id);
				ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, NULL);
		       }
		}
		break;
	case HAL_ODM_P2P_STATE:
			ODM_CmnInfoUpdate(podmpriv, ODM_CMNINFO_WIFI_DIRECT, bSet);
		break;
	case HAL_ODM_WIFI_DISPLAY_STATE:
			ODM_CmnInfoUpdate(podmpriv, ODM_CMNINFO_WIFI_DISPLAY, bSet);
		break;
	default:
		break;
	}
}

void rtl8188e_clone_haldata(struct adapter *dst_adapter, struct adapter *src_adapter)
{
	memcpy(dst_adapter->HalData, src_adapter->HalData, dst_adapter->hal_data_sz);
}

void rtl8188e_start_thread(struct adapter *padapter)
{
}

void rtl8188e_stop_thread(struct adapter *padapter)
{
}

static void hal_notch_filter_8188e(struct adapter *adapter, bool enable)
{
	if (enable) {
		DBG_88E("Enable notch filter\n");
		rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
	} else {
		DBG_88E("Disable notch filter\n");
		rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
	}
}
void rtl8188e_set_hal_ops(struct hal_ops *pHalFunc)
{
	pHalFunc->free_hal_data = &rtl8188e_free_hal_data;

	pHalFunc->dm_init = &rtl8188e_init_dm_priv;

	pHalFunc->read_chip_version = &rtl8188e_read_chip_version;

	pHalFunc->set_bwmode_handler = &PHY_SetBWMode8188E;
	pHalFunc->set_channel_handler = &PHY_SwChnl8188E;

	pHalFunc->hal_dm_watchdog = &rtl8188e_HalDmWatchDog;

	pHalFunc->Add_RateATid = &rtl8188e_Add_RateATid;
	pHalFunc->run_thread = &rtl8188e_start_thread;
	pHalFunc->cancel_thread = &rtl8188e_stop_thread;

	pHalFunc->AntDivBeforeLinkHandler = &AntDivBeforeLink8188E;
	pHalFunc->AntDivCompareHandler = &AntDivCompare8188E;
	pHalFunc->read_bbreg = &rtl8188e_PHY_QueryBBReg;
	pHalFunc->write_bbreg = &rtl8188e_PHY_SetBBReg;
	pHalFunc->read_rfreg = &rtl8188e_PHY_QueryRFReg;
	pHalFunc->write_rfreg = &rtl8188e_PHY_SetRFReg;

	/*  Efuse related function */
	pHalFunc->EfusePowerSwitch = &rtl8188e_EfusePowerSwitch;
	pHalFunc->ReadEFuse = &rtl8188e_ReadEFuse;
	pHalFunc->EFUSEGetEfuseDefinition = &rtl8188e_EFUSE_GetEfuseDefinition;
	pHalFunc->EfuseGetCurrentSize = &rtl8188e_EfuseGetCurrentSize;
	pHalFunc->Efuse_PgPacketRead = &rtl8188e_Efuse_PgPacketRead;
	pHalFunc->Efuse_PgPacketWrite = &rtl8188e_Efuse_PgPacketWrite;
	pHalFunc->Efuse_WordEnableDataWrite = &rtl8188e_Efuse_WordEnableDataWrite;

	pHalFunc->sreset_init_value = &sreset_init_value;
	pHalFunc->sreset_reset_value = &sreset_reset_value;
	pHalFunc->silentreset = &rtl8188e_silentreset_for_specific_platform;
	pHalFunc->sreset_xmit_status_check = &rtl8188e_sreset_xmit_status_check;
	pHalFunc->sreset_linked_status_check  = &rtl8188e_sreset_linked_status_check;
	pHalFunc->sreset_get_wifi_status  = &sreset_get_wifi_status;

	pHalFunc->GetHalODMVarHandler = &rtl8188e_GetHalODMVar;
	pHalFunc->SetHalODMVarHandler = &rtl8188e_SetHalODMVar;

	pHalFunc->IOL_exec_cmds_sync = &rtl8188e_IOL_exec_cmds_sync;

	pHalFunc->hal_notch_filter = &hal_notch_filter_8188e;
}

u8 GetEEPROMSize8188E(struct adapter *padapter)
{
	u8 size = 0;
	u32	cr;

	cr = rtw_read16(padapter, REG_9346CR);
	/*  6: EEPROM used is 93C46, 4: boot from E-Fuse. */
	size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;

	MSG_88E("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46");

	return size;
}

/*  */
/*  */
/*  LLT R/W/Init function */
/*  */
/*  */
static s32 _LLTWrite(struct adapter *padapter, u32 address, u32 data)
{
	s32	status = _SUCCESS;
	s32	count = 0;
	u32	value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
	u16	LLTReg = REG_LLT_INIT;

	rtw_write32(padapter, LLTReg, value);

	/* polling */
	do {
		value = rtw_read32(padapter, LLTReg);
		if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
			break;

		if (count > POLLING_LLT_THRESHOLD) {
			RT_TRACE(_module_hal_init_c_, _drv_err_, ("Failed to polling write LLT done at address %d!\n", address));
			status = _FAIL;
			break;
		}
	} while (count++);

	return status;
}

s32 InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy)
{
	s32	status = _FAIL;
	u32	i;
	u32	Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER;/*  176, 22k */

	if (rtw_IOL_applied(padapter)) {
		status = iol_InitLLTTable(padapter, txpktbuf_bndy);
	} else {
		for (i = 0; i < (txpktbuf_bndy - 1); i++) {
			status = _LLTWrite(padapter, i, i + 1);
			if (_SUCCESS != status)
				return status;
		}

		/*  end of list */
		status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF);
		if (_SUCCESS != status)
			return status;

		/*  Make the other pages as ring buffer */
		/*  This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer. */
		/*  Otherwise used as local loopback buffer. */
		for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) {
			status = _LLTWrite(padapter, i, (i + 1));
			if (_SUCCESS != status)
				return status;
		}

		/*  Let last entry point to the start entry of ring buffer */
		status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy);
		if (_SUCCESS != status) {
			return status;
		}
	}

	return status;
}

void
Hal_InitPGData88E(struct adapter *padapter)
{
	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);

	if (!pEEPROM->bautoload_fail_flag) { /*  autoload OK. */
		if (!is_boot_from_eeprom(padapter)) {
			/*  Read EFUSE real map to shadow. */
			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
		}
	} else {/* autoload fail */
		RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n"));
		/* update to default value 0xFF */
		if (!is_boot_from_eeprom(padapter))
			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
	}
}

void
Hal_EfuseParseIDCode88E(
		struct adapter *padapter,
		u8 *hwinfo
	)
{
	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
	u16			EEPROMId;

	/*  Checl 0x8129 again for making sure autoload status!! */
	EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
	if (EEPROMId != RTL_EEPROM_ID) {
		DBG_88E("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
		pEEPROM->bautoload_fail_flag = true;
	} else {
		pEEPROM->bautoload_fail_flag = false;
	}

	DBG_88E("EEPROM ID = 0x%04x\n", EEPROMId);
}

static void Hal_ReadPowerValueFromPROM_8188E(struct txpowerinfo24g *pwrInfo24G, u8 *PROMContent, bool AutoLoadFail)
{
	u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_88E, group, TxCount = 0;

	_rtw_memset(pwrInfo24G, 0, sizeof(struct txpowerinfo24g));

	if (AutoLoadFail) {
		for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
			/* 2.4G default value */
			for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
				pwrInfo24G->IndexCCK_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
				pwrInfo24G->IndexBW40_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
			}
			for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
				if (TxCount == 0) {
					pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
					pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
				} else {
					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
					pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
					pwrInfo24G->CCK_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
				}
			}
		}
		return;
	}

	for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
		/* 2.4G default value */
		for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
			pwrInfo24G->IndexCCK_Base[rfPath][group] =	PROMContent[eeAddr++];
			if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
				pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
		}
		for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
			pwrInfo24G->IndexBW40_Base[rfPath][group] =	PROMContent[eeAddr++];
			if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
				pwrInfo24G->IndexBW40_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
		}
		for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
			if (TxCount == 0) {
				pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
				if (PROMContent[eeAddr] == 0xFF) {
					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_HT20_DIFF;
				} else {
					pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
				}

				if (PROMContent[eeAddr] == 0xFF) {
					pwrInfo24G->OFDM_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_24G_OFDM_DIFF;
				} else {
					pwrInfo24G->OFDM_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0x0f);
					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
				}
				pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
				eeAddr++;
			} else {
				if (PROMContent[eeAddr] == 0xFF) {
					pwrInfo24G->BW40_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
				} else {
					pwrInfo24G->BW40_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0xf0)>>4;
					if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
						pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
				}

				if (PROMContent[eeAddr] == 0xFF) {
					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
				} else {
					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0x0f);
					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
				}
				eeAddr++;

				if (PROMContent[eeAddr] == 0xFF) {
					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
				} else {
					pwrInfo24G->OFDM_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0xf0)>>4;
					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
				}

				if (PROMContent[eeAddr] == 0xFF) {
					pwrInfo24G->CCK_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
				} else {
					pwrInfo24G->CCK_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0x0f);
					if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
						pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
				}
				eeAddr++;
			}
		}
	}
}

static u8 Hal_GetChnlGroup88E(u8 chnl, u8 *pGroup)
{
	u8 bIn24G = true;

	if (chnl <= 14) {
		bIn24G = true;

		if (chnl < 3)			/*  Channel 1-2 */
			*pGroup = 0;
		else if (chnl < 6)		/*  Channel 3-5 */
			*pGroup = 1;
		else	 if (chnl < 9)		/*  Channel 6-8 */
			*pGroup = 2;
		else if (chnl < 12)		/*  Channel 9-11 */
			*pGroup = 3;
		else if (chnl < 14)		/*  Channel 12-13 */
			*pGroup = 4;
		else if (chnl == 14)		/*  Channel 14 */
			*pGroup = 5;
	} else {
		bIn24G = false;

		if (chnl <= 40)
			*pGroup = 0;
		else if (chnl <= 48)
			*pGroup = 1;
		else	 if (chnl <= 56)
			*pGroup = 2;
		else if (chnl <= 64)
			*pGroup = 3;
		else if (chnl <= 104)
			*pGroup = 4;
		else if (chnl <= 112)
			*pGroup = 5;
		else if (chnl <= 120)
			*pGroup = 5;
		else if (chnl <= 128)
			*pGroup = 6;
		else if (chnl <= 136)
			*pGroup = 7;
		else if (chnl <= 144)
			*pGroup = 8;
		else if (chnl <= 153)
			*pGroup = 9;
		else if (chnl <= 161)
			*pGroup = 10;
		else if (chnl <= 177)
			*pGroup = 11;
	}
	return bIn24G;
}

void Hal_ReadPowerSavingMode88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
{
	if (AutoLoadFail) {
		padapter->pwrctrlpriv.bHWPowerdown = false;
		padapter->pwrctrlpriv.bSupportRemoteWakeup = false;
	} else {
		/* hw power down mode selection , 0:rf-off / 1:power down */

		if (padapter->registrypriv.hwpdn_mode == 2)
			padapter->pwrctrlpriv.bHWPowerdown = (hwinfo[EEPROM_RF_FEATURE_OPTION_88E] & BIT4);
		else
			padapter->pwrctrlpriv.bHWPowerdown = padapter->registrypriv.hwpdn_mode;

		/*  decide hw if support remote wakeup function */
		/*  if hw supported, 8051 (SIE) will generate WeakUP signal(D+/D- toggle) when autoresume */
		padapter->pwrctrlpriv.bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT1) ? true : false;

		DBG_88E("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) , bSupportRemoteWakeup(%x)\n", __func__,
		padapter->pwrctrlpriv.bHWPwrPindetect, padapter->pwrctrlpriv.bHWPowerdown , padapter->pwrctrlpriv.bSupportRemoteWakeup);

		DBG_88E("### PS params =>  power_mgnt(%x), usbss_enable(%x) ###\n", padapter->registrypriv.power_mgnt, padapter->registrypriv.usbss_enable);
	}
}

void Hal_ReadTxPowerInfo88E(struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail)
{
	struct hal_data_8188e	*pHalData = GET_HAL_DATA(padapter);
	struct txpowerinfo24g pwrInfo24G;
	u8 rfPath, ch, group;
	u8 bIn24G, TxCount;

	Hal_ReadPowerValueFromPROM_8188E(&pwrInfo24G, PROMContent, AutoLoadFail);

	if (!AutoLoadFail)
		pHalData->bTXPowerDataReadFromEEPORM = true;

	for (rfPath = 0; rfPath < pHalData->NumTotalRFPath; rfPath++) {
		for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
			bIn24G = Hal_GetChnlGroup88E(ch, &group);
			if (bIn24G) {
				pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
				if (ch == 14)
					pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][4];
				else
					pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
			}
			if (bIn24G) {
				DBG_88E("======= Path %d, Channel %d =======\n", rfPath, ch);
				DBG_88E("Index24G_CCK_Base[%d][%d] = 0x%x\n", rfPath, ch , pHalData->Index24G_CCK_Base[rfPath][ch]);
				DBG_88E("Index24G_BW40_Base[%d][%d] = 0x%x\n", rfPath, ch , pHalData->Index24G_BW40_Base[rfPath][ch]);
			}
		}
		for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
			pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount];
			pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount];
			pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount];
			pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount];
			DBG_88E("======= TxCount %d =======\n", TxCount);
			DBG_88E("CCK_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->CCK_24G_Diff[rfPath][TxCount]);
			DBG_88E("OFDM_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->OFDM_24G_Diff[rfPath][TxCount]);
			DBG_88E("BW20_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->BW20_24G_Diff[rfPath][TxCount]);
			DBG_88E("BW40_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->BW40_24G_Diff[rfPath][TxCount]);
		}
	}

	/*  2010/10/19 MH Add Regulator recognize for CU. */
	if (!AutoLoadFail) {
		pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x7);	/* bit0~2 */
		if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
			pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7);	/* bit0~2 */
	} else {
		pHalData->EEPROMRegulatory = 0;
	}
	DBG_88E("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory);
}

void Hal_EfuseParseXtal_8188E(struct adapter *pAdapter, u8 *hwinfo, bool AutoLoadFail)
{
	struct hal_data_8188e	*pHalData = GET_HAL_DATA(pAdapter);

	if (!AutoLoadFail) {
		pHalData->CrystalCap = hwinfo[EEPROM_XTAL_88E];
		if (pHalData->CrystalCap == 0xFF)
			pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E;
	} else {
		pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E;
	}
	DBG_88E("CrystalCap: 0x%2x\n", pHalData->CrystalCap);
}

void Hal_EfuseParseBoardType88E(struct adapter *pAdapter, u8 *hwinfo, bool AutoLoadFail)
{
	struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter);

	if (!AutoLoadFail)
		pHalData->BoardType = ((hwinfo[EEPROM_RF_BOARD_OPTION_88E]&0xE0)>>5);
	else
		pHalData->BoardType = 0;
	DBG_88E("Board Type: 0x%2x\n", pHalData->BoardType);
}

void Hal_EfuseParseEEPROMVer88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
{
	struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter);

	if (!AutoLoadFail) {
		pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_88E];
		if (pHalData->EEPROMVersion == 0xFF)
			pHalData->EEPROMVersion = EEPROM_Default_Version;
	} else {
		pHalData->EEPROMVersion = 1;
	}
	RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
		 ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n",
		 pHalData->EEPROMVersion));
}

void rtl8188e_EfuseParseChnlPlan(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
{
	padapter->mlmepriv.ChannelPlan =
		 hal_com_get_channel_plan(padapter,
					  hwinfo ? hwinfo[EEPROM_ChannelPlan_88E] : 0xFF,
					  padapter->registrypriv.channel_plan,
					  RT_CHANNEL_DOMAIN_WORLD_WIDE_13, AutoLoadFail);

	DBG_88E("mlmepriv.ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan);
}

void Hal_EfuseParseCustomerID88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
{
	struct hal_data_8188e	*pHalData = GET_HAL_DATA(padapter);

	if (!AutoLoadFail) {
		pHalData->EEPROMCustomerID = hwinfo[EEPROM_CUSTOMERID_88E];
	} else {
		pHalData->EEPROMCustomerID = 0;
		pHalData->EEPROMSubCustomerID = 0;
	}
	DBG_88E("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID);
}

void Hal_ReadAntennaDiversity88E(struct adapter *pAdapter, u8 *PROMContent, bool AutoLoadFail)
{
	struct hal_data_8188e	*pHalData = GET_HAL_DATA(pAdapter);
	struct registry_priv	*registry_par = &pAdapter->registrypriv;

	if (!AutoLoadFail) {
		/*  Antenna Diversity setting. */
		if (registry_par->antdiv_cfg == 2) { /*  2:By EFUSE */
			pHalData->AntDivCfg = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x18)>>3;
			if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
				pHalData->AntDivCfg = (EEPROM_DEFAULT_BOARD_OPTION&0x18)>>3;
		} else {
			pHalData->AntDivCfg = registry_par->antdiv_cfg;  /*  0:OFF , 1:ON, 2:By EFUSE */
		}

		if (registry_par->antdiv_type == 0) {
			/* If TRxAntDivType is AUTO in advanced setting, use EFUSE value instead. */
			pHalData->TRxAntDivType = PROMContent[EEPROM_RF_ANTENNA_OPT_88E];
			if (pHalData->TRxAntDivType == 0xFF)
				pHalData->TRxAntDivType = CG_TRX_HW_ANTDIV; /*  For 88EE, 1Tx and 1RxCG are fixed.(1Ant, Tx and RxCG are both on aux port) */
		} else {
			pHalData->TRxAntDivType = registry_par->antdiv_type;
		}

		if (pHalData->TRxAntDivType == CG_TRX_HW_ANTDIV || pHalData->TRxAntDivType == CGCS_RX_HW_ANTDIV)
			pHalData->AntDivCfg = 1; /*  0xC1[3] is ignored. */
	} else {
		pHalData->AntDivCfg = 0;
		pHalData->TRxAntDivType = pHalData->TRxAntDivType; /*  The value in the driver setting of device manager. */
	}
	DBG_88E("EEPROM : AntDivCfg = %x, TRxAntDivType = %x\n", pHalData->AntDivCfg, pHalData->TRxAntDivType);
}

void Hal_ReadThermalMeter_88E(struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail)
{
	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);

	/*  ThermalMeter from EEPROM */
	if (!AutoloadFail)
		pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_88E];
	else
		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E;

	if (pHalData->EEPROMThermalMeter == 0xff || AutoloadFail) {
		pHalData->bAPKThermalMeterIgnore = true;
		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E;
	}
	DBG_88E("ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter);
}

void Hal_InitChannelPlan(struct adapter *padapter)
{
}

bool HalDetectPwrDownMode88E(struct adapter *Adapter)
{
	u8 tmpvalue = 0;
	struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
	struct pwrctrl_priv *pwrctrlpriv = &Adapter->pwrctrlpriv;

	EFUSE_ShadowRead(Adapter, 1, EEPROM_RF_FEATURE_OPTION_88E, (u32 *)&tmpvalue);

	/*  2010/08/25 MH INF priority > PDN Efuse value. */
	if (tmpvalue & BIT(4) && pwrctrlpriv->reg_pdnmode)
		pHalData->pwrdown = true;
	else
		pHalData->pwrdown = false;

	DBG_88E("HalDetectPwrDownMode(): PDN =%d\n", pHalData->pwrdown);

	return pHalData->pwrdown;
}	/*  HalDetectPwrDownMode */

/*  This function is used only for 92C to set REG_BCN_CTRL(0x550) register. */
/*  We just reserve the value of the register in variable pHalData->RegBcnCtrlVal and then operate */
/*  the value of the register via atomic operation. */
/*  This prevents from race condition when setting this register. */
/*  The value of pHalData->RegBcnCtrlVal is initialized in HwConfigureRTL8192CE() function. */

void SetBcnCtrlReg(struct adapter *padapter, u8 SetBits, u8 ClearBits)
{
	struct hal_data_8188e *pHalData;

	pHalData = GET_HAL_DATA(padapter);

	pHalData->RegBcnCtrlVal |= SetBits;
	pHalData->RegBcnCtrlVal &= ~ClearBits;

	rtw_write8(padapter, REG_BCN_CTRL, (u8)pHalData->RegBcnCtrlVal);
}