summaryrefslogblamecommitdiffstats
path: root/drivers/staging/rtlwifi/efuse.c
blob: a7c9e186f2b21709a8326c231f7d39d07519764a (plain) (tree)
1
2
3
4
5
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
                                   



                                                                               









































































































































































































































                                                                                

                                                                     

                       
                                                                             


                                                   

                                                                       































































































































































































































































































































































































































































































































































































































































































                                                                                            
                                            

























                                                                         










































































































































































































































                                                                                  
                   




                                                                               











































































































































                                                                                
// SPDX-License-Identifier: GPL-2.0
/******************************************************************************
 *
 * Copyright(c) 2009-2012  Realtek Corporation.
 *
 * Contact Information:
 * wlanfae <wlanfae@realtek.com>
 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
 * Hsinchu 300, Taiwan.
 *
 * Larry Finger <Larry.Finger@lwfinger.net>
 *
 *****************************************************************************/
#include "wifi.h"
#include "efuse.h"
#include "pci.h"
#include <linux/export.h>

static const u8 MAX_PGPKT_SIZE = 9;
static const u8 PGPKT_DATA_SIZE = 8;
static const int EFUSE_MAX_SIZE = 512;

#define START_ADDRESS		0x1000
#define REG_MCUFWDL		0x0080

static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
	{0, 0, 0, 2},
	{0, 1, 0, 2},
	{0, 2, 0, 2},
	{1, 0, 0, 1},
	{1, 0, 1, 1},
	{1, 1, 0, 1},
	{1, 1, 1, 3},
	{1, 3, 0, 17},
	{3, 3, 1, 48},
	{10, 0, 0, 6},
	{10, 3, 0, 1},
	{10, 3, 1, 1},
	{11, 0, 0, 28}
};

static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
				    u8 *value);
static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
				    u16 *value);
static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
				    u32 *value);
static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
				     u8 value);
static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
				     u16 value);
static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
				     u32 value);
static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
				u8 data);
static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
				u8 *data);
static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
				 u8 word_en, u8 *data);
static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
					u8 *targetdata);
static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
				  u16 efuse_addr, u8 word_en, u8 *data);
static u16 efuse_get_current_size(struct ieee80211_hw *hw);
static u8 efuse_calculate_word_cnts(u8 word_en);

void efuse_initialize(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u8 bytetemp;
	u8 temp;

	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
	temp = bytetemp | 0x20;
	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);

	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
	temp = bytetemp & 0xFE;
	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);

	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
	temp = bytetemp | 0x80;
	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);

	rtl_write_byte(rtlpriv, 0x2F8, 0x3);

	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
}

u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u8 data;
	u8 bytetemp;
	u8 temp;
	u32 k = 0;
	const u32 efuse_len =
		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];

	if (address < efuse_len) {
		temp = address & 0xFF;
		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
			       temp);
		bytetemp = rtl_read_byte(rtlpriv,
					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
			       temp);

		bytetemp = rtl_read_byte(rtlpriv,
					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
		temp = bytetemp & 0x7F;
		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
			       temp);

		bytetemp = rtl_read_byte(rtlpriv,
					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
		while (!(bytetemp & 0x80)) {
			bytetemp =
			   rtl_read_byte(rtlpriv,
					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
			k++;
			if (k == 1000) {
				k = 0;
				break;
			}
		}
		data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
		return data;
	}
	return 0xFF;
}

void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u8 bytetemp;
	u8 temp;
	u32 k = 0;
	const u32 efuse_len =
		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];

	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
		 address, value);

	if (address < efuse_len) {
		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);

		temp = address & 0xFF;
		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
			       temp);
		bytetemp = rtl_read_byte(rtlpriv,
					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);

		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
		rtl_write_byte(rtlpriv,
			       rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);

		bytetemp = rtl_read_byte(rtlpriv,
					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
		temp = bytetemp | 0x80;
		rtl_write_byte(rtlpriv,
			       rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);

		bytetemp = rtl_read_byte(rtlpriv,
					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);

		while (bytetemp & 0x80) {
			bytetemp =
			    rtl_read_byte(rtlpriv,
					  rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
			k++;
			if (k == 100) {
				k = 0;
				break;
			}
		}
	}
}

void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 value32;
	u8 readbyte;
	u16 retry;

	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
		       (_offset & 0xff));
	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
		       ((_offset >> 8) & 0x03) | (readbyte & 0xfc));

	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
		       (readbyte & 0x7f));

	retry = 0;
	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
	while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
		value32 = rtl_read_dword(rtlpriv,
					 rtlpriv->cfg->maps[EFUSE_CTRL]);
		retry++;
	}

	udelay(50);
	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);

	*pbuf = (u8)(value32 & 0xff);
}

void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	u8 *efuse_tbl;
	u8 rtemp8[1];
	u16 efuse_addr = 0;
	u8 offset, wren;
	u8 u1temp = 0;
	u16 i;
	u16 j;
	const u16 efuse_max_section =
		rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
	const u32 efuse_len =
		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
	u16 **efuse_word;
	u16 efuse_utilized = 0;
	u8 efuse_usage;

	if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
			 "%s(): Invalid offset(%#x) with read bytes(%#x)!!\n",
			 __func__, _offset, _size_byte);
		return;
	}

	/* allocate memory for efuse_tbl and efuse_word */
	efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE],
			    GFP_ATOMIC);
	if (!efuse_tbl)
		return;
	efuse_word = kcalloc(EFUSE_MAX_WORD_UNIT, sizeof(u16 *), GFP_ATOMIC);
	if (!efuse_word)
		goto out;
	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
		efuse_word[i] = kcalloc(efuse_max_section, sizeof(u16),
					GFP_ATOMIC);
		if (!efuse_word[i])
			goto done;
	}

	for (i = 0; i < efuse_max_section; i++)
		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
			efuse_word[j][i] = 0xFFFF;

	read_efuse_byte(hw, efuse_addr, rtemp8);
	if (*rtemp8 != 0xFF) {
		efuse_utilized++;
		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
			"Addr=%d\n", efuse_addr);
		efuse_addr++;
	}

	while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
		/*  Check PG header for section num.  */
		if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
			u1temp = ((*rtemp8 & 0xE0) >> 5);
			read_efuse_byte(hw, efuse_addr, rtemp8);

			if ((*rtemp8 & 0x0F) == 0x0F) {
				efuse_addr++;
				read_efuse_byte(hw, efuse_addr, rtemp8);

				if (*rtemp8 != 0xFF &&
				    (efuse_addr < efuse_len)) {
					efuse_addr++;
				}
				continue;
			} else {
				offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
				wren = (*rtemp8 & 0x0F);
				efuse_addr++;
			}
		} else {
			offset = ((*rtemp8 >> 4) & 0x0f);
			wren = (*rtemp8 & 0x0f);
		}

		if (offset < efuse_max_section) {
			RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
				"offset-%d Worden=%x\n", offset, wren);

			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
				if (!(wren & 0x01)) {
					RTPRINT(rtlpriv, FEEPROM,
						EFUSE_READ_ALL,
						"Addr=%d\n", efuse_addr);

					read_efuse_byte(hw, efuse_addr, rtemp8);
					efuse_addr++;
					efuse_utilized++;
					efuse_word[i][offset] =
							 (*rtemp8 & 0xff);

					if (efuse_addr >= efuse_len)
						break;

					RTPRINT(rtlpriv, FEEPROM,
						EFUSE_READ_ALL,
						"Addr=%d\n", efuse_addr);

					read_efuse_byte(hw, efuse_addr, rtemp8);
					efuse_addr++;
					efuse_utilized++;
					efuse_word[i][offset] |=
					    (((u16)*rtemp8 << 8) & 0xff00);

					if (efuse_addr >= efuse_len)
						break;
				}

				wren >>= 1;
			}
		}

		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
			"Addr=%d\n", efuse_addr);
		read_efuse_byte(hw, efuse_addr, rtemp8);
		if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
			efuse_utilized++;
			efuse_addr++;
		}
	}

	for (i = 0; i < efuse_max_section; i++) {
		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
			efuse_tbl[(i * 8) + (j * 2)] =
			    (efuse_word[j][i] & 0xff);
			efuse_tbl[(i * 8) + ((j * 2) + 1)] =
			    ((efuse_word[j][i] >> 8) & 0xff);
		}
	}

	for (i = 0; i < _size_byte; i++)
		pbuf[i] = efuse_tbl[_offset + i];

	rtlefuse->efuse_usedbytes = efuse_utilized;
	efuse_usage = (u8)((efuse_utilized * 100) / efuse_len);
	rtlefuse->efuse_usedpercentage = efuse_usage;
	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
				      (u8 *)&efuse_utilized);
	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
				      &efuse_usage);
done:
	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
		kfree(efuse_word[i]);
	kfree(efuse_word);
out:
	kfree(efuse_tbl);
}

bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	u8 section_idx, i, base;
	u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
	bool wordchanged, result = true;

	for (section_idx = 0; section_idx < 16; section_idx++) {
		base = section_idx * 8;
		wordchanged = false;

		for (i = 0; i < 8; i = i + 2) {
			if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
			     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) ||
			    (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i + 1] !=
			     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i +
								   1])) {
				words_need++;
				wordchanged = true;
			}
		}

		if (wordchanged)
			hdr_num++;
	}

	totalbytes = hdr_num + words_need * 2;
	efuse_used = rtlefuse->efuse_usedbytes;

	if ((totalbytes + efuse_used) >=
	    (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
		result = false;

	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
		 "%s(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
		 __func__, totalbytes, hdr_num, words_need, efuse_used);

	return result;
}

void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
		       u16 offset, u32 *value)
{
	if (type == 1)
		efuse_shadow_read_1byte(hw, offset, (u8 *)value);
	else if (type == 2)
		efuse_shadow_read_2byte(hw, offset, (u16 *)value);
	else if (type == 4)
		efuse_shadow_read_4byte(hw, offset, value);
}

void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
			u32 value)
{
	if (type == 1)
		efuse_shadow_write_1byte(hw, offset, (u8)value);
	else if (type == 2)
		efuse_shadow_write_2byte(hw, offset, (u16)value);
	else if (type == 4)
		efuse_shadow_write_4byte(hw, offset, value);
}

bool efuse_shadow_update(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	u16 i, offset, base;
	u8 word_en = 0x0F;
	u8 first_pg = false;

	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");

	if (!efuse_shadow_update_chk(hw)) {
		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
		memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
		       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
		       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);

		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
			 "efuse out of capacity!!\n");
		return false;
	}
	efuse_power_switch(hw, true, true);

	for (offset = 0; offset < 16; offset++) {
		word_en = 0x0F;
		base = offset * 8;

		for (i = 0; i < 8; i++) {
			if (first_pg) {
				word_en &= ~(BIT(i / 2));

				rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
			} else {
				if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
					word_en &= ~(BIT(i / 2));

					rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
					    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
				}
			}
		}
		if (word_en != 0x0F) {
			u8 tmpdata[8];

			memcpy(tmpdata,
			       &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
			       8);
			RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
				      "U-efuse\n", tmpdata, 8);

			if (!efuse_pg_packet_write(hw, (u8)offset, word_en,
						   tmpdata)) {
				RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
					 "PG section(%#x) fail!!\n", offset);
				break;
			}
		}
	}

	efuse_power_switch(hw, true, false);
	efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);

	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
	       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
	       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);

	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
	return true;
}

void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));

	if (rtlefuse->autoload_failflag)
		memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
		       0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
	else
		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);

	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
	       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
	       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
}

void efuse_force_write_vendor_id(struct ieee80211_hw *hw)
{
	u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };

	efuse_power_switch(hw, true, true);

	efuse_pg_packet_write(hw, 1, 0xD, tmpdata);

	efuse_power_switch(hw, true, false);
}

void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
{
}

static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
				    u16 offset, u8 *value)
{
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
}

static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
				    u16 offset, u16 *value)
{
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));

	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
}

static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
				    u16 offset, u32 *value)
{
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));

	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
}

static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
				     u16 offset, u8 value)
{
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));

	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
}

static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
				     u16 offset, u16 value)
{
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));

	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
}

static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
				     u16 offset, u32 value)
{
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));

	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
	    (u8)(value & 0x000000FF);
	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
	    (u8)((value >> 8) & 0x0000FF);
	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
	    (u8)((value >> 16) & 0x00FF);
	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
	    (u8)((value >> 24) & 0xFF);
}

int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u8 tmpidx = 0;
	int result;

	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
		       (u8)(addr & 0xff));
	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
		       ((u8)((addr >> 8) & 0x03)) |
		       (rtl_read_byte(rtlpriv,
				      rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
			0xFC));

	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);

	while (!(0x80 & rtl_read_byte(rtlpriv,
				      rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) &&
	       (tmpidx < 100)) {
		tmpidx++;
	}

	if (tmpidx < 100) {
		*data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
		result = true;
	} else {
		*data = 0xff;
		result = false;
	}
	return result;
}

static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u8 tmpidx = 0;

	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
		 "Addr = %x Data=%x\n", addr, data);

	rtl_write_byte(rtlpriv,
		       rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8)(addr & 0xff));
	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
		       (rtl_read_byte(rtlpriv,
			 rtlpriv->cfg->maps[EFUSE_CTRL] +
			 2) & 0xFC) | (u8)((addr >> 8) & 0x03));

	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);

	while ((0x80 &
		rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) &&
	       (tmpidx < 100)) {
		tmpidx++;
	}

	if (tmpidx < 100)
		return true;
	return false;
}

static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);

	efuse_power_switch(hw, false, true);
	read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
	efuse_power_switch(hw, false, false);
}

static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
				  u8 efuse_data, u8 offset, u8 *tmpdata,
				  u8 *readstate)
{
	bool dataempty = true;
	u8 hoffset;
	u8 tmpidx;
	u8 hworden;
	u8 word_cnts;

	hoffset = (efuse_data >> 4) & 0x0F;
	hworden = efuse_data & 0x0F;
	word_cnts = efuse_calculate_word_cnts(hworden);

	if (hoffset == offset) {
		for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
			if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
						&efuse_data)) {
				tmpdata[tmpidx] = efuse_data;
				if (efuse_data != 0xff)
					dataempty = false;
			}
		}

		if (!dataempty) {
			*readstate = PG_STATE_DATA;
		} else {
			*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
			*readstate = PG_STATE_HEADER;
		}

	} else {
		*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
		*readstate = PG_STATE_HEADER;
	}
}

static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
{
	u8 readstate = PG_STATE_HEADER;

	bool continual = true;

	u8 efuse_data, word_cnts = 0;
	u16 efuse_addr = 0;
	u8 tmpdata[8];

	if (!data)
		return false;
	if (offset > 15)
		return false;

	memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
	memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));

	while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
		if (readstate & PG_STATE_HEADER) {
			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
			    (efuse_data != 0xFF))
				efuse_read_data_case1(hw, &efuse_addr,
						      efuse_data, offset,
						      tmpdata, &readstate);
			else
				continual = false;
		} else if (readstate & PG_STATE_DATA) {
			efuse_word_enable_data_read(0, tmpdata, data);
			efuse_addr = efuse_addr + (word_cnts * 2) + 1;
			readstate = PG_STATE_HEADER;
		}
	}

	if ((data[0] == 0xff) && (data[1] == 0xff) &&
	    (data[2] == 0xff) && (data[3] == 0xff) &&
	    (data[4] == 0xff) && (data[5] == 0xff) &&
	    (data[6] == 0xff) && (data[7] == 0xff))
		return false;
	return true;
}

static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
				   u8 efuse_data, u8 offset,
				   int *continual, u8 *write_state,
				   struct pgpkt_struct *target_pkt,
				   int *repeat_times, int *result, u8 word_en)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct pgpkt_struct tmp_pkt;
	int dataempty = true;
	u8 originaldata[8 * sizeof(u8)];
	u8 badworden = 0x0F;
	u8 match_word_en, tmp_word_en;
	u8 tmpindex;
	u8 tmp_header = efuse_data;
	u8 tmp_word_cnts;

	tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
	tmp_pkt.word_en = tmp_header & 0x0F;
	tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);

	if (tmp_pkt.offset != target_pkt->offset) {
		*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
		*write_state = PG_STATE_HEADER;
	} else {
		for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
			if (efuse_one_byte_read(hw,
						(*efuse_addr + 1 + tmpindex),
						&efuse_data) &&
			    (efuse_data != 0xFF))
				dataempty = false;
		}

		if (!dataempty) {
			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
			*write_state = PG_STATE_HEADER;
		} else {
			match_word_en = 0x0F;
			if (!((target_pkt->word_en & BIT(0)) |
			    (tmp_pkt.word_en & BIT(0))))
				match_word_en &= (~BIT(0));

			if (!((target_pkt->word_en & BIT(1)) |
			    (tmp_pkt.word_en & BIT(1))))
				match_word_en &= (~BIT(1));

			if (!((target_pkt->word_en & BIT(2)) |
			    (tmp_pkt.word_en & BIT(2))))
				match_word_en &= (~BIT(2));

			if (!((target_pkt->word_en & BIT(3)) |
			    (tmp_pkt.word_en & BIT(3))))
				match_word_en &= (~BIT(3));

			if ((match_word_en & 0x0F) != 0x0F) {
				badworden =
				  enable_efuse_data_write(hw,
							  *efuse_addr + 1,
							  tmp_pkt.word_en,
							  target_pkt->data);

				if (0x0F != (badworden & 0x0F))	{
					u8 reorg_offset = offset;
					u8 reorg_worden = badworden;

					efuse_pg_packet_write(hw, reorg_offset,
							      reorg_worden,
							      originaldata);
				}

				tmp_word_en = 0x0F;
				if ((target_pkt->word_en & BIT(0)) ^
				    (match_word_en & BIT(0)))
					tmp_word_en &= (~BIT(0));

				if ((target_pkt->word_en & BIT(1)) ^
				    (match_word_en & BIT(1)))
					tmp_word_en &= (~BIT(1));

				if ((target_pkt->word_en & BIT(2)) ^
				    (match_word_en & BIT(2)))
					tmp_word_en &= (~BIT(2));

				if ((target_pkt->word_en & BIT(3)) ^
				    (match_word_en & BIT(3)))
					tmp_word_en &= (~BIT(3));

				if ((tmp_word_en & 0x0F) != 0x0F) {
					*efuse_addr =
					    efuse_get_current_size(hw);
					target_pkt->offset = offset;
					target_pkt->word_en = tmp_word_en;
				} else {
					*continual = false;
				}
				*write_state = PG_STATE_HEADER;
				*repeat_times += 1;
				if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
					*continual = false;
					*result = false;
				}
			} else {
				*efuse_addr += (2 * tmp_word_cnts) + 1;
				target_pkt->offset = offset;
				target_pkt->word_en = word_en;
				*write_state = PG_STATE_HEADER;
			}
		}
	}
	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
}

static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
				   int *continual, u8 *write_state,
				   struct pgpkt_struct target_pkt,
				   int *repeat_times, int *result)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct pgpkt_struct tmp_pkt;
	u8 pg_header;
	u8 tmp_header;
	u8 originaldata[8 * sizeof(u8)];
	u8 tmp_word_cnts;
	u8 badworden = 0x0F;

	pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
	efuse_one_byte_write(hw, *efuse_addr, pg_header);
	efuse_one_byte_read(hw, *efuse_addr, &tmp_header);

	if (tmp_header == pg_header) {
		*write_state = PG_STATE_DATA;
	} else if (tmp_header == 0xFF) {
		*write_state = PG_STATE_HEADER;
		*repeat_times += 1;
		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
			*continual = false;
			*result = false;
		}
	} else {
		tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
		tmp_pkt.word_en = tmp_header & 0x0F;

		tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);

		memset(originaldata, 0xff,  8 * sizeof(u8));

		if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
			badworden = enable_efuse_data_write(hw,
							    *efuse_addr + 1,
							    tmp_pkt.word_en,
							    originaldata);

			if (0x0F != (badworden & 0x0F)) {
				u8 reorg_offset = tmp_pkt.offset;
				u8 reorg_worden = badworden;

				efuse_pg_packet_write(hw, reorg_offset,
						      reorg_worden,
						      originaldata);
				*efuse_addr = efuse_get_current_size(hw);
			} else {
				*efuse_addr = *efuse_addr +
					      (tmp_word_cnts * 2) + 1;
			}
		} else {
			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
		}

		*write_state = PG_STATE_HEADER;
		*repeat_times += 1;
		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
			*continual = false;
			*result = false;
		}

		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
			"efuse PG_STATE_HEADER-2\n");
	}
}

static int efuse_pg_packet_write(struct ieee80211_hw *hw,
				 u8 offset, u8 word_en, u8 *data)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct pgpkt_struct target_pkt;
	u8 write_state = PG_STATE_HEADER;
	int continual = true, result = true;
	u16 efuse_addr = 0;
	u8 efuse_data;
	u8 target_word_cnts = 0;
	u8 badworden = 0x0F;
	static int repeat_times;

	if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
		rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
			"%s error\n", __func__);
		return false;
	}

	target_pkt.offset = offset;
	target_pkt.word_en = word_en;

	memset(target_pkt.data, 0xFF,  8 * sizeof(u8));

	efuse_word_enable_data_read(word_en, data, target_pkt.data);
	target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);

	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");

	while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
	       rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
		if (write_state == PG_STATE_HEADER) {
			badworden = 0x0F;
			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
				"efuse PG_STATE_HEADER\n");

			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
			    (efuse_data != 0xFF))
				efuse_write_data_case1(hw, &efuse_addr,
						       efuse_data, offset,
						       &continual,
						       &write_state,
						       &target_pkt,
						       &repeat_times, &result,
						       word_en);
			else
				efuse_write_data_case2(hw, &efuse_addr,
						       &continual,
						       &write_state,
						       target_pkt,
						       &repeat_times,
						       &result);

		} else if (write_state == PG_STATE_DATA) {
			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
				"efuse PG_STATE_DATA\n");
			badworden = 0x0f;
			badworden =
			    enable_efuse_data_write(hw, efuse_addr + 1,
						    target_pkt.word_en,
						    target_pkt.data);

			if ((badworden & 0x0F) == 0x0F) {
				continual = false;
			} else {
				efuse_addr =
				    efuse_addr + (2 * target_word_cnts) + 1;

				target_pkt.offset = offset;
				target_pkt.word_en = badworden;
				target_word_cnts =
				    efuse_calculate_word_cnts(target_pkt.word_en);
				write_state = PG_STATE_HEADER;
				repeat_times++;
				if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
					continual = false;
					result = false;
				}
				RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
					"efuse PG_STATE_HEADER-3\n");
			}
		}
	}

	if (efuse_addr >= (EFUSE_MAX_SIZE -
		rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
			 "efuse_addr(%#x) Out of size!!\n", efuse_addr);
	}

	return true;
}

static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
					u8 *targetdata)
{
	if (!(word_en & BIT(0))) {
		targetdata[0] = sourdata[0];
		targetdata[1] = sourdata[1];
	}

	if (!(word_en & BIT(1))) {
		targetdata[2] = sourdata[2];
		targetdata[3] = sourdata[3];
	}

	if (!(word_en & BIT(2))) {
		targetdata[4] = sourdata[4];
		targetdata[5] = sourdata[5];
	}

	if (!(word_en & BIT(3))) {
		targetdata[6] = sourdata[6];
		targetdata[7] = sourdata[7];
	}
}

static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
				  u16 efuse_addr, u8 word_en, u8 *data)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u16 tmpaddr;
	u16 start_addr = efuse_addr;
	u8 badworden = 0x0F;
	u8 tmpdata[8];

	memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
		 "word_en = %x efuse_addr=%x\n", word_en, efuse_addr);

	if (!(word_en & BIT(0))) {
		tmpaddr = start_addr;
		efuse_one_byte_write(hw, start_addr++, data[0]);
		efuse_one_byte_write(hw, start_addr++, data[1]);

		efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
		if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
			badworden &= (~BIT(0));
	}

	if (!(word_en & BIT(1))) {
		tmpaddr = start_addr;
		efuse_one_byte_write(hw, start_addr++, data[2]);
		efuse_one_byte_write(hw, start_addr++, data[3]);

		efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
		if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
			badworden &= (~BIT(1));
	}

	if (!(word_en & BIT(2))) {
		tmpaddr = start_addr;
		efuse_one_byte_write(hw, start_addr++, data[4]);
		efuse_one_byte_write(hw, start_addr++, data[5]);

		efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
		if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
			badworden &= (~BIT(2));
	}

	if (!(word_en & BIT(3))) {
		tmpaddr = start_addr;
		efuse_one_byte_write(hw, start_addr++, data[6]);
		efuse_one_byte_write(hw, start_addr++, data[7]);

		efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
		if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
			badworden &= (~BIT(3));
	}

	return badworden;
}

void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	u8 tempval;
	u16 tmpv16;

	if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
		if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
		    rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
			rtl_write_byte(rtlpriv,
				       rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
		} else {
			tmpv16 =
			  rtl_read_word(rtlpriv,
					rtlpriv->cfg->maps[SYS_ISO_CTRL]);
			if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
				tmpv16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
				rtl_write_word(rtlpriv,
					       rtlpriv->cfg->maps[SYS_ISO_CTRL],
					       tmpv16);
			}
		}
		tmpv16 = rtl_read_word(rtlpriv,
				       rtlpriv->cfg->maps[SYS_FUNC_EN]);
		if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
			tmpv16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
			rtl_write_word(rtlpriv,
				       rtlpriv->cfg->maps[SYS_FUNC_EN], tmpv16);
		}

		tmpv16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
		if ((!(tmpv16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
		    (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
			tmpv16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
				   rtlpriv->cfg->maps[EFUSE_ANA8M]);
			rtl_write_word(rtlpriv,
				       rtlpriv->cfg->maps[SYS_CLK], tmpv16);
		}
	}

	if (pwrstate) {
		if (write) {
			tempval = rtl_read_byte(rtlpriv,
						rtlpriv->cfg->maps[EFUSE_TEST] +
						3);

			if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
				tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
				tempval |= (VOLTAGE_V25 << 3);
			} else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
				tempval &= 0x0F;
				tempval |= (VOLTAGE_V25 << 4);
			}

			rtl_write_byte(rtlpriv,
				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
				       (tempval | 0x80));
		}

		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
				       0x03);
		}
	} else {
		if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
		    rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
			rtl_write_byte(rtlpriv,
				       rtlpriv->cfg->maps[EFUSE_ACCESS], 0);

		if (write) {
			tempval = rtl_read_byte(rtlpriv,
						rtlpriv->cfg->maps[EFUSE_TEST] +
						3);
			rtl_write_byte(rtlpriv,
				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
				       (tempval & 0x7F));
		}

		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
				       0x02);
		}
	}
}

static u16 efuse_get_current_size(struct ieee80211_hw *hw)
{
	int continual = true;
	u16 efuse_addr = 0;
	u8 hworden;
	u8 efuse_data, word_cnts;

	while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
	       (efuse_addr < EFUSE_MAX_SIZE)) {
		if (efuse_data != 0xFF) {
			hworden = efuse_data & 0x0F;
			word_cnts = efuse_calculate_word_cnts(hworden);
			efuse_addr = efuse_addr + (word_cnts * 2) + 1;
		} else {
			continual = false;
		}
	}

	return efuse_addr;
}

static u8 efuse_calculate_word_cnts(u8 word_en)
{
	u8 word_cnts = 0;

	if (!(word_en & BIT(0)))
		word_cnts++;
	if (!(word_en & BIT(1)))
		word_cnts++;
	if (!(word_en & BIT(2)))
		word_cnts++;
	if (!(word_en & BIT(3)))
		word_cnts++;
	return word_cnts;
}

int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv,
		   int max_size, u8 *hwinfo, int *params)
{
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
	struct device *dev = &rtlpcipriv->dev.pdev->dev;
	u16 eeprom_id;
	u16 i, usvalue;

	switch (rtlefuse->epromtype) {
	case EEPROM_BOOT_EFUSE:
		rtl_efuse_shadow_map_update(hw);
		break;

	case EEPROM_93C46:
		pr_err("RTL8XXX did not boot from eeprom, check it !!\n");
		return 1;

	default:
		dev_warn(dev, "no efuse data\n");
		return 1;
	}

	memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size);

	RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
		      hwinfo, max_size);

	eeprom_id = *((u16 *)&hwinfo[0]);
	if (eeprom_id != params[0]) {
		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
			 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
		rtlefuse->autoload_failflag = true;
	} else {
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
		rtlefuse->autoload_failflag = false;
	}

	if (rtlefuse->autoload_failflag)
		return 1;

	rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]];
	rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]];
	rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]];
	rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]];
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
		 "EEPROMId = 0x%4x\n", eeprom_id);
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
		 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
		 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
		 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
		 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);

	for (i = 0; i < 6; i += 2) {
		usvalue = *(u16 *)&hwinfo[params[5] + i];
		*((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
	}
	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);

	rtlefuse->eeprom_channelplan = *&hwinfo[params[6]];
	rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]];
	rtlefuse->txpwr_fromeprom = true;
	rtlefuse->eeprom_oemid = *&hwinfo[params[8]];

	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
		 "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);

	/* set channel plan to world wide 13 */
	rtlefuse->channel_plan = params[9];

	return 0;
}

void rtl_fw_block_write(struct ieee80211_hw *hw, const u8 *buffer, u32 size)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u8 *pu4byteptr = (u8 *)buffer;
	u32 i;

	for (i = 0; i < size; i++)
		rtl_write_byte(rtlpriv, (START_ADDRESS + i), *(pu4byteptr + i));
}

void rtl_fw_page_write(struct ieee80211_hw *hw, u32 page, const u8 *buffer,
		       u32 size)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u8 value8;
	u8 u8page = (u8)(page & 0x07);

	value8 = (rtl_read_byte(rtlpriv, REG_MCUFWDL + 2) & 0xF8) | u8page;

	rtl_write_byte(rtlpriv, (REG_MCUFWDL + 2), value8);
	rtl_fw_block_write(hw, buffer, size);
}

void rtl_fill_dummy(u8 *pfwbuf, u32 *pfwlen)
{
	u32 fwlen = *pfwlen;
	u8 remain = (u8)(fwlen % 4);

	remain = (remain == 0) ? 0 : (4 - remain);

	while (remain > 0) {
		pfwbuf[fwlen] = 0;
		fwlen++;
		remain--;
	}

	*pfwlen = fwlen;
}