/* binfmt_elf_fdpic.c: FDPIC ELF binary format
*
* Copyright (C) 2003, 2004, 2006 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
* Derived from binfmt_elf.c
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/stat.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/binfmts.h>
#include <linux/string.h>
#include <linux/file.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/security.h>
#include <linux/highmem.h>
#include <linux/highuid.h>
#include <linux/personality.h>
#include <linux/ptrace.h>
#include <linux/init.h>
#include <linux/elf.h>
#include <linux/elf-fdpic.h>
#include <linux/elfcore.h>
#include <linux/coredump.h>
#include <asm/uaccess.h>
#include <asm/param.h>
#include <asm/pgalloc.h>
typedef char *elf_caddr_t;
#if 0
#define kdebug(fmt, ...) printk("FDPIC "fmt"\n" ,##__VA_ARGS__ )
#else
#define kdebug(fmt, ...) do {} while(0)
#endif
#if 0
#define kdcore(fmt, ...) printk("FDPIC "fmt"\n" ,##__VA_ARGS__ )
#else
#define kdcore(fmt, ...) do {} while(0)
#endif
MODULE_LICENSE("GPL");
static int load_elf_fdpic_binary(struct linux_binprm *, struct pt_regs *);
static int elf_fdpic_fetch_phdrs(struct elf_fdpic_params *, struct file *);
static int elf_fdpic_map_file(struct elf_fdpic_params *, struct file *,
struct mm_struct *, const char *);
static int create_elf_fdpic_tables(struct linux_binprm *, struct mm_struct *,
struct elf_fdpic_params *,
struct elf_fdpic_params *);
#ifndef CONFIG_MMU
static int elf_fdpic_transfer_args_to_stack(struct linux_binprm *,
unsigned long *);
static int elf_fdpic_map_file_constdisp_on_uclinux(struct elf_fdpic_params *,
struct file *,
struct mm_struct *);
#endif
static int elf_fdpic_map_file_by_direct_mmap(struct elf_fdpic_params *,
struct file *, struct mm_struct *);
#ifdef CONFIG_ELF_CORE
static int elf_fdpic_core_dump(struct coredump_params *cprm);
#endif
static struct linux_binfmt elf_fdpic_format = {
.module = THIS_MODULE,
.load_binary = load_elf_fdpic_binary,
#ifdef CONFIG_ELF_CORE
.core_dump = elf_fdpic_core_dump,
#endif
.min_coredump = ELF_EXEC_PAGESIZE,
};
static int __init init_elf_fdpic_binfmt(void)
{
register_binfmt(&elf_fdpic_format);
return 0;
}
static void __exit exit_elf_fdpic_binfmt(void)
{
unregister_binfmt(&elf_fdpic_format);
}
core_initcall(init_elf_fdpic_binfmt);
module_exit(exit_elf_fdpic_binfmt);
static int is_elf_fdpic(struct elfhdr *hdr, struct file *file)
{
if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0)
return 0;
if (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)
return 0;
if (!elf_check_arch(hdr) || !elf_check_fdpic(hdr))
return 0;
if (!file->f_op || !file->f_op->mmap)
return 0;
return 1;
}
/*****************************************************************************/
/*
* read the program headers table into memory
*/
static int elf_fdpic_fetch_phdrs(struct elf_fdpic_params *params,
struct file *file)
{
struct elf32_phdr *phdr;
unsigned long size;
int retval, loop;
if (params->hdr.e_phentsize != sizeof(struct elf_phdr))
return -ENOMEM;
if (params->hdr.e_phnum > 65536U / sizeof(struct elf_phdr))
return -ENOMEM;
size = params->hdr.e_phnum * sizeof(struct elf_phdr);
params->phdrs = kmalloc(size, GFP_KERNEL);
if (!params->phdrs)
return -ENOMEM;
retval = kernel_read(file, params->hdr.e_phoff,
(char *) params->phdrs, size);
if (unlikely(retval != size))
return retval < 0 ? retval : -ENOEXEC;
/* determine stack size for this binary */
phdr = params->phdrs;
for (loop = 0; loop < params->hdr.e_phnum; loop++, phdr++) {
if (phdr->p_type != PT_GNU_STACK)
continue;
if (phdr->p_flags & PF_X)
params->flags |= ELF_FDPIC_FLAG_EXEC_STACK;
else
params->flags |= ELF_FDPIC_FLAG_NOEXEC_STACK;
params->stack_size = phdr->p_memsz;
break;
}
return 0;
}
/*****************************************************************************/
/*
* load an fdpic binary into various bits of memory
*/
static int load_elf_fdpic_binary(struct linux_binprm *bprm,
struct pt_regs *regs)
{
struct elf_fdpic_params exec_params, interp_params;
struct elf_phdr *phdr;
unsigned long stack_size, entryaddr;
#ifdef ELF_FDPIC_PLAT_INIT
unsigned long dynaddr;
#endif
#ifndef CONFIG_MMU
unsigned long stack_prot;
#endif
struct file *interpreter = NULL; /* to shut gcc up */
char *interpreter_name = NULL;
int executable_stack;
int retval, i;
kdebug("____ LOAD %d ____", current->pid);
memset(&exec_params, 0, sizeof(exec_params));
memset(&interp_params, 0, sizeof(interp_params));
exec_params.hdr = *(struct elfhdr *) bprm->buf;
exec_params.flags = ELF_FDPIC_FLAG_PRESENT | ELF_FDPIC_FLAG_EXECUTABLE;
/* check that this is a binary we know how to deal with */
retval = -ENOEXEC;
if (!is_elf_fdpic(&exec_params.hdr, bprm->file))
goto error;
/* read the program header table */
retval = elf_fdpic_fetch_phdrs(&exec_params, bprm->file);
if (retval < 0)
goto error;
/* scan for a program header that specifies an interpreter */
phdr = exec_params.phdrs;
for (i = 0; i < exec_params.hdr.e_phnum; i++, phdr++) {
switch (phdr->p_type) {
case PT_INTERP:
retval = -ENOMEM;
if (phdr->p_filesz > PATH_MAX)
goto error;
retval = -ENOENT;
if (phdr->p_filesz < 2)
goto error;
/* read the name of the interpreter into memory */
interpreter_name = kmalloc(phdr->p_filesz, GFP_KERNEL);
if (!interpreter_name)
goto error;
retval = kernel_read(bprm->file,
phdr->p_offset,
interpreter_name,
phdr->p_filesz);
if (unlikely(retval != phdr->p_filesz)) {
if (retval >= 0)
retval = -ENOEXEC;
goto error;
}
retval = -ENOENT;
if (interpreter_name[phdr->p_filesz - 1] != '\0')
goto error;
kdebug("Using ELF interpreter %s", interpreter_name);
/* replace the program with the interpreter */
interpreter = open_exec(interpreter_name);
retval = PTR_ERR(interpreter);
if (IS_ERR(interpreter)) {
interpreter = NULL;
goto error;
}
/*
* If the binary is not readable then enforce
* mm->dumpable = 0 regardless of the interpreter's
* permissions.
*/
would_dump(bprm, interpreter);
retval = kernel_read(interpreter, 0, bprm->buf,
BINPRM_BUF_SIZE);
if (unlikely(retval != BINPRM_BUF_SIZE)) {
if (retval >= 0)
retval = -ENOEXEC;
goto error;
}
interp_params.hdr = *((struct elfhdr *) bprm->buf);
break;
case PT_LOAD:
#ifdef CONFIG_MMU
if (exec_params.load_addr == 0)
exec_params.load_addr = phdr->p_vaddr;
#endif
break;
}
}
if (elf_check_const_displacement(&exec_params.hdr))
exec_params.flags |= ELF_FDPIC_FLAG_CONSTDISP;
/* perform insanity checks on the interpreter */
if (interpreter_name) {
retval = -ELIBBAD;
if (!is_elf_fdpic(&interp_params.hdr, interpreter))
goto error;
interp_params.flags = ELF_FDPIC_FLAG_PRESENT;
/* read the interpreter's program header table */
retval = elf_fdpic_fetch_phdrs(&interp_params, interpreter);
if (retval < 0)
goto error;
}
stack_size = exec_params.stack_size;
if (exec_params.flags & ELF_FDPIC_FLAG_EXEC_STACK)
executable_stack = EXSTACK_ENABLE_X;
else if (exec_params.flags & ELF_FDPIC_FLAG_NOEXEC_STACK)
executable_stack = EXSTACK_DISABLE_X;
else
executable_stack = EXSTACK_DEFAULT;
if (stack_size == 0) {
stack_size = interp_params.stack_size;
if (interp_params.flags & ELF_FDPIC_FLAG_EXEC_STACK)
executable_stack = EXSTACK_ENABLE_X;
else if (interp_params.flags & ELF_FDPIC_FLAG_NOEXEC_STACK)
executable_stack = EXSTACK_DISABLE_X;
else
executable_stack = EXSTACK_DEFAULT;
}
retval = -ENOEXEC;
if (stack_size == 0)
goto error;
if (elf_check_const_displacement(&interp_params.hdr))
interp_params.flags |= ELF_FDPIC_FLAG_CONSTDISP;
/* flush all traces of the currently running executable */
retval = flush_old_exec(bprm);
if (retval)
goto error;
/* there's now no turning back... the old userspace image is dead,
* defunct, deceased, etc. after this point we have to exit via
* error_kill */
set_personality(PER_LINUX_FDPIC);
if (elf_read_implies_exec(&exec_params.hdr, executable_stack))
current->personality |= READ_IMPLIES_EXEC;
setup_new_exec(bprm);
set_binfmt(&elf_fdpic_format);
current->mm->start_code = 0;
current->mm->end_code = 0;
current->mm->start_stack = 0;
current->mm->start_data = 0;
current->mm->end_data = 0;
current->mm->context.exec_fdpic_loadmap = 0;
current->mm->context.interp_fdpic_loadmap = 0;
#ifdef CONFIG_MMU
elf_fdpic_arch_lay_out_mm(&exec_params,
&interp_params,
¤t->mm->start_stack,
¤t->mm->start_brk);
retval = setup_arg_pages(bprm, current->mm->start_stack,
executable_stack);
if (retval < 0) {
send_sig(SIGKILL, current, 0);
goto error_kill;
}
#endif
/* load the executable and interpreter into memory */
retval = elf_fdpic_map_file(&exec_params, bprm->file, current->mm,
"executable");
if (retval < 0)
goto error_kill;
if (interpreter_name) {
retval = elf_fdpic_map_file(&interp_params, interpreter,
current->mm, "interpreter");
if (retval < 0) {
printk(KERN_ERR "Unable to load interpreter\n");
goto error_kill;
}
allow_write_access(interpreter);
fput(interpreter);
interpreter = NULL;
}
#ifdef CONFIG_MMU
if (!current->mm->start_brk)
current->mm->start_brk = current->mm->end_data;
current->mm->brk = current->mm->start_brk =
PAGE_ALIGN(current->mm->start_brk);
#else
/* create a stack and brk area big enough for everyone
* - the brk heap starts at the bottom and works up
* - the stack starts at the top and works down
*/
stack_size = (stack_size + PAGE_SIZE - 1) & PAGE_MASK;
if (stack_size < PAGE_SIZE * 2)
stack_size = PAGE_SIZE * 2;
stack_prot = PROT_READ | PROT_WRITE;
if (executable_stack == EXSTACK_ENABLE_X ||
(executable_stack == EXSTACK_DEFAULT && VM_STACK_FLAGS & VM_EXEC))
stack_prot |= PROT_EXEC;
current->mm->start_brk = vm_mmap(NULL, 0, stack_size, stack_prot,
MAP_PRIVATE | MAP_ANONYMOUS |
MAP_UNINITIALIZED | MAP_GROWSDOWN,
0);
if (IS_ERR_VALUE(current->mm->start_brk)) {
retval = current->mm->start_brk;
current->mm->start_brk = 0;
goto error_kill;
}
current->mm->brk = current->mm->start_brk;
current->mm->context.end_brk = current->mm->start_brk;
current->mm->context.end_brk +=
(stack_size > PAGE_SIZE) ? (stack_size - PAGE_SIZE) : 0;
current->mm->start_stack = current->mm->start_brk + stack_size;
#endif
install_exec_creds(bprm);
if (create_elf_fdpic_tables(bprm, current->mm,
&exec_params, &interp_params) < 0)
goto error_kill;
kdebug("- start_code %lx", current->mm->start_code);
kdebug("- end_code %lx", current->mm->end_code);
kdebug("- start_data %lx", current->mm->start_data);
kdebug("- end_data %lx", current->mm->end_data);
kdebug("- start_brk %lx", current->mm->start_brk);
kdebug("- brk %lx", current->mm->brk);
kdebug("- start_stack %lx", current->mm->start_stack);
#ifdef ELF_FDPIC_PLAT_INIT
/*
* The ABI may specify that certain registers be set up in special
* ways (on i386 %edx is the address of a DT_FINI function, for
* example. This macro performs whatever initialization to
* the regs structure is required.
*/
dynaddr = interp_params.dynamic_addr ?: exec_params.dynamic_addr;
ELF_FDPIC_PLAT_INIT(regs, exec_params.map_addr, interp_params.map_addr,
dynaddr);
#endif
/* everything is now ready... get the userspace context ready to roll */
entryaddr = interp_params.entry_addr ?: exec_params.entry_addr;
start_thread(regs, entryaddr, current->mm->start_stack);
retval = 0;
error:
if (interpreter) {
allow_write_access(interpreter);
fput(interpreter);
}
kfree(interpreter_name);
kfree(exec_params.phdrs);
kfree(exec_params.loadmap);
kfree(interp_params.phdrs);
kfree(interp_params.loadmap);
return retval;
/* unrecoverable error - kill the process */
error_kill:
send_sig(SIGSEGV, current, 0);
goto error;
}
/*****************************************************************************/
#ifndef ELF_BASE_PLATFORM
/*
* AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
* If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
* will be copied to the user stack in the same manner as AT_PLATFORM.
*/
#define ELF_BASE_PLATFORM NULL
#endif
/*
* present useful information to the program by shovelling it onto the new
* process's stack
*/
static int create_elf_fdpic_tables(struct linux_binprm *bprm,
struct mm_struct *mm,
struct elf_fdpic_params *exec_params,
struct elf_fdpic_params *interp_params)
{
const struct cred *cred = current_cred();
unsigned long sp, csp, nitems;
elf_caddr_t __user *argv, *envp;
size_t platform_len = 0, len;
char *k_platform, *k_base_platform;
char __user *u_platform, *u_base_platform, *p;
long hwcap;
int loop;
int nr; /* reset for each csp adjustment */
#ifdef CONFIG_MMU
/* In some cases (e.g. Hyper-Threading), we want to avoid L1 evictions
* by the processes running on the same package. One thing we can do is
* to shuffle the initial stack for them, so we give the architecture
* an opportunity to do so here.
*/
sp = arch_align_stack(bprm->p);
#else
sp = mm->start_stack;
/* stack the program arguments and environment */
if (elf_fdpic_transfer_args_to_stack(bprm, &sp) < 0)
return -EFAULT;
#endif
hwcap = ELF_HWCAP;
/*
* If this architecture has a platform capability string, copy it
* to userspace. In some cases (Sparc), this info is impossible
* for userspace to get any other way, in others (i386) it is
* merely difficult.
*/
k_platform = ELF_PLATFORM;
u_platform = NULL;
if (k_platform) {
platform_len = strlen(k_platform) + 1;
sp -= platform_len;
u_platform = (char __user *) sp;
if (__copy_to_user(u_platform, k_platform, platform_len) != 0)
return -EFAULT;
}
/*
* If this architecture has a "base" platform capability
* string, copy it to userspace.
*/
k_base_platform = ELF_BASE_PLATFORM;
u_base_platform = NULL;
if (k_base_platform) {
platform_len = strlen(k_base_platform) + 1;
sp -= platform_len;
u_base_platform = (char __user *) sp;
if (__copy_to_user(u_base_platform, k_base_platform, platform_len) != 0)
return -EFAULT;
}
sp &= ~7UL;
/* stack the load map(s) */
len = sizeof(struct elf32_fdpic_loadmap);
len += sizeof(struct elf32_fdpic_loadseg) * exec_params->loadmap->nsegs;
sp = (sp - len) & ~7UL;
exec_params->map_addr = sp;
if (copy_to_user((void __user *) sp, exec_params->loadmap, len) != 0)
return -EFAULT;
current->mm->context.exec_fdpic_loadmap = (unsigned long) sp;
if (interp_params->loadmap) {
len = sizeof(struct elf32_fdpic_loadmap);
len += sizeof(struct elf32_fdpic_loadseg) *
interp_params->loadmap->nsegs;
sp = (sp - len) & ~7UL;
interp_params->map_addr = sp;
if (copy_to_user((void __user *) sp, interp_params->loadmap,
len) != 0)
return -EFAULT;
current->mm->context.interp_fdpic_loadmap = (unsigned long) sp;
}
/* force 16 byte _final_ alignment here for generality */
#define DLINFO_ITEMS 15
nitems = 1 + DLINFO_ITEMS + (k_platform ? 1 : 0) +
(k_base_platform ? 1 : 0) + AT_VECTOR_SIZE_ARCH;
if (bprm->interp_flags & BINPRM_FLAGS_EXECFD)
nitems++;
csp = sp;
sp -= nitems * 2 * sizeof(unsigned long);
sp -= (bprm->envc + 1) * sizeof(char *); /* envv[] */
sp -= (bprm->argc + 1) * sizeof(char *); /* argv[] */
sp -= 1 * sizeof(unsigned long); /* argc */
csp -= sp & 15UL;
sp -= sp & 15UL;
/* put the ELF interpreter info on the stack */
#define NEW_AUX_ENT(id, val) \
do { \
struct { unsigned long _id, _val; } __user *ent; \
\
ent = (void __user *) csp; \
__put_user((id), &ent[nr]._id); \
__put_user((val), &ent[nr]._val); \
nr++; \
} while (0)
nr = 0;
csp -= 2 * sizeof(unsigned long);
NEW_AUX_ENT(AT_NULL, 0);
if (k_platform) {
nr = 0;
csp -= 2 * sizeof(unsigned long);
NEW_AUX_ENT(AT_PLATFORM,
(elf_addr_t) (unsigned long) u_platform);
}
if (k_base_platform) {
nr = 0;
csp -= 2 * sizeof(unsigned long);
NEW_AUX_ENT(AT_BASE_PLATFORM,
(elf_addr_t) (unsigned long) u_base_platform);
}
if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
nr = 0;
csp -= 2 * sizeof(unsigned long);
NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
}
nr = 0;
csp -= DLINFO_ITEMS * 2 * sizeof(unsigned long);
NEW_AUX_ENT(AT_HWCAP, hwcap);
NEW_AUX_ENT(AT_PAGESZ, PAGE_SIZE);
NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
NEW_AUX_ENT(AT_PHDR, exec_params->ph_addr);
NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
NEW_AUX_ENT(AT_PHNUM, exec_params->hdr.e_phnum);
NEW_AUX_ENT(AT_BASE, interp_params->elfhdr_addr);
NEW_AUX_ENT(AT_FLAGS, 0);
NEW_AUX_ENT(AT_ENTRY, exec_params->entry_addr);
NEW_AUX_ENT(AT_UID, (elf_addr_t) from_kuid_munged(cred->user_ns, cred->uid));
NEW_AUX_ENT(AT_EUID, (elf_addr_t) from_kuid_munged(cred->user_ns, cred->euid));
NEW_AUX_ENT(AT_GID, (elf_addr_t) from_kgid_munged(cred->user_ns, cred->gid));
NEW_AUX_ENT(AT_EGID, (elf_addr_t) from_kgid_munged(cred->user_ns, cred->egid));
NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
NEW_AUX_ENT(AT_EXECFN, bprm->exec);
#ifdef ARCH_DLINFO
nr = 0;
csp -= AT_VECTOR_SIZE_ARCH * 2 * sizeof(unsigned long);
/* ARCH_DLINFO must come last so platform specific code can enforce
* special alignment requirements on the AUXV if necessary (eg. PPC).
*/
ARCH_DLINFO;
#endif
#undef NEW_AUX_ENT
/* allocate room for argv[] and envv[] */
csp -= (bprm->envc + 1) * sizeof(elf_caddr_t);
envp = (elf_caddr_t __user *) csp;
csp -= (bprm->argc + 1) * sizeof(elf_caddr_t);
argv = (elf_caddr_t __user *) csp;
/* stack argc */
csp -= sizeof(unsigned long);
__put_user(bprm->argc, (unsigned long __user *) csp);
BUG_ON(csp != sp);
/* fill in the argv[] array */
#ifdef CONFIG_MMU
current->mm->arg_start = bprm->p;
#else
current->mm->arg_start = current->mm->start_stack -
(MAX_ARG_PAGES * PAGE_SIZE - bprm->p);
#endif
p = (char __user *) current->mm->arg_start;
for (loop = bprm->argc; loop > 0; loop--) {
__put_user((elf_caddr_t) p, argv++);
len = strnlen_user(p, MAX_ARG_STRLEN);
if (!len || len > MAX_ARG_STRLEN)
return -EINVAL;
p += len;
}
__put_user(NULL, argv);
current->mm->arg_end = (unsigned long) p;
/* fill in the envv[] array */
current->mm->env_start = (unsigned long) p;
for (loop = bprm->envc; loop > 0; loop--) {
__put_user((elf_caddr_t)(unsigned long) p, envp++);
len = strnlen_user(p, MAX_ARG_STRLEN);
if (!len || len > MAX_ARG_STRLEN)
return -EINVAL;
p += len;
}
__put_user(NULL, envp);
current->mm->env_end = (unsigned long) p;
mm->start_stack = (unsigned long) sp;
return 0;
}
/*****************************************************************************/
/*
* transfer the program arguments and environment from the holding pages onto
* the stack
*/
#ifndef CONFIG_MMU
static int elf_fdpic_transfer_args_to_stack(struct linux_binprm *bprm,
unsigned long *_sp)
{
unsigned long index, stop, sp;
char *src;
int ret = 0;
stop = bprm->p >> PAGE_SHIFT;
sp = *_sp;
for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
src = kmap(bprm->page[index]);
sp -= PAGE_SIZE;
if (copy_to_user((void *) sp, src, PAGE_SIZE) != 0)
ret = -EFAULT;
kunmap(bprm->page[index]);
if (ret < 0)
goto out;
}
*_sp = (*_sp - (MAX_ARG_PAGES * PAGE_SIZE - bprm->p)) & ~15;
out:
return ret;
}
#endif
/*****************************************************************************/
/*
* load the appropriate binary image (executable or interpreter) into memory
* - we assume no MMU is available
* - if no other PIC bits are set in params->hdr->e_flags
* - we assume that the LOADable segments in the binary are independently relocatable
* - we assume R/O executable segments are shareable
* - else
* - we assume the loadable parts of the image to require fixed displacement
* - the image is not shareable
*/
static int elf_fdpic_map_file(struct elf_fdpic_params *params,
struct file *file,
struct mm_struct *mm,
const char *what)
{
struct elf32_fdpic_loadmap *loadmap;
#ifdef CONFIG_MMU
struct elf32_fdpic_loadseg *mseg;
#endif
struct elf32_fdpic_loadseg *seg;
struct elf32_phdr *phdr;
unsigned long load_addr, stop;
unsigned nloads, tmp;
size_t size;
int loop, ret;
/* allocate a load map table */
nloads = 0;
for (loop = 0; loop < params->hdr.e_phnum; loop++)
if (params->phdrs[loop].p_type == PT_LOAD)
nloads++;
if (nloads == 0)
return -ELIBBAD;
size = sizeof(*loadmap) + nloads * sizeof(*seg);
loadmap = kzalloc(size, GFP_KERNEL);
if (!loadmap)
return -ENOMEM;
params->loadmap = loadmap;
loadmap->version = ELF32_FDPIC_LOADMAP_VERSION;
loadmap->nsegs = nloads;
load_addr = params->load_addr;
seg = loadmap->segs;
/* map the requested LOADs into the memory space */
switch (params->flags & ELF_FDPIC_FLAG_ARRANGEMENT) {
case ELF_FDPIC_FLAG_CONSTDISP:
case ELF_FDPIC_FLAG_CONTIGUOUS:
#ifndef CONFIG_MMU
ret = elf_fdpic_map_file_constdisp_on_uclinux(params, file, mm);
if (ret < 0)
return ret;
break;
#endif
default:
ret = elf_fdpic_map_file_by_direct_mmap(params, file, mm);
if (ret < 0)
return ret;
break;
}
/* map the entry point */
if (params->hdr.e_entry) {
seg = loadmap->segs;
for (loop = loadmap->nsegs; loop > 0; loop--, seg++) {
if (params->hdr.e_entry >= seg->p_vaddr &&
params->hdr.e_entry < seg->p_vaddr + seg->p_memsz) {
params->entry_addr =
(params->hdr.e_entry - seg->p_vaddr) +
seg->addr;
break;
}
}
}
/* determine where the program header table has wound up if mapped */
stop = params->hdr.e_phoff;
stop += params->hdr.e_phnum * sizeof (struct elf_phdr);
phdr = params->phdrs;
for (loop = 0; loop < params->hdr.e_phnum; loop++, phdr++) {
if (phdr->p_type != PT_LOAD)
continue;
if (phdr->p_offset > params->hdr.e_phoff ||
phdr->p_offset + phdr->p_filesz < stop)
continue;
seg = loadmap->segs;
for (loop = loadmap->nsegs; loop > 0; loop--, seg++) {
if (phdr->p_vaddr >= seg->p_vaddr &&
phdr->p_vaddr + phdr->p_filesz <=
seg->p_vaddr + seg->p_memsz) {
params->ph_addr =
(phdr->p_vaddr - seg->p_vaddr) +
seg->addr +
params->hdr.e_phoff - phdr->p_offset;
break;
}
}
break;
}
/* determine where the dynamic section has wound up if there is one */
phdr = params->phdrs;
for (loop = 0; loop < params->hdr.e_phnum; loop++, phdr++) {
if (phdr->p_type != PT_DYNAMIC)
continue;
seg = loadmap->segs;
for (loop = loadmap->nsegs; loop > 0; loop--, seg++) {
if (phdr->p_vaddr >= seg->p_vaddr &&
phdr->p_vaddr + phdr->p_memsz <=
seg->p_vaddr + seg->p_memsz) {
params->dynamic_addr =
(phdr->p_vaddr - seg->p_vaddr) +
seg->addr;
/* check the dynamic section contains at least
* one item, and that the last item is a NULL
* entry */
if (phdr->p_memsz == 0 ||
phdr->p_memsz % sizeof(Elf32_Dyn) != 0)
goto dynamic_error;
tmp = phdr->p_memsz / sizeof(Elf32_Dyn);
if (((Elf32_Dyn *)
params->dynamic_addr)[tmp - 1].d_tag != 0)
goto dynamic_error;
break;
}
}
break;
}
/* now elide adjacent segments in the load map on MMU linux
* - on uClinux the holes between may actually be filled with system
* stuff or stuff from other processes
*/
#ifdef CONFIG_MMU
nloads = loadmap->nsegs;
mseg = loadmap->segs;
seg = mseg + 1;
for (loop = 1; loop < nloads; loop++) {
/* see if we have a candidate for merging */
if (seg->p_vaddr - mseg->p_vaddr == seg->addr - mseg->addr) {
load_addr = PAGE_ALIGN(mseg->addr + mseg->p_memsz);
if (load_addr == (seg->addr & PAGE_MASK)) {
mseg->p_memsz +=
load_addr -
(mseg->addr + mseg->p_memsz);
mseg->p_memsz += seg->addr & ~PAGE_MASK;
mseg->p_memsz += seg->p_memsz;
loadmap->nsegs--;
continue;
}
}
mseg++;
if (mseg != seg)
*mseg = *seg;
}
#endif
kdebug("Mapped Object [%s]:", what);
kdebug("- elfhdr : %lx", params->elfhdr_addr);
kdebug("- entry : %lx", params->entry_addr);
kdebug("- PHDR[] : %lx", params->ph_addr);
kdebug("- DYNAMIC[]: %lx", params->dynamic_addr);
seg = loadmap->segs;
for (loop = 0; loop < loadmap->nsegs; loop++, seg++)
kdebug("- LOAD[%d] : %08x-%08x [va=%x ms=%x]",
loop,
seg->addr, seg->addr + seg->p_memsz - 1,
seg->p_vaddr, seg->p_memsz);
return 0;
dynamic_error:
printk("ELF FDPIC %s with invalid DYNAMIC section (inode=%lu)\n",
what, file->f_path.dentry->d_inode->i_ino);
return -ELIBBAD;
}
/*****************************************************************************/
/*
* map a file with constant displacement under uClinux
*/
#ifndef CONFIG_MMU
static int elf_fdpic_map_file_constdisp_on_uclinux(
struct elf_fdpic_params *params,
struct file *file,
struct mm_struct *mm)
{
struct elf32_fdpic_loadseg *seg;
struct elf32_phdr *phdr;
unsigned long load_addr, base = ULONG_MAX, top = 0, maddr = 0, mflags;
loff_t fpos;
int loop, ret;
load_addr = params->load_addr;
seg = params->loadmap->segs;
/* determine the bounds of the contiguous overall allocation we must
* make */
phdr = params->phdrs;
for (loop = 0; loop < params->hdr.e_phnum; loop++, phdr++) {
if (params->phdrs[loop].p_type != PT_LOAD)
continue;
if (base > phdr->p_vaddr)
base = phdr->p_vaddr;
if (top < phdr->p_vaddr + phdr->p_memsz)
top = phdr->p_vaddr + phdr->p_memsz;
}
/* allocate one big anon block for everything */
mflags = MAP_PRIVATE;
if (params->flags & ELF_FDPIC_FLAG_EXECUTABLE)
mflags |= MAP_EXECUTABLE;
maddr = vm_mmap(NULL, load_addr, top - base,
PROT_READ | PROT_WRITE | PROT_EXEC, mflags, 0);
if (IS_ERR_VALUE(maddr))
return (int) maddr;
if (load_addr != 0)
load_addr += PAGE_ALIGN(top - base);
/* and then load the file segments into it */
phdr = params->phdrs;
for (loop = 0; loop < params->hdr.e_phnum; loop++, phdr++) {
if (params->phdrs[loop].p_type != PT_LOAD)
continue;
fpos = phdr->p_offset;
seg->addr = maddr + (phdr->p_vaddr - base);
seg->p_vaddr = phdr->p_vaddr;
seg->p_memsz = phdr->p_memsz;
ret = file->f_op->read(file, (void *) seg->addr,
phdr->p_filesz, &fpos);
if (ret < 0)
return ret;
/* map the ELF header address if in this segment */
if (phdr->p_offset == 0)
params->elfhdr_addr = seg->addr;
/* clear any space allocated but not loaded */
if (phdr->p_filesz < phdr->p_memsz) {
if (clear_user((void *) (seg->addr + phdr->p_filesz),
phdr->p_memsz - phdr->p_filesz))
return -EFAULT;
}
if (mm) {
if (phdr->p_flags & PF_X) {
if (!mm->start_code) {
mm->start_code = seg->addr;
mm->end_code = seg->addr +
phdr->p_memsz;
}
} else if (!mm->start_data) {
mm->start_data = seg->addr;
mm->end_data = seg->addr + phdr->p_memsz;
}
}
seg++;
}
return 0;
}
#endif
/*****************************************************************************/
/*
* map a binary by direct mmap() of the individual PT_LOAD segments
*/
static int elf_fdpic_map_file_by_direct_mmap(struct elf_fdpic_params *params,
struct file *file,
struct mm_struct *mm)
{
struct elf32_fdpic_loadseg *seg;
struct elf32_phdr *phdr;
unsigned long load_addr, delta_vaddr;
int loop, dvset;
load_addr = params->load_addr;
delta_vaddr = 0;
dvset = 0;
seg = params->loadmap->segs;
/* deal with each load segment separately */
phdr = params->phdrs;
for (loop = 0; loop < params->hdr.e_phnum; loop++, phdr++) {
unsigned long maddr, disp, excess, excess1;
int prot = 0, flags;
if (phdr->p_type != PT_LOAD)
continue;
kdebug("[LOAD] va=%lx of=%lx fs=%lx ms=%lx",
(unsigned long) phdr->p_vaddr,
(unsigned long) phdr->p_offset,
(unsigned long) phdr->p_filesz,
(unsigned long) phdr->p_memsz);
/* determine the mapping parameters */
if (phdr->p_flags & PF_R) prot |= PROT_READ;
if (phdr->p_flags & PF_W) prot |= PROT_WRITE;
if (phdr->p_flags & PF_X) prot |= PROT_EXEC;
flags = MAP_PRIVATE | MAP_DENYWRITE;
if (params->flags & ELF_FDPIC_FLAG_EXECUTABLE)
flags |= MAP_EXECUTABLE;
maddr = 0;
switch (params->flags & ELF_FDPIC_FLAG_ARRANGEMENT) {
case ELF_FDPIC_FLAG_INDEPENDENT:
/* PT_LOADs are independently locatable */
break;
case ELF_FDPIC_FLAG_HONOURVADDR:
/* the specified virtual address must be honoured */
maddr = phdr->p_vaddr;
flags |= MAP_FIXED;
break;
case ELF_FDPIC_FLAG_CONSTDISP:
/* constant displacement
* - can be mapped anywhere, but must be mapped as a
* unit
*/
if (!dvset) {
maddr = load_addr;
delta_vaddr = phdr->p_vaddr;
dvset = 1;
} else {
maddr = load_addr + phdr->p_vaddr - delta_vaddr;
flags |= MAP_FIXED;
}
break;
case ELF_FDPIC_FLAG_CONTIGUOUS:
/* contiguity handled later */
break;
default:
BUG();
}
maddr &= PAGE_MASK;
/* create the mapping */
disp = phdr->p_vaddr & ~PAGE_MASK;
maddr = vm_mmap(file, maddr, phdr->p_memsz + disp, prot, flags,
phdr->p_offset - disp);
kdebug("mmap[%d] <file> sz=%lx pr=%x fl=%x of=%lx --> %08lx",
loop, phdr->p_memsz + disp, prot, flags,
phdr->p_offset - disp, maddr);
if (IS_ERR_VALUE(maddr))
return (int) maddr;
if ((params->flags & ELF_FDPIC_FLAG_ARRANGEMENT) ==
ELF_FDPIC_FLAG_CONTIGUOUS)
load_addr += PAGE_ALIGN(phdr->p_memsz + disp);
seg->addr = maddr + disp;
seg->p_vaddr = phdr->p_vaddr;
seg->p_memsz = phdr->p_memsz;
/* map the ELF header address if in this segment */
if (phdr->p_offset == 0)
params->elfhdr_addr = seg->addr;
/* clear the bit between beginning of mapping and beginning of
* PT_LOAD */
if (prot & PROT_WRITE && disp > 0) {
kdebug("clear[%d] ad=%lx sz=%lx", loop, maddr, disp);
if (clear_user((void __user *) maddr, disp))
return -EFAULT;
maddr += disp;
}
/* clear any space allocated but not loaded
* - on uClinux we can just clear the lot
* - on MMU linux we'll get a SIGBUS beyond the last page
* extant in the file
*/
excess = phdr->p_memsz - phdr->p_filesz;
excess1 = PAGE_SIZE - ((maddr + phdr->p_filesz) & ~PAGE_MASK);
#ifdef CONFIG_MMU
if (excess > excess1) {
unsigned long xaddr = maddr + phdr->p_filesz + excess1;
unsigned long xmaddr;
flags |= MAP_FIXED | MAP_ANONYMOUS;
xmaddr = vm_mmap(NULL, xaddr, excess - excess1,
prot, flags, 0);
kdebug("mmap[%d] <anon>"
" ad=%lx sz=%lx pr=%x fl=%x of=0 --> %08lx",
loop, xaddr, excess - excess1, prot, flags,
xmaddr);
if (xmaddr != xaddr)
return -ENOMEM;
}
if (prot & PROT_WRITE && excess1 > 0) {
kdebug("clear[%d] ad=%lx sz=%lx",
loop, maddr + phdr->p_filesz, excess1);
if (clear_user((void __user *) maddr + phdr->p_filesz,
excess1))
return -EFAULT;
}
#else
if (excess > 0) {
kdebug("clear[%d] ad=%lx sz=%lx",
loop, maddr + phdr->p_filesz, excess);
if (clear_user((void *) maddr + phdr->p_filesz, excess))
return -EFAULT;
}
#endif
if (mm) {
if (phdr->p_flags & PF_X) {
if (!mm->start_code) {
mm->start_code = maddr;
mm->end_code = maddr + phdr->p_memsz;
}
} else if (!mm->start_data) {
mm->start_data = maddr;
mm->end_data = maddr + phdr->p_memsz;
}
}
seg++;
}
return 0;
}
/*****************************************************************************/
/*
* ELF-FDPIC core dumper
*
* Modelled on fs/exec.c:aout_core_dump()
* Jeremy Fitzhardinge <jeremy@sw.oz.au>
*
* Modelled on fs/binfmt_elf.c core dumper
*/
#ifdef CONFIG_ELF_CORE
/*
* Decide whether a segment is worth dumping; default is yes to be
* sure (missing info is worse than too much; etc).
* Personally I'd include everything, and use the coredump limit...
*
* I think we should skip something. But I am not sure how. H.J.
*/
static int maydump(struct vm_area_struct *vma, unsigned long mm_flags)
{
int dump_ok;
/* Do not dump I/O mapped devices or special mappings */
if (vma->vm_flags & VM_IO) {
kdcore("%08lx: %08lx: no (IO)", vma->vm_start, vma->vm_flags);
return 0;
}
/* If we may not read the contents, don't allow us to dump
* them either. "dump_write()" can't handle it anyway.
*/
if (!(vma->vm_flags & VM_READ)) {
kdcore("%08lx: %08lx: no (!read)", vma->vm_start, vma->vm_flags);
return 0;
}
/* By default, dump shared memory if mapped from an anonymous file. */
if (vma->vm_flags & VM_SHARED) {
if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0) {
dump_ok = test_bit(MMF_DUMP_ANON_SHARED, &mm_flags);
kdcore("%08lx: %08lx: %s (share)", vma->vm_start,
vma->vm_flags, dump_ok ? "yes" : "no");
return dump_ok;
}
dump_ok = test_bit(MMF_DUMP_MAPPED_SHARED, &mm_flags);
kdcore("%08lx: %08lx: %s (share)", vma->vm_start,
vma->vm_flags, dump_ok ? "yes" : "no");
return dump_ok;
}
#ifdef CONFIG_MMU
/* By default, if it hasn't been written to, don't write it out */
if (!vma->anon_vma) {
dump_ok = test_bit(MMF_DUMP_MAPPED_PRIVATE, &mm_flags);
kdcore("%08lx: %08lx: %s (!anon)", vma->vm_start,
vma->vm_flags, dump_ok ? "yes" : "no");
return dump_ok;
}
#endif
dump_ok = test_bit(MMF_DUMP_ANON_PRIVATE, &mm_flags);
kdcore("%08lx: %08lx: %s", vma->vm_start, vma->vm_flags,
dump_ok ? "yes" : "no");
return dump_ok;
}
/* An ELF note in memory */
struct memelfnote
{
const char *name;
int type;
unsigned int datasz;
void *data;
};
static int notesize(struct memelfnote *en)
{
int sz;
sz = sizeof(struct elf_note);
sz += roundup(strlen(en->name) + 1, 4);
sz += roundup(en->datasz, 4);
return sz;
}
/* #define DEBUG */
#define DUMP_WRITE(addr, nr, foffset) \
do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
static int alignfile(struct file *file, loff_t *foffset)
{
static const char buf[4] = { 0, };
DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
return 1;
}
static int writenote(struct memelfnote *men, struct file *file,
loff_t *foffset)
{
struct elf_note en;
en.n_namesz = strlen(men->name) + 1;
en.n_descsz = men->datasz;
en.n_type = men->type;
DUMP_WRITE(&en, sizeof(en), foffset);
DUMP_WRITE(men->name, en.n_namesz, foffset);
if (!alignfile(file, foffset))
return 0;
DUMP_WRITE(men->data, men->datasz, foffset);
if (!alignfile(file, foffset))
return 0;
return 1;
}
#undef DUMP_WRITE
static inline void fill_elf_fdpic_header(struct elfhdr *elf, int segs)
{
memcpy(elf->e_ident, ELFMAG, SELFMAG);
elf->e_ident[EI_CLASS] = ELF_CLASS;
elf->e_ident[EI_DATA] = ELF_DATA;
elf->e_ident[EI_VERSION] = EV_CURRENT;
elf->e_ident[EI_OSABI] = ELF_OSABI;
memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
elf->e_type = ET_CORE;
elf->e_machine = ELF_ARCH;
elf->e_version = EV_CURRENT;
elf->e_entry = 0;
elf->e_phoff = sizeof(struct elfhdr);
elf->e_shoff = 0;
elf->e_flags = ELF_FDPIC_CORE_EFLAGS;
elf->e_ehsize = sizeof(struct elfhdr);
elf->e_phentsize = sizeof(struct elf_phdr);
elf->e_phnum = segs;
elf->e_shentsize = 0;
elf->e_shnum = 0;
elf->e_shstrndx = 0;
return;
}
static inline void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
{
phdr->p_type = PT_NOTE;
phdr->p_offset = offset;
phdr->p_vaddr = 0;
phdr->p_paddr = 0;
phdr->p_filesz = sz;
phdr->p_memsz = 0;
phdr->p_flags = 0;
phdr->p_align = 0;
return;
}
static inline void fill_note(struct memelfnote *note, const char *name, int type,
unsigned int sz, void *data)
{
note->name = name;
note->type = type;
note->datasz = sz;
note->data = data;
return;
}
/*
* fill up all the fields in prstatus from the given task struct, except
* registers which need to be filled up separately.
*/
static void fill_prstatus(struct elf_prstatus *prstatus,
struct task_struct *p, long signr)
{
prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
prstatus->pr_sigpend = p->pending.signal.sig[0];
prstatus->pr_sighold = p->blocked.sig[0];
rcu_read_lock();
prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
rcu_read_unlock();
prstatus->pr_pid = task_pid_vnr(p);
prstatus->pr_pgrp = task_pgrp_vnr(p);
prstatus->pr_sid = task_session_vnr(p);
if (thread_group_leader(p)) {
struct task_cputime cputime;
/*
* This is the record for the group leader. It shows the
* group-wide total, not its individual thread total.
*/
thread_group_cputime(p, &cputime);
cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
} else {
cputime_to_timeval(p->utime, &prstatus->pr_utime);
cputime_to_timeval(p->stime, &prstatus->pr_stime);
}
cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
prstatus->pr_exec_fdpic_loadmap = p->mm->context.exec_fdpic_loadmap;
prstatus->pr_interp_fdpic_loadmap = p->mm->context.interp_fdpic_loadmap;
}
static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
struct mm_struct *mm)
{
const struct cred *cred;
unsigned int i, len;
/* first copy the parameters from user space */
memset(psinfo, 0, sizeof(struct elf_prpsinfo));
len = mm->arg_end - mm->arg_start;
if (len >= ELF_PRARGSZ)
len = ELF_PRARGSZ - 1;
if (copy_from_user(&psinfo->pr_psargs,
(const char __user *) mm->arg_start, len))
return -EFAULT;
for (i = 0; i < len; i++)
if (psinfo->pr_psargs[i] == 0)
psinfo->pr_psargs[i] = ' ';
psinfo->pr_psargs[len] = 0;
rcu_read_lock();
psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
rcu_read_unlock();
psinfo->pr_pid = task_pid_vnr(p);
psinfo->pr_pgrp = task_pgrp_vnr(p);
psinfo->pr_sid = task_session_vnr(p);
i = p->state ? ffz(~p->state) + 1 : 0;
psinfo->pr_state = i;
psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
psinfo->pr_zomb = psinfo->pr_sname == 'Z';
psinfo->pr_nice = task_nice(p);
psinfo->pr_flag = p->flags;
rcu_read_lock();
cred = __task_cred(p);
SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
rcu_read_unlock();
strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
return 0;
}
/* Here is the structure in which status of each thread is captured. */
struct elf_thread_status
{
struct list_head list;
struct elf_prstatus prstatus; /* NT_PRSTATUS */
elf_fpregset_t fpu; /* NT_PRFPREG */
struct task_struct *thread;
#ifdef ELF_CORE_COPY_XFPREGS
elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
#endif
struct memelfnote notes[3];
int num_notes;
};
/*
* In order to add the specific thread information for the elf file format,
* we need to keep a linked list of every thread's pr_status and then create
* a single section for them in the final core file.
*/
static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
{
struct task_struct *p = t->thread;
int sz = 0;
t->num_notes = 0;
fill_prstatus(&t->prstatus, p, signr);
elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
&t->prstatus);
t->num_notes++;
sz += notesize(&t->notes[0]);
t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, &t->fpu);
if (t->prstatus.pr_fpvalid) {
fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
&t->fpu);
t->num_notes++;
sz += notesize(&t->notes[1]);
}
#ifdef ELF_CORE_COPY_XFPREGS
if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
sizeof(t->xfpu), &t->xfpu);
t->num_notes++;
sz += notesize(&t->notes[2]);
}
#endif
return sz;
}
static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
elf_addr_t e_shoff, int segs)
{
elf->e_shoff = e_shoff;
elf->e_shentsize = sizeof(*shdr4extnum);
elf->e_shnum = 1;
elf->e_shstrndx = SHN_UNDEF;
memset(shdr4extnum, 0, sizeof(*shdr4extnum));
shdr4extnum->sh_type = SHT_NULL;
shdr4extnum->sh_size = elf->e_shnum;
shdr4extnum->sh_link = elf->e_shstrndx;
shdr4extnum->sh_info = segs;
}
/*
* dump the segments for an MMU process
*/
#ifdef CONFIG_MMU
static int elf_fdpic_dump_segments(struct file *file, size_t *size,
unsigned long *limit, unsigned long mm_flags)
{
struct vm_area_struct *vma;
int err = 0;
for (vma = current->mm->mmap; vma; vma = vma->vm_next) {
unsigned long addr;
if (!maydump(vma, mm_flags))
continue;
for (addr = vma->vm_start; addr < vma->vm_end;
addr += PAGE_SIZE) {
struct page *page = get_dump_page(addr);
if (page) {
void *kaddr = kmap(page);
*size += PAGE_SIZE;
if (*size > *limit)
err = -EFBIG;
else if (!dump_write(file, kaddr, PAGE_SIZE))
err = -EIO;
kunmap(page);
page_cache_release(page);
} else if (!dump_seek(file, PAGE_SIZE))
err = -EFBIG;
if (err)
goto out;
}
}
out:
return err;
}
#endif
/*
* dump the segments for a NOMMU process
*/
#ifndef CONFIG_MMU
static int elf_fdpic_dump_segments(struct file *file, size_t *size,
unsigned long *limit, unsigned long mm_flags)
{
struct vm_area_struct *vma;
for (vma = current->mm->mmap; vma; vma = vma->vm_next) {
if (!maydump(vma, mm_flags))
continue;
if ((*size += PAGE_SIZE) > *limit)
return -EFBIG;
if (!dump_write(file, (void *) vma->vm_start,
vma->vm_end - vma->vm_start))
return -EIO;
}
return 0;
}
#endif
static size_t elf_core_vma_data_size(unsigned long mm_flags)
{
struct vm_area_struct *vma;
size_t size = 0;
for (vma = current->mm->mmap; vma; vma = vma->vm_next)
if (maydump(vma, mm_flags))
size += vma->vm_end - vma->vm_start;
return size;
}
/*
* Actual dumper
*
* This is a two-pass process; first we find the offsets of the bits,
* and then they are actually written out. If we run out of core limit
* we just truncate.
*/
static int elf_fdpic_core_dump(struct coredump_params *cprm)
{
#define NUM_NOTES 6
int has_dumped = 0;
mm_segment_t fs;
int segs;
size_t size = 0;
int i;
struct vm_area_struct *vma;
struct elfhdr *elf = NULL;
loff_t offset = 0, dataoff, foffset;
int numnote;
struct memelfnote *notes = NULL;
struct elf_prstatus *prstatus = NULL; /* NT_PRSTATUS */
struct elf_prpsinfo *psinfo = NULL; /* NT_PRPSINFO */
LIST_HEAD(thread_list);
struct list_head *t;
elf_fpregset_t *fpu = NULL;
#ifdef ELF_CORE_COPY_XFPREGS
elf_fpxregset_t *xfpu = NULL;
#endif
int thread_status_size = 0;
elf_addr_t *auxv;
struct elf_phdr *phdr4note = NULL;
struct elf_shdr *shdr4extnum = NULL;
Elf_Half e_phnum;
elf_addr_t e_shoff;
/*
* We no longer stop all VM operations.
*
* This is because those proceses that could possibly change map_count
* or the mmap / vma pages are now blocked in do_exit on current
* finishing this core dump.
*
* Only ptrace can touch these memory addresses, but it doesn't change
* the map_count or the pages allocated. So no possibility of crashing
* exists while dumping the mm->vm_next areas to the core file.
*/
/* alloc memory for large data structures: too large to be on stack */
elf = kmalloc(sizeof(*elf), GFP_KERNEL);
if (!elf)
goto cleanup;
prstatus = kzalloc(sizeof(*prstatus), GFP_KERNEL);
if (!prstatus)
goto cleanup;
psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
if (!psinfo)
goto cleanup;
notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote), GFP_KERNEL);
if (!notes)
goto cleanup;
fpu = kmalloc(sizeof(*fpu), GFP_KERNEL);
if (!fpu)
goto cleanup;
#ifdef ELF_CORE_COPY_XFPREGS
xfpu = kmalloc(sizeof(*xfpu), GFP_KERNEL);
if (!xfpu)
goto cleanup;
#endif
if (cprm->siginfo->si_signo) {
struct core_thread *ct;
struct elf_thread_status *tmp;
for (ct = current->mm->core_state->dumper.next;
ct; ct = ct->next) {
tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
if (!tmp)
goto cleanup;
tmp->thread = ct->task;
list_add(&tmp->list, &thread_list);
}
list_for_each(t, &thread_list) {
struct elf_thread_status *tmp;
int sz;
tmp = list_entry(t, struct elf_thread_status, list);
sz = elf_dump_thread_status(cprm->siginfo->si_signo, tmp);
thread_status_size += sz;
}
}
/* now collect the dump for the current */
fill_prstatus(prstatus, current, cprm->siginfo->si_signo);
elf_core_copy_regs(&prstatus->pr_reg, cprm->regs);
segs = current->mm->map_count;
segs += elf_core_extra_phdrs();
/* for notes section */
segs++;
/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
* this, kernel supports extended numbering. Have a look at
* include/linux/elf.h for further information. */
e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
/* Set up header */
fill_elf_fdpic_header(elf, e_phnum);
has_dumped = 1;
current->flags |= PF_DUMPCORE;
/*
* Set up the notes in similar form to SVR4 core dumps made
* with info from their /proc.
*/
fill_note(notes + 0, "CORE", NT_PRSTATUS, sizeof(*prstatus), prstatus);
fill_psinfo(psinfo, current->group_leader, current->mm);
fill_note(notes + 1, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
numnote = 2;
auxv = (elf_addr_t *) current->mm->saved_auxv;
i = 0;
do
i += 2;
while (auxv[i - 2] != AT_NULL);
fill_note(¬es[numnote++], "CORE", NT_AUXV,
i * sizeof(elf_addr_t), auxv);
/* Try to dump the FPU. */
if ((prstatus->pr_fpvalid =
elf_core_copy_task_fpregs(current, cprm->regs, fpu)))
fill_note(notes + numnote++,
"CORE", NT_PRFPREG, sizeof(*fpu), fpu);
#ifdef ELF_CORE_COPY_XFPREGS
if (elf_core_copy_task_xfpregs(current, xfpu))
fill_note(notes + numnote++,
"LINUX", ELF_CORE_XFPREG_TYPE, sizeof(*xfpu), xfpu);
#endif
fs = get_fs();
set_fs(KERNEL_DS);
offset += sizeof(*elf); /* Elf header */
offset += segs * sizeof(struct elf_phdr); /* Program headers */
foffset = offset;
/* Write notes phdr entry */
{
int sz = 0;
for (i = 0; i < numnote; i++)
sz += notesize(notes + i);
sz += thread_status_size;
phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
if (!phdr4note)
goto end_coredump;
fill_elf_note_phdr(phdr4note, sz, offset);
offset += sz;
}
/* Page-align dumped data */
dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
offset += elf_core_vma_data_size(cprm->mm_flags);
offset += elf_core_extra_data_size();
e_shoff = offset;
if (e_phnum == PN_XNUM) {
shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
if (!shdr4extnum)
goto end_coredump;
fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
}
offset = dataoff;
size += sizeof(*elf);
if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
goto end_coredump;
size += sizeof(*phdr4note);
if (size > cprm->limit
|| !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
goto end_coredump;
/* write program headers for segments dump */
for (vma = current->mm->mmap; vma; vma = vma->vm_next) {
struct elf_phdr phdr;
size_t sz;
sz = vma->vm_end - vma->vm_start;
phdr.p_type = PT_LOAD;
phdr.p_offset = offset;
phdr.p_vaddr = vma->vm_start;
phdr.p_paddr = 0;
phdr.p_filesz = maydump(vma, cprm->mm_flags) ? sz : 0;
phdr.p_memsz = sz;
offset += phdr.p_filesz;
phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
if (vma->vm_flags & VM_WRITE)
phdr.p_flags |= PF_W;
if (vma->vm_flags & VM_EXEC)
phdr.p_flags |= PF_X;
phdr.p_align = ELF_EXEC_PAGESIZE;
size += sizeof(phdr);
if (size > cprm->limit
|| !dump_write(cprm->file, &phdr, sizeof(phdr)))
goto end_coredump;
}
if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
goto end_coredump;
/* write out the notes section */
for (i = 0; i < numnote; i++)
if (!writenote(notes + i, cprm->file, &foffset))
goto end_coredump;
/* write out the thread status notes section */
list_for_each(t, &thread_list) {
struct elf_thread_status *tmp =
list_entry(t, struct elf_thread_status, list);
for (i = 0; i < tmp->num_notes; i++)
if (!writenote(&tmp->notes[i], cprm->file, &foffset))
goto end_coredump;
}
if (!dump_seek(cprm->file, dataoff - foffset))
goto end_coredump;
if (elf_fdpic_dump_segments(cprm->file, &size, &cprm->limit,
cprm->mm_flags) < 0)
goto end_coredump;
if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
goto end_coredump;
if (e_phnum == PN_XNUM) {
size += sizeof(*shdr4extnum);
if (size > cprm->limit
|| !dump_write(cprm->file, shdr4extnum,
sizeof(*shdr4extnum)))
goto end_coredump;
}
if (cprm->file->f_pos != offset) {
/* Sanity check */
printk(KERN_WARNING
"elf_core_dump: file->f_pos (%lld) != offset (%lld)\n",
cprm->file->f_pos, offset);
}
end_coredump:
set_fs(fs);
cleanup:
while (!list_empty(&thread_list)) {
struct list_head *tmp = thread_list.next;
list_del(tmp);
kfree(list_entry(tmp, struct elf_thread_status, list));
}
kfree(phdr4note);
kfree(elf);
kfree(prstatus);
kfree(psinfo);
kfree(notes);
kfree(fpu);
kfree(shdr4extnum);
#ifdef ELF_CORE_COPY_XFPREGS
kfree(xfpu);
#endif
return has_dumped;
#undef NUM_NOTES
}
#endif /* CONFIG_ELF_CORE */