summaryrefslogblamecommitdiffstats
path: root/fs/btrfs/ref-verify.c
blob: d09b6cdb785a0a979a91d471e34844549d102df5 (plain) (tree)
1
2
3
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
                                   

                                                     









































                                                                               
                                          











                                                                               
                                                                              




























































































































































































































































































































































































































































































































                                                                                  

                                                   



                                                                               



                                                                             






                                                          
                                                         













                                                                          
                                                            




































































































































                                                                                                 
                                           





















































                                                                                 

                                                                    





































































                                                                                       
                                                                  

                                                                               
                                                                       















































































































                                                                                  











                                                             
                                         















                                                                                
                                                 













                                                                
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2014 Facebook.  All rights reserved.
 */

#include <linux/sched.h>
#include <linux/stacktrace.h>
#include "ctree.h"
#include "disk-io.h"
#include "locking.h"
#include "delayed-ref.h"
#include "ref-verify.h"

/*
 * Used to keep track the roots and number of refs each root has for a given
 * bytenr.  This just tracks the number of direct references, no shared
 * references.
 */
struct root_entry {
	u64 root_objectid;
	u64 num_refs;
	struct rb_node node;
};

/*
 * These are meant to represent what should exist in the extent tree, these can
 * be used to verify the extent tree is consistent as these should all match
 * what the extent tree says.
 */
struct ref_entry {
	u64 root_objectid;
	u64 parent;
	u64 owner;
	u64 offset;
	u64 num_refs;
	struct rb_node node;
};

#define MAX_TRACE	16

/*
 * Whenever we add/remove a reference we record the action.  The action maps
 * back to the delayed ref action.  We hold the ref we are changing in the
 * action so we can account for the history properly, and we record the root we
 * were called with since it could be different from ref_root.  We also store
 * stack traces because that's how I roll.
 */
struct ref_action {
	int action;
	u64 root;
	struct ref_entry ref;
	struct list_head list;
	unsigned long trace[MAX_TRACE];
	unsigned int trace_len;
};

/*
 * One of these for every block we reference, it holds the roots and references
 * to it as well as all of the ref actions that have occurred to it.  We never
 * free it until we unmount the file system in order to make sure re-allocations
 * are happening properly.
 */
struct block_entry {
	u64 bytenr;
	u64 len;
	u64 num_refs;
	int metadata;
	int from_disk;
	struct rb_root roots;
	struct rb_root refs;
	struct rb_node node;
	struct list_head actions;
};

static struct block_entry *insert_block_entry(struct rb_root *root,
					      struct block_entry *be)
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent_node = NULL;
	struct block_entry *entry;

	while (*p) {
		parent_node = *p;
		entry = rb_entry(parent_node, struct block_entry, node);
		if (entry->bytenr > be->bytenr)
			p = &(*p)->rb_left;
		else if (entry->bytenr < be->bytenr)
			p = &(*p)->rb_right;
		else
			return entry;
	}

	rb_link_node(&be->node, parent_node, p);
	rb_insert_color(&be->node, root);
	return NULL;
}

static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
{
	struct rb_node *n;
	struct block_entry *entry = NULL;

	n = root->rb_node;
	while (n) {
		entry = rb_entry(n, struct block_entry, node);
		if (entry->bytenr < bytenr)
			n = n->rb_right;
		else if (entry->bytenr > bytenr)
			n = n->rb_left;
		else
			return entry;
	}
	return NULL;
}

static struct root_entry *insert_root_entry(struct rb_root *root,
					    struct root_entry *re)
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent_node = NULL;
	struct root_entry *entry;

	while (*p) {
		parent_node = *p;
		entry = rb_entry(parent_node, struct root_entry, node);
		if (entry->root_objectid > re->root_objectid)
			p = &(*p)->rb_left;
		else if (entry->root_objectid < re->root_objectid)
			p = &(*p)->rb_right;
		else
			return entry;
	}

	rb_link_node(&re->node, parent_node, p);
	rb_insert_color(&re->node, root);
	return NULL;

}

static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
{
	if (ref1->root_objectid < ref2->root_objectid)
		return -1;
	if (ref1->root_objectid > ref2->root_objectid)
		return 1;
	if (ref1->parent < ref2->parent)
		return -1;
	if (ref1->parent > ref2->parent)
		return 1;
	if (ref1->owner < ref2->owner)
		return -1;
	if (ref1->owner > ref2->owner)
		return 1;
	if (ref1->offset < ref2->offset)
		return -1;
	if (ref1->offset > ref2->offset)
		return 1;
	return 0;
}

static struct ref_entry *insert_ref_entry(struct rb_root *root,
					  struct ref_entry *ref)
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent_node = NULL;
	struct ref_entry *entry;
	int cmp;

	while (*p) {
		parent_node = *p;
		entry = rb_entry(parent_node, struct ref_entry, node);
		cmp = comp_refs(entry, ref);
		if (cmp > 0)
			p = &(*p)->rb_left;
		else if (cmp < 0)
			p = &(*p)->rb_right;
		else
			return entry;
	}

	rb_link_node(&ref->node, parent_node, p);
	rb_insert_color(&ref->node, root);
	return NULL;

}

static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
{
	struct rb_node *n;
	struct root_entry *entry = NULL;

	n = root->rb_node;
	while (n) {
		entry = rb_entry(n, struct root_entry, node);
		if (entry->root_objectid < objectid)
			n = n->rb_right;
		else if (entry->root_objectid > objectid)
			n = n->rb_left;
		else
			return entry;
	}
	return NULL;
}

#ifdef CONFIG_STACKTRACE
static void __save_stack_trace(struct ref_action *ra)
{
	struct stack_trace stack_trace;

	stack_trace.max_entries = MAX_TRACE;
	stack_trace.nr_entries = 0;
	stack_trace.entries = ra->trace;
	stack_trace.skip = 2;
	save_stack_trace(&stack_trace);
	ra->trace_len = stack_trace.nr_entries;
}

static void __print_stack_trace(struct btrfs_fs_info *fs_info,
				struct ref_action *ra)
{
	struct stack_trace trace;

	if (ra->trace_len == 0) {
		btrfs_err(fs_info, "  ref-verify: no stacktrace");
		return;
	}
	trace.nr_entries = ra->trace_len;
	trace.entries = ra->trace;
	print_stack_trace(&trace, 2);
}
#else
static void inline __save_stack_trace(struct ref_action *ra)
{
}

static void inline __print_stack_trace(struct btrfs_fs_info *fs_info,
				       struct ref_action *ra)
{
	btrfs_err(fs_info, "  ref-verify: no stacktrace support");
}
#endif

static void free_block_entry(struct block_entry *be)
{
	struct root_entry *re;
	struct ref_entry *ref;
	struct ref_action *ra;
	struct rb_node *n;

	while ((n = rb_first(&be->roots))) {
		re = rb_entry(n, struct root_entry, node);
		rb_erase(&re->node, &be->roots);
		kfree(re);
	}

	while((n = rb_first(&be->refs))) {
		ref = rb_entry(n, struct ref_entry, node);
		rb_erase(&ref->node, &be->refs);
		kfree(ref);
	}

	while (!list_empty(&be->actions)) {
		ra = list_first_entry(&be->actions, struct ref_action,
				      list);
		list_del(&ra->list);
		kfree(ra);
	}
	kfree(be);
}

static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
					   u64 bytenr, u64 len,
					   u64 root_objectid)
{
	struct block_entry *be = NULL, *exist;
	struct root_entry *re = NULL;

	re = kzalloc(sizeof(struct root_entry), GFP_KERNEL);
	be = kzalloc(sizeof(struct block_entry), GFP_KERNEL);
	if (!be || !re) {
		kfree(re);
		kfree(be);
		return ERR_PTR(-ENOMEM);
	}
	be->bytenr = bytenr;
	be->len = len;

	re->root_objectid = root_objectid;
	re->num_refs = 0;

	spin_lock(&fs_info->ref_verify_lock);
	exist = insert_block_entry(&fs_info->block_tree, be);
	if (exist) {
		if (root_objectid) {
			struct root_entry *exist_re;

			exist_re = insert_root_entry(&exist->roots, re);
			if (exist_re)
				kfree(re);
		}
		kfree(be);
		return exist;
	}

	be->num_refs = 0;
	be->metadata = 0;
	be->from_disk = 0;
	be->roots = RB_ROOT;
	be->refs = RB_ROOT;
	INIT_LIST_HEAD(&be->actions);
	if (root_objectid)
		insert_root_entry(&be->roots, re);
	else
		kfree(re);
	return be;
}

static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
			  u64 parent, u64 bytenr, int level)
{
	struct block_entry *be;
	struct root_entry *re;
	struct ref_entry *ref = NULL, *exist;

	ref = kmalloc(sizeof(struct ref_entry), GFP_KERNEL);
	if (!ref)
		return -ENOMEM;

	if (parent)
		ref->root_objectid = 0;
	else
		ref->root_objectid = ref_root;
	ref->parent = parent;
	ref->owner = level;
	ref->offset = 0;
	ref->num_refs = 1;

	be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
	if (IS_ERR(be)) {
		kfree(ref);
		return PTR_ERR(be);
	}
	be->num_refs++;
	be->from_disk = 1;
	be->metadata = 1;

	if (!parent) {
		ASSERT(ref_root);
		re = lookup_root_entry(&be->roots, ref_root);
		ASSERT(re);
		re->num_refs++;
	}
	exist = insert_ref_entry(&be->refs, ref);
	if (exist) {
		exist->num_refs++;
		kfree(ref);
	}
	spin_unlock(&fs_info->ref_verify_lock);

	return 0;
}

static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
			       u64 parent, u32 num_refs, u64 bytenr,
			       u64 num_bytes)
{
	struct block_entry *be;
	struct ref_entry *ref;

	ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
	if (!ref)
		return -ENOMEM;
	be = add_block_entry(fs_info, bytenr, num_bytes, 0);
	if (IS_ERR(be)) {
		kfree(ref);
		return PTR_ERR(be);
	}
	be->num_refs += num_refs;

	ref->parent = parent;
	ref->num_refs = num_refs;
	if (insert_ref_entry(&be->refs, ref)) {
		spin_unlock(&fs_info->ref_verify_lock);
		btrfs_err(fs_info, "existing shared ref when reading from disk?");
		kfree(ref);
		return -EINVAL;
	}
	spin_unlock(&fs_info->ref_verify_lock);
	return 0;
}

static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
			       struct extent_buffer *leaf,
			       struct btrfs_extent_data_ref *dref,
			       u64 bytenr, u64 num_bytes)
{
	struct block_entry *be;
	struct ref_entry *ref;
	struct root_entry *re;
	u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
	u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
	u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
	u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);

	ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
	if (!ref)
		return -ENOMEM;
	be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
	if (IS_ERR(be)) {
		kfree(ref);
		return PTR_ERR(be);
	}
	be->num_refs += num_refs;

	ref->parent = 0;
	ref->owner = owner;
	ref->root_objectid = ref_root;
	ref->offset = offset;
	ref->num_refs = num_refs;
	if (insert_ref_entry(&be->refs, ref)) {
		spin_unlock(&fs_info->ref_verify_lock);
		btrfs_err(fs_info, "existing ref when reading from disk?");
		kfree(ref);
		return -EINVAL;
	}

	re = lookup_root_entry(&be->roots, ref_root);
	if (!re) {
		spin_unlock(&fs_info->ref_verify_lock);
		btrfs_err(fs_info, "missing root in new block entry?");
		return -EINVAL;
	}
	re->num_refs += num_refs;
	spin_unlock(&fs_info->ref_verify_lock);
	return 0;
}

static int process_extent_item(struct btrfs_fs_info *fs_info,
			       struct btrfs_path *path, struct btrfs_key *key,
			       int slot, int *tree_block_level)
{
	struct btrfs_extent_item *ei;
	struct btrfs_extent_inline_ref *iref;
	struct btrfs_extent_data_ref *dref;
	struct btrfs_shared_data_ref *sref;
	struct extent_buffer *leaf = path->nodes[0];
	u32 item_size = btrfs_item_size_nr(leaf, slot);
	unsigned long end, ptr;
	u64 offset, flags, count;
	int type, ret;

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);

	if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)(ei + 1);
		*tree_block_level = btrfs_tree_block_level(leaf, info);
		iref = (struct btrfs_extent_inline_ref *)(info + 1);
	} else {
		if (key->type == BTRFS_METADATA_ITEM_KEY)
			*tree_block_level = key->offset;
		iref = (struct btrfs_extent_inline_ref *)(ei + 1);
	}

	ptr = (unsigned long)iref;
	end = (unsigned long)ei + item_size;
	while (ptr < end) {
		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);
		switch (type) {
		case BTRFS_TREE_BLOCK_REF_KEY:
			ret = add_tree_block(fs_info, offset, 0, key->objectid,
					     *tree_block_level);
			break;
		case BTRFS_SHARED_BLOCK_REF_KEY:
			ret = add_tree_block(fs_info, 0, offset, key->objectid,
					     *tree_block_level);
			break;
		case BTRFS_EXTENT_DATA_REF_KEY:
			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			ret = add_extent_data_ref(fs_info, leaf, dref,
						  key->objectid, key->offset);
			break;
		case BTRFS_SHARED_DATA_REF_KEY:
			sref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sref);
			ret = add_shared_data_ref(fs_info, offset, count,
						  key->objectid, key->offset);
			break;
		default:
			btrfs_err(fs_info, "invalid key type in iref");
			ret = -EINVAL;
			break;
		}
		if (ret)
			break;
		ptr += btrfs_extent_inline_ref_size(type);
	}
	return ret;
}

static int process_leaf(struct btrfs_root *root,
			struct btrfs_path *path, u64 *bytenr, u64 *num_bytes)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *leaf = path->nodes[0];
	struct btrfs_extent_data_ref *dref;
	struct btrfs_shared_data_ref *sref;
	u32 count;
	int i = 0, tree_block_level = 0, ret;
	struct btrfs_key key;
	int nritems = btrfs_header_nritems(leaf);

	for (i = 0; i < nritems; i++) {
		btrfs_item_key_to_cpu(leaf, &key, i);
		switch (key.type) {
		case BTRFS_EXTENT_ITEM_KEY:
			*num_bytes = key.offset;
		case BTRFS_METADATA_ITEM_KEY:
			*bytenr = key.objectid;
			ret = process_extent_item(fs_info, path, &key, i,
						  &tree_block_level);
			break;
		case BTRFS_TREE_BLOCK_REF_KEY:
			ret = add_tree_block(fs_info, key.offset, 0,
					     key.objectid, tree_block_level);
			break;
		case BTRFS_SHARED_BLOCK_REF_KEY:
			ret = add_tree_block(fs_info, 0, key.offset,
					     key.objectid, tree_block_level);
			break;
		case BTRFS_EXTENT_DATA_REF_KEY:
			dref = btrfs_item_ptr(leaf, i,
					      struct btrfs_extent_data_ref);
			ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
						  *num_bytes);
			break;
		case BTRFS_SHARED_DATA_REF_KEY:
			sref = btrfs_item_ptr(leaf, i,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sref);
			ret = add_shared_data_ref(fs_info, key.offset, count,
						  *bytenr, *num_bytes);
			break;
		default:
			break;
		}
		if (ret)
			break;
	}
	return ret;
}

/* Walk down to the leaf from the given level */
static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
			  int level, u64 *bytenr, u64 *num_bytes)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *eb;
	u64 block_bytenr, gen;
	int ret = 0;

	while (level >= 0) {
		if (level) {
			struct btrfs_key first_key;

			block_bytenr = btrfs_node_blockptr(path->nodes[level],
							   path->slots[level]);
			gen = btrfs_node_ptr_generation(path->nodes[level],
							path->slots[level]);
			btrfs_node_key_to_cpu(path->nodes[level], &first_key,
					      path->slots[level]);
			eb = read_tree_block(fs_info, block_bytenr, gen,
					     level - 1, &first_key);
			if (IS_ERR(eb))
				return PTR_ERR(eb);
			if (!extent_buffer_uptodate(eb)) {
				free_extent_buffer(eb);
				return -EIO;
			}
			btrfs_tree_read_lock(eb);
			btrfs_set_lock_blocking_read(eb);
			path->nodes[level-1] = eb;
			path->slots[level-1] = 0;
			path->locks[level-1] = BTRFS_READ_LOCK_BLOCKING;
		} else {
			ret = process_leaf(root, path, bytenr, num_bytes);
			if (ret)
				break;
		}
		level--;
	}
	return ret;
}

/* Walk up to the next node that needs to be processed */
static int walk_up_tree(struct btrfs_path *path, int *level)
{
	int l;

	for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
		if (!path->nodes[l])
			continue;
		if (l) {
			path->slots[l]++;
			if (path->slots[l] <
			    btrfs_header_nritems(path->nodes[l])) {
				*level = l;
				return 0;
			}
		}
		btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
		free_extent_buffer(path->nodes[l]);
		path->nodes[l] = NULL;
		path->slots[l] = 0;
		path->locks[l] = 0;
	}

	return 1;
}

static void dump_ref_action(struct btrfs_fs_info *fs_info,
			    struct ref_action *ra)
{
	btrfs_err(fs_info,
"  Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
		  ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
		  ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
	__print_stack_trace(fs_info, ra);
}

/*
 * Dumps all the information from the block entry to printk, it's going to be
 * awesome.
 */
static void dump_block_entry(struct btrfs_fs_info *fs_info,
			     struct block_entry *be)
{
	struct ref_entry *ref;
	struct root_entry *re;
	struct ref_action *ra;
	struct rb_node *n;

	btrfs_err(fs_info,
"dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
		  be->bytenr, be->len, be->num_refs, be->metadata,
		  be->from_disk);

	for (n = rb_first(&be->refs); n; n = rb_next(n)) {
		ref = rb_entry(n, struct ref_entry, node);
		btrfs_err(fs_info,
"  ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
			  ref->root_objectid, ref->parent, ref->owner,
			  ref->offset, ref->num_refs);
	}

	for (n = rb_first(&be->roots); n; n = rb_next(n)) {
		re = rb_entry(n, struct root_entry, node);
		btrfs_err(fs_info, "  root entry %llu, num_refs %llu",
			  re->root_objectid, re->num_refs);
	}

	list_for_each_entry(ra, &be->actions, list)
		dump_ref_action(fs_info, ra);
}

/*
 * btrfs_ref_tree_mod: called when we modify a ref for a bytenr
 * @root: the root we are making this modification from.
 * @bytenr: the bytenr we are modifying.
 * @num_bytes: number of bytes.
 * @parent: the parent bytenr.
 * @ref_root: the original root owner of the bytenr.
 * @owner: level in the case of metadata, inode in the case of data.
 * @offset: 0 for metadata, file offset for data.
 * @action: the action that we are doing, this is the same as the delayed ref
 *	action.
 *
 * This will add an action item to the given bytenr and do sanity checks to make
 * sure we haven't messed something up.  If we are making a new allocation and
 * this block entry has history we will delete all previous actions as long as
 * our sanity checks pass as they are no longer needed.
 */
int btrfs_ref_tree_mod(struct btrfs_root *root, u64 bytenr, u64 num_bytes,
		       u64 parent, u64 ref_root, u64 owner, u64 offset,
		       int action)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct ref_entry *ref = NULL, *exist;
	struct ref_action *ra = NULL;
	struct block_entry *be = NULL;
	struct root_entry *re = NULL;
	int ret = 0;
	bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;

	if (!btrfs_test_opt(root->fs_info, REF_VERIFY))
		return 0;

	ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
	ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
	if (!ra || !ref) {
		kfree(ref);
		kfree(ra);
		ret = -ENOMEM;
		goto out;
	}

	if (parent) {
		ref->parent = parent;
	} else {
		ref->root_objectid = ref_root;
		ref->owner = owner;
		ref->offset = offset;
	}
	ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;

	memcpy(&ra->ref, ref, sizeof(struct ref_entry));
	/*
	 * Save the extra info from the delayed ref in the ref action to make it
	 * easier to figure out what is happening.  The real ref's we add to the
	 * ref tree need to reflect what we save on disk so it matches any
	 * on-disk refs we pre-loaded.
	 */
	ra->ref.owner = owner;
	ra->ref.offset = offset;
	ra->ref.root_objectid = ref_root;
	__save_stack_trace(ra);

	INIT_LIST_HEAD(&ra->list);
	ra->action = action;
	ra->root = root->root_key.objectid;

	/*
	 * This is an allocation, preallocate the block_entry in case we haven't
	 * used it before.
	 */
	ret = -EINVAL;
	if (action == BTRFS_ADD_DELAYED_EXTENT) {
		/*
		 * For subvol_create we'll just pass in whatever the parent root
		 * is and the new root objectid, so let's not treat the passed
		 * in root as if it really has a ref for this bytenr.
		 */
		be = add_block_entry(root->fs_info, bytenr, num_bytes, ref_root);
		if (IS_ERR(be)) {
			kfree(ra);
			ret = PTR_ERR(be);
			goto out;
		}
		be->num_refs++;
		if (metadata)
			be->metadata = 1;

		if (be->num_refs != 1) {
			btrfs_err(fs_info,
			"re-allocated a block that still has references to it!");
			dump_block_entry(fs_info, be);
			dump_ref_action(fs_info, ra);
			goto out_unlock;
		}

		while (!list_empty(&be->actions)) {
			struct ref_action *tmp;

			tmp = list_first_entry(&be->actions, struct ref_action,
					       list);
			list_del(&tmp->list);
			kfree(tmp);
		}
	} else {
		struct root_entry *tmp;

		if (!parent) {
			re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
			if (!re) {
				kfree(ref);
				kfree(ra);
				ret = -ENOMEM;
				goto out;
			}
			/*
			 * This is the root that is modifying us, so it's the
			 * one we want to lookup below when we modify the
			 * re->num_refs.
			 */
			ref_root = root->root_key.objectid;
			re->root_objectid = root->root_key.objectid;
			re->num_refs = 0;
		}

		spin_lock(&root->fs_info->ref_verify_lock);
		be = lookup_block_entry(&root->fs_info->block_tree, bytenr);
		if (!be) {
			btrfs_err(fs_info,
"trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
				  action, (unsigned long long)bytenr,
				  (unsigned long long)num_bytes);
			dump_ref_action(fs_info, ra);
			kfree(ref);
			kfree(ra);
			goto out_unlock;
		}

		if (!parent) {
			tmp = insert_root_entry(&be->roots, re);
			if (tmp) {
				kfree(re);
				re = tmp;
			}
		}
	}

	exist = insert_ref_entry(&be->refs, ref);
	if (exist) {
		if (action == BTRFS_DROP_DELAYED_REF) {
			if (exist->num_refs == 0) {
				btrfs_err(fs_info,
"dropping a ref for a existing root that doesn't have a ref on the block");
				dump_block_entry(fs_info, be);
				dump_ref_action(fs_info, ra);
				kfree(ra);
				goto out_unlock;
			}
			exist->num_refs--;
			if (exist->num_refs == 0) {
				rb_erase(&exist->node, &be->refs);
				kfree(exist);
			}
		} else if (!be->metadata) {
			exist->num_refs++;
		} else {
			btrfs_err(fs_info,
"attempting to add another ref for an existing ref on a tree block");
			dump_block_entry(fs_info, be);
			dump_ref_action(fs_info, ra);
			kfree(ra);
			goto out_unlock;
		}
		kfree(ref);
	} else {
		if (action == BTRFS_DROP_DELAYED_REF) {
			btrfs_err(fs_info,
"dropping a ref for a root that doesn't have a ref on the block");
			dump_block_entry(fs_info, be);
			dump_ref_action(fs_info, ra);
			kfree(ra);
			goto out_unlock;
		}
	}

	if (!parent && !re) {
		re = lookup_root_entry(&be->roots, ref_root);
		if (!re) {
			/*
			 * This shouldn't happen because we will add our re
			 * above when we lookup the be with !parent, but just in
			 * case catch this case so we don't panic because I
			 * didn't think of some other corner case.
			 */
			btrfs_err(fs_info, "failed to find root %llu for %llu",
				  root->root_key.objectid, be->bytenr);
			dump_block_entry(fs_info, be);
			dump_ref_action(fs_info, ra);
			kfree(ra);
			goto out_unlock;
		}
	}
	if (action == BTRFS_DROP_DELAYED_REF) {
		if (re)
			re->num_refs--;
		be->num_refs--;
	} else if (action == BTRFS_ADD_DELAYED_REF) {
		be->num_refs++;
		if (re)
			re->num_refs++;
	}
	list_add_tail(&ra->list, &be->actions);
	ret = 0;
out_unlock:
	spin_unlock(&root->fs_info->ref_verify_lock);
out:
	if (ret)
		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
	return ret;
}

/* Free up the ref cache */
void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
{
	struct block_entry *be;
	struct rb_node *n;

	if (!btrfs_test_opt(fs_info, REF_VERIFY))
		return;

	spin_lock(&fs_info->ref_verify_lock);
	while ((n = rb_first(&fs_info->block_tree))) {
		be = rb_entry(n, struct block_entry, node);
		rb_erase(&be->node, &fs_info->block_tree);
		free_block_entry(be);
		cond_resched_lock(&fs_info->ref_verify_lock);
	}
	spin_unlock(&fs_info->ref_verify_lock);
}

void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
			       u64 len)
{
	struct block_entry *be = NULL, *entry;
	struct rb_node *n;

	if (!btrfs_test_opt(fs_info, REF_VERIFY))
		return;

	spin_lock(&fs_info->ref_verify_lock);
	n = fs_info->block_tree.rb_node;
	while (n) {
		entry = rb_entry(n, struct block_entry, node);
		if (entry->bytenr < start) {
			n = n->rb_right;
		} else if (entry->bytenr > start) {
			n = n->rb_left;
		} else {
			be = entry;
			break;
		}
		/* We want to get as close to start as possible */
		if (be == NULL ||
		    (entry->bytenr < start && be->bytenr > start) ||
		    (entry->bytenr < start && entry->bytenr > be->bytenr))
			be = entry;
	}

	/*
	 * Could have an empty block group, maybe have something to check for
	 * this case to verify we were actually empty?
	 */
	if (!be) {
		spin_unlock(&fs_info->ref_verify_lock);
		return;
	}

	n = &be->node;
	while (n) {
		be = rb_entry(n, struct block_entry, node);
		n = rb_next(n);
		if (be->bytenr < start && be->bytenr + be->len > start) {
			btrfs_err(fs_info,
				"block entry overlaps a block group [%llu,%llu]!",
				start, len);
			dump_block_entry(fs_info, be);
			continue;
		}
		if (be->bytenr < start)
			continue;
		if (be->bytenr >= start + len)
			break;
		if (be->bytenr + be->len > start + len) {
			btrfs_err(fs_info,
				"block entry overlaps a block group [%llu,%llu]!",
				start, len);
			dump_block_entry(fs_info, be);
		}
		rb_erase(&be->node, &fs_info->block_tree);
		free_block_entry(be);
	}
	spin_unlock(&fs_info->ref_verify_lock);
}

/* Walk down all roots and build the ref tree, meant to be called at mount */
int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
{
	struct btrfs_path *path;
	struct extent_buffer *eb;
	u64 bytenr = 0, num_bytes = 0;
	int ret, level;

	if (!btrfs_test_opt(fs_info, REF_VERIFY))
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	eb = btrfs_read_lock_root_node(fs_info->extent_root);
	btrfs_set_lock_blocking_read(eb);
	level = btrfs_header_level(eb);
	path->nodes[level] = eb;
	path->slots[level] = 0;
	path->locks[level] = BTRFS_READ_LOCK_BLOCKING;

	while (1) {
		/*
		 * We have to keep track of the bytenr/num_bytes we last hit
		 * because we could have run out of space for an inline ref, and
		 * would have had to added a ref key item which may appear on a
		 * different leaf from the original extent item.
		 */
		ret = walk_down_tree(fs_info->extent_root, path, level,
				     &bytenr, &num_bytes);
		if (ret)
			break;
		ret = walk_up_tree(path, &level);
		if (ret < 0)
			break;
		if (ret > 0) {
			ret = 0;
			break;
		}
	}
	if (ret) {
		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
		btrfs_free_ref_cache(fs_info);
	}
	btrfs_free_path(path);
	return ret;
}