summaryrefslogblamecommitdiffstats
path: root/fs/xfs/xfs_inode.c
blob: 2424a4777949cfcab05bf6084724d96dadf38f74 (plain) (tree)
1
2
3
4
5
6
7
8
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
  

                                                      
  

                                                                 

                                             



                                                                   
  


                                                                       
   
                
                   
                      
                    
                    

                     







                           
                           
                            
                             

                        
                        
                       
                      
                         




                           

                      





























                                                                      
                                     



                                      
                                    




                                     
                                              







                                                              


                 
                                                   































                                                                                                                                  











                                                                
          


































                                                                        
                                                                                   
                                                    

                                                          




































































                                                                                        

                                   














                                                                             

                                                                       
                                     






























































                                                                                

                                                             
     
                                                      

































































                                                                                                    

                                                                                










                                                                                                        

                                                              





























                                                                                                          


                                                                           








                                                                                    


                                                                           







































                                                                                  
                                                     













































                                                                           


                                                                   










































                                                                                












                                                                                       

                                                               





                                                                                
                               



                                                                 


                                          
                             

                                                                      


                                                                        









                                                                              
                                                    













































                                                                                  

                                                           


















































































































                                                                             



                                                        
























































                                                                           

                                                         












































































































































                                                                                        
                                 






                                                                                

                                                     
                                           
 


                                                                         
                                    
                                               
                                       
                                       

                                                         
                                      


                                                
                                                                     

































                                                                         
                              









































                                                                








































































                                                                                 




                                                                             




                                                                                  

                                                                               

                                                                               



                                                                                  


                                                                       
                                                               

                                                                      
                                                              

                                                                    
                                                            

                                                                          



                                                                       





















                                                               
                                                                               

























                                                                        
                                                                          



































































































                                                                                  



                                                         













































































































































































































































































































































































































                                                                                          





                                                            




                                                             

                                                                   


















































































                                                                     

                                                                       













                                                                               
                                                                      
 
                                                                        





                                                                         
                                                                


















                                                                                  
                                                             
























































                                                                                                                  

                                                                       
















                                                                                                                  
                                                                          

                                                
                                                                    







                                                                        
                                                                























                                                                                                                 
                                                                          







                                                                        
                                                                          


























                                                                                                           
                                                                








































                                                                                                                 
           










































































































































































































































































































































































                                                                                                   





























































































































































                                                                             


                                                                             
                                                
                                      























































































                                                                                 
                                                                 















                                                                 
           





































































                                                                         


                                     
                                              




                                                                        








                                                            


                            
                                                                   




































































                                                                                   



                                                            




















































































































                                                                                        

                                                         
























































































































































































































































                                                                                            




                                                                  































































































































































































                                                                                                                     
                                   
   
    
               
                            
 
                            

                            




                            
 





                                                                
 

                                       
                                              


                                                                    
 
                                          
 


                                     
                              

 










                                                      
                                                           












































































                                                                            















                                                                               









                                                                    









                                                                              



































































                                                                             
                                                     






                                                         
                                                          







                                                                           

















































                                                                                 



                                 
















































































































                                                                                



                                                                   




                                                               















                                                                           

                                                             



















                                                                          
                                                 




































                                                                           
                                                 



























                                                                 













































































                                                                               










                                                                      



                                                                   




























































































                                                                           





















































                                                                            





                                                                









                                                                      








                                                                     

  




































































                                                                            



                                                                 
                                                                            






                                                                           
                                                                     









































































































































































































































































































































































                                                                                 
/*
 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_imap.h"
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dir_sf.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_buf_item.h"
#include "xfs_inode_item.h"
#include "xfs_btree.h"
#include "xfs_alloc.h"
#include "xfs_ialloc.h"
#include "xfs_bmap.h"
#include "xfs_rw.h"
#include "xfs_error.h"
#include "xfs_utils.h"
#include "xfs_dir2_trace.h"
#include "xfs_quota.h"
#include "xfs_mac.h"
#include "xfs_acl.h"


kmem_zone_t *xfs_ifork_zone;
kmem_zone_t *xfs_inode_zone;
kmem_zone_t *xfs_chashlist_zone;

/*
 * Used in xfs_itruncate().  This is the maximum number of extents
 * freed from a file in a single transaction.
 */
#define	XFS_ITRUNC_MAX_EXTENTS	2

STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);


#ifdef DEBUG
/*
 * Make sure that the extents in the given memory buffer
 * are valid.
 */
STATIC void
xfs_validate_extents(
	xfs_ifork_t		*ifp,
	int			nrecs,
	int			disk,
	xfs_exntfmt_t		fmt)
{
	xfs_bmbt_rec_t		*ep;
	xfs_bmbt_irec_t		irec;
	xfs_bmbt_rec_t		rec;
	int			i;

	for (i = 0; i < nrecs; i++) {
		ep = xfs_iext_get_ext(ifp, i);
		rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
		rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
		if (disk)
			xfs_bmbt_disk_get_all(&rec, &irec);
		else
			xfs_bmbt_get_all(&rec, &irec);
		if (fmt == XFS_EXTFMT_NOSTATE)
			ASSERT(irec.br_state == XFS_EXT_NORM);
	}
}
#else /* DEBUG */
#define xfs_validate_extents(ifp, nrecs, disk, fmt)
#endif /* DEBUG */

/*
 * Check that none of the inode's in the buffer have a next
 * unlinked field of 0.
 */
#if defined(DEBUG)
void
xfs_inobp_check(
	xfs_mount_t	*mp,
	xfs_buf_t	*bp)
{
	int		i;
	int		j;
	xfs_dinode_t	*dip;

	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;

	for (i = 0; i < j; i++) {
		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
					i * mp->m_sb.sb_inodesize);
		if (!dip->di_next_unlinked)  {
			xfs_fs_cmn_err(CE_ALERT, mp,
				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
				bp);
			ASSERT(dip->di_next_unlinked);
		}
	}
}
#endif

/*
 * This routine is called to map an inode number within a file
 * system to the buffer containing the on-disk version of the
 * inode.  It returns a pointer to the buffer containing the
 * on-disk inode in the bpp parameter, and in the dip parameter
 * it returns a pointer to the on-disk inode within that buffer.
 *
 * If a non-zero error is returned, then the contents of bpp and
 * dipp are undefined.
 *
 * Use xfs_imap() to determine the size and location of the
 * buffer to read from disk.
 */
STATIC int
xfs_inotobp(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	xfs_dinode_t	**dipp,
	xfs_buf_t	**bpp,
	int		*offset)
{
	int		di_ok;
	xfs_imap_t	imap;
	xfs_buf_t	*bp;
	int		error;
	xfs_dinode_t	*dip;

	/*
	 * Call the space managment code to find the location of the
	 * inode on disk.
	 */
	imap.im_blkno = 0;
	error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
	if (error != 0) {
		cmn_err(CE_WARN,
	"xfs_inotobp: xfs_imap()  returned an "
	"error %d on %s.  Returning error.", error, mp->m_fsname);
		return error;
	}

	/*
	 * If the inode number maps to a block outside the bounds of the
	 * file system then return NULL rather than calling read_buf
	 * and panicing when we get an error from the driver.
	 */
	if ((imap.im_blkno + imap.im_len) >
	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
		cmn_err(CE_WARN,
	"xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
	"of the file system %s.  Returning EINVAL.",
			(unsigned long long)imap.im_blkno,
			imap.im_len, mp->m_fsname);
		return XFS_ERROR(EINVAL);
	}

	/*
	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
	 * default to just a read_buf() call.
	 */
	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
				   (int)imap.im_len, XFS_BUF_LOCK, &bp);

	if (error) {
		cmn_err(CE_WARN,
	"xfs_inotobp: xfs_trans_read_buf()  returned an "
	"error %d on %s.  Returning error.", error, mp->m_fsname);
		return error;
	}
	dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
	di_ok =
		INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
		XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
	if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
			XFS_RANDOM_ITOBP_INOTOBP))) {
		XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
		xfs_trans_brelse(tp, bp);
		cmn_err(CE_WARN,
	"xfs_inotobp: XFS_TEST_ERROR()  returned an "
	"error on %s.  Returning EFSCORRUPTED.",  mp->m_fsname);
		return XFS_ERROR(EFSCORRUPTED);
	}

	xfs_inobp_check(mp, bp);

	/*
	 * Set *dipp to point to the on-disk inode in the buffer.
	 */
	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
	*bpp = bp;
	*offset = imap.im_boffset;
	return 0;
}


/*
 * This routine is called to map an inode to the buffer containing
 * the on-disk version of the inode.  It returns a pointer to the
 * buffer containing the on-disk inode in the bpp parameter, and in
 * the dip parameter it returns a pointer to the on-disk inode within
 * that buffer.
 *
 * If a non-zero error is returned, then the contents of bpp and
 * dipp are undefined.
 *
 * If the inode is new and has not yet been initialized, use xfs_imap()
 * to determine the size and location of the buffer to read from disk.
 * If the inode has already been mapped to its buffer and read in once,
 * then use the mapping information stored in the inode rather than
 * calling xfs_imap().  This allows us to avoid the overhead of looking
 * at the inode btree for small block file systems (see xfs_dilocate()).
 * We can tell whether the inode has been mapped in before by comparing
 * its disk block address to 0.  Only uninitialized inodes will have
 * 0 for the disk block address.
 */
int
xfs_itobp(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_inode_t	*ip,
	xfs_dinode_t	**dipp,
	xfs_buf_t	**bpp,
	xfs_daddr_t	bno,
	uint		imap_flags)
{
	xfs_buf_t	*bp;
	int		error;
	xfs_imap_t	imap;
#ifdef __KERNEL__
	int		i;
	int		ni;
#endif

	if (ip->i_blkno == (xfs_daddr_t)0) {
		/*
		 * Call the space management code to find the location of the
		 * inode on disk.
		 */
		imap.im_blkno = bno;
		if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
					XFS_IMAP_LOOKUP | imap_flags)))
			return error;

		/*
		 * If the inode number maps to a block outside the bounds
		 * of the file system then return NULL rather than calling
		 * read_buf and panicing when we get an error from the
		 * driver.
		 */
		if ((imap.im_blkno + imap.im_len) >
		    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
#ifdef DEBUG
			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
					"(imap.im_blkno (0x%llx) "
					"+ imap.im_len (0x%llx)) > "
					" XFS_FSB_TO_BB(mp, "
					"mp->m_sb.sb_dblocks) (0x%llx)",
					(unsigned long long) imap.im_blkno,
					(unsigned long long) imap.im_len,
					XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
#endif /* DEBUG */
			return XFS_ERROR(EINVAL);
		}

		/*
		 * Fill in the fields in the inode that will be used to
		 * map the inode to its buffer from now on.
		 */
		ip->i_blkno = imap.im_blkno;
		ip->i_len = imap.im_len;
		ip->i_boffset = imap.im_boffset;
	} else {
		/*
		 * We've already mapped the inode once, so just use the
		 * mapping that we saved the first time.
		 */
		imap.im_blkno = ip->i_blkno;
		imap.im_len = ip->i_len;
		imap.im_boffset = ip->i_boffset;
	}
	ASSERT(bno == 0 || bno == imap.im_blkno);

	/*
	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
	 * default to just a read_buf() call.
	 */
	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
				   (int)imap.im_len, XFS_BUF_LOCK, &bp);

	if (error) {
#ifdef DEBUG
		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
				"xfs_trans_read_buf() returned error %d, "
				"imap.im_blkno 0x%llx, imap.im_len 0x%llx",
				error, (unsigned long long) imap.im_blkno,
				(unsigned long long) imap.im_len);
#endif /* DEBUG */
		return error;
	}
#ifdef __KERNEL__
	/*
	 * Validate the magic number and version of every inode in the buffer
	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
	 */
#ifdef DEBUG
	ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 :
		(BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog);
#else
	ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 : 1;
#endif
	for (i = 0; i < ni; i++) {
		int		di_ok;
		xfs_dinode_t	*dip;

		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
					(i << mp->m_sb.sb_inodelog));
		di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
			    XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
		if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
				 XFS_RANDOM_ITOBP_INOTOBP))) {
#ifdef DEBUG
			prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
				mp->m_ddev_targp,
				(unsigned long long)imap.im_blkno, i,
				INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
#endif
			XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
					     mp, dip);
			xfs_trans_brelse(tp, bp);
			return XFS_ERROR(EFSCORRUPTED);
		}
	}
#endif	/* __KERNEL__ */

	xfs_inobp_check(mp, bp);

	/*
	 * Mark the buffer as an inode buffer now that it looks good
	 */
	XFS_BUF_SET_VTYPE(bp, B_FS_INO);

	/*
	 * Set *dipp to point to the on-disk inode in the buffer.
	 */
	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
	*bpp = bp;
	return 0;
}

/*
 * Move inode type and inode format specific information from the
 * on-disk inode to the in-core inode.  For fifos, devs, and sockets
 * this means set if_rdev to the proper value.  For files, directories,
 * and symlinks this means to bring in the in-line data or extent
 * pointers.  For a file in B-tree format, only the root is immediately
 * brought in-core.  The rest will be in-lined in if_extents when it
 * is first referenced (see xfs_iread_extents()).
 */
STATIC int
xfs_iformat(
	xfs_inode_t		*ip,
	xfs_dinode_t		*dip)
{
	xfs_attr_shortform_t	*atp;
	int			size;
	int			error;
	xfs_fsize_t             di_size;
	ip->i_df.if_ext_max =
		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
	error = 0;

	if (unlikely(
	    INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
		INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
	    INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
			(unsigned long long)ip->i_ino,
			(int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
			    + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
			(unsigned long long)
			INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
				     ip->i_mount, dip);
		return XFS_ERROR(EFSCORRUPTED);
	}

	if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
			"corrupt dinode %Lu, forkoff = 0x%x.",
			(unsigned long long)ip->i_ino,
			(int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
				     ip->i_mount, dip);
		return XFS_ERROR(EFSCORRUPTED);
	}

	switch (ip->i_d.di_mode & S_IFMT) {
	case S_IFIFO:
	case S_IFCHR:
	case S_IFBLK:
	case S_IFSOCK:
		if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
					      ip->i_mount, dip);
			return XFS_ERROR(EFSCORRUPTED);
		}
		ip->i_d.di_size = 0;
		ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
		break;

	case S_IFREG:
	case S_IFLNK:
	case S_IFDIR:
		switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
		case XFS_DINODE_FMT_LOCAL:
			/*
			 * no local regular files yet
			 */
			if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
					"corrupt inode %Lu "
					"(local format for regular file).",
					(unsigned long long) ip->i_ino);
				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
						     XFS_ERRLEVEL_LOW,
						     ip->i_mount, dip);
				return XFS_ERROR(EFSCORRUPTED);
			}

			di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
					"corrupt inode %Lu "
					"(bad size %Ld for local inode).",
					(unsigned long long) ip->i_ino,
					(long long) di_size);
				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
						     XFS_ERRLEVEL_LOW,
						     ip->i_mount, dip);
				return XFS_ERROR(EFSCORRUPTED);
			}

			size = (int)di_size;
			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
			break;
		case XFS_DINODE_FMT_EXTENTS:
			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
			break;
		case XFS_DINODE_FMT_BTREE:
			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
			break;
		default:
			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
					 ip->i_mount);
			return XFS_ERROR(EFSCORRUPTED);
		}
		break;

	default:
		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
		return XFS_ERROR(EFSCORRUPTED);
	}
	if (error) {
		return error;
	}
	if (!XFS_DFORK_Q(dip))
		return 0;
	ASSERT(ip->i_afp == NULL);
	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
	ip->i_afp->if_ext_max =
		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
	switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
	case XFS_DINODE_FMT_LOCAL:
		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
		size = be16_to_cpu(atp->hdr.totsize);
		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
		break;
	case XFS_DINODE_FMT_EXTENTS:
		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
		break;
	case XFS_DINODE_FMT_BTREE:
		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
		break;
	default:
		error = XFS_ERROR(EFSCORRUPTED);
		break;
	}
	if (error) {
		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
		ip->i_afp = NULL;
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
	}
	return error;
}

/*
 * The file is in-lined in the on-disk inode.
 * If it fits into if_inline_data, then copy
 * it there, otherwise allocate a buffer for it
 * and copy the data there.  Either way, set
 * if_data to point at the data.
 * If we allocate a buffer for the data, make
 * sure that its size is a multiple of 4 and
 * record the real size in i_real_bytes.
 */
STATIC int
xfs_iformat_local(
	xfs_inode_t	*ip,
	xfs_dinode_t	*dip,
	int		whichfork,
	int		size)
{
	xfs_ifork_t	*ifp;
	int		real_size;

	/*
	 * If the size is unreasonable, then something
	 * is wrong and we just bail out rather than crash in
	 * kmem_alloc() or memcpy() below.
	 */
	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
			"corrupt inode %Lu "
			"(bad size %d for local fork, size = %d).",
			(unsigned long long) ip->i_ino, size,
			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
				     ip->i_mount, dip);
		return XFS_ERROR(EFSCORRUPTED);
	}
	ifp = XFS_IFORK_PTR(ip, whichfork);
	real_size = 0;
	if (size == 0)
		ifp->if_u1.if_data = NULL;
	else if (size <= sizeof(ifp->if_u2.if_inline_data))
		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
	else {
		real_size = roundup(size, 4);
		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
	}
	ifp->if_bytes = size;
	ifp->if_real_bytes = real_size;
	if (size)
		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
	ifp->if_flags &= ~XFS_IFEXTENTS;
	ifp->if_flags |= XFS_IFINLINE;
	return 0;
}

/*
 * The file consists of a set of extents all
 * of which fit into the on-disk inode.
 * If there are few enough extents to fit into
 * the if_inline_ext, then copy them there.
 * Otherwise allocate a buffer for them and copy
 * them into it.  Either way, set if_extents
 * to point at the extents.
 */
STATIC int
xfs_iformat_extents(
	xfs_inode_t	*ip,
	xfs_dinode_t	*dip,
	int		whichfork)
{
	xfs_bmbt_rec_t	*ep, *dp;
	xfs_ifork_t	*ifp;
	int		nex;
	int		size;
	int		i;

	ifp = XFS_IFORK_PTR(ip, whichfork);
	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
	size = nex * (uint)sizeof(xfs_bmbt_rec_t);

	/*
	 * If the number of extents is unreasonable, then something
	 * is wrong and we just bail out rather than crash in
	 * kmem_alloc() or memcpy() below.
	 */
	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
			"corrupt inode %Lu ((a)extents = %d).",
			(unsigned long long) ip->i_ino, nex);
		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
				     ip->i_mount, dip);
		return XFS_ERROR(EFSCORRUPTED);
	}

	ifp->if_real_bytes = 0;
	if (nex == 0)
		ifp->if_u1.if_extents = NULL;
	else if (nex <= XFS_INLINE_EXTS)
		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
	else
		xfs_iext_add(ifp, 0, nex);

	ifp->if_bytes = size;
	if (size) {
		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
		xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
		for (i = 0; i < nex; i++, dp++) {
			ep = xfs_iext_get_ext(ifp, i);
			ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
								ARCH_CONVERT);
			ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
								ARCH_CONVERT);
		}
		xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
			whichfork);
		if (whichfork != XFS_DATA_FORK ||
			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
				if (unlikely(xfs_check_nostate_extents(
				    ifp, 0, nex))) {
					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
							 XFS_ERRLEVEL_LOW,
							 ip->i_mount);
					return XFS_ERROR(EFSCORRUPTED);
				}
	}
	ifp->if_flags |= XFS_IFEXTENTS;
	return 0;
}

/*
 * The file has too many extents to fit into
 * the inode, so they are in B-tree format.
 * Allocate a buffer for the root of the B-tree
 * and copy the root into it.  The i_extents
 * field will remain NULL until all of the
 * extents are read in (when they are needed).
 */
STATIC int
xfs_iformat_btree(
	xfs_inode_t		*ip,
	xfs_dinode_t		*dip,
	int			whichfork)
{
	xfs_bmdr_block_t	*dfp;
	xfs_ifork_t		*ifp;
	/* REFERENCED */
	int			nrecs;
	int			size;

	ifp = XFS_IFORK_PTR(ip, whichfork);
	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
	size = XFS_BMAP_BROOT_SPACE(dfp);
	nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);

	/*
	 * blow out if -- fork has less extents than can fit in
	 * fork (fork shouldn't be a btree format), root btree
	 * block has more records than can fit into the fork,
	 * or the number of extents is greater than the number of
	 * blocks.
	 */
	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
	    || XFS_BMDR_SPACE_CALC(nrecs) >
			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
			"corrupt inode %Lu (btree).",
			(unsigned long long) ip->i_ino);
		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
				 ip->i_mount);
		return XFS_ERROR(EFSCORRUPTED);
	}

	ifp->if_broot_bytes = size;
	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
	ASSERT(ifp->if_broot != NULL);
	/*
	 * Copy and convert from the on-disk structure
	 * to the in-memory structure.
	 */
	xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
		ifp->if_broot, size);
	ifp->if_flags &= ~XFS_IFEXTENTS;
	ifp->if_flags |= XFS_IFBROOT;

	return 0;
}

/*
 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
 * and native format
 *
 * buf  = on-disk representation
 * dip  = native representation
 * dir  = direction - +ve -> disk to native
 *                    -ve -> native to disk
 */
void
xfs_xlate_dinode_core(
	xfs_caddr_t		buf,
	xfs_dinode_core_t	*dip,
	int			dir)
{
	xfs_dinode_core_t	*buf_core = (xfs_dinode_core_t *)buf;
	xfs_dinode_core_t	*mem_core = (xfs_dinode_core_t *)dip;
	xfs_arch_t		arch = ARCH_CONVERT;

	ASSERT(dir);

	INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
	INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
	INT_XLATE(buf_core->di_version,	mem_core->di_version, dir, arch);
	INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
	INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
	INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
	INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
	INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
	INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);

	if (dir > 0) {
		memcpy(mem_core->di_pad, buf_core->di_pad,
			sizeof(buf_core->di_pad));
	} else {
		memcpy(buf_core->di_pad, mem_core->di_pad,
			sizeof(buf_core->di_pad));
	}

	INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);

	INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
			dir, arch);
	INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
			dir, arch);
	INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
			dir, arch);
	INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
			dir, arch);
	INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
			dir, arch);
	INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
			dir, arch);
	INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
	INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
	INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
	INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
	INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
	INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
	INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
	INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
	INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
	INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
	INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
}

STATIC uint
_xfs_dic2xflags(
	xfs_dinode_core_t	*dic,
	__uint16_t		di_flags)
{
	uint			flags = 0;

	if (di_flags & XFS_DIFLAG_ANY) {
		if (di_flags & XFS_DIFLAG_REALTIME)
			flags |= XFS_XFLAG_REALTIME;
		if (di_flags & XFS_DIFLAG_PREALLOC)
			flags |= XFS_XFLAG_PREALLOC;
		if (di_flags & XFS_DIFLAG_IMMUTABLE)
			flags |= XFS_XFLAG_IMMUTABLE;
		if (di_flags & XFS_DIFLAG_APPEND)
			flags |= XFS_XFLAG_APPEND;
		if (di_flags & XFS_DIFLAG_SYNC)
			flags |= XFS_XFLAG_SYNC;
		if (di_flags & XFS_DIFLAG_NOATIME)
			flags |= XFS_XFLAG_NOATIME;
		if (di_flags & XFS_DIFLAG_NODUMP)
			flags |= XFS_XFLAG_NODUMP;
		if (di_flags & XFS_DIFLAG_RTINHERIT)
			flags |= XFS_XFLAG_RTINHERIT;
		if (di_flags & XFS_DIFLAG_PROJINHERIT)
			flags |= XFS_XFLAG_PROJINHERIT;
		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
			flags |= XFS_XFLAG_NOSYMLINKS;
		if (di_flags & XFS_DIFLAG_EXTSIZE)
			flags |= XFS_XFLAG_EXTSIZE;
		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
			flags |= XFS_XFLAG_EXTSZINHERIT;
	}

	return flags;
}

uint
xfs_ip2xflags(
	xfs_inode_t		*ip)
{
	xfs_dinode_core_t	*dic = &ip->i_d;

	return _xfs_dic2xflags(dic, dic->di_flags) |
		(XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
}

uint
xfs_dic2xflags(
	xfs_dinode_core_t	*dic)
{
	return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
		(XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
}

/*
 * Given a mount structure and an inode number, return a pointer
 * to a newly allocated in-core inode coresponding to the given
 * inode number.
 *
 * Initialize the inode's attributes and extent pointers if it
 * already has them (it will not if the inode has no links).
 */
int
xfs_iread(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	xfs_inode_t	**ipp,
	xfs_daddr_t	bno)
{
	xfs_buf_t	*bp;
	xfs_dinode_t	*dip;
	xfs_inode_t	*ip;
	int		error;

	ASSERT(xfs_inode_zone != NULL);

	ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
	ip->i_ino = ino;
	ip->i_mount = mp;

	/*
	 * Get pointer's to the on-disk inode and the buffer containing it.
	 * If the inode number refers to a block outside the file system
	 * then xfs_itobp() will return NULL.  In this case we should
	 * return NULL as well.  Set i_blkno to 0 so that xfs_itobp() will
	 * know that this is a new incore inode.
	 */
	error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, 0);
	if (error) {
		kmem_zone_free(xfs_inode_zone, ip);
		return error;
	}

	/*
	 * Initialize inode's trace buffers.
	 * Do this before xfs_iformat in case it adds entries.
	 */
#ifdef XFS_BMAP_TRACE
	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
#endif
#ifdef XFS_BMBT_TRACE
	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
#endif
#ifdef XFS_RW_TRACE
	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
#endif
#ifdef XFS_ILOCK_TRACE
	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
#endif
#ifdef XFS_DIR2_TRACE
	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
#endif

	/*
	 * If we got something that isn't an inode it means someone
	 * (nfs or dmi) has a stale handle.
	 */
	if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
		kmem_zone_free(xfs_inode_zone, ip);
		xfs_trans_brelse(tp, bp);
#ifdef DEBUG
		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
				"dip->di_core.di_magic (0x%x) != "
				"XFS_DINODE_MAGIC (0x%x)",
				INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
				XFS_DINODE_MAGIC);
#endif /* DEBUG */
		return XFS_ERROR(EINVAL);
	}

	/*
	 * If the on-disk inode is already linked to a directory
	 * entry, copy all of the inode into the in-core inode.
	 * xfs_iformat() handles copying in the inode format
	 * specific information.
	 * Otherwise, just get the truly permanent information.
	 */
	if (dip->di_core.di_mode) {
		xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
		     &(ip->i_d), 1);
		error = xfs_iformat(ip, dip);
		if (error)  {
			kmem_zone_free(xfs_inode_zone, ip);
			xfs_trans_brelse(tp, bp);
#ifdef DEBUG
			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
					"xfs_iformat() returned error %d",
					error);
#endif /* DEBUG */
			return error;
		}
	} else {
		ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
		ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
		ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
		ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
		/*
		 * Make sure to pull in the mode here as well in
		 * case the inode is released without being used.
		 * This ensures that xfs_inactive() will see that
		 * the inode is already free and not try to mess
		 * with the uninitialized part of it.
		 */
		ip->i_d.di_mode = 0;
		/*
		 * Initialize the per-fork minima and maxima for a new
		 * inode here.  xfs_iformat will do it for old inodes.
		 */
		ip->i_df.if_ext_max =
			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
	}

	INIT_LIST_HEAD(&ip->i_reclaim);

	/*
	 * The inode format changed when we moved the link count and
	 * made it 32 bits long.  If this is an old format inode,
	 * convert it in memory to look like a new one.  If it gets
	 * flushed to disk we will convert back before flushing or
	 * logging it.  We zero out the new projid field and the old link
	 * count field.  We'll handle clearing the pad field (the remains
	 * of the old uuid field) when we actually convert the inode to
	 * the new format. We don't change the version number so that we
	 * can distinguish this from a real new format inode.
	 */
	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
		ip->i_d.di_nlink = ip->i_d.di_onlink;
		ip->i_d.di_onlink = 0;
		ip->i_d.di_projid = 0;
	}

	ip->i_delayed_blks = 0;

	/*
	 * Mark the buffer containing the inode as something to keep
	 * around for a while.  This helps to keep recently accessed
	 * meta-data in-core longer.
	 */
	 XFS_BUF_SET_REF(bp, XFS_INO_REF);

	/*
	 * Use xfs_trans_brelse() to release the buffer containing the
	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
	 * will only release the buffer if it is not dirty within the
	 * transaction.  It will be OK to release the buffer in this case,
	 * because inodes on disk are never destroyed and we will be
	 * locking the new in-core inode before putting it in the hash
	 * table where other processes can find it.  Thus we don't have
	 * to worry about the inode being changed just because we released
	 * the buffer.
	 */
	xfs_trans_brelse(tp, bp);
	*ipp = ip;
	return 0;
}

/*
 * Read in extents from a btree-format inode.
 * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
 */
int
xfs_iread_extents(
	xfs_trans_t	*tp,
	xfs_inode_t	*ip,
	int		whichfork)
{
	int		error;
	xfs_ifork_t	*ifp;
	xfs_extnum_t	nextents;
	size_t		size;

	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
				 ip->i_mount);
		return XFS_ERROR(EFSCORRUPTED);
	}
	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
	size = nextents * sizeof(xfs_bmbt_rec_t);
	ifp = XFS_IFORK_PTR(ip, whichfork);

	/*
	 * We know that the size is valid (it's checked in iformat_btree)
	 */
	ifp->if_lastex = NULLEXTNUM;
	ifp->if_bytes = ifp->if_real_bytes = 0;
	ifp->if_flags |= XFS_IFEXTENTS;
	xfs_iext_add(ifp, 0, nextents);
	error = xfs_bmap_read_extents(tp, ip, whichfork);
	if (error) {
		xfs_iext_destroy(ifp);
		ifp->if_flags &= ~XFS_IFEXTENTS;
		return error;
	}
	xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
	return 0;
}

/*
 * Allocate an inode on disk and return a copy of its in-core version.
 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 * appropriately within the inode.  The uid and gid for the inode are
 * set according to the contents of the given cred structure.
 *
 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 * has a free inode available, call xfs_iget()
 * to obtain the in-core version of the allocated inode.  Finally,
 * fill in the inode and log its initial contents.  In this case,
 * ialloc_context would be set to NULL and call_again set to false.
 *
 * If xfs_dialloc() does not have an available inode,
 * it will replenish its supply by doing an allocation. Since we can
 * only do one allocation within a transaction without deadlocks, we
 * must commit the current transaction before returning the inode itself.
 * In this case, therefore, we will set call_again to true and return.
 * The caller should then commit the current transaction, start a new
 * transaction, and call xfs_ialloc() again to actually get the inode.
 *
 * To ensure that some other process does not grab the inode that
 * was allocated during the first call to xfs_ialloc(), this routine
 * also returns the [locked] bp pointing to the head of the freelist
 * as ialloc_context.  The caller should hold this buffer across
 * the commit and pass it back into this routine on the second call.
 */
int
xfs_ialloc(
	xfs_trans_t	*tp,
	xfs_inode_t	*pip,
	mode_t		mode,
	xfs_nlink_t	nlink,
	xfs_dev_t	rdev,
	cred_t		*cr,
	xfs_prid_t	prid,
	int		okalloc,
	xfs_buf_t	**ialloc_context,
	boolean_t	*call_again,
	xfs_inode_t	**ipp)
{
	xfs_ino_t	ino;
	xfs_inode_t	*ip;
	vnode_t		*vp;
	uint		flags;
	int		error;

	/*
	 * Call the space management code to pick
	 * the on-disk inode to be allocated.
	 */
	error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
			    ialloc_context, call_again, &ino);
	if (error != 0) {
		return error;
	}
	if (*call_again || ino == NULLFSINO) {
		*ipp = NULL;
		return 0;
	}
	ASSERT(*ialloc_context == NULL);

	/*
	 * Get the in-core inode with the lock held exclusively.
	 * This is because we're setting fields here we need
	 * to prevent others from looking at until we're done.
	 */
	error = xfs_trans_iget(tp->t_mountp, tp, ino,
			IGET_CREATE, XFS_ILOCK_EXCL, &ip);
	if (error != 0) {
		return error;
	}
	ASSERT(ip != NULL);

	vp = XFS_ITOV(ip);
	ip->i_d.di_mode = (__uint16_t)mode;
	ip->i_d.di_onlink = 0;
	ip->i_d.di_nlink = nlink;
	ASSERT(ip->i_d.di_nlink == nlink);
	ip->i_d.di_uid = current_fsuid(cr);
	ip->i_d.di_gid = current_fsgid(cr);
	ip->i_d.di_projid = prid;
	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));

	/*
	 * If the superblock version is up to where we support new format
	 * inodes and this is currently an old format inode, then change
	 * the inode version number now.  This way we only do the conversion
	 * here rather than here and in the flush/logging code.
	 */
	if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
	    ip->i_d.di_version == XFS_DINODE_VERSION_1) {
		ip->i_d.di_version = XFS_DINODE_VERSION_2;
		/*
		 * We've already zeroed the old link count, the projid field,
		 * and the pad field.
		 */
	}

	/*
	 * Project ids won't be stored on disk if we are using a version 1 inode.
	 */
	if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
		xfs_bump_ino_vers2(tp, ip);

	if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
		ip->i_d.di_gid = pip->i_d.di_gid;
		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
			ip->i_d.di_mode |= S_ISGID;
		}
	}

	/*
	 * If the group ID of the new file does not match the effective group
	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
	 * (and only if the irix_sgid_inherit compatibility variable is set).
	 */
	if ((irix_sgid_inherit) &&
	    (ip->i_d.di_mode & S_ISGID) &&
	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
		ip->i_d.di_mode &= ~S_ISGID;
	}

	ip->i_d.di_size = 0;
	ip->i_d.di_nextents = 0;
	ASSERT(ip->i_d.di_nblocks == 0);
	xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
	/*
	 * di_gen will have been taken care of in xfs_iread.
	 */
	ip->i_d.di_extsize = 0;
	ip->i_d.di_dmevmask = 0;
	ip->i_d.di_dmstate = 0;
	ip->i_d.di_flags = 0;
	flags = XFS_ILOG_CORE;
	switch (mode & S_IFMT) {
	case S_IFIFO:
	case S_IFCHR:
	case S_IFBLK:
	case S_IFSOCK:
		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
		ip->i_df.if_u2.if_rdev = rdev;
		ip->i_df.if_flags = 0;
		flags |= XFS_ILOG_DEV;
		break;
	case S_IFREG:
	case S_IFDIR:
		if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
			uint	di_flags = 0;

			if ((mode & S_IFMT) == S_IFDIR) {
				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
					di_flags |= XFS_DIFLAG_RTINHERIT;
				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
					ip->i_d.di_extsize = pip->i_d.di_extsize;
				}
			} else if ((mode & S_IFMT) == S_IFREG) {
				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
					di_flags |= XFS_DIFLAG_REALTIME;
					ip->i_iocore.io_flags |= XFS_IOCORE_RT;
				}
				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
					di_flags |= XFS_DIFLAG_EXTSIZE;
					ip->i_d.di_extsize = pip->i_d.di_extsize;
				}
			}
			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
			    xfs_inherit_noatime)
				di_flags |= XFS_DIFLAG_NOATIME;
			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
			    xfs_inherit_nodump)
				di_flags |= XFS_DIFLAG_NODUMP;
			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
			    xfs_inherit_sync)
				di_flags |= XFS_DIFLAG_SYNC;
			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
			    xfs_inherit_nosymlinks)
				di_flags |= XFS_DIFLAG_NOSYMLINKS;
			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
				di_flags |= XFS_DIFLAG_PROJINHERIT;
			ip->i_d.di_flags |= di_flags;
		}
		/* FALLTHROUGH */
	case S_IFLNK:
		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
		ip->i_df.if_flags = XFS_IFEXTENTS;
		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
		ip->i_df.if_u1.if_extents = NULL;
		break;
	default:
		ASSERT(0);
	}
	/*
	 * Attribute fork settings for new inode.
	 */
	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
	ip->i_d.di_anextents = 0;

	/*
	 * Log the new values stuffed into the inode.
	 */
	xfs_trans_log_inode(tp, ip, flags);

	/* now that we have an i_mode  we can set Linux inode ops (& unlock) */
	VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);

	*ipp = ip;
	return 0;
}

/*
 * Check to make sure that there are no blocks allocated to the
 * file beyond the size of the file.  We don't check this for
 * files with fixed size extents or real time extents, but we
 * at least do it for regular files.
 */
#ifdef DEBUG
void
xfs_isize_check(
	xfs_mount_t	*mp,
	xfs_inode_t	*ip,
	xfs_fsize_t	isize)
{
	xfs_fileoff_t	map_first;
	int		nimaps;
	xfs_bmbt_irec_t	imaps[2];

	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
		return;

	if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
		return;

	nimaps = 2;
	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
	/*
	 * The filesystem could be shutting down, so bmapi may return
	 * an error.
	 */
	if (xfs_bmapi(NULL, ip, map_first,
			 (XFS_B_TO_FSB(mp,
				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
			  map_first),
			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
			 NULL))
	    return;
	ASSERT(nimaps == 1);
	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
}
#endif	/* DEBUG */

/*
 * Calculate the last possible buffered byte in a file.  This must
 * include data that was buffered beyond the EOF by the write code.
 * This also needs to deal with overflowing the xfs_fsize_t type
 * which can happen for sizes near the limit.
 *
 * We also need to take into account any blocks beyond the EOF.  It
 * may be the case that they were buffered by a write which failed.
 * In that case the pages will still be in memory, but the inode size
 * will never have been updated.
 */
xfs_fsize_t
xfs_file_last_byte(
	xfs_inode_t	*ip)
{
	xfs_mount_t	*mp;
	xfs_fsize_t	last_byte;
	xfs_fileoff_t	last_block;
	xfs_fileoff_t	size_last_block;
	int		error;

	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));

	mp = ip->i_mount;
	/*
	 * Only check for blocks beyond the EOF if the extents have
	 * been read in.  This eliminates the need for the inode lock,
	 * and it also saves us from looking when it really isn't
	 * necessary.
	 */
	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
		error = xfs_bmap_last_offset(NULL, ip, &last_block,
			XFS_DATA_FORK);
		if (error) {
			last_block = 0;
		}
	} else {
		last_block = 0;
	}
	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);

	last_byte = XFS_FSB_TO_B(mp, last_block);
	if (last_byte < 0) {
		return XFS_MAXIOFFSET(mp);
	}
	last_byte += (1 << mp->m_writeio_log);
	if (last_byte < 0) {
		return XFS_MAXIOFFSET(mp);
	}
	return last_byte;
}

#if defined(XFS_RW_TRACE)
STATIC void
xfs_itrunc_trace(
	int		tag,
	xfs_inode_t	*ip,
	int		flag,
	xfs_fsize_t	new_size,
	xfs_off_t	toss_start,
	xfs_off_t	toss_finish)
{
	if (ip->i_rwtrace == NULL) {
		return;
	}

	ktrace_enter(ip->i_rwtrace,
		     (void*)((long)tag),
		     (void*)ip,
		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
		     (void*)((long)flag),
		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
		     (void*)(unsigned long)(new_size & 0xffffffff),
		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
		     (void*)(unsigned long)(toss_start & 0xffffffff),
		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
		     (void*)(unsigned long)(toss_finish & 0xffffffff),
		     (void*)(unsigned long)current_cpu(),
		     (void*)(unsigned long)current_pid(),
		     (void*)NULL,
		     (void*)NULL,
		     (void*)NULL);
}
#else
#define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
#endif

/*
 * Start the truncation of the file to new_size.  The new size
 * must be smaller than the current size.  This routine will
 * clear the buffer and page caches of file data in the removed
 * range, and xfs_itruncate_finish() will remove the underlying
 * disk blocks.
 *
 * The inode must have its I/O lock locked EXCLUSIVELY, and it
 * must NOT have the inode lock held at all.  This is because we're
 * calling into the buffer/page cache code and we can't hold the
 * inode lock when we do so.
 *
 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
 * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
 * in the case that the caller is locking things out of order and
 * may not be able to call xfs_itruncate_finish() with the inode lock
 * held without dropping the I/O lock.  If the caller must drop the
 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
 * must be called again with all the same restrictions as the initial
 * call.
 */
void
xfs_itruncate_start(
	xfs_inode_t	*ip,
	uint		flags,
	xfs_fsize_t	new_size)
{
	xfs_fsize_t	last_byte;
	xfs_off_t	toss_start;
	xfs_mount_t	*mp;
	vnode_t		*vp;

	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
	       (flags == XFS_ITRUNC_MAYBE));

	mp = ip->i_mount;
	vp = XFS_ITOV(ip);
	/*
	 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
	 * overlapping the region being removed.  We have to use
	 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
	 * caller may not be able to finish the truncate without
	 * dropping the inode's I/O lock.  Make sure
	 * to catch any pages brought in by buffers overlapping
	 * the EOF by searching out beyond the isize by our
	 * block size. We round new_size up to a block boundary
	 * so that we don't toss things on the same block as
	 * new_size but before it.
	 *
	 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
	 * call remapf() over the same region if the file is mapped.
	 * This frees up mapped file references to the pages in the
	 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
	 * that we get the latest mapped changes flushed out.
	 */
	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
	toss_start = XFS_FSB_TO_B(mp, toss_start);
	if (toss_start < 0) {
		/*
		 * The place to start tossing is beyond our maximum
		 * file size, so there is no way that the data extended
		 * out there.
		 */
		return;
	}
	last_byte = xfs_file_last_byte(ip);
	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
			 last_byte);
	if (last_byte > toss_start) {
		if (flags & XFS_ITRUNC_DEFINITE) {
			VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
		} else {
			VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
		}
	}

#ifdef DEBUG
	if (new_size == 0) {
		ASSERT(VN_CACHED(vp) == 0);
	}
#endif
}

/*
 * Shrink the file to the given new_size.  The new
 * size must be smaller than the current size.
 * This will free up the underlying blocks
 * in the removed range after a call to xfs_itruncate_start()
 * or xfs_atruncate_start().
 *
 * The transaction passed to this routine must have made
 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
 * This routine may commit the given transaction and
 * start new ones, so make sure everything involved in
 * the transaction is tidy before calling here.
 * Some transaction will be returned to the caller to be
 * committed.  The incoming transaction must already include
 * the inode, and both inode locks must be held exclusively.
 * The inode must also be "held" within the transaction.  On
 * return the inode will be "held" within the returned transaction.
 * This routine does NOT require any disk space to be reserved
 * for it within the transaction.
 *
 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
 * and it indicates the fork which is to be truncated.  For the
 * attribute fork we only support truncation to size 0.
 *
 * We use the sync parameter to indicate whether or not the first
 * transaction we perform might have to be synchronous.  For the attr fork,
 * it needs to be so if the unlink of the inode is not yet known to be
 * permanent in the log.  This keeps us from freeing and reusing the
 * blocks of the attribute fork before the unlink of the inode becomes
 * permanent.
 *
 * For the data fork, we normally have to run synchronously if we're
 * being called out of the inactive path or we're being called
 * out of the create path where we're truncating an existing file.
 * Either way, the truncate needs to be sync so blocks don't reappear
 * in the file with altered data in case of a crash.  wsync filesystems
 * can run the first case async because anything that shrinks the inode
 * has to run sync so by the time we're called here from inactive, the
 * inode size is permanently set to 0.
 *
 * Calls from the truncate path always need to be sync unless we're
 * in a wsync filesystem and the file has already been unlinked.
 *
 * The caller is responsible for correctly setting the sync parameter.
 * It gets too hard for us to guess here which path we're being called
 * out of just based on inode state.
 */
int
xfs_itruncate_finish(
	xfs_trans_t	**tp,
	xfs_inode_t	*ip,
	xfs_fsize_t	new_size,
	int		fork,
	int		sync)
{
	xfs_fsblock_t	first_block;
	xfs_fileoff_t	first_unmap_block;
	xfs_fileoff_t	last_block;
	xfs_filblks_t	unmap_len=0;
	xfs_mount_t	*mp;
	xfs_trans_t	*ntp;
	int		done;
	int		committed;
	xfs_bmap_free_t	free_list;
	int		error;

	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
	ASSERT(*tp != NULL);
	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
	ASSERT(ip->i_transp == *tp);
	ASSERT(ip->i_itemp != NULL);
	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);


	ntp = *tp;
	mp = (ntp)->t_mountp;
	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));

	/*
	 * We only support truncating the entire attribute fork.
	 */
	if (fork == XFS_ATTR_FORK) {
		new_size = 0LL;
	}
	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
	/*
	 * The first thing we do is set the size to new_size permanently
	 * on disk.  This way we don't have to worry about anyone ever
	 * being able to look at the data being freed even in the face
	 * of a crash.  What we're getting around here is the case where
	 * we free a block, it is allocated to another file, it is written
	 * to, and then we crash.  If the new data gets written to the
	 * file but the log buffers containing the free and reallocation
	 * don't, then we'd end up with garbage in the blocks being freed.
	 * As long as we make the new_size permanent before actually
	 * freeing any blocks it doesn't matter if they get writtten to.
	 *
	 * The callers must signal into us whether or not the size
	 * setting here must be synchronous.  There are a few cases
	 * where it doesn't have to be synchronous.  Those cases
	 * occur if the file is unlinked and we know the unlink is
	 * permanent or if the blocks being truncated are guaranteed
	 * to be beyond the inode eof (regardless of the link count)
	 * and the eof value is permanent.  Both of these cases occur
	 * only on wsync-mounted filesystems.  In those cases, we're
	 * guaranteed that no user will ever see the data in the blocks
	 * that are being truncated so the truncate can run async.
	 * In the free beyond eof case, the file may wind up with
	 * more blocks allocated to it than it needs if we crash
	 * and that won't get fixed until the next time the file
	 * is re-opened and closed but that's ok as that shouldn't
	 * be too many blocks.
	 *
	 * However, we can't just make all wsync xactions run async
	 * because there's one call out of the create path that needs
	 * to run sync where it's truncating an existing file to size
	 * 0 whose size is > 0.
	 *
	 * It's probably possible to come up with a test in this
	 * routine that would correctly distinguish all the above
	 * cases from the values of the function parameters and the
	 * inode state but for sanity's sake, I've decided to let the
	 * layers above just tell us.  It's simpler to correctly figure
	 * out in the layer above exactly under what conditions we
	 * can run async and I think it's easier for others read and
	 * follow the logic in case something has to be changed.
	 * cscope is your friend -- rcc.
	 *
	 * The attribute fork is much simpler.
	 *
	 * For the attribute fork we allow the caller to tell us whether
	 * the unlink of the inode that led to this call is yet permanent
	 * in the on disk log.  If it is not and we will be freeing extents
	 * in this inode then we make the first transaction synchronous
	 * to make sure that the unlink is permanent by the time we free
	 * the blocks.
	 */
	if (fork == XFS_DATA_FORK) {
		if (ip->i_d.di_nextents > 0) {
			ip->i_d.di_size = new_size;
			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
		}
	} else if (sync) {
		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
		if (ip->i_d.di_anextents > 0)
			xfs_trans_set_sync(ntp);
	}
	ASSERT(fork == XFS_DATA_FORK ||
		(fork == XFS_ATTR_FORK &&
			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));

	/*
	 * Since it is possible for space to become allocated beyond
	 * the end of the file (in a crash where the space is allocated
	 * but the inode size is not yet updated), simply remove any
	 * blocks which show up between the new EOF and the maximum
	 * possible file size.  If the first block to be removed is
	 * beyond the maximum file size (ie it is the same as last_block),
	 * then there is nothing to do.
	 */
	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
	ASSERT(first_unmap_block <= last_block);
	done = 0;
	if (last_block == first_unmap_block) {
		done = 1;
	} else {
		unmap_len = last_block - first_unmap_block + 1;
	}
	while (!done) {
		/*
		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
		 * will tell us whether it freed the entire range or
		 * not.  If this is a synchronous mount (wsync),
		 * then we can tell bunmapi to keep all the
		 * transactions asynchronous since the unlink
		 * transaction that made this inode inactive has
		 * already hit the disk.  There's no danger of
		 * the freed blocks being reused, there being a
		 * crash, and the reused blocks suddenly reappearing
		 * in this file with garbage in them once recovery
		 * runs.
		 */
		XFS_BMAP_INIT(&free_list, &first_block);
		error = xfs_bunmapi(ntp, ip, first_unmap_block,
				    unmap_len,
				    XFS_BMAPI_AFLAG(fork) |
				      (sync ? 0 : XFS_BMAPI_ASYNC),
				    XFS_ITRUNC_MAX_EXTENTS,
				    &first_block, &free_list, &done);
		if (error) {
			/*
			 * If the bunmapi call encounters an error,
			 * return to the caller where the transaction
			 * can be properly aborted.  We just need to
			 * make sure we're not holding any resources
			 * that we were not when we came in.
			 */
			xfs_bmap_cancel(&free_list);
			return error;
		}

		/*
		 * Duplicate the transaction that has the permanent
		 * reservation and commit the old transaction.
		 */
		error = xfs_bmap_finish(tp, &free_list, first_block,
					&committed);
		ntp = *tp;
		if (error) {
			/*
			 * If the bmap finish call encounters an error,
			 * return to the caller where the transaction
			 * can be properly aborted.  We just need to
			 * make sure we're not holding any resources
			 * that we were not when we came in.
			 *
			 * Aborting from this point might lose some
			 * blocks in the file system, but oh well.
			 */
			xfs_bmap_cancel(&free_list);
			if (committed) {
				/*
				 * If the passed in transaction committed
				 * in xfs_bmap_finish(), then we want to
				 * add the inode to this one before returning.
				 * This keeps things simple for the higher
				 * level code, because it always knows that
				 * the inode is locked and held in the
				 * transaction that returns to it whether
				 * errors occur or not.  We don't mark the
				 * inode dirty so that this transaction can
				 * be easily aborted if possible.
				 */
				xfs_trans_ijoin(ntp, ip,
					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
				xfs_trans_ihold(ntp, ip);
			}
			return error;
		}

		if (committed) {
			/*
			 * The first xact was committed,
			 * so add the inode to the new one.
			 * Mark it dirty so it will be logged
			 * and moved forward in the log as
			 * part of every commit.
			 */
			xfs_trans_ijoin(ntp, ip,
					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
			xfs_trans_ihold(ntp, ip);
			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
		}
		ntp = xfs_trans_dup(ntp);
		(void) xfs_trans_commit(*tp, 0, NULL);
		*tp = ntp;
		error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
					  XFS_TRANS_PERM_LOG_RES,
					  XFS_ITRUNCATE_LOG_COUNT);
		/*
		 * Add the inode being truncated to the next chained
		 * transaction.
		 */
		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
		xfs_trans_ihold(ntp, ip);
		if (error)
			return (error);
	}
	/*
	 * Only update the size in the case of the data fork, but
	 * always re-log the inode so that our permanent transaction
	 * can keep on rolling it forward in the log.
	 */
	if (fork == XFS_DATA_FORK) {
		xfs_isize_check(mp, ip, new_size);
		ip->i_d.di_size = new_size;
	}
	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
	ASSERT((new_size != 0) ||
	       (fork == XFS_ATTR_FORK) ||
	       (ip->i_delayed_blks == 0));
	ASSERT((new_size != 0) ||
	       (fork == XFS_ATTR_FORK) ||
	       (ip->i_d.di_nextents == 0));
	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
	return 0;
}


/*
 * xfs_igrow_start
 *
 * Do the first part of growing a file: zero any data in the last
 * block that is beyond the old EOF.  We need to do this before
 * the inode is joined to the transaction to modify the i_size.
 * That way we can drop the inode lock and call into the buffer
 * cache to get the buffer mapping the EOF.
 */
int
xfs_igrow_start(
	xfs_inode_t	*ip,
	xfs_fsize_t	new_size,
	cred_t		*credp)
{
	int		error;

	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
	ASSERT(new_size > ip->i_d.di_size);

	/*
	 * Zero any pages that may have been created by
	 * xfs_write_file() beyond the end of the file
	 * and any blocks between the old and new file sizes.
	 */
	error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
			     ip->i_d.di_size, new_size);
	return error;
}

/*
 * xfs_igrow_finish
 *
 * This routine is called to extend the size of a file.
 * The inode must have both the iolock and the ilock locked
 * for update and it must be a part of the current transaction.
 * The xfs_igrow_start() function must have been called previously.
 * If the change_flag is not zero, the inode change timestamp will
 * be updated.
 */
void
xfs_igrow_finish(
	xfs_trans_t	*tp,
	xfs_inode_t	*ip,
	xfs_fsize_t	new_size,
	int		change_flag)
{
	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
	ASSERT(ip->i_transp == tp);
	ASSERT(new_size > ip->i_d.di_size);

	/*
	 * Update the file size.  Update the inode change timestamp
	 * if change_flag set.
	 */
	ip->i_d.di_size = new_size;
	if (change_flag)
		xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);

}


/*
 * This is called when the inode's link count goes to 0.
 * We place the on-disk inode on a list in the AGI.  It
 * will be pulled from this list when the inode is freed.
 */
int
xfs_iunlink(
	xfs_trans_t	*tp,
	xfs_inode_t	*ip)
{
	xfs_mount_t	*mp;
	xfs_agi_t	*agi;
	xfs_dinode_t	*dip;
	xfs_buf_t	*agibp;
	xfs_buf_t	*ibp;
	xfs_agnumber_t	agno;
	xfs_daddr_t	agdaddr;
	xfs_agino_t	agino;
	short		bucket_index;
	int		offset;
	int		error;
	int		agi_ok;

	ASSERT(ip->i_d.di_nlink == 0);
	ASSERT(ip->i_d.di_mode != 0);
	ASSERT(ip->i_transp == tp);

	mp = tp->t_mountp;

	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));

	/*
	 * Get the agi buffer first.  It ensures lock ordering
	 * on the list.
	 */
	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
	if (error) {
		return error;
	}
	/*
	 * Validate the magic number of the agi block.
	 */
	agi = XFS_BUF_TO_AGI(agibp);
	agi_ok =
		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
			XFS_RANDOM_IUNLINK))) {
		XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
		xfs_trans_brelse(tp, agibp);
		return XFS_ERROR(EFSCORRUPTED);
	}
	/*
	 * Get the index into the agi hash table for the
	 * list this inode will go on.
	 */
	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
	ASSERT(agino != 0);
	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
	ASSERT(agi->agi_unlinked[bucket_index]);
	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);

	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
		/*
		 * There is already another inode in the bucket we need
		 * to add ourselves to.  Add us at the front of the list.
		 * Here we put the head pointer into our next pointer,
		 * and then we fall through to point the head at us.
		 */
		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
		if (error) {
			return error;
		}
		ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
		ASSERT(dip->di_next_unlinked);
		/* both on-disk, don't endian flip twice */
		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
		offset = ip->i_boffset +
			offsetof(xfs_dinode_t, di_next_unlinked);
		xfs_trans_inode_buf(tp, ibp);
		xfs_trans_log_buf(tp, ibp, offset,
				  (offset + sizeof(xfs_agino_t) - 1));
		xfs_inobp_check(mp, ibp);
	}

	/*
	 * Point the bucket head pointer at the inode being inserted.
	 */
	ASSERT(agino != 0);
	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
	offset = offsetof(xfs_agi_t, agi_unlinked) +
		(sizeof(xfs_agino_t) * bucket_index);
	xfs_trans_log_buf(tp, agibp, offset,
			  (offset + sizeof(xfs_agino_t) - 1));
	return 0;
}

/*
 * Pull the on-disk inode from the AGI unlinked list.
 */
STATIC int
xfs_iunlink_remove(
	xfs_trans_t	*tp,
	xfs_inode_t	*ip)
{
	xfs_ino_t	next_ino;
	xfs_mount_t	*mp;
	xfs_agi_t	*agi;
	xfs_dinode_t	*dip;
	xfs_buf_t	*agibp;
	xfs_buf_t	*ibp;
	xfs_agnumber_t	agno;
	xfs_daddr_t	agdaddr;
	xfs_agino_t	agino;
	xfs_agino_t	next_agino;
	xfs_buf_t	*last_ibp;
	xfs_dinode_t	*last_dip;
	short		bucket_index;
	int		offset, last_offset;
	int		error;
	int		agi_ok;

	/*
	 * First pull the on-disk inode from the AGI unlinked list.
	 */
	mp = tp->t_mountp;

	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));

	/*
	 * Get the agi buffer first.  It ensures lock ordering
	 * on the list.
	 */
	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
	if (error) {
		cmn_err(CE_WARN,
			"xfs_iunlink_remove: xfs_trans_read_buf()  returned an error %d on %s.  Returning error.",
			error, mp->m_fsname);
		return error;
	}
	/*
	 * Validate the magic number of the agi block.
	 */
	agi = XFS_BUF_TO_AGI(agibp);
	agi_ok =
		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
			XFS_RANDOM_IUNLINK_REMOVE))) {
		XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
				     mp, agi);
		xfs_trans_brelse(tp, agibp);
		cmn_err(CE_WARN,
			"xfs_iunlink_remove: XFS_TEST_ERROR()  returned an error on %s.  Returning EFSCORRUPTED.",
			 mp->m_fsname);
		return XFS_ERROR(EFSCORRUPTED);
	}
	/*
	 * Get the index into the agi hash table for the
	 * list this inode will go on.
	 */
	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
	ASSERT(agino != 0);
	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
	ASSERT(agi->agi_unlinked[bucket_index]);

	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
		/*
		 * We're at the head of the list.  Get the inode's
		 * on-disk buffer to see if there is anyone after us
		 * on the list.  Only modify our next pointer if it
		 * is not already NULLAGINO.  This saves us the overhead
		 * of dealing with the buffer when there is no need to
		 * change it.
		 */
		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
		if (error) {
			cmn_err(CE_WARN,
				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
				error, mp->m_fsname);
			return error;
		}
		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
		ASSERT(next_agino != 0);
		if (next_agino != NULLAGINO) {
			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
			offset = ip->i_boffset +
				offsetof(xfs_dinode_t, di_next_unlinked);
			xfs_trans_inode_buf(tp, ibp);
			xfs_trans_log_buf(tp, ibp, offset,
					  (offset + sizeof(xfs_agino_t) - 1));
			xfs_inobp_check(mp, ibp);
		} else {
			xfs_trans_brelse(tp, ibp);
		}
		/*
		 * Point the bucket head pointer at the next inode.
		 */
		ASSERT(next_agino != 0);
		ASSERT(next_agino != agino);
		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
		offset = offsetof(xfs_agi_t, agi_unlinked) +
			(sizeof(xfs_agino_t) * bucket_index);
		xfs_trans_log_buf(tp, agibp, offset,
				  (offset + sizeof(xfs_agino_t) - 1));
	} else {
		/*
		 * We need to search the list for the inode being freed.
		 */
		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
		last_ibp = NULL;
		while (next_agino != agino) {
			/*
			 * If the last inode wasn't the one pointing to
			 * us, then release its buffer since we're not
			 * going to do anything with it.
			 */
			if (last_ibp != NULL) {
				xfs_trans_brelse(tp, last_ibp);
			}
			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
					    &last_ibp, &last_offset);
			if (error) {
				cmn_err(CE_WARN,
			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
					error, mp->m_fsname);
				return error;
			}
			next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
			ASSERT(next_agino != NULLAGINO);
			ASSERT(next_agino != 0);
		}
		/*
		 * Now last_ibp points to the buffer previous to us on
		 * the unlinked list.  Pull us from the list.
		 */
		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
		if (error) {
			cmn_err(CE_WARN,
				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
				error, mp->m_fsname);
			return error;
		}
		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
		ASSERT(next_agino != 0);
		ASSERT(next_agino != agino);
		if (next_agino != NULLAGINO) {
			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
			offset = ip->i_boffset +
				offsetof(xfs_dinode_t, di_next_unlinked);
			xfs_trans_inode_buf(tp, ibp);
			xfs_trans_log_buf(tp, ibp, offset,
					  (offset + sizeof(xfs_agino_t) - 1));
			xfs_inobp_check(mp, ibp);
		} else {
			xfs_trans_brelse(tp, ibp);
		}
		/*
		 * Point the previous inode on the list to the next inode.
		 */
		INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
		ASSERT(next_agino != 0);
		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
		xfs_trans_inode_buf(tp, last_ibp);
		xfs_trans_log_buf(tp, last_ibp, offset,
				  (offset + sizeof(xfs_agino_t) - 1));
		xfs_inobp_check(mp, last_ibp);
	}
	return 0;
}

static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
{
	return (((ip->i_itemp == NULL) ||
		!(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
		(ip->i_update_core == 0));
}

STATIC void
xfs_ifree_cluster(
	xfs_inode_t	*free_ip,
	xfs_trans_t	*tp,
	xfs_ino_t	inum)
{
	xfs_mount_t		*mp = free_ip->i_mount;
	int			blks_per_cluster;
	int			nbufs;
	int			ninodes;
	int			i, j, found, pre_flushed;
	xfs_daddr_t		blkno;
	xfs_buf_t		*bp;
	xfs_ihash_t		*ih;
	xfs_inode_t		*ip, **ip_found;
	xfs_inode_log_item_t	*iip;
	xfs_log_item_t		*lip;
	SPLDECL(s);

	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
		blks_per_cluster = 1;
		ninodes = mp->m_sb.sb_inopblock;
		nbufs = XFS_IALLOC_BLOCKS(mp);
	} else {
		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
					mp->m_sb.sb_blocksize;
		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
	}

	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);

	for (j = 0; j < nbufs; j++, inum += ninodes) {
		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
					 XFS_INO_TO_AGBNO(mp, inum));


		/*
		 * Look for each inode in memory and attempt to lock it,
		 * we can be racing with flush and tail pushing here.
		 * any inode we get the locks on, add to an array of
		 * inode items to process later.
		 *
		 * The get the buffer lock, we could beat a flush
		 * or tail pushing thread to the lock here, in which
		 * case they will go looking for the inode buffer
		 * and fail, we need some other form of interlock
		 * here.
		 */
		found = 0;
		for (i = 0; i < ninodes; i++) {
			ih = XFS_IHASH(mp, inum + i);
			read_lock(&ih->ih_lock);
			for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
				if (ip->i_ino == inum + i)
					break;
			}

			/* Inode not in memory or we found it already,
			 * nothing to do
			 */
			if (!ip || (ip->i_flags & XFS_ISTALE)) {
				read_unlock(&ih->ih_lock);
				continue;
			}

			if (xfs_inode_clean(ip)) {
				read_unlock(&ih->ih_lock);
				continue;
			}

			/* If we can get the locks then add it to the
			 * list, otherwise by the time we get the bp lock
			 * below it will already be attached to the
			 * inode buffer.
			 */

			/* This inode will already be locked - by us, lets
			 * keep it that way.
			 */

			if (ip == free_ip) {
				if (xfs_iflock_nowait(ip)) {
					ip->i_flags |= XFS_ISTALE;

					if (xfs_inode_clean(ip)) {
						xfs_ifunlock(ip);
					} else {
						ip_found[found++] = ip;
					}
				}
				read_unlock(&ih->ih_lock);
				continue;
			}

			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
				if (xfs_iflock_nowait(ip)) {
					ip->i_flags |= XFS_ISTALE;

					if (xfs_inode_clean(ip)) {
						xfs_ifunlock(ip);
						xfs_iunlock(ip, XFS_ILOCK_EXCL);
					} else {
						ip_found[found++] = ip;
					}
				} else {
					xfs_iunlock(ip, XFS_ILOCK_EXCL);
				}
			}

			read_unlock(&ih->ih_lock);
		}

		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 
					mp->m_bsize * blks_per_cluster,
					XFS_BUF_LOCK);

		pre_flushed = 0;
		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
		while (lip) {
			if (lip->li_type == XFS_LI_INODE) {
				iip = (xfs_inode_log_item_t *)lip;
				ASSERT(iip->ili_logged == 1);
				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
				AIL_LOCK(mp,s);
				iip->ili_flush_lsn = iip->ili_item.li_lsn;
				AIL_UNLOCK(mp, s);
				iip->ili_inode->i_flags |= XFS_ISTALE;
				pre_flushed++;
			}
			lip = lip->li_bio_list;
		}

		for (i = 0; i < found; i++) {
			ip = ip_found[i];
			iip = ip->i_itemp;

			if (!iip) {
				ip->i_update_core = 0;
				xfs_ifunlock(ip);
				xfs_iunlock(ip, XFS_ILOCK_EXCL);
				continue;
			}

			iip->ili_last_fields = iip->ili_format.ilf_fields;
			iip->ili_format.ilf_fields = 0;
			iip->ili_logged = 1;
			AIL_LOCK(mp,s);
			iip->ili_flush_lsn = iip->ili_item.li_lsn;
			AIL_UNLOCK(mp, s);

			xfs_buf_attach_iodone(bp,
				(void(*)(xfs_buf_t*,xfs_log_item_t*))
				xfs_istale_done, (xfs_log_item_t *)iip);
			if (ip != free_ip) {
				xfs_iunlock(ip, XFS_ILOCK_EXCL);
			}
		}

		if (found || pre_flushed)
			xfs_trans_stale_inode_buf(tp, bp);
		xfs_trans_binval(tp, bp);
	}

	kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
}

/*
 * This is called to return an inode to the inode free list.
 * The inode should already be truncated to 0 length and have
 * no pages associated with it.  This routine also assumes that
 * the inode is already a part of the transaction.
 *
 * The on-disk copy of the inode will have been added to the list
 * of unlinked inodes in the AGI. We need to remove the inode from
 * that list atomically with respect to freeing it here.
 */
int
xfs_ifree(
	xfs_trans_t	*tp,
	xfs_inode_t	*ip,
	xfs_bmap_free_t	*flist)
{
	int			error;
	int			delete;
	xfs_ino_t		first_ino;

	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
	ASSERT(ip->i_transp == tp);
	ASSERT(ip->i_d.di_nlink == 0);
	ASSERT(ip->i_d.di_nextents == 0);
	ASSERT(ip->i_d.di_anextents == 0);
	ASSERT((ip->i_d.di_size == 0) ||
	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
	ASSERT(ip->i_d.di_nblocks == 0);

	/*
	 * Pull the on-disk inode from the AGI unlinked list.
	 */
	error = xfs_iunlink_remove(tp, ip);
	if (error != 0) {
		return error;
	}

	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
	if (error != 0) {
		return error;
	}
	ip->i_d.di_mode = 0;		/* mark incore inode as free */
	ip->i_d.di_flags = 0;
	ip->i_d.di_dmevmask = 0;
	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
	ip->i_df.if_ext_max =
		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
	/*
	 * Bump the generation count so no one will be confused
	 * by reincarnations of this inode.
	 */
	ip->i_d.di_gen++;
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);

	if (delete) {
		xfs_ifree_cluster(ip, tp, first_ino);
	}

	return 0;
}

/*
 * Reallocate the space for if_broot based on the number of records
 * being added or deleted as indicated in rec_diff.  Move the records
 * and pointers in if_broot to fit the new size.  When shrinking this
 * will eliminate holes between the records and pointers created by
 * the caller.  When growing this will create holes to be filled in
 * by the caller.
 *
 * The caller must not request to add more records than would fit in
 * the on-disk inode root.  If the if_broot is currently NULL, then
 * if we adding records one will be allocated.  The caller must also
 * not request that the number of records go below zero, although
 * it can go to zero.
 *
 * ip -- the inode whose if_broot area is changing
 * ext_diff -- the change in the number of records, positive or negative,
 *	 requested for the if_broot array.
 */
void
xfs_iroot_realloc(
	xfs_inode_t		*ip,
	int			rec_diff,
	int			whichfork)
{
	int			cur_max;
	xfs_ifork_t		*ifp;
	xfs_bmbt_block_t	*new_broot;
	int			new_max;
	size_t			new_size;
	char			*np;
	char			*op;

	/*
	 * Handle the degenerate case quietly.
	 */
	if (rec_diff == 0) {
		return;
	}

	ifp = XFS_IFORK_PTR(ip, whichfork);
	if (rec_diff > 0) {
		/*
		 * If there wasn't any memory allocated before, just
		 * allocate it now and get out.
		 */
		if (ifp->if_broot_bytes == 0) {
			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
			ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
								     KM_SLEEP);
			ifp->if_broot_bytes = (int)new_size;
			return;
		}

		/*
		 * If there is already an existing if_broot, then we need
		 * to realloc() it and shift the pointers to their new
		 * location.  The records don't change location because
		 * they are kept butted up against the btree block header.
		 */
		cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
		new_max = cur_max + rec_diff;
		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
		ifp->if_broot = (xfs_bmbt_block_t *)
		  kmem_realloc(ifp->if_broot,
				new_size,
				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
				KM_SLEEP);
		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
						      ifp->if_broot_bytes);
		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
						      (int)new_size);
		ifp->if_broot_bytes = (int)new_size;
		ASSERT(ifp->if_broot_bytes <=
			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
		return;
	}

	/*
	 * rec_diff is less than 0.  In this case, we are shrinking the
	 * if_broot buffer.  It must already exist.  If we go to zero
	 * records, just get rid of the root and clear the status bit.
	 */
	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
	cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
	new_max = cur_max + rec_diff;
	ASSERT(new_max >= 0);
	if (new_max > 0)
		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
	else
		new_size = 0;
	if (new_size > 0) {
		new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
		/*
		 * First copy over the btree block header.
		 */
		memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
	} else {
		new_broot = NULL;
		ifp->if_flags &= ~XFS_IFBROOT;
	}

	/*
	 * Only copy the records and pointers if there are any.
	 */
	if (new_max > 0) {
		/*
		 * First copy the records.
		 */
		op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
						     ifp->if_broot_bytes);
		np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
						     (int)new_size);
		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));

		/*
		 * Then copy the pointers.
		 */
		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
						     ifp->if_broot_bytes);
		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
						     (int)new_size);
		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
	}
	kmem_free(ifp->if_broot, ifp->if_broot_bytes);
	ifp->if_broot = new_broot;
	ifp->if_broot_bytes = (int)new_size;
	ASSERT(ifp->if_broot_bytes <=
		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
	return;
}


/*
 * This is called when the amount of space needed for if_data
 * is increased or decreased.  The change in size is indicated by
 * the number of bytes that need to be added or deleted in the
 * byte_diff parameter.
 *
 * If the amount of space needed has decreased below the size of the
 * inline buffer, then switch to using the inline buffer.  Otherwise,
 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
 * to what is needed.
 *
 * ip -- the inode whose if_data area is changing
 * byte_diff -- the change in the number of bytes, positive or negative,
 *	 requested for the if_data array.
 */
void
xfs_idata_realloc(
	xfs_inode_t	*ip,
	int		byte_diff,
	int		whichfork)
{
	xfs_ifork_t	*ifp;
	int		new_size;
	int		real_size;

	if (byte_diff == 0) {
		return;
	}

	ifp = XFS_IFORK_PTR(ip, whichfork);
	new_size = (int)ifp->if_bytes + byte_diff;
	ASSERT(new_size >= 0);

	if (new_size == 0) {
		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
		}
		ifp->if_u1.if_data = NULL;
		real_size = 0;
	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
		/*
		 * If the valid extents/data can fit in if_inline_ext/data,
		 * copy them from the malloc'd vector and free it.
		 */
		if (ifp->if_u1.if_data == NULL) {
			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
			ASSERT(ifp->if_real_bytes != 0);
			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
			      new_size);
			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
		}
		real_size = 0;
	} else {
		/*
		 * Stuck with malloc/realloc.
		 * For inline data, the underlying buffer must be
		 * a multiple of 4 bytes in size so that it can be
		 * logged and stay on word boundaries.  We enforce
		 * that here.
		 */
		real_size = roundup(new_size, 4);
		if (ifp->if_u1.if_data == NULL) {
			ASSERT(ifp->if_real_bytes == 0);
			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
			/*
			 * Only do the realloc if the underlying size
			 * is really changing.
			 */
			if (ifp->if_real_bytes != real_size) {
				ifp->if_u1.if_data =
					kmem_realloc(ifp->if_u1.if_data,
							real_size,
							ifp->if_real_bytes,
							KM_SLEEP);
			}
		} else {
			ASSERT(ifp->if_real_bytes == 0);
			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
				ifp->if_bytes);
		}
	}
	ifp->if_real_bytes = real_size;
	ifp->if_bytes = new_size;
	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
}




/*
 * Map inode to disk block and offset.
 *
 * mp -- the mount point structure for the current file system
 * tp -- the current transaction
 * ino -- the inode number of the inode to be located
 * imap -- this structure is filled in with the information necessary
 *	 to retrieve the given inode from disk
 * flags -- flags to pass to xfs_dilocate indicating whether or not
 *	 lookups in the inode btree were OK or not
 */
int
xfs_imap(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	xfs_imap_t	*imap,
	uint		flags)
{
	xfs_fsblock_t	fsbno;
	int		len;
	int		off;
	int		error;

	fsbno = imap->im_blkno ?
		XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
	error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
	if (error != 0) {
		return error;
	}
	imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
	imap->im_len = XFS_FSB_TO_BB(mp, len);
	imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
	imap->im_ioffset = (ushort)off;
	imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
	return 0;
}

void
xfs_idestroy_fork(
	xfs_inode_t	*ip,
	int		whichfork)
{
	xfs_ifork_t	*ifp;

	ifp = XFS_IFORK_PTR(ip, whichfork);
	if (ifp->if_broot != NULL) {
		kmem_free(ifp->if_broot, ifp->if_broot_bytes);
		ifp->if_broot = NULL;
	}

	/*
	 * If the format is local, then we can't have an extents
	 * array so just look for an inline data array.  If we're
	 * not local then we may or may not have an extents list,
	 * so check and free it up if we do.
	 */
	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
		    (ifp->if_u1.if_data != NULL)) {
			ASSERT(ifp->if_real_bytes != 0);
			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
			ifp->if_u1.if_data = NULL;
			ifp->if_real_bytes = 0;
		}
	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
		   ((ifp->if_flags & XFS_IFEXTIREC) ||
		    ((ifp->if_u1.if_extents != NULL) &&
		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
		ASSERT(ifp->if_real_bytes != 0);
		xfs_iext_destroy(ifp);
	}
	ASSERT(ifp->if_u1.if_extents == NULL ||
	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
	ASSERT(ifp->if_real_bytes == 0);
	if (whichfork == XFS_ATTR_FORK) {
		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
		ip->i_afp = NULL;
	}
}

/*
 * This is called free all the memory associated with an inode.
 * It must free the inode itself and any buffers allocated for
 * if_extents/if_data and if_broot.  It must also free the lock
 * associated with the inode.
 */
void
xfs_idestroy(
	xfs_inode_t	*ip)
{

	switch (ip->i_d.di_mode & S_IFMT) {
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
		break;
	}
	if (ip->i_afp)
		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
	mrfree(&ip->i_lock);
	mrfree(&ip->i_iolock);
	freesema(&ip->i_flock);
#ifdef XFS_BMAP_TRACE
	ktrace_free(ip->i_xtrace);
#endif
#ifdef XFS_BMBT_TRACE
	ktrace_free(ip->i_btrace);
#endif
#ifdef XFS_RW_TRACE
	ktrace_free(ip->i_rwtrace);
#endif
#ifdef XFS_ILOCK_TRACE
	ktrace_free(ip->i_lock_trace);
#endif
#ifdef XFS_DIR2_TRACE
	ktrace_free(ip->i_dir_trace);
#endif
	if (ip->i_itemp) {
		/* XXXdpd should be able to assert this but shutdown
		 * is leaving the AIL behind. */
		ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
		       XFS_FORCED_SHUTDOWN(ip->i_mount));
		xfs_inode_item_destroy(ip);
	}
	kmem_zone_free(xfs_inode_zone, ip);
}


/*
 * Increment the pin count of the given buffer.
 * This value is protected by ipinlock spinlock in the mount structure.
 */
void
xfs_ipin(
	xfs_inode_t	*ip)
{
	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));

	atomic_inc(&ip->i_pincount);
}

/*
 * Decrement the pin count of the given inode, and wake up
 * anyone in xfs_iwait_unpin() if the count goes to 0.  The
 * inode must have been previoulsy pinned with a call to xfs_ipin().
 */
void
xfs_iunpin(
	xfs_inode_t	*ip)
{
	ASSERT(atomic_read(&ip->i_pincount) > 0);

	if (atomic_dec_and_test(&ip->i_pincount)) {
		vnode_t	*vp = XFS_ITOV_NULL(ip);

		/* make sync come back and flush this inode */
		if (vp) {
			struct inode	*inode = vn_to_inode(vp);

			if (!(inode->i_state & I_NEW))
				mark_inode_dirty_sync(inode);
		}

		wake_up(&ip->i_ipin_wait);
	}
}

/*
 * This is called to wait for the given inode to be unpinned.
 * It will sleep until this happens.  The caller must have the
 * inode locked in at least shared mode so that the buffer cannot
 * be subsequently pinned once someone is waiting for it to be
 * unpinned.
 */
STATIC void
xfs_iunpin_wait(
	xfs_inode_t	*ip)
{
	xfs_inode_log_item_t	*iip;
	xfs_lsn_t	lsn;

	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));

	if (atomic_read(&ip->i_pincount) == 0) {
		return;
	}

	iip = ip->i_itemp;
	if (iip && iip->ili_last_lsn) {
		lsn = iip->ili_last_lsn;
	} else {
		lsn = (xfs_lsn_t)0;
	}

	/*
	 * Give the log a push so we don't wait here too long.
	 */
	xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);

	wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
}


/*
 * xfs_iextents_copy()
 *
 * This is called to copy the REAL extents (as opposed to the delayed
 * allocation extents) from the inode into the given buffer.  It
 * returns the number of bytes copied into the buffer.
 *
 * If there are no delayed allocation extents, then we can just
 * memcpy() the extents into the buffer.  Otherwise, we need to
 * examine each extent in turn and skip those which are delayed.
 */
int
xfs_iextents_copy(
	xfs_inode_t		*ip,
	xfs_bmbt_rec_t		*buffer,
	int			whichfork)
{
	int			copied;
	xfs_bmbt_rec_t		*dest_ep;
	xfs_bmbt_rec_t		*ep;
#ifdef XFS_BMAP_TRACE
	static char		fname[] = "xfs_iextents_copy";
#endif
	int			i;
	xfs_ifork_t		*ifp;
	int			nrecs;
	xfs_fsblock_t		start_block;

	ifp = XFS_IFORK_PTR(ip, whichfork);
	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
	ASSERT(ifp->if_bytes > 0);

	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
	xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
	ASSERT(nrecs > 0);

	/*
	 * There are some delayed allocation extents in the
	 * inode, so copy the extents one at a time and skip
	 * the delayed ones.  There must be at least one
	 * non-delayed extent.
	 */
	dest_ep = buffer;
	copied = 0;
	for (i = 0; i < nrecs; i++) {
		ep = xfs_iext_get_ext(ifp, i);
		start_block = xfs_bmbt_get_startblock(ep);
		if (ISNULLSTARTBLOCK(start_block)) {
			/*
			 * It's a delayed allocation extent, so skip it.
			 */
			continue;
		}

		/* Translate to on disk format */
		put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
			      (__uint64_t*)&dest_ep->l0);
		put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
			      (__uint64_t*)&dest_ep->l1);
		dest_ep++;
		copied++;
	}
	ASSERT(copied != 0);
	xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));

	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
}

/*
 * Each of the following cases stores data into the same region
 * of the on-disk inode, so only one of them can be valid at
 * any given time. While it is possible to have conflicting formats
 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
 * in EXTENTS format, this can only happen when the fork has
 * changed formats after being modified but before being flushed.
 * In these cases, the format always takes precedence, because the
 * format indicates the current state of the fork.
 */
/*ARGSUSED*/
STATIC int
xfs_iflush_fork(
	xfs_inode_t		*ip,
	xfs_dinode_t		*dip,
	xfs_inode_log_item_t	*iip,
	int			whichfork,
	xfs_buf_t		*bp)
{
	char			*cp;
	xfs_ifork_t		*ifp;
	xfs_mount_t		*mp;
#ifdef XFS_TRANS_DEBUG
	int			first;
#endif
	static const short	brootflag[2] =
		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
	static const short	dataflag[2] =
		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
	static const short	extflag[2] =
		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };

	if (iip == NULL)
		return 0;
	ifp = XFS_IFORK_PTR(ip, whichfork);
	/*
	 * This can happen if we gave up in iformat in an error path,
	 * for the attribute fork.
	 */
	if (ifp == NULL) {
		ASSERT(whichfork == XFS_ATTR_FORK);
		return 0;
	}
	cp = XFS_DFORK_PTR(dip, whichfork);
	mp = ip->i_mount;
	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
	case XFS_DINODE_FMT_LOCAL:
		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
		    (ifp->if_bytes > 0)) {
			ASSERT(ifp->if_u1.if_data != NULL);
			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
		}
		if (whichfork == XFS_DATA_FORK) {
			if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
				XFS_ERROR_REPORT("xfs_iflush_fork",
						 XFS_ERRLEVEL_LOW, mp);
				return XFS_ERROR(EFSCORRUPTED);
			}
		}
		break;

	case XFS_DINODE_FMT_EXTENTS:
		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
			(ifp->if_bytes == 0));
		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
			(ifp->if_bytes > 0));
		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
		    (ifp->if_bytes > 0)) {
			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
				whichfork);
		}
		break;

	case XFS_DINODE_FMT_BTREE:
		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
		    (ifp->if_broot_bytes > 0)) {
			ASSERT(ifp->if_broot != NULL);
			ASSERT(ifp->if_broot_bytes <=
			       (XFS_IFORK_SIZE(ip, whichfork) +
				XFS_BROOT_SIZE_ADJ));
			xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
				(xfs_bmdr_block_t *)cp,
				XFS_DFORK_SIZE(dip, mp, whichfork));
		}
		break;

	case XFS_DINODE_FMT_DEV:
		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
			ASSERT(whichfork == XFS_DATA_FORK);
			INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
		}
		break;

	case XFS_DINODE_FMT_UUID:
		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
			ASSERT(whichfork == XFS_DATA_FORK);
			memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
				sizeof(uuid_t));
		}
		break;

	default:
		ASSERT(0);
		break;
	}

	return 0;
}

/*
 * xfs_iflush() will write a modified inode's changes out to the
 * inode's on disk home.  The caller must have the inode lock held
 * in at least shared mode and the inode flush semaphore must be
 * held as well.  The inode lock will still be held upon return from
 * the call and the caller is free to unlock it.
 * The inode flush lock will be unlocked when the inode reaches the disk.
 * The flags indicate how the inode's buffer should be written out.
 */
int
xfs_iflush(
	xfs_inode_t		*ip,
	uint			flags)
{
	xfs_inode_log_item_t	*iip;
	xfs_buf_t		*bp;
	xfs_dinode_t		*dip;
	xfs_mount_t		*mp;
	int			error;
	/* REFERENCED */
	xfs_chash_t		*ch;
	xfs_inode_t		*iq;
	int			clcount;	/* count of inodes clustered */
	int			bufwasdelwri;
	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
	SPLDECL(s);

	XFS_STATS_INC(xs_iflush_count);

	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
	ASSERT(valusema(&ip->i_flock) <= 0);
	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
	       ip->i_d.di_nextents > ip->i_df.if_ext_max);

	iip = ip->i_itemp;
	mp = ip->i_mount;

	/*
	 * If the inode isn't dirty, then just release the inode
	 * flush lock and do nothing.
	 */
	if ((ip->i_update_core == 0) &&
	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
		ASSERT((iip != NULL) ?
			 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
		xfs_ifunlock(ip);
		return 0;
	}

	/*
	 * We can't flush the inode until it is unpinned, so
	 * wait for it.  We know noone new can pin it, because
	 * we are holding the inode lock shared and you need
	 * to hold it exclusively to pin the inode.
	 */
	xfs_iunpin_wait(ip);

	/*
	 * This may have been unpinned because the filesystem is shutting
	 * down forcibly. If that's the case we must not write this inode
	 * to disk, because the log record didn't make it to disk!
	 */
	if (XFS_FORCED_SHUTDOWN(mp)) {
		ip->i_update_core = 0;
		if (iip)
			iip->ili_format.ilf_fields = 0;
		xfs_ifunlock(ip);
		return XFS_ERROR(EIO);
	}

	/*
	 * Get the buffer containing the on-disk inode.
	 */
	error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
	if (error) {
		xfs_ifunlock(ip);
		return error;
	}

	/*
	 * Decide how buffer will be flushed out.  This is done before
	 * the call to xfs_iflush_int because this field is zeroed by it.
	 */
	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
		/*
		 * Flush out the inode buffer according to the directions
		 * of the caller.  In the cases where the caller has given
		 * us a choice choose the non-delwri case.  This is because
		 * the inode is in the AIL and we need to get it out soon.
		 */
		switch (flags) {
		case XFS_IFLUSH_SYNC:
		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
			flags = 0;
			break;
		case XFS_IFLUSH_ASYNC:
		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
			flags = INT_ASYNC;
			break;
		case XFS_IFLUSH_DELWRI:
			flags = INT_DELWRI;
			break;
		default:
			ASSERT(0);
			flags = 0;
			break;
		}
	} else {
		switch (flags) {
		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
		case XFS_IFLUSH_DELWRI:
			flags = INT_DELWRI;
			break;
		case XFS_IFLUSH_ASYNC:
			flags = INT_ASYNC;
			break;
		case XFS_IFLUSH_SYNC:
			flags = 0;
			break;
		default:
			ASSERT(0);
			flags = 0;
			break;
		}
	}

	/*
	 * First flush out the inode that xfs_iflush was called with.
	 */
	error = xfs_iflush_int(ip, bp);
	if (error) {
		goto corrupt_out;
	}

	/*
	 * inode clustering:
	 * see if other inodes can be gathered into this write
	 */

	ip->i_chash->chl_buf = bp;

	ch = XFS_CHASH(mp, ip->i_blkno);
	s = mutex_spinlock(&ch->ch_lock);

	clcount = 0;
	for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
		/*
		 * Do an un-protected check to see if the inode is dirty and
		 * is a candidate for flushing.  These checks will be repeated
		 * later after the appropriate locks are acquired.
		 */
		iip = iq->i_itemp;
		if ((iq->i_update_core == 0) &&
		    ((iip == NULL) ||
		     !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
		      xfs_ipincount(iq) == 0) {
			continue;
		}

		/*
		 * Try to get locks.  If any are unavailable,
		 * then this inode cannot be flushed and is skipped.
		 */

		/* get inode locks (just i_lock) */
		if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
			/* get inode flush lock */
			if (xfs_iflock_nowait(iq)) {
				/* check if pinned */
				if (xfs_ipincount(iq) == 0) {
					/* arriving here means that
					 * this inode can be flushed.
					 * first re-check that it's
					 * dirty
					 */
					iip = iq->i_itemp;
					if ((iq->i_update_core != 0)||
					    ((iip != NULL) &&
					     (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
						clcount++;
						error = xfs_iflush_int(iq, bp);
						if (error) {
							xfs_iunlock(iq,
								    XFS_ILOCK_SHARED);
							goto cluster_corrupt_out;
						}
					} else {
						xfs_ifunlock(iq);
					}
				} else {
					xfs_ifunlock(iq);
				}
			}
			xfs_iunlock(iq, XFS_ILOCK_SHARED);
		}
	}
	mutex_spinunlock(&ch->ch_lock, s);

	if (clcount) {
		XFS_STATS_INC(xs_icluster_flushcnt);
		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
	}

	/*
	 * If the buffer is pinned then push on the log so we won't
	 * get stuck waiting in the write for too long.
	 */
	if (XFS_BUF_ISPINNED(bp)){
		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
	}

	if (flags & INT_DELWRI) {
		xfs_bdwrite(mp, bp);
	} else if (flags & INT_ASYNC) {
		xfs_bawrite(mp, bp);
	} else {
		error = xfs_bwrite(mp, bp);
	}
	return error;

corrupt_out:
	xfs_buf_relse(bp);
	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
	xfs_iflush_abort(ip);
	/*
	 * Unlocks the flush lock
	 */
	return XFS_ERROR(EFSCORRUPTED);

cluster_corrupt_out:
	/* Corruption detected in the clustering loop.  Invalidate the
	 * inode buffer and shut down the filesystem.
	 */
	mutex_spinunlock(&ch->ch_lock, s);

	/*
	 * Clean up the buffer.  If it was B_DELWRI, just release it --
	 * brelse can handle it with no problems.  If not, shut down the
	 * filesystem before releasing the buffer.
	 */
	if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
		xfs_buf_relse(bp);
	}

	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);

	if(!bufwasdelwri)  {
		/*
		 * Just like incore_relse: if we have b_iodone functions,
		 * mark the buffer as an error and call them.  Otherwise
		 * mark it as stale and brelse.
		 */
		if (XFS_BUF_IODONE_FUNC(bp)) {
			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
			XFS_BUF_UNDONE(bp);
			XFS_BUF_STALE(bp);
			XFS_BUF_SHUT(bp);
			XFS_BUF_ERROR(bp,EIO);
			xfs_biodone(bp);
		} else {
			XFS_BUF_STALE(bp);
			xfs_buf_relse(bp);
		}
	}

	xfs_iflush_abort(iq);
	/*
	 * Unlocks the flush lock
	 */
	return XFS_ERROR(EFSCORRUPTED);
}


STATIC int
xfs_iflush_int(
	xfs_inode_t		*ip,
	xfs_buf_t		*bp)
{
	xfs_inode_log_item_t	*iip;
	xfs_dinode_t		*dip;
	xfs_mount_t		*mp;
#ifdef XFS_TRANS_DEBUG
	int			first;
#endif
	SPLDECL(s);

	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
	ASSERT(valusema(&ip->i_flock) <= 0);
	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
	       ip->i_d.di_nextents > ip->i_df.if_ext_max);

	iip = ip->i_itemp;
	mp = ip->i_mount;


	/*
	 * If the inode isn't dirty, then just release the inode
	 * flush lock and do nothing.
	 */
	if ((ip->i_update_core == 0) &&
	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
		xfs_ifunlock(ip);
		return 0;
	}

	/* set *dip = inode's place in the buffer */
	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);

	/*
	 * Clear i_update_core before copying out the data.
	 * This is for coordination with our timestamp updates
	 * that don't hold the inode lock. They will always
	 * update the timestamps BEFORE setting i_update_core,
	 * so if we clear i_update_core after they set it we
	 * are guaranteed to see their updates to the timestamps.
	 * I believe that this depends on strongly ordered memory
	 * semantics, but we have that.  We use the SYNCHRONIZE
	 * macro to make sure that the compiler does not reorder
	 * the i_update_core access below the data copy below.
	 */
	ip->i_update_core = 0;
	SYNCHRONIZE();

	/*
	 * Make sure to get the latest atime from the Linux inode.
	 */
	xfs_synchronize_atime(ip);

	if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
			ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
		goto corrupt_out;
	}
	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
			ip->i_ino, ip, ip->i_d.di_magic);
		goto corrupt_out;
	}
	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
		if (XFS_TEST_ERROR(
		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
				ip->i_ino, ip);
			goto corrupt_out;
		}
	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
		if (XFS_TEST_ERROR(
		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
				ip->i_ino, ip);
			goto corrupt_out;
		}
	}
	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
				XFS_RANDOM_IFLUSH_5)) {
		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
			ip->i_ino,
			ip->i_d.di_nextents + ip->i_d.di_anextents,
			ip->i_d.di_nblocks,
			ip);
		goto corrupt_out;
	}
	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
			ip->i_ino, ip->i_d.di_forkoff, ip);
		goto corrupt_out;
	}
	/*
	 * bump the flush iteration count, used to detect flushes which
	 * postdate a log record during recovery.
	 */

	ip->i_d.di_flushiter++;

	/*
	 * Copy the dirty parts of the inode into the on-disk
	 * inode.  We always copy out the core of the inode,
	 * because if the inode is dirty at all the core must
	 * be.
	 */
	xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);

	/* Wrap, we never let the log put out DI_MAX_FLUSH */
	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
		ip->i_d.di_flushiter = 0;

	/*
	 * If this is really an old format inode and the superblock version
	 * has not been updated to support only new format inodes, then
	 * convert back to the old inode format.  If the superblock version
	 * has been updated, then make the conversion permanent.
	 */
	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
	       XFS_SB_VERSION_HASNLINK(&mp->m_sb));
	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
			/*
			 * Convert it back.
			 */
			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
			INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
		} else {
			/*
			 * The superblock version has already been bumped,
			 * so just make the conversion to the new inode
			 * format permanent.
			 */
			ip->i_d.di_version = XFS_DINODE_VERSION_2;
			INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
			ip->i_d.di_onlink = 0;
			dip->di_core.di_onlink = 0;
			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
			memset(&(dip->di_core.di_pad[0]), 0,
			      sizeof(dip->di_core.di_pad));
			ASSERT(ip->i_d.di_projid == 0);
		}
	}

	if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
		goto corrupt_out;
	}

	if (XFS_IFORK_Q(ip)) {
		/*
		 * The only error from xfs_iflush_fork is on the data fork.
		 */
		(void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
	}
	xfs_inobp_check(mp, bp);

	/*
	 * We've recorded everything logged in the inode, so we'd
	 * like to clear the ilf_fields bits so we don't log and
	 * flush things unnecessarily.  However, we can't stop
	 * logging all this information until the data we've copied
	 * into the disk buffer is written to disk.  If we did we might
	 * overwrite the copy of the inode in the log with all the
	 * data after re-logging only part of it, and in the face of
	 * a crash we wouldn't have all the data we need to recover.
	 *
	 * What we do is move the bits to the ili_last_fields field.
	 * When logging the inode, these bits are moved back to the
	 * ilf_fields field.  In the xfs_iflush_done() routine we
	 * clear ili_last_fields, since we know that the information
	 * those bits represent is permanently on disk.  As long as
	 * the flush completes before the inode is logged again, then
	 * both ilf_fields and ili_last_fields will be cleared.
	 *
	 * We can play with the ilf_fields bits here, because the inode
	 * lock must be held exclusively in order to set bits there
	 * and the flush lock protects the ili_last_fields bits.
	 * Set ili_logged so the flush done
	 * routine can tell whether or not to look in the AIL.
	 * Also, store the current LSN of the inode so that we can tell
	 * whether the item has moved in the AIL from xfs_iflush_done().
	 * In order to read the lsn we need the AIL lock, because
	 * it is a 64 bit value that cannot be read atomically.
	 */
	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
		iip->ili_last_fields = iip->ili_format.ilf_fields;
		iip->ili_format.ilf_fields = 0;
		iip->ili_logged = 1;

		ASSERT(sizeof(xfs_lsn_t) == 8);	/* don't lock if it shrinks */
		AIL_LOCK(mp,s);
		iip->ili_flush_lsn = iip->ili_item.li_lsn;
		AIL_UNLOCK(mp, s);

		/*
		 * Attach the function xfs_iflush_done to the inode's
		 * buffer.  This will remove the inode from the AIL
		 * and unlock the inode's flush lock when the inode is
		 * completely written to disk.
		 */
		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
				      xfs_iflush_done, (xfs_log_item_t *)iip);

		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
	} else {
		/*
		 * We're flushing an inode which is not in the AIL and has
		 * not been logged but has i_update_core set.  For this
		 * case we can use a B_DELWRI flush and immediately drop
		 * the inode flush lock because we can avoid the whole
		 * AIL state thing.  It's OK to drop the flush lock now,
		 * because we've already locked the buffer and to do anything
		 * you really need both.
		 */
		if (iip != NULL) {
			ASSERT(iip->ili_logged == 0);
			ASSERT(iip->ili_last_fields == 0);
			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
		}
		xfs_ifunlock(ip);
	}

	return 0;

corrupt_out:
	return XFS_ERROR(EFSCORRUPTED);
}


/*
 * Flush all inactive inodes in mp.
 */
void
xfs_iflush_all(
	xfs_mount_t	*mp)
{
	xfs_inode_t	*ip;
	vnode_t		*vp;

 again:
	XFS_MOUNT_ILOCK(mp);
	ip = mp->m_inodes;
	if (ip == NULL)
		goto out;

	do {
		/* Make sure we skip markers inserted by sync */
		if (ip->i_mount == NULL) {
			ip = ip->i_mnext;
			continue;
		}

		vp = XFS_ITOV_NULL(ip);
		if (!vp) {
			XFS_MOUNT_IUNLOCK(mp);
			xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
			goto again;
		}

		ASSERT(vn_count(vp) == 0);

		ip = ip->i_mnext;
	} while (ip != mp->m_inodes);
 out:
	XFS_MOUNT_IUNLOCK(mp);
}

/*
 * xfs_iaccess: check accessibility of inode for mode.
 */
int
xfs_iaccess(
	xfs_inode_t	*ip,
	mode_t		mode,
	cred_t		*cr)
{
	int		error;
	mode_t		orgmode = mode;
	struct inode	*inode = vn_to_inode(XFS_ITOV(ip));

	if (mode & S_IWUSR) {
		umode_t		imode = inode->i_mode;

		if (IS_RDONLY(inode) &&
		    (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
			return XFS_ERROR(EROFS);

		if (IS_IMMUTABLE(inode))
			return XFS_ERROR(EACCES);
	}

	/*
	 * If there's an Access Control List it's used instead of
	 * the mode bits.
	 */
	if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
		return error ? XFS_ERROR(error) : 0;

	if (current_fsuid(cr) != ip->i_d.di_uid) {
		mode >>= 3;
		if (!in_group_p((gid_t)ip->i_d.di_gid))
			mode >>= 3;
	}

	/*
	 * If the DACs are ok we don't need any capability check.
	 */
	if ((ip->i_d.di_mode & mode) == mode)
		return 0;
	/*
	 * Read/write DACs are always overridable.
	 * Executable DACs are overridable if at least one exec bit is set.
	 */
	if (!(orgmode & S_IXUSR) ||
	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
		if (capable_cred(cr, CAP_DAC_OVERRIDE))
			return 0;

	if ((orgmode == S_IRUSR) ||
	    (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
		if (capable_cred(cr, CAP_DAC_READ_SEARCH))
			return 0;
#ifdef	NOISE
		cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
#endif	/* NOISE */
		return XFS_ERROR(EACCES);
	}
	return XFS_ERROR(EACCES);
}

/*
 * xfs_iroundup: round up argument to next power of two
 */
uint
xfs_iroundup(
	uint	v)
{
	int i;
	uint m;

	if ((v & (v - 1)) == 0)
		return v;
	ASSERT((v & 0x80000000) == 0);
	if ((v & (v + 1)) == 0)
		return v + 1;
	for (i = 0, m = 1; i < 31; i++, m <<= 1) {
		if (v & m)
			continue;
		v |= m;
		if ((v & (v + 1)) == 0)
			return v + 1;
	}
	ASSERT(0);
	return( 0 );
}

#ifdef XFS_ILOCK_TRACE
ktrace_t	*xfs_ilock_trace_buf;

void
xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
{
	ktrace_enter(ip->i_lock_trace,
		     (void *)ip,
		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
		     (void *)ra,		/* caller of ilock */
		     (void *)(unsigned long)current_cpu(),
		     (void *)(unsigned long)current_pid(),
		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
}
#endif

/*
 * Return a pointer to the extent record at file index idx.
 */
xfs_bmbt_rec_t *
xfs_iext_get_ext(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_extnum_t	idx)		/* index of target extent */
{
	ASSERT(idx >= 0);
	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
		return ifp->if_u1.if_ext_irec->er_extbuf;
	} else if (ifp->if_flags & XFS_IFEXTIREC) {
		xfs_ext_irec_t	*erp;		/* irec pointer */
		int		erp_idx = 0;	/* irec index */
		xfs_extnum_t	page_idx = idx;	/* ext index in target list */

		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
		return &erp->er_extbuf[page_idx];
	} else if (ifp->if_bytes) {
		return &ifp->if_u1.if_extents[idx];
	} else {
		return NULL;
	}
}

/*
 * Insert new item(s) into the extent records for incore inode
 * fork 'ifp'.  'count' new items are inserted at index 'idx'.
 */
void
xfs_iext_insert(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_extnum_t	idx,		/* starting index of new items */
	xfs_extnum_t	count,		/* number of inserted items */
	xfs_bmbt_irec_t	*new)		/* items to insert */
{
	xfs_bmbt_rec_t	*ep;		/* extent record pointer */
	xfs_extnum_t	i;		/* extent record index */

	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
	xfs_iext_add(ifp, idx, count);
	for (i = idx; i < idx + count; i++, new++) {
		ep = xfs_iext_get_ext(ifp, i);
		xfs_bmbt_set_all(ep, new);
	}
}

/*
 * This is called when the amount of space required for incore file
 * extents needs to be increased. The ext_diff parameter stores the
 * number of new extents being added and the idx parameter contains
 * the extent index where the new extents will be added. If the new
 * extents are being appended, then we just need to (re)allocate and
 * initialize the space. Otherwise, if the new extents are being
 * inserted into the middle of the existing entries, a bit more work
 * is required to make room for the new extents to be inserted. The
 * caller is responsible for filling in the new extent entries upon
 * return.
 */
void
xfs_iext_add(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_extnum_t	idx,		/* index to begin adding exts */
	int		ext_diff)	/* nubmer of extents to add */
{
	int		byte_diff;	/* new bytes being added */
	int		new_size;	/* size of extents after adding */
	xfs_extnum_t	nextents;	/* number of extents in file */

	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
	ASSERT((idx >= 0) && (idx <= nextents));
	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
	new_size = ifp->if_bytes + byte_diff;
	/*
	 * If the new number of extents (nextents + ext_diff)
	 * fits inside the inode, then continue to use the inline
	 * extent buffer.
	 */
	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
		if (idx < nextents) {
			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
				&ifp->if_u2.if_inline_ext[idx],
				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
		}
		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
		ifp->if_real_bytes = 0;
		ifp->if_lastex = nextents + ext_diff;
	}
	/*
	 * Otherwise use a linear (direct) extent list.
	 * If the extents are currently inside the inode,
	 * xfs_iext_realloc_direct will switch us from
	 * inline to direct extent allocation mode.
	 */
	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
		xfs_iext_realloc_direct(ifp, new_size);
		if (idx < nextents) {
			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
				&ifp->if_u1.if_extents[idx],
				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
		}
	}
	/* Indirection array */
	else {
		xfs_ext_irec_t	*erp;
		int		erp_idx = 0;
		int		page_idx = idx;

		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
		if (ifp->if_flags & XFS_IFEXTIREC) {
			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
		} else {
			xfs_iext_irec_init(ifp);
			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
			erp = ifp->if_u1.if_ext_irec;
		}
		/* Extents fit in target extent page */
		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
			if (page_idx < erp->er_extcount) {
				memmove(&erp->er_extbuf[page_idx + ext_diff],
					&erp->er_extbuf[page_idx],
					(erp->er_extcount - page_idx) *
					sizeof(xfs_bmbt_rec_t));
				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
			}
			erp->er_extcount += ext_diff;
			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
		}
		/* Insert a new extent page */
		else if (erp) {
			xfs_iext_add_indirect_multi(ifp,
				erp_idx, page_idx, ext_diff);
		}
		/*
		 * If extent(s) are being appended to the last page in
		 * the indirection array and the new extent(s) don't fit
		 * in the page, then erp is NULL and erp_idx is set to
		 * the next index needed in the indirection array.
		 */
		else {
			int	count = ext_diff;

			while (count) {
				erp = xfs_iext_irec_new(ifp, erp_idx);
				erp->er_extcount = count;
				count -= MIN(count, (int)XFS_LINEAR_EXTS);
				if (count) {
					erp_idx++;
				}
			}
		}
	}
	ifp->if_bytes = new_size;
}

/*
 * This is called when incore extents are being added to the indirection
 * array and the new extents do not fit in the target extent list. The
 * erp_idx parameter contains the irec index for the target extent list
 * in the indirection array, and the idx parameter contains the extent
 * index within the list. The number of extents being added is stored
 * in the count parameter.
 *
 *    |-------|   |-------|
 *    |       |   |       |    idx - number of extents before idx
 *    |  idx  |   | count |
 *    |       |   |       |    count - number of extents being inserted at idx
 *    |-------|   |-------|
 *    | count |   | nex2  |    nex2 - number of extents after idx + count
 *    |-------|   |-------|
 */
void
xfs_iext_add_indirect_multi(
	xfs_ifork_t	*ifp,			/* inode fork pointer */
	int		erp_idx,		/* target extent irec index */
	xfs_extnum_t	idx,			/* index within target list */
	int		count)			/* new extents being added */
{
	int		byte_diff;		/* new bytes being added */
	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
	xfs_extnum_t	ext_diff;		/* number of extents to add */
	xfs_extnum_t	ext_cnt;		/* new extents still needed */
	xfs_extnum_t	nex2;			/* extents after idx + count */
	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
	int		nlists;			/* number of irec's (lists) */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	erp = &ifp->if_u1.if_ext_irec[erp_idx];
	nex2 = erp->er_extcount - idx;
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;

	/*
	 * Save second part of target extent list
	 * (all extents past */
	if (nex2) {
		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
		erp->er_extcount -= nex2;
		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
		memset(&erp->er_extbuf[idx], 0, byte_diff);
	}

	/*
	 * Add the new extents to the end of the target
	 * list, then allocate new irec record(s) and
	 * extent buffer(s) as needed to store the rest
	 * of the new extents.
	 */
	ext_cnt = count;
	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
	if (ext_diff) {
		erp->er_extcount += ext_diff;
		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
		ext_cnt -= ext_diff;
	}
	while (ext_cnt) {
		erp_idx++;
		erp = xfs_iext_irec_new(ifp, erp_idx);
		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
		erp->er_extcount = ext_diff;
		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
		ext_cnt -= ext_diff;
	}

	/* Add nex2 extents back to indirection array */
	if (nex2) {
		xfs_extnum_t	ext_avail;
		int		i;

		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
		i = 0;
		/*
		 * If nex2 extents fit in the current page, append
		 * nex2_ep after the new extents.
		 */
		if (nex2 <= ext_avail) {
			i = erp->er_extcount;
		}
		/*
		 * Otherwise, check if space is available in the
		 * next page.
		 */
		else if ((erp_idx < nlists - 1) &&
			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
			erp_idx++;
			erp++;
			/* Create a hole for nex2 extents */
			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
		}
		/*
		 * Final choice, create a new extent page for
		 * nex2 extents.
		 */
		else {
			erp_idx++;
			erp = xfs_iext_irec_new(ifp, erp_idx);
		}
		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
		kmem_free(nex2_ep, byte_diff);
		erp->er_extcount += nex2;
		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
	}
}

/*
 * This is called when the amount of space required for incore file
 * extents needs to be decreased. The ext_diff parameter stores the
 * number of extents to be removed and the idx parameter contains
 * the extent index where the extents will be removed from.
 *
 * If the amount of space needed has decreased below the linear
 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
 * extent array.  Otherwise, use kmem_realloc() to adjust the
 * size to what is needed.
 */
void
xfs_iext_remove(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_extnum_t	idx,		/* index to begin removing exts */
	int		ext_diff)	/* number of extents to remove */
{
	xfs_extnum_t	nextents;	/* number of extents in file */
	int		new_size;	/* size of extents after removal */

	ASSERT(ext_diff > 0);
	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);

	if (new_size == 0) {
		xfs_iext_destroy(ifp);
	} else if (ifp->if_flags & XFS_IFEXTIREC) {
		xfs_iext_remove_indirect(ifp, idx, ext_diff);
	} else if (ifp->if_real_bytes) {
		xfs_iext_remove_direct(ifp, idx, ext_diff);
	} else {
		xfs_iext_remove_inline(ifp, idx, ext_diff);
	}
	ifp->if_bytes = new_size;
}

/*
 * This removes ext_diff extents from the inline buffer, beginning
 * at extent index idx.
 */
void
xfs_iext_remove_inline(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_extnum_t	idx,		/* index to begin removing exts */
	int		ext_diff)	/* number of extents to remove */
{
	int		nextents;	/* number of extents in file */

	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
	ASSERT(idx < XFS_INLINE_EXTS);
	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
	ASSERT(((nextents - ext_diff) > 0) &&
		(nextents - ext_diff) < XFS_INLINE_EXTS);

	if (idx + ext_diff < nextents) {
		memmove(&ifp->if_u2.if_inline_ext[idx],
			&ifp->if_u2.if_inline_ext[idx + ext_diff],
			(nextents - (idx + ext_diff)) *
			 sizeof(xfs_bmbt_rec_t));
		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
			0, ext_diff * sizeof(xfs_bmbt_rec_t));
	} else {
		memset(&ifp->if_u2.if_inline_ext[idx], 0,
			ext_diff * sizeof(xfs_bmbt_rec_t));
	}
}

/*
 * This removes ext_diff extents from a linear (direct) extent list,
 * beginning at extent index idx. If the extents are being removed
 * from the end of the list (ie. truncate) then we just need to re-
 * allocate the list to remove the extra space. Otherwise, if the
 * extents are being removed from the middle of the existing extent
 * entries, then we first need to move the extent records beginning
 * at idx + ext_diff up in the list to overwrite the records being
 * removed, then remove the extra space via kmem_realloc.
 */
void
xfs_iext_remove_direct(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_extnum_t	idx,		/* index to begin removing exts */
	int		ext_diff)	/* number of extents to remove */
{
	xfs_extnum_t	nextents;	/* number of extents in file */
	int		new_size;	/* size of extents after removal */

	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
	new_size = ifp->if_bytes -
		(ext_diff * sizeof(xfs_bmbt_rec_t));
	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);

	if (new_size == 0) {
		xfs_iext_destroy(ifp);
		return;
	}
	/* Move extents up in the list (if needed) */
	if (idx + ext_diff < nextents) {
		memmove(&ifp->if_u1.if_extents[idx],
			&ifp->if_u1.if_extents[idx + ext_diff],
			(nextents - (idx + ext_diff)) *
			 sizeof(xfs_bmbt_rec_t));
	}
	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
		0, ext_diff * sizeof(xfs_bmbt_rec_t));
	/*
	 * Reallocate the direct extent list. If the extents
	 * will fit inside the inode then xfs_iext_realloc_direct
	 * will switch from direct to inline extent allocation
	 * mode for us.
	 */
	xfs_iext_realloc_direct(ifp, new_size);
	ifp->if_bytes = new_size;
}

/*
 * This is called when incore extents are being removed from the
 * indirection array and the extents being removed span multiple extent
 * buffers. The idx parameter contains the file extent index where we
 * want to begin removing extents, and the count parameter contains
 * how many extents need to be removed.
 *
 *    |-------|   |-------|
 *    | nex1  |   |       |    nex1 - number of extents before idx
 *    |-------|   | count |
 *    |       |   |       |    count - number of extents being removed at idx
 *    | count |   |-------|
 *    |       |   | nex2  |    nex2 - number of extents after idx + count
 *    |-------|   |-------|
 */
void
xfs_iext_remove_indirect(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_extnum_t	idx,		/* index to begin removing extents */
	int		count)		/* number of extents to remove */
{
	xfs_ext_irec_t	*erp;		/* indirection array pointer */
	int		erp_idx = 0;	/* indirection array index */
	xfs_extnum_t	ext_cnt;	/* extents left to remove */
	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
	xfs_extnum_t	nex1;		/* number of extents before idx */
	xfs_extnum_t	nex2;		/* extents after idx + count */
	int		nlists;		/* entries in indirecton array */
	int		page_idx = idx;	/* index in target extent list */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
	ASSERT(erp != NULL);
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
	nex1 = page_idx;
	ext_cnt = count;
	while (ext_cnt) {
		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
		/*
		 * Check for deletion of entire list;
		 * xfs_iext_irec_remove() updates extent offsets.
		 */
		if (ext_diff == erp->er_extcount) {
			xfs_iext_irec_remove(ifp, erp_idx);
			ext_cnt -= ext_diff;
			nex1 = 0;
			if (ext_cnt) {
				ASSERT(erp_idx < ifp->if_real_bytes /
					XFS_IEXT_BUFSZ);
				erp = &ifp->if_u1.if_ext_irec[erp_idx];
				nex1 = 0;
				continue;
			} else {
				break;
			}
		}
		/* Move extents up (if needed) */
		if (nex2) {
			memmove(&erp->er_extbuf[nex1],
				&erp->er_extbuf[nex1 + ext_diff],
				nex2 * sizeof(xfs_bmbt_rec_t));
		}
		/* Zero out rest of page */
		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
		/* Update remaining counters */
		erp->er_extcount -= ext_diff;
		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
		ext_cnt -= ext_diff;
		nex1 = 0;
		erp_idx++;
		erp++;
	}
	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
	xfs_iext_irec_compact(ifp);
}

/*
 * Create, destroy, or resize a linear (direct) block of extents.
 */
void
xfs_iext_realloc_direct(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	int		new_size)	/* new size of extents */
{
	int		rnew_size;	/* real new size of extents */

	rnew_size = new_size;

	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
		 (new_size != ifp->if_real_bytes)));

	/* Free extent records */
	if (new_size == 0) {
		xfs_iext_destroy(ifp);
	}
	/* Resize direct extent list and zero any new bytes */
	else if (ifp->if_real_bytes) {
		/* Check if extents will fit inside the inode */
		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
			xfs_iext_direct_to_inline(ifp, new_size /
				(uint)sizeof(xfs_bmbt_rec_t));
			ifp->if_bytes = new_size;
			return;
		}
		if ((new_size & (new_size - 1)) != 0) {
			rnew_size = xfs_iroundup(new_size);
		}
		if (rnew_size != ifp->if_real_bytes) {
			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
				kmem_realloc(ifp->if_u1.if_extents,
						rnew_size,
						ifp->if_real_bytes,
						KM_SLEEP);
		}
		if (rnew_size > ifp->if_real_bytes) {
			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
				(uint)sizeof(xfs_bmbt_rec_t)], 0,
				rnew_size - ifp->if_real_bytes);
		}
	}
	/*
	 * Switch from the inline extent buffer to a direct
	 * extent list. Be sure to include the inline extent
	 * bytes in new_size.
	 */
	else {
		new_size += ifp->if_bytes;
		if ((new_size & (new_size - 1)) != 0) {
			rnew_size = xfs_iroundup(new_size);
		}
		xfs_iext_inline_to_direct(ifp, rnew_size);
	}
	ifp->if_real_bytes = rnew_size;
	ifp->if_bytes = new_size;
}

/*
 * Switch from linear (direct) extent records to inline buffer.
 */
void
xfs_iext_direct_to_inline(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_extnum_t	nextents)	/* number of extents in file */
{
	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
	ASSERT(nextents <= XFS_INLINE_EXTS);
	/*
	 * The inline buffer was zeroed when we switched
	 * from inline to direct extent allocation mode,
	 * so we don't need to clear it here.
	 */
	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
		nextents * sizeof(xfs_bmbt_rec_t));
	kmem_free(ifp->if_u1.if_extents, KM_SLEEP);
	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
	ifp->if_real_bytes = 0;
}

/*
 * Switch from inline buffer to linear (direct) extent records.
 * new_size should already be rounded up to the next power of 2
 * by the caller (when appropriate), so use new_size as it is.
 * However, since new_size may be rounded up, we can't update
 * if_bytes here. It is the caller's responsibility to update
 * if_bytes upon return.
 */
void
xfs_iext_inline_to_direct(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	int		new_size)	/* number of extents in file */
{
	ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
		kmem_alloc(new_size, KM_SLEEP);
	memset(ifp->if_u1.if_extents, 0, new_size);
	if (ifp->if_bytes) {
		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
			ifp->if_bytes);
		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
			sizeof(xfs_bmbt_rec_t));
	}
	ifp->if_real_bytes = new_size;
}

/*
 * Resize an extent indirection array to new_size bytes.
 */
void
xfs_iext_realloc_indirect(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	int		new_size)	/* new indirection array size */
{
	int		nlists;		/* number of irec's (ex lists) */
	int		size;		/* current indirection array size */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
	size = nlists * sizeof(xfs_ext_irec_t);
	ASSERT(ifp->if_real_bytes);
	ASSERT((new_size >= 0) && (new_size != size));
	if (new_size == 0) {
		xfs_iext_destroy(ifp);
	} else {
		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
			kmem_realloc(ifp->if_u1.if_ext_irec,
				new_size, size, KM_SLEEP);
	}
}

/*
 * Switch from indirection array to linear (direct) extent allocations.
 */
void
xfs_iext_indirect_to_direct(
	 xfs_ifork_t	*ifp)		/* inode fork pointer */
{
	xfs_bmbt_rec_t	*ep;		/* extent record pointer */
	xfs_extnum_t	nextents;	/* number of extents in file */
	int		size;		/* size of file extents */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
	ASSERT(nextents <= XFS_LINEAR_EXTS);
	size = nextents * sizeof(xfs_bmbt_rec_t);

	xfs_iext_irec_compact_full(ifp);
	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);

	ep = ifp->if_u1.if_ext_irec->er_extbuf;
	kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
	ifp->if_flags &= ~XFS_IFEXTIREC;
	ifp->if_u1.if_extents = ep;
	ifp->if_bytes = size;
	if (nextents < XFS_LINEAR_EXTS) {
		xfs_iext_realloc_direct(ifp, size);
	}
}

/*
 * Free incore file extents.
 */
void
xfs_iext_destroy(
	xfs_ifork_t	*ifp)		/* inode fork pointer */
{
	if (ifp->if_flags & XFS_IFEXTIREC) {
		int	erp_idx;
		int	nlists;

		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
			xfs_iext_irec_remove(ifp, erp_idx);
		}
		ifp->if_flags &= ~XFS_IFEXTIREC;
	} else if (ifp->if_real_bytes) {
		kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
	} else if (ifp->if_bytes) {
		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
			sizeof(xfs_bmbt_rec_t));
	}
	ifp->if_u1.if_extents = NULL;
	ifp->if_real_bytes = 0;
	ifp->if_bytes = 0;
}

/*
 * Return a pointer to the extent record for file system block bno.
 */
xfs_bmbt_rec_t *			/* pointer to found extent record */
xfs_iext_bno_to_ext(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_fileoff_t	bno,		/* block number to search for */
	xfs_extnum_t	*idxp)		/* index of target extent */
{
	xfs_bmbt_rec_t	*base;		/* pointer to first extent */
	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
	xfs_bmbt_rec_t	*ep = NULL;	/* pointer to target extent */
	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
	int		high;		/* upper boundry in search */
	xfs_extnum_t	idx = 0;	/* index of target extent */
	int		low;		/* lower boundry in search */
	xfs_extnum_t	nextents;	/* number of file extents */
	xfs_fileoff_t	startoff = 0;	/* start offset of extent */

	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
	if (nextents == 0) {
		*idxp = 0;
		return NULL;
	}
	low = 0;
	if (ifp->if_flags & XFS_IFEXTIREC) {
		/* Find target extent list */
		int	erp_idx = 0;
		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
		base = erp->er_extbuf;
		high = erp->er_extcount - 1;
	} else {
		base = ifp->if_u1.if_extents;
		high = nextents - 1;
	}
	/* Binary search extent records */
	while (low <= high) {
		idx = (low + high) >> 1;
		ep = base + idx;
		startoff = xfs_bmbt_get_startoff(ep);
		blockcount = xfs_bmbt_get_blockcount(ep);
		if (bno < startoff) {
			high = idx - 1;
		} else if (bno >= startoff + blockcount) {
			low = idx + 1;
		} else {
			/* Convert back to file-based extent index */
			if (ifp->if_flags & XFS_IFEXTIREC) {
				idx += erp->er_extoff;
			}
			*idxp = idx;
			return ep;
		}
	}
	/* Convert back to file-based extent index */
	if (ifp->if_flags & XFS_IFEXTIREC) {
		idx += erp->er_extoff;
	}
	if (bno >= startoff + blockcount) {
		if (++idx == nextents) {
			ep = NULL;
		} else {
			ep = xfs_iext_get_ext(ifp, idx);
		}
	}
	*idxp = idx;
	return ep;
}

/*
 * Return a pointer to the indirection array entry containing the
 * extent record for filesystem block bno. Store the index of the
 * target irec in *erp_idxp.
 */
xfs_ext_irec_t *			/* pointer to found extent record */
xfs_iext_bno_to_irec(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_fileoff_t	bno,		/* block number to search for */
	int		*erp_idxp)	/* irec index of target ext list */
{
	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
	int		erp_idx;	/* indirection array index */
	int		nlists;		/* number of extent irec's (lists) */
	int		high;		/* binary search upper limit */
	int		low;		/* binary search lower limit */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
	erp_idx = 0;
	low = 0;
	high = nlists - 1;
	while (low <= high) {
		erp_idx = (low + high) >> 1;
		erp = &ifp->if_u1.if_ext_irec[erp_idx];
		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
			high = erp_idx - 1;
		} else if (erp_next && bno >=
			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
			low = erp_idx + 1;
		} else {
			break;
		}
	}
	*erp_idxp = erp_idx;
	return erp;
}

/*
 * Return a pointer to the indirection array entry containing the
 * extent record at file extent index *idxp. Store the index of the
 * target irec in *erp_idxp and store the page index of the target
 * extent record in *idxp.
 */
xfs_ext_irec_t *
xfs_iext_idx_to_irec(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
	int		*erp_idxp,	/* pointer to target irec */
	int		realloc)	/* new bytes were just added */
{
	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
	int		erp_idx;	/* indirection array index */
	int		nlists;		/* number of irec's (ex lists) */
	int		high;		/* binary search upper limit */
	int		low;		/* binary search lower limit */
	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	ASSERT(page_idx >= 0 && page_idx <=
		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
	erp_idx = 0;
	low = 0;
	high = nlists - 1;

	/* Binary search extent irec's */
	while (low <= high) {
		erp_idx = (low + high) >> 1;
		erp = &ifp->if_u1.if_ext_irec[erp_idx];
		prev = erp_idx > 0 ? erp - 1 : NULL;
		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
			high = erp_idx - 1;
		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
			   (page_idx == erp->er_extoff + erp->er_extcount &&
			    !realloc)) {
			low = erp_idx + 1;
		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
			   erp->er_extcount == XFS_LINEAR_EXTS) {
			ASSERT(realloc);
			page_idx = 0;
			erp_idx++;
			erp = erp_idx < nlists ? erp + 1 : NULL;
			break;
		} else {
			page_idx -= erp->er_extoff;
			break;
		}
	}
	*idxp = page_idx;
	*erp_idxp = erp_idx;
	return(erp);
}

/*
 * Allocate and initialize an indirection array once the space needed
 * for incore extents increases above XFS_IEXT_BUFSZ.
 */
void
xfs_iext_irec_init(
	xfs_ifork_t	*ifp)		/* inode fork pointer */
{
	xfs_ext_irec_t	*erp;		/* indirection array pointer */
	xfs_extnum_t	nextents;	/* number of extents in file */

	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
	ASSERT(nextents <= XFS_LINEAR_EXTS);

	erp = (xfs_ext_irec_t *)
		kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);

	if (nextents == 0) {
		ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
			kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
	} else if (!ifp->if_real_bytes) {
		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
	}
	erp->er_extbuf = ifp->if_u1.if_extents;
	erp->er_extcount = nextents;
	erp->er_extoff = 0;

	ifp->if_flags |= XFS_IFEXTIREC;
	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
	ifp->if_u1.if_ext_irec = erp;

	return;
}

/*
 * Allocate and initialize a new entry in the indirection array.
 */
xfs_ext_irec_t *
xfs_iext_irec_new(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	int		erp_idx)	/* index for new irec */
{
	xfs_ext_irec_t	*erp;		/* indirection array pointer */
	int		i;		/* loop counter */
	int		nlists;		/* number of irec's (ex lists) */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;

	/* Resize indirection array */
	xfs_iext_realloc_indirect(ifp, ++nlists *
				  sizeof(xfs_ext_irec_t));
	/*
	 * Move records down in the array so the
	 * new page can use erp_idx.
	 */
	erp = ifp->if_u1.if_ext_irec;
	for (i = nlists - 1; i > erp_idx; i--) {
		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
	}
	ASSERT(i == erp_idx);

	/* Initialize new extent record */
	erp = ifp->if_u1.if_ext_irec;
	erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
		kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
	erp[erp_idx].er_extcount = 0;
	erp[erp_idx].er_extoff = erp_idx > 0 ?
		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
	return (&erp[erp_idx]);
}

/*
 * Remove a record from the indirection array.
 */
void
xfs_iext_irec_remove(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	int		erp_idx)	/* irec index to remove */
{
	xfs_ext_irec_t	*erp;		/* indirection array pointer */
	int		i;		/* loop counter */
	int		nlists;		/* number of irec's (ex lists) */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
	erp = &ifp->if_u1.if_ext_irec[erp_idx];
	if (erp->er_extbuf) {
		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
			-erp->er_extcount);
		kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
	}
	/* Compact extent records */
	erp = ifp->if_u1.if_ext_irec;
	for (i = erp_idx; i < nlists - 1; i++) {
		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
	}
	/*
	 * Manually free the last extent record from the indirection
	 * array.  A call to xfs_iext_realloc_indirect() with a size
	 * of zero would result in a call to xfs_iext_destroy() which
	 * would in turn call this function again, creating a nasty
	 * infinite loop.
	 */
	if (--nlists) {
		xfs_iext_realloc_indirect(ifp,
			nlists * sizeof(xfs_ext_irec_t));
	} else {
		kmem_free(ifp->if_u1.if_ext_irec,
			sizeof(xfs_ext_irec_t));
	}
	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
}

/*
 * This is called to clean up large amounts of unused memory allocated
 * by the indirection array.  Before compacting anything though, verify
 * that the indirection array is still needed and switch back to the
 * linear extent list (or even the inline buffer) if possible.  The
 * compaction policy is as follows:
 *
 *    Full Compaction: Extents fit into a single page (or inline buffer)
 *    Full Compaction: Extents occupy less than 10% of allocated space
 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
 *      No Compaction: Extents occupy at least 50% of allocated space
 */
void
xfs_iext_irec_compact(
	xfs_ifork_t	*ifp)		/* inode fork pointer */
{
	xfs_extnum_t	nextents;	/* number of extents in file */
	int		nlists;		/* number of irec's (ex lists) */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);

	if (nextents == 0) {
		xfs_iext_destroy(ifp);
	} else if (nextents <= XFS_INLINE_EXTS) {
		xfs_iext_indirect_to_direct(ifp);
		xfs_iext_direct_to_inline(ifp, nextents);
	} else if (nextents <= XFS_LINEAR_EXTS) {
		xfs_iext_indirect_to_direct(ifp);
	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
		xfs_iext_irec_compact_full(ifp);
	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
		xfs_iext_irec_compact_pages(ifp);
	}
}

/*
 * Combine extents from neighboring extent pages.
 */
void
xfs_iext_irec_compact_pages(
	xfs_ifork_t	*ifp)		/* inode fork pointer */
{
	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
	int		erp_idx = 0;	/* indirection array index */
	int		nlists;		/* number of irec's (ex lists) */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
	while (erp_idx < nlists - 1) {
		erp = &ifp->if_u1.if_ext_irec[erp_idx];
		erp_next = erp + 1;
		if (erp_next->er_extcount <=
		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
			memmove(&erp->er_extbuf[erp->er_extcount],
				erp_next->er_extbuf, erp_next->er_extcount *
				sizeof(xfs_bmbt_rec_t));
			erp->er_extcount += erp_next->er_extcount;
			/*
			 * Free page before removing extent record
			 * so er_extoffs don't get modified in
			 * xfs_iext_irec_remove.
			 */
			kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
			erp_next->er_extbuf = NULL;
			xfs_iext_irec_remove(ifp, erp_idx + 1);
			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
		} else {
			erp_idx++;
		}
	}
}

/*
 * Fully compact the extent records managed by the indirection array.
 */
void
xfs_iext_irec_compact_full(
	xfs_ifork_t	*ifp)			/* inode fork pointer */
{
	xfs_bmbt_rec_t	*ep, *ep_next;		/* extent record pointers */
	xfs_ext_irec_t	*erp, *erp_next;	/* extent irec pointers */
	int		erp_idx = 0;		/* extent irec index */
	int		ext_avail;		/* empty entries in ex list */
	int		ext_diff;		/* number of exts to add */
	int		nlists;			/* number of irec's (ex lists) */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
	erp = ifp->if_u1.if_ext_irec;
	ep = &erp->er_extbuf[erp->er_extcount];
	erp_next = erp + 1;
	ep_next = erp_next->er_extbuf;
	while (erp_idx < nlists - 1) {
		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
		ext_diff = MIN(ext_avail, erp_next->er_extcount);
		memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
		erp->er_extcount += ext_diff;
		erp_next->er_extcount -= ext_diff;
		/* Remove next page */
		if (erp_next->er_extcount == 0) {
			/*
			 * Free page before removing extent record
			 * so er_extoffs don't get modified in
			 * xfs_iext_irec_remove.
			 */
			kmem_free(erp_next->er_extbuf,
				erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
			erp_next->er_extbuf = NULL;
			xfs_iext_irec_remove(ifp, erp_idx + 1);
			erp = &ifp->if_u1.if_ext_irec[erp_idx];
			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
		/* Update next page */
		} else {
			/* Move rest of page up to become next new page */
			memmove(erp_next->er_extbuf, ep_next,
				erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
			ep_next = erp_next->er_extbuf;
			memset(&ep_next[erp_next->er_extcount], 0,
				(XFS_LINEAR_EXTS - erp_next->er_extcount) *
				sizeof(xfs_bmbt_rec_t));
		}
		if (erp->er_extcount == XFS_LINEAR_EXTS) {
			erp_idx++;
			if (erp_idx < nlists)
				erp = &ifp->if_u1.if_ext_irec[erp_idx];
			else
				break;
		}
		ep = &erp->er_extbuf[erp->er_extcount];
		erp_next = erp + 1;
		ep_next = erp_next->er_extbuf;
	}
}

/*
 * This is called to update the er_extoff field in the indirection
 * array when extents have been added or removed from one of the
 * extent lists. erp_idx contains the irec index to begin updating
 * at and ext_diff contains the number of extents that were added
 * or removed.
 */
void
xfs_iext_irec_update_extoffs(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	int		erp_idx,	/* irec index to update */
	int		ext_diff)	/* number of new extents */
{
	int		i;		/* loop counter */
	int		nlists;		/* number of irec's (ex lists */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
	for (i = erp_idx; i < nlists; i++) {
		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
	}
}