summaryrefslogblamecommitdiffstats
path: root/include/linux/tcp.h
blob: 542d39596bd86f0c7cdc84b58977b4da440590a2 (plain) (tree)
























































                                                                             





































                                                                                    
                                                                          


































































                                                                    
                     
                                     
                                   






                                                     



















                                                                                 





                                         
                                                                              



                                              
                 

                                                                         



















                                                                                             












                                                                          
                                                                               
                                                                          
                                             
 





                                                                          
                                                                          
                                                                          






                                                                          



                                                                          


                                                                            











                                                                                

                                                                                       









                                                                                  














                                                 
                                                                          












                                                                               
                                                                  
                                                                          


                                                                             
                                                                         
 


















                                                                                               





                                                  






                                                            













                                                                       


                          
/*
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		Definitions for the TCP protocol.
 *
 * Version:	@(#)tcp.h	1.0.2	04/28/93
 *
 * Author:	Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
 */
#ifndef _LINUX_TCP_H
#define _LINUX_TCP_H

#include <linux/types.h>
#include <asm/byteorder.h>

struct tcphdr {
	__u16	source;
	__u16	dest;
	__u32	seq;
	__u32	ack_seq;
#if defined(__LITTLE_ENDIAN_BITFIELD)
	__u16	res1:4,
		doff:4,
		fin:1,
		syn:1,
		rst:1,
		psh:1,
		ack:1,
		urg:1,
		ece:1,
		cwr:1;
#elif defined(__BIG_ENDIAN_BITFIELD)
	__u16	doff:4,
		res1:4,
		cwr:1,
		ece:1,
		urg:1,
		ack:1,
		psh:1,
		rst:1,
		syn:1,
		fin:1;
#else
#error	"Adjust your <asm/byteorder.h> defines"
#endif	
	__u16	window;
	__u16	check;
	__u16	urg_ptr;
};

/*
 *	The union cast uses a gcc extension to avoid aliasing problems
 *  (union is compatible to any of its members)
 *  This means this part of the code is -fstrict-aliasing safe now.
 */
union tcp_word_hdr { 
	struct tcphdr hdr;
	__u32 		  words[5];
}; 

#define tcp_flag_word(tp) ( ((union tcp_word_hdr *)(tp))->words [3]) 

enum { 
	TCP_FLAG_CWR = __constant_htonl(0x00800000), 
	TCP_FLAG_ECE = __constant_htonl(0x00400000), 
	TCP_FLAG_URG = __constant_htonl(0x00200000), 
	TCP_FLAG_ACK = __constant_htonl(0x00100000), 
	TCP_FLAG_PSH = __constant_htonl(0x00080000), 
	TCP_FLAG_RST = __constant_htonl(0x00040000), 
	TCP_FLAG_SYN = __constant_htonl(0x00020000), 
	TCP_FLAG_FIN = __constant_htonl(0x00010000),
	TCP_RESERVED_BITS = __constant_htonl(0x0F000000),
	TCP_DATA_OFFSET = __constant_htonl(0xF0000000)
}; 

/* TCP socket options */
#define TCP_NODELAY		1	/* Turn off Nagle's algorithm. */
#define TCP_MAXSEG		2	/* Limit MSS */
#define TCP_CORK		3	/* Never send partially complete segments */
#define TCP_KEEPIDLE		4	/* Start keeplives after this period */
#define TCP_KEEPINTVL		5	/* Interval between keepalives */
#define TCP_KEEPCNT		6	/* Number of keepalives before death */
#define TCP_SYNCNT		7	/* Number of SYN retransmits */
#define TCP_LINGER2		8	/* Life time of orphaned FIN-WAIT-2 state */
#define TCP_DEFER_ACCEPT	9	/* Wake up listener only when data arrive */
#define TCP_WINDOW_CLAMP	10	/* Bound advertised window */
#define TCP_INFO		11	/* Information about this connection. */
#define TCP_QUICKACK		12	/* Block/reenable quick acks */
#define TCP_CONGESTION		13	/* Congestion control algorithm */

#define TCPI_OPT_TIMESTAMPS	1
#define TCPI_OPT_SACK		2
#define TCPI_OPT_WSCALE		4
#define TCPI_OPT_ECN		8

enum tcp_ca_state
{
	TCP_CA_Open = 0,
#define TCPF_CA_Open	(1<<TCP_CA_Open)
	TCP_CA_Disorder = 1,
#define TCPF_CA_Disorder (1<<TCP_CA_Disorder)
	TCP_CA_CWR = 2,
#define TCPF_CA_CWR	(1<<TCP_CA_CWR)
	TCP_CA_Recovery = 3,
#define TCPF_CA_Recovery (1<<TCP_CA_Recovery)
	TCP_CA_Loss = 4
#define TCPF_CA_Loss	(1<<TCP_CA_Loss)
};

struct tcp_info
{
	__u8	tcpi_state;
	__u8	tcpi_ca_state;
	__u8	tcpi_retransmits;
	__u8	tcpi_probes;
	__u8	tcpi_backoff;
	__u8	tcpi_options;
	__u8	tcpi_snd_wscale : 4, tcpi_rcv_wscale : 4;

	__u32	tcpi_rto;
	__u32	tcpi_ato;
	__u32	tcpi_snd_mss;
	__u32	tcpi_rcv_mss;

	__u32	tcpi_unacked;
	__u32	tcpi_sacked;
	__u32	tcpi_lost;
	__u32	tcpi_retrans;
	__u32	tcpi_fackets;

	/* Times. */
	__u32	tcpi_last_data_sent;
	__u32	tcpi_last_ack_sent;     /* Not remembered, sorry. */
	__u32	tcpi_last_data_recv;
	__u32	tcpi_last_ack_recv;

	/* Metrics. */
	__u32	tcpi_pmtu;
	__u32	tcpi_rcv_ssthresh;
	__u32	tcpi_rtt;
	__u32	tcpi_rttvar;
	__u32	tcpi_snd_ssthresh;
	__u32	tcpi_snd_cwnd;
	__u32	tcpi_advmss;
	__u32	tcpi_reordering;

	__u32	tcpi_rcv_rtt;
	__u32	tcpi_rcv_space;

	__u32	tcpi_total_retrans;
};

#ifdef __KERNEL__

#include <linux/config.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <net/inet_connection_sock.h>
#include <net/inet_timewait_sock.h>

/* This defines a selective acknowledgement block. */
struct tcp_sack_block {
	__u32	start_seq;
	__u32	end_seq;
};

struct tcp_options_received {
/*	PAWS/RTTM data	*/
	long	ts_recent_stamp;/* Time we stored ts_recent (for aging) */
	__u32	ts_recent;	/* Time stamp to echo next		*/
	__u32	rcv_tsval;	/* Time stamp value             	*/
	__u32	rcv_tsecr;	/* Time stamp echo reply        	*/
	__u16 	saw_tstamp : 1,	/* Saw TIMESTAMP on last packet		*/
		tstamp_ok : 1,	/* TIMESTAMP seen on SYN packet		*/
		dsack : 1,	/* D-SACK is scheduled			*/
		wscale_ok : 1,	/* Wscale seen on SYN packet		*/
		sack_ok : 4,	/* SACK seen on SYN packet		*/
		snd_wscale : 4,	/* Window scaling received from sender	*/
		rcv_wscale : 4;	/* Window scaling to send to receiver	*/
/*	SACKs data	*/
	__u8	eff_sacks;	/* Size of SACK array to send with next packet */
	__u8	num_sacks;	/* Number of SACK blocks		*/
	__u16	user_mss;  	/* mss requested by user in ioctl */
	__u16	mss_clamp;	/* Maximal mss, negotiated at connection setup */
};

struct tcp_request_sock {
	struct inet_request_sock req;
	__u32			 rcv_isn;
	__u32			 snt_isn;
};

static inline struct tcp_request_sock *tcp_rsk(const struct request_sock *req)
{
	return (struct tcp_request_sock *)req;
}

struct tcp_sock {
	/* inet_connection_sock has to be the first member of tcp_sock */
	struct inet_connection_sock	inet_conn;
	int	tcp_header_len;	/* Bytes of tcp header to send		*/

/*
 *	Header prediction flags
 *	0x5?10 << 16 + snd_wnd in net byte order
 */
	__u32	pred_flags;

/*
 *	RFC793 variables by their proper names. This means you can
 *	read the code and the spec side by side (and laugh ...)
 *	See RFC793 and RFC1122. The RFC writes these in capitals.
 */
 	__u32	rcv_nxt;	/* What we want to receive next 	*/
 	__u32	snd_nxt;	/* Next sequence we send		*/

 	__u32	snd_una;	/* First byte we want an ack for	*/
 	__u32	snd_sml;	/* Last byte of the most recently transmitted small packet */
	__u32	rcv_tstamp;	/* timestamp of last received ACK (for keepalives) */
	__u32	lsndtime;	/* timestamp of last sent data packet (for restart window) */

	/* Data for direct copy to user */
	struct {
		struct sk_buff_head	prequeue;
		struct task_struct	*task;
		struct iovec		*iov;
		int			memory;
		int			len;
	} ucopy;

	__u32	snd_wl1;	/* Sequence for window update		*/
	__u32	snd_wnd;	/* The window we expect to receive	*/
	__u32	max_window;	/* Maximal window ever seen from peer	*/
	__u32	mss_cache;	/* Cached effective mss, not including SACKS */
	__u16	xmit_size_goal;	/* Goal for segmenting output packets	*/
	/* XXX Two bytes hole, try to pack */

	__u32	window_clamp;	/* Maximal window to advertise		*/
	__u32	rcv_ssthresh;	/* Current window clamp			*/

	__u32	frto_highmark;	/* snd_nxt when RTO occurred */
	__u8	reordering;	/* Packet reordering metric.		*/
	__u8	frto_counter;	/* Number of new acks after RTO */
	__u8	nonagle;	/* Disable Nagle algorithm?             */
	__u8	keepalive_probes; /* num of allowed keep alive probes	*/

/* RTT measurement */
	__u32	srtt;		/* smoothed round trip time << 3	*/
	__u32	mdev;		/* medium deviation			*/
	__u32	mdev_max;	/* maximal mdev for the last rtt period	*/
	__u32	rttvar;		/* smoothed mdev_max			*/
	__u32	rtt_seq;	/* sequence number to update rttvar	*/

	__u32	packets_out;	/* Packets which are "in flight"	*/
	__u32	left_out;	/* Packets which leaved network	*/
	__u32	retrans_out;	/* Retransmitted packets out		*/
/*
 *      Options received (usually on last packet, some only on SYN packets).
 */
	struct tcp_options_received rx_opt;

/*
 *	Slow start and congestion control (see also Nagle, and Karn & Partridge)
 */
 	__u32	snd_ssthresh;	/* Slow start size threshold		*/
 	__u32	snd_cwnd;	/* Sending congestion window		*/
 	__u16	snd_cwnd_cnt;	/* Linear increase counter		*/
	__u16	snd_cwnd_clamp; /* Do not allow snd_cwnd to grow above this */
	__u32	snd_cwnd_used;
	__u32	snd_cwnd_stamp;

	struct sk_buff_head	out_of_order_queue; /* Out of order segments go here */

 	__u32	rcv_wnd;	/* Current receiver window		*/
	__u32	rcv_wup;	/* rcv_nxt on last window update sent	*/
	__u32	write_seq;	/* Tail(+1) of data held in tcp send buffer */
	__u32	pushed_seq;	/* Last pushed seq, required to talk to windows */
	__u32	copied_seq;	/* Head of yet unread data		*/

/*	SACKs data	*/
	struct tcp_sack_block duplicate_sack[1]; /* D-SACK block */
	struct tcp_sack_block selective_acks[4]; /* The SACKS themselves*/

	struct tcp_sack_block recv_sack_cache[4];

	/* from STCP, retrans queue hinting */
	struct sk_buff* lost_skb_hint;

	struct sk_buff *scoreboard_skb_hint;
	struct sk_buff *retransmit_skb_hint;
	struct sk_buff *forward_skb_hint;
	struct sk_buff *fastpath_skb_hint;

	int     fastpath_cnt_hint;
	int     lost_cnt_hint;
	int     retransmit_cnt_hint;
	int     forward_cnt_hint;

	__u16	advmss;		/* Advertised MSS			*/
	__u16	prior_ssthresh; /* ssthresh saved at recovery start	*/
	__u32	lost_out;	/* Lost packets			*/
	__u32	sacked_out;	/* SACK'd packets			*/
	__u32	fackets_out;	/* FACK'd packets			*/
	__u32	high_seq;	/* snd_nxt at onset of congestion	*/

	__u32	retrans_stamp;	/* Timestamp of the last retransmit,
				 * also used in SYN-SENT to remember stamp of
				 * the first SYN. */
	__u32	undo_marker;	/* tracking retrans started here. */
	int	undo_retrans;	/* number of undoable retransmissions. */
	__u32	urg_seq;	/* Seq of received urgent pointer */
	__u16	urg_data;	/* Saved octet of OOB data and control flags */
	__u8	urg_mode;	/* In urgent mode		*/
	__u8	ecn_flags;	/* ECN status bits.			*/
	__u32	snd_up;		/* Urgent pointer		*/

	__u32	total_retrans;	/* Total retransmits for entire connection */
	__u32	bytes_acked;	/* Appropriate Byte Counting - RFC3465 */

	unsigned int		keepalive_time;	  /* time before keep alive takes place */
	unsigned int		keepalive_intvl;  /* time interval between keep alive probes */
	int			linger2;

	unsigned long last_synq_overflow; 

/* Receiver side RTT estimation */
	struct {
		__u32	rtt;
		__u32	seq;
		__u32	time;
	} rcv_rtt_est;

/* Receiver queue space */
	struct {
		int	space;
		__u32	seq;
		__u32	time;
	} rcvq_space;

/* TCP-specific MTU probe information. */
	struct {
		__u32		  probe_seq_start;
		__u32		  probe_seq_end;
	} mtu_probe;
};

static inline struct tcp_sock *tcp_sk(const struct sock *sk)
{
	return (struct tcp_sock *)sk;
}

struct tcp_timewait_sock {
	struct inet_timewait_sock tw_sk;
	__u32			  tw_rcv_nxt;
	__u32			  tw_snd_nxt;
	__u32			  tw_rcv_wnd;
	__u32			  tw_ts_recent;
	long			  tw_ts_recent_stamp;
};

static inline struct tcp_timewait_sock *tcp_twsk(const struct sock *sk)
{
	return (struct tcp_timewait_sock *)sk;
}

#endif

#endif	/* _LINUX_TCP_H */
net/addrconf.h> #include <net/rawv6.h> #include <net/icmp.h> #include <net/xfrm.h> #include <net/checksum.h> #include <linux/mroute6.h> static int ip6_finish_output2(struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct net_device *dev = dst->dev; struct neighbour *neigh; struct in6_addr *nexthop; int ret; skb->protocol = htons(ETH_P_IPV6); skb->dev = dev; if (ipv6_addr_is_multicast(&ipv6_hdr(skb)->daddr)) { struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb)); if (!(dev->flags & IFF_LOOPBACK) && sk_mc_loop(sk) && ((mroute6_socket(dev_net(dev), skb) && !(IP6CB(skb)->flags & IP6SKB_FORWARDED)) || ipv6_chk_mcast_addr(dev, &ipv6_hdr(skb)->daddr, &ipv6_hdr(skb)->saddr))) { struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); /* Do not check for IFF_ALLMULTI; multicast routing is not supported in any case. */ if (newskb) NF_HOOK(NFPROTO_IPV6, NF_INET_POST_ROUTING, sk, newskb, NULL, newskb->dev, dev_loopback_xmit); if (ipv6_hdr(skb)->hop_limit == 0) { IP6_INC_STATS(dev_net(dev), idev, IPSTATS_MIB_OUTDISCARDS); kfree_skb(skb); return 0; } } IP6_UPD_PO_STATS(dev_net(dev), idev, IPSTATS_MIB_OUTMCAST, skb->len); if (IPV6_ADDR_MC_SCOPE(&ipv6_hdr(skb)->daddr) <= IPV6_ADDR_SCOPE_NODELOCAL && !(dev->flags & IFF_LOOPBACK)) { kfree_skb(skb); return 0; } } rcu_read_lock_bh(); nexthop = rt6_nexthop((struct rt6_info *)dst); neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); if (unlikely(!neigh)) neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); if (!IS_ERR(neigh)) { ret = dst_neigh_output(dst, neigh, skb); rcu_read_unlock_bh(); return ret; } rcu_read_unlock_bh(); IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); kfree_skb(skb); return -EINVAL; } static int ip6_finish_output(struct sock *sk, struct sk_buff *skb) { if ((skb->len > ip6_skb_dst_mtu(skb) && !skb_is_gso(skb)) || dst_allfrag(skb_dst(skb)) || (IP6CB(skb)->frag_max_size && skb->len > IP6CB(skb)->frag_max_size)) return ip6_fragment(sk, skb, ip6_finish_output2); else return ip6_finish_output2(sk, skb); } int ip6_output(struct sock *sk, struct sk_buff *skb) { struct net_device *dev = skb_dst(skb)->dev; struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb)); if (unlikely(idev->cnf.disable_ipv6)) { IP6_INC_STATS(dev_net(dev), idev, IPSTATS_MIB_OUTDISCARDS); kfree_skb(skb); return 0; } return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, sk, skb, NULL, dev, ip6_finish_output, !(IP6CB(skb)->flags & IP6SKB_REROUTED)); } /* * xmit an sk_buff (used by TCP, SCTP and DCCP) */ int ip6_xmit(struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6, struct ipv6_txoptions *opt, int tclass) { struct net *net = sock_net(sk); struct ipv6_pinfo *np = inet6_sk(sk); struct in6_addr *first_hop = &fl6->daddr; struct dst_entry *dst = skb_dst(skb); struct ipv6hdr *hdr; u8 proto = fl6->flowi6_proto; int seg_len = skb->len; int hlimit = -1; u32 mtu; if (opt) { unsigned int head_room; /* First: exthdrs may take lots of space (~8K for now) MAX_HEADER is not enough. */ head_room = opt->opt_nflen + opt->opt_flen; seg_len += head_room; head_room += sizeof(struct ipv6hdr) + LL_RESERVED_SPACE(dst->dev); if (skb_headroom(skb) < head_room) { struct sk_buff *skb2 = skb_realloc_headroom(skb, head_room); if (!skb2) { IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_OUTDISCARDS); kfree_skb(skb); return -ENOBUFS; } consume_skb(skb); skb = skb2; skb_set_owner_w(skb, sk); } if (opt->opt_flen) ipv6_push_frag_opts(skb, opt, &proto); if (opt->opt_nflen) ipv6_push_nfrag_opts(skb, opt, &proto, &first_hop); } skb_push(skb, sizeof(struct ipv6hdr)); skb_reset_network_header(skb); hdr = ipv6_hdr(skb); /* * Fill in the IPv6 header */ if (np) hlimit = np->hop_limit; if (hlimit < 0) hlimit = ip6_dst_hoplimit(dst); ip6_flow_hdr(hdr, tclass, ip6_make_flowlabel(net, skb, fl6->flowlabel, np->autoflowlabel)); hdr->payload_len = htons(seg_len); hdr->nexthdr = proto; hdr->hop_limit = hlimit; hdr->saddr = fl6->saddr; hdr->daddr = *first_hop; skb->protocol = htons(ETH_P_IPV6); skb->priority = sk->sk_priority; skb->mark = sk->sk_mark; mtu = dst_mtu(dst); if ((skb->len <= mtu) || skb->ignore_df || skb_is_gso(skb)) { IP6_UPD_PO_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_OUT, skb->len); return NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, sk, skb, NULL, dst->dev, dst_output_sk); } skb->dev = dst->dev; ipv6_local_error(sk, EMSGSIZE, fl6, mtu); IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGFAILS); kfree_skb(skb); return -EMSGSIZE; } EXPORT_SYMBOL(ip6_xmit); static int ip6_call_ra_chain(struct sk_buff *skb, int sel) { struct ip6_ra_chain *ra; struct sock *last = NULL; read_lock(&ip6_ra_lock); for (ra = ip6_ra_chain; ra; ra = ra->next) { struct sock *sk = ra->sk; if (sk && ra->sel == sel && (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == skb->dev->ifindex)) { if (last) { struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2) rawv6_rcv(last, skb2); } last = sk; } } if (last) { rawv6_rcv(last, skb); read_unlock(&ip6_ra_lock); return 1; } read_unlock(&ip6_ra_lock); return 0; } static int ip6_forward_proxy_check(struct sk_buff *skb) { struct ipv6hdr *hdr = ipv6_hdr(skb); u8 nexthdr = hdr->nexthdr; __be16 frag_off; int offset; if (ipv6_ext_hdr(nexthdr)) { offset = ipv6_skip_exthdr(skb, sizeof(*hdr), &nexthdr, &frag_off); if (offset < 0) return 0; } else offset = sizeof(struct ipv6hdr); if (nexthdr == IPPROTO_ICMPV6) { struct icmp6hdr *icmp6; if (!pskb_may_pull(skb, (skb_network_header(skb) + offset + 1 - skb->data))) return 0; icmp6 = (struct icmp6hdr *)(skb_network_header(skb) + offset); switch (icmp6->icmp6_type) { case NDISC_ROUTER_SOLICITATION: case NDISC_ROUTER_ADVERTISEMENT: case NDISC_NEIGHBOUR_SOLICITATION: case NDISC_NEIGHBOUR_ADVERTISEMENT: case NDISC_REDIRECT: /* For reaction involving unicast neighbor discovery * message destined to the proxied address, pass it to * input function. */ return 1; default: break; } } /* * The proxying router can't forward traffic sent to a link-local * address, so signal the sender and discard the packet. This * behavior is clarified by the MIPv6 specification. */ if (ipv6_addr_type(&hdr->daddr) & IPV6_ADDR_LINKLOCAL) { dst_link_failure(skb); return -1; } return 0; } static inline int ip6_forward_finish(struct sock *sk, struct sk_buff *skb) { skb_sender_cpu_clear(skb); return dst_output_sk(sk, skb); } static unsigned int ip6_dst_mtu_forward(const struct dst_entry *dst) { unsigned int mtu; struct inet6_dev *idev; if (dst_metric_locked(dst, RTAX_MTU)) { mtu = dst_metric_raw(dst, RTAX_MTU); if (mtu) return mtu; } mtu = IPV6_MIN_MTU; rcu_read_lock(); idev = __in6_dev_get(dst->dev); if (idev) mtu = idev->cnf.mtu6; rcu_read_unlock(); return mtu; } static bool ip6_pkt_too_big(const struct sk_buff *skb, unsigned int mtu) { if (skb->len <= mtu) return false; /* ipv6 conntrack defrag sets max_frag_size + ignore_df */ if (IP6CB(skb)->frag_max_size && IP6CB(skb)->frag_max_size > mtu) return true; if (skb->ignore_df) return false; if (skb_is_gso(skb) && skb_gso_network_seglen(skb) <= mtu) return false; return true; } int ip6_forward(struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct ipv6hdr *hdr = ipv6_hdr(skb); struct inet6_skb_parm *opt = IP6CB(skb); struct net *net = dev_net(dst->dev); u32 mtu; if (net->ipv6.devconf_all->forwarding == 0) goto error; if (skb->pkt_type != PACKET_HOST) goto drop; if (skb_warn_if_lro(skb)) goto drop; if (!xfrm6_policy_check(NULL, XFRM_POLICY_FWD, skb)) { IP6_INC_STATS_BH(net, ip6_dst_idev(dst), IPSTATS_MIB_INDISCARDS); goto drop; } skb_forward_csum(skb); /* * We DO NOT make any processing on * RA packets, pushing them to user level AS IS * without ane WARRANTY that application will be able * to interpret them. The reason is that we * cannot make anything clever here. * * We are not end-node, so that if packet contains * AH/ESP, we cannot make anything. * Defragmentation also would be mistake, RA packets * cannot be fragmented, because there is no warranty * that different fragments will go along one path. --ANK */ if (unlikely(opt->flags & IP6SKB_ROUTERALERT)) { if (ip6_call_ra_chain(skb, ntohs(opt->ra))) return 0; } /* * check and decrement ttl */ if (hdr->hop_limit <= 1) { /* Force OUTPUT device used as source address */ skb->dev = dst->dev; icmpv6_send(skb, ICMPV6_TIME_EXCEED, ICMPV6_EXC_HOPLIMIT, 0); IP6_INC_STATS_BH(net, ip6_dst_idev(dst), IPSTATS_MIB_INHDRERRORS); kfree_skb(skb); return -ETIMEDOUT; } /* XXX: idev->cnf.proxy_ndp? */ if (net->ipv6.devconf_all->proxy_ndp && pneigh_lookup(&nd_tbl, net, &hdr->daddr, skb->dev, 0)) { int proxied = ip6_forward_proxy_check(skb); if (proxied > 0) return ip6_input(skb); else if (proxied < 0) { IP6_INC_STATS_BH(net, ip6_dst_idev(dst), IPSTATS_MIB_INDISCARDS); goto drop; } } if (!xfrm6_route_forward(skb)) { IP6_INC_STATS_BH(net, ip6_dst_idev(dst), IPSTATS_MIB_INDISCARDS); goto drop; } dst = skb_dst(skb); /* IPv6 specs say nothing about it, but it is clear that we cannot send redirects to source routed frames. We don't send redirects to frames decapsulated from IPsec. */ if (skb->dev == dst->dev && opt->srcrt == 0 && !skb_sec_path(skb)) { struct in6_addr *target = NULL; struct inet_peer *peer; struct rt6_info *rt; /* * incoming and outgoing devices are the same * send a redirect. */ rt = (struct rt6_info *) dst; if (rt->rt6i_flags & RTF_GATEWAY) target = &rt->rt6i_gateway; else target = &hdr->daddr; peer = inet_getpeer_v6(net->ipv6.peers, &rt->rt6i_dst.addr, 1); /* Limit redirects both by destination (here) and by source (inside ndisc_send_redirect) */ if (inet_peer_xrlim_allow(peer, 1*HZ)) ndisc_send_redirect(skb, target); if (peer) inet_putpeer(peer); } else { int addrtype = ipv6_addr_type(&hdr->saddr); /* This check is security critical. */ if (addrtype == IPV6_ADDR_ANY || addrtype & (IPV6_ADDR_MULTICAST | IPV6_ADDR_LOOPBACK)) goto error; if (addrtype & IPV6_ADDR_LINKLOCAL) { icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_NOT_NEIGHBOUR, 0); goto error; } } mtu = ip6_dst_mtu_forward(dst); if (mtu < IPV6_MIN_MTU) mtu = IPV6_MIN_MTU; if (ip6_pkt_too_big(skb, mtu)) { /* Again, force OUTPUT device used as source address */ skb->dev = dst->dev; icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); IP6_INC_STATS_BH(net, ip6_dst_idev(dst), IPSTATS_MIB_INTOOBIGERRORS); IP6_INC_STATS_BH(net, ip6_dst_idev(dst), IPSTATS_MIB_FRAGFAILS); kfree_skb(skb); return -EMSGSIZE; } if (skb_cow(skb, dst->dev->hard_header_len)) { IP6_INC_STATS_BH(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTDISCARDS); goto drop; } hdr = ipv6_hdr(skb); /* Mangling hops number delayed to point after skb COW */ hdr->hop_limit--; IP6_INC_STATS_BH(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTFORWDATAGRAMS); IP6_ADD_STATS_BH(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTOCTETS, skb->len); return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, NULL, skb, skb->dev, dst->dev, ip6_forward_finish); error: IP6_INC_STATS_BH(net, ip6_dst_idev(dst), IPSTATS_MIB_INADDRERRORS); drop: kfree_skb(skb); return -EINVAL; } static void ip6_copy_metadata(struct sk_buff *to, struct sk_buff *from) { to->pkt_type = from->pkt_type; to->priority = from->priority; to->protocol = from->protocol; skb_dst_drop(to); skb_dst_set(to, dst_clone(skb_dst(from))); to->dev = from->dev; to->mark = from->mark; #ifdef CONFIG_NET_SCHED to->tc_index = from->tc_index; #endif nf_copy(to, from); skb_copy_secmark(to, from); } int ip6_fragment(struct sock *sk, struct sk_buff *skb, int (*output)(struct sock *, struct sk_buff *)) { struct sk_buff *frag; struct rt6_info *rt = (struct rt6_info *)skb_dst(skb); struct ipv6_pinfo *np = skb->sk && !dev_recursion_level() ? inet6_sk(skb->sk) : NULL; struct ipv6hdr *tmp_hdr; struct frag_hdr *fh; unsigned int mtu, hlen, left, len; int hroom, troom; __be32 frag_id = 0; int ptr, offset = 0, err = 0; u8 *prevhdr, nexthdr = 0; struct net *net = dev_net(skb_dst(skb)->dev); hlen = ip6_find_1stfragopt(skb, &prevhdr); nexthdr = *prevhdr; mtu = ip6_skb_dst_mtu(skb); /* We must not fragment if the socket is set to force MTU discovery * or if the skb it not generated by a local socket. */ if (unlikely(!skb->ignore_df && skb->len > mtu) || (IP6CB(skb)->frag_max_size && IP6CB(skb)->frag_max_size > mtu)) { if (skb->sk && dst_allfrag(skb_dst(skb))) sk_nocaps_add(skb->sk, NETIF_F_GSO_MASK); skb->dev = skb_dst(skb)->dev; icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGFAILS); kfree_skb(skb); return -EMSGSIZE; } if (np && np->frag_size < mtu) { if (np->frag_size) mtu = np->frag_size; } mtu -= hlen + sizeof(struct frag_hdr); if (skb_has_frag_list(skb)) { int first_len = skb_pagelen(skb); struct sk_buff *frag2; if (first_len - hlen > mtu || ((first_len - hlen) & 7) || skb_cloned(skb)) goto slow_path; skb_walk_frags(skb, frag) { /* Correct geometry. */ if (frag->len > mtu || ((frag->len & 7) && frag->next) || skb_headroom(frag) < hlen) goto slow_path_clean; /* Partially cloned skb? */ if (skb_shared(frag)) goto slow_path_clean; BUG_ON(frag->sk); if (skb->sk) { frag->sk = skb->sk; frag->destructor = sock_wfree; } skb->truesize -= frag->truesize; } err = 0; offset = 0; frag = skb_shinfo(skb)->frag_list; skb_frag_list_init(skb); /* BUILD HEADER */ *prevhdr = NEXTHDR_FRAGMENT; tmp_hdr = kmemdup(skb_network_header(skb), hlen, GFP_ATOMIC); if (!tmp_hdr) { IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGFAILS); return -ENOMEM; } __skb_pull(skb, hlen); fh = (struct frag_hdr *)__skb_push(skb, sizeof(struct frag_hdr)); __skb_push(skb, hlen); skb_reset_network_header(skb); memcpy(skb_network_header(skb), tmp_hdr, hlen); ipv6_select_ident(net, fh, rt); fh->nexthdr = nexthdr; fh->reserved = 0; fh->frag_off = htons(IP6_MF); frag_id = fh->identification; first_len = skb_pagelen(skb); skb->data_len = first_len - skb_headlen(skb); skb->len = first_len; ipv6_hdr(skb)->payload_len = htons(first_len - sizeof(struct ipv6hdr)); dst_hold(&rt->dst); for (;;) { /* Prepare header of the next frame, * before previous one went down. */ if (frag) { frag->ip_summed = CHECKSUM_NONE; skb_reset_transport_header(frag); fh = (struct frag_hdr *)__skb_push(frag, sizeof(struct frag_hdr)); __skb_push(frag, hlen); skb_reset_network_header(frag); memcpy(skb_network_header(frag), tmp_hdr, hlen); offset += skb->len - hlen - sizeof(struct frag_hdr); fh->nexthdr = nexthdr; fh->reserved = 0; fh->frag_off = htons(offset); if (frag->next) fh->frag_off |= htons(IP6_MF); fh->identification = frag_id; ipv6_hdr(frag)->payload_len = htons(frag->len - sizeof(struct ipv6hdr)); ip6_copy_metadata(frag, skb); } err = output(sk, skb); if (!err) IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), IPSTATS_MIB_FRAGCREATES); if (err || !frag) break; skb = frag; frag = skb->next; skb->next = NULL; } kfree(tmp_hdr); if (err == 0) { IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), IPSTATS_MIB_FRAGOKS); ip6_rt_put(rt); return 0; } kfree_skb_list(frag); IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), IPSTATS_MIB_FRAGFAILS); ip6_rt_put(rt); return err; slow_path_clean: skb_walk_frags(skb, frag2) { if (frag2 == frag) break; frag2->sk = NULL; frag2->destructor = NULL; skb->truesize += frag2->truesize; } } slow_path: if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb)) goto fail; left = skb->len - hlen; /* Space per frame */ ptr = hlen; /* Where to start from */ /* * Fragment the datagram. */ *prevhdr = NEXTHDR_FRAGMENT; hroom = LL_RESERVED_SPACE(rt->dst.dev); troom = rt->dst.dev->needed_tailroom; /* * Keep copying data until we run out. */ while (left > 0) { len = left; /* IF: it doesn't fit, use 'mtu' - the data space left */ if (len > mtu) len = mtu; /* IF: we are not sending up to and including the packet end then align the next start on an eight byte boundary */ if (len < left) { len &= ~7; } /* Allocate buffer */ frag = alloc_skb(len + hlen + sizeof(struct frag_hdr) + hroom + troom, GFP_ATOMIC); if (!frag) { IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGFAILS); err = -ENOMEM; goto fail; } /* * Set up data on packet */ ip6_copy_metadata(frag, skb); skb_reserve(frag, hroom); skb_put(frag, len + hlen + sizeof(struct frag_hdr)); skb_reset_network_header(frag); fh = (struct frag_hdr *)(skb_network_header(frag) + hlen); frag->transport_header = (frag->network_header + hlen + sizeof(struct frag_hdr)); /* * Charge the memory for the fragment to any owner * it might possess */ if (skb->sk) skb_set_owner_w(frag, skb->sk); /* * Copy the packet header into the new buffer. */ skb_copy_from_linear_data(skb, skb_network_header(frag), hlen); /* * Build fragment header. */ fh->nexthdr = nexthdr; fh->reserved = 0; if (!frag_id) { ipv6_select_ident(net, fh, rt); frag_id = fh->identification; } else fh->identification = frag_id; /* * Copy a block of the IP datagram. */ BUG_ON(skb_copy_bits(skb, ptr, skb_transport_header(frag), len)); left -= len; fh->frag_off = htons(offset); if (left > 0) fh->frag_off |= htons(IP6_MF); ipv6_hdr(frag)->payload_len = htons(frag->len - sizeof(struct ipv6hdr)); ptr += len; offset += len; /* * Put this fragment into the sending queue. */ err = output(sk, frag); if (err) goto fail; IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGCREATES); } IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGOKS); consume_skb(skb); return err; fail: IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGFAILS); kfree_skb(skb); return err; } static inline int ip6_rt_check(const struct rt6key *rt_key, const struct in6_addr *fl_addr, const struct in6_addr *addr_cache) { return (rt_key->plen != 128 || !ipv6_addr_equal(fl_addr, &rt_key->addr)) && (!addr_cache || !ipv6_addr_equal(fl_addr, addr_cache)); } static struct dst_entry *ip6_sk_dst_check(struct sock *sk, struct dst_entry *dst, const struct flowi6 *fl6) { struct ipv6_pinfo *np = inet6_sk(sk); struct rt6_info *rt; if (!dst) goto out; if (dst->ops->family != AF_INET6) { dst_release(dst); return NULL; } rt = (struct rt6_info *)dst; /* Yes, checking route validity in not connected * case is not very simple. Take into account, * that we do not support routing by source, TOS, * and MSG_DONTROUTE --ANK (980726) * * 1. ip6_rt_check(): If route was host route, * check that cached destination is current. * If it is network route, we still may * check its validity using saved pointer * to the last used address: daddr_cache. * We do not want to save whole address now, * (because main consumer of this service * is tcp, which has not this problem), * so that the last trick works only on connected * sockets. * 2. oif also should be the same. */ if (ip6_rt_check(&rt->rt6i_dst, &fl6->daddr, np->daddr_cache) || #ifdef CONFIG_IPV6_SUBTREES ip6_rt_check(&rt->rt6i_src, &fl6->saddr, np->saddr_cache) || #endif (fl6->flowi6_oif && fl6->flowi6_oif != dst->dev->ifindex)) { dst_release(dst); dst = NULL; } out: return dst; } static int ip6_dst_lookup_tail(struct sock *sk, struct dst_entry **dst, struct flowi6 *fl6) { struct net *net = sock_net(sk); #ifdef CONFIG_IPV6_OPTIMISTIC_DAD struct neighbour *n; struct rt6_info *rt; #endif int err; if (!*dst) *dst = ip6_route_output(net, sk, fl6); err = (*dst)->error; if (err) goto out_err_release; if (ipv6_addr_any(&fl6->saddr)) { struct rt6_info *rt = (struct rt6_info *) *dst; err = ip6_route_get_saddr(net, rt, &fl6->daddr, sk ? inet6_sk(sk)->srcprefs : 0, &fl6->saddr); if (err) goto out_err_release; } #ifdef CONFIG_IPV6_OPTIMISTIC_DAD /* * Here if the dst entry we've looked up * has a neighbour entry that is in the INCOMPLETE * state and the src address from the flow is * marked as OPTIMISTIC, we release the found * dst entry and replace it instead with the * dst entry of the nexthop router */ rt = (struct rt6_info *) *dst; rcu_read_lock_bh(); n = __ipv6_neigh_lookup_noref(rt->dst.dev, rt6_nexthop(rt)); err = n && !(n->nud_state & NUD_VALID) ? -EINVAL : 0; rcu_read_unlock_bh(); if (err) { struct inet6_ifaddr *ifp; struct flowi6 fl_gw6; int redirect; ifp = ipv6_get_ifaddr(net, &fl6->saddr, (*dst)->dev, 1); redirect = (ifp && ifp->flags & IFA_F_OPTIMISTIC); if (ifp) in6_ifa_put(ifp); if (redirect) { /* * We need to get the dst entry for the * default router instead */ dst_release(*dst); memcpy(&fl_gw6, fl6, sizeof(struct flowi6)); memset(&fl_gw6.daddr, 0, sizeof(struct in6_addr)); *dst = ip6_route_output(net, sk, &fl_gw6); err = (*dst)->error; if (err) goto out_err_release; } } #endif return 0; out_err_release: if (err == -ENETUNREACH) IP6_INC_STATS(net, NULL, IPSTATS_MIB_OUTNOROUTES); dst_release(*dst); *dst = NULL; return err; } /** * ip6_dst_lookup - perform route lookup on flow * @sk: socket which provides route info * @dst: pointer to dst_entry * for result * @fl6: flow to lookup * * This function performs a route lookup on the given flow. * * It returns zero on success, or a standard errno code on error. */ int ip6_dst_lookup(struct sock *sk, struct dst_entry **dst, struct flowi6 *fl6) { *dst = NULL; return ip6_dst_lookup_tail(sk, dst, fl6); } EXPORT_SYMBOL_GPL(ip6_dst_lookup); /** * ip6_dst_lookup_flow - perform route lookup on flow with ipsec * @sk: socket which provides route info * @fl6: flow to lookup * @final_dst: final destination address for ipsec lookup * * This function performs a route lookup on the given flow. * * It returns a valid dst pointer on success, or a pointer encoded * error code. */ struct dst_entry *ip6_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, const struct in6_addr *final_dst) { struct dst_entry *dst = NULL; int err; err = ip6_dst_lookup_tail(sk, &dst, fl6); if (err) return ERR_PTR(err); if (final_dst) fl6->daddr = *final_dst; return xfrm_lookup_route(sock_net(sk), dst, flowi6_to_flowi(fl6), sk, 0); } EXPORT_SYMBOL_GPL(ip6_dst_lookup_flow); /** * ip6_sk_dst_lookup_flow - perform socket cached route lookup on flow * @sk: socket which provides the dst cache and route info * @fl6: flow to lookup * @final_dst: final destination address for ipsec lookup * * This function performs a route lookup on the given flow with the * possibility of using the cached route in the socket if it is valid. * It will take the socket dst lock when operating on the dst cache. * As a result, this function can only be used in process context. * * It returns a valid dst pointer on success, or a pointer encoded * error code. */ struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, const struct in6_addr *final_dst) { struct dst_entry *dst = sk_dst_check(sk, inet6_sk(sk)->dst_cookie); int err; dst = ip6_sk_dst_check(sk, dst, fl6); err = ip6_dst_lookup_tail(sk, &dst, fl6); if (err) return ERR_PTR(err); if (final_dst) fl6->daddr = *final_dst; return xfrm_lookup_route(sock_net(sk), dst, flowi6_to_flowi(fl6), sk, 0); } EXPORT_SYMBOL_GPL(ip6_sk_dst_lookup_flow); static inline int ip6_ufo_append_data(struct sock *sk, struct sk_buff_head *queue, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int hh_len, int fragheaderlen, int transhdrlen, int mtu, unsigned int flags, struct rt6_info *rt) { struct sk_buff *skb; struct frag_hdr fhdr; int err; /* There is support for UDP large send offload by network * device, so create one single skb packet containing complete * udp datagram */ skb = skb_peek_tail(queue); if (!skb) { skb = sock_alloc_send_skb(sk, hh_len + fragheaderlen + transhdrlen + 20, (flags & MSG_DONTWAIT), &err); if (!skb) return err; /* reserve space for Hardware header */ skb_reserve(skb, hh_len); /* create space for UDP/IP header */ skb_put(skb, fragheaderlen + transhdrlen); /* initialize network header pointer */ skb_reset_network_header(skb); /* initialize protocol header pointer */ skb->transport_header = skb->network_header + fragheaderlen; skb->protocol = htons(ETH_P_IPV6); skb->csum = 0; __skb_queue_tail(queue, skb); } else if (skb_is_gso(skb)) { goto append; } skb->ip_summed = CHECKSUM_PARTIAL; /* Specify the length of each IPv6 datagram fragment. * It has to be a multiple of 8. */ skb_shinfo(skb)->gso_size = (mtu - fragheaderlen - sizeof(struct frag_hdr)) & ~7; skb_shinfo(skb)->gso_type = SKB_GSO_UDP; ipv6_select_ident(sock_net(sk), &fhdr, rt); skb_shinfo(skb)->ip6_frag_id = fhdr.identification; append: return skb_append_datato_frags(sk, skb, getfrag, from, (length - transhdrlen)); } static inline struct ipv6_opt_hdr *ip6_opt_dup(struct ipv6_opt_hdr *src, gfp_t gfp) { return src ? kmemdup(src, (src->hdrlen + 1) * 8, gfp) : NULL; } static inline struct ipv6_rt_hdr *ip6_rthdr_dup(struct ipv6_rt_hdr *src, gfp_t gfp) { return src ? kmemdup(src, (src->hdrlen + 1) * 8, gfp) : NULL; } static void ip6_append_data_mtu(unsigned int *mtu, int *maxfraglen, unsigned int fragheaderlen, struct sk_buff *skb, struct rt6_info *rt, unsigned int orig_mtu) { if (!(rt->dst.flags & DST_XFRM_TUNNEL)) { if (!skb) { /* first fragment, reserve header_len */ *mtu = orig_mtu - rt->dst.header_len; } else { /* * this fragment is not first, the headers * space is regarded as data space. */ *mtu = orig_mtu; } *maxfraglen = ((*mtu - fragheaderlen) & ~7) + fragheaderlen - sizeof(struct frag_hdr); } } static int ip6_setup_cork(struct sock *sk, struct inet_cork_full *cork, struct inet6_cork *v6_cork, int hlimit, int tclass, struct ipv6_txoptions *opt, struct rt6_info *rt, struct flowi6 *fl6) { struct ipv6_pinfo *np = inet6_sk(sk); unsigned int mtu; /* * setup for corking */ if (opt) { if (WARN_ON(v6_cork->opt)) return -EINVAL; v6_cork->opt = kzalloc(opt->tot_len, sk->sk_allocation); if (unlikely(!v6_cork->opt)) return -ENOBUFS; v6_cork->opt->tot_len = opt->tot_len; v6_cork->opt->opt_flen = opt->opt_flen; v6_cork->opt->opt_nflen = opt->opt_nflen; v6_cork->opt->dst0opt = ip6_opt_dup(opt->dst0opt, sk->sk_allocation); if (opt->dst0opt && !v6_cork->opt->dst0opt) return -ENOBUFS; v6_cork->opt->dst1opt = ip6_opt_dup(opt->dst1opt, sk->sk_allocation); if (opt->dst1opt && !v6_cork->opt->dst1opt) return -ENOBUFS; v6_cork->opt->hopopt = ip6_opt_dup(opt->hopopt, sk->sk_allocation); if (opt->hopopt && !v6_cork->opt->hopopt) return -ENOBUFS; v6_cork->opt->srcrt = ip6_rthdr_dup(opt->srcrt, sk->sk_allocation); if (opt->srcrt && !v6_cork->opt->srcrt) return -ENOBUFS; /* need source address above miyazawa*/ } dst_hold(&rt->dst); cork->base.dst = &rt->dst; cork->fl.u.ip6 = *fl6; v6_cork->hop_limit = hlimit; v6_cork->tclass = tclass; if (rt->dst.flags & DST_XFRM_TUNNEL) mtu = np->pmtudisc >= IPV6_PMTUDISC_PROBE ? rt->dst.dev->mtu : dst_mtu(&rt->dst); else mtu = np->pmtudisc >= IPV6_PMTUDISC_PROBE ? rt->dst.dev->mtu : dst_mtu(rt->dst.path); if (np->frag_size < mtu) { if (np->frag_size) mtu = np->frag_size; } cork->base.fragsize = mtu; if (dst_allfrag(rt->dst.path)) cork->base.flags |= IPCORK_ALLFRAG; cork->base.length = 0; return 0; } static int __ip6_append_data(struct sock *sk, struct flowi6 *fl6, struct sk_buff_head *queue, struct inet_cork *cork, struct inet6_cork *v6_cork, struct page_frag *pfrag, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, unsigned int flags, int dontfrag) { struct sk_buff *skb, *skb_prev = NULL; unsigned int maxfraglen, fragheaderlen, mtu, orig_mtu; int exthdrlen = 0; int dst_exthdrlen = 0; int hh_len; int copy; int err; int offset = 0; __u8 tx_flags = 0; u32 tskey = 0; struct rt6_info *rt = (struct rt6_info *)cork->dst; struct ipv6_txoptions *opt = v6_cork->opt; int csummode = CHECKSUM_NONE; skb = skb_peek_tail(queue); if (!skb) { exthdrlen = opt ? opt->opt_flen : 0; dst_exthdrlen = rt->dst.header_len - rt->rt6i_nfheader_len; } mtu = cork->fragsize; orig_mtu = mtu; hh_len = LL_RESERVED_SPACE(rt->dst.dev); fragheaderlen = sizeof(struct ipv6hdr) + rt->rt6i_nfheader_len + (opt ? opt->opt_nflen : 0); maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen - sizeof(struct frag_hdr); if (mtu <= sizeof(struct ipv6hdr) + IPV6_MAXPLEN) { unsigned int maxnonfragsize, headersize; headersize = sizeof(struct ipv6hdr) + (opt ? opt->opt_flen + opt->opt_nflen : 0) + (dst_allfrag(&rt->dst) ? sizeof(struct frag_hdr) : 0) + rt->rt6i_nfheader_len; if (ip6_sk_ignore_df(sk)) maxnonfragsize = sizeof(struct ipv6hdr) + IPV6_MAXPLEN; else maxnonfragsize = mtu; /* dontfrag active */ if ((cork->length + length > mtu - headersize) && dontfrag && (sk->sk_protocol == IPPROTO_UDP || sk->sk_protocol == IPPROTO_RAW)) { ipv6_local_rxpmtu(sk, fl6, mtu - headersize + sizeof(struct ipv6hdr)); goto emsgsize; } if (cork->length + length > maxnonfragsize - headersize) { emsgsize: ipv6_local_error(sk, EMSGSIZE, fl6, mtu - headersize + sizeof(struct ipv6hdr)); return -EMSGSIZE; } } if (sk->sk_type == SOCK_DGRAM || sk->sk_type == SOCK_RAW) { sock_tx_timestamp(sk, &tx_flags); if (tx_flags & SKBTX_ANY_SW_TSTAMP && sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) tskey = sk->sk_tskey++; } /* If this is the first and only packet and device * supports checksum offloading, let's use it. */ if (!skb && sk->sk_protocol == IPPROTO_UDP && length + fragheaderlen < mtu && rt->dst.dev->features & NETIF_F_V6_CSUM && !exthdrlen) csummode = CHECKSUM_PARTIAL; /* * Let's try using as much space as possible. * Use MTU if total length of the message fits into the MTU. * Otherwise, we need to reserve fragment header and * fragment alignment (= 8-15 octects, in total). * * Note that we may need to "move" the data from the tail of * of the buffer to the new fragment when we split * the message. * * FIXME: It may be fragmented into multiple chunks * at once if non-fragmentable extension headers * are too large. * --yoshfuji */ cork->length += length; if (((length > mtu) || (skb && skb_is_gso(skb))) && (sk->sk_protocol == IPPROTO_UDP) && (rt->dst.dev->features & NETIF_F_UFO) && (sk->sk_type == SOCK_DGRAM)) { err = ip6_ufo_append_data(sk, queue, getfrag, from, length, hh_len, fragheaderlen, transhdrlen, mtu, flags, rt); if (err) goto error; return 0; } if (!skb) goto alloc_new_skb; while (length > 0) { /* Check if the remaining data fits into current packet. */ copy = (cork->length <= mtu && !(cork->flags & IPCORK_ALLFRAG) ? mtu : maxfraglen) - skb->len; if (copy < length) copy = maxfraglen - skb->len; if (copy <= 0) { char *data; unsigned int datalen; unsigned int fraglen; unsigned int fraggap; unsigned int alloclen; alloc_new_skb: /* There's no room in the current skb */ if (skb) fraggap = skb->len - maxfraglen; else fraggap = 0; /* update mtu and maxfraglen if necessary */ if (!skb || !skb_prev) ip6_append_data_mtu(&mtu, &maxfraglen, fragheaderlen, skb, rt, orig_mtu); skb_prev = skb; /* * If remaining data exceeds the mtu, * we know we need more fragment(s). */ datalen = length + fraggap; if (datalen > (cork->length <= mtu && !(cork->flags & IPCORK_ALLFRAG) ? mtu : maxfraglen) - fragheaderlen) datalen = maxfraglen - fragheaderlen - rt->dst.trailer_len; if ((flags & MSG_MORE) && !(rt->dst.dev->features&NETIF_F_SG)) alloclen = mtu; else alloclen = datalen + fragheaderlen; alloclen += dst_exthdrlen; if (datalen != length + fraggap) { /* * this is not the last fragment, the trailer * space is regarded as data space. */ datalen += rt->dst.trailer_len; } alloclen += rt->dst.trailer_len; fraglen = datalen + fragheaderlen; /* * We just reserve space for fragment header. * Note: this may be overallocation if the message * (without MSG_MORE) fits into the MTU. */ alloclen += sizeof(struct frag_hdr); if (transhdrlen) { skb = sock_alloc_send_skb(sk, alloclen + hh_len, (flags & MSG_DONTWAIT), &err); } else { skb = NULL; if (atomic_read(&sk->sk_wmem_alloc) <= 2 * sk->sk_sndbuf) skb = sock_wmalloc(sk, alloclen + hh_len, 1, sk->sk_allocation); if (unlikely(!skb)) err = -ENOBUFS; } if (!skb) goto error; /* * Fill in the control structures */ skb->protocol = htons(ETH_P_IPV6); skb->ip_summed = csummode; skb->csum = 0; /* reserve for fragmentation and ipsec header */ skb_reserve(skb, hh_len + sizeof(struct frag_hdr) + dst_exthdrlen); /* Only the initial fragment is time stamped */ skb_shinfo(skb)->tx_flags = tx_flags; tx_flags = 0; skb_shinfo(skb)->tskey = tskey; tskey = 0; /* * Find where to start putting bytes */ data = skb_put(skb, fraglen); skb_set_network_header(skb, exthdrlen); data += fragheaderlen; skb->transport_header = (skb->network_header + fragheaderlen); if (fraggap) { skb->csum = skb_copy_and_csum_bits( skb_prev, maxfraglen, data + transhdrlen, fraggap, 0); skb_prev->csum = csum_sub(skb_prev->csum, skb->csum); data += fraggap; pskb_trim_unique(skb_prev, maxfraglen); } copy = datalen - transhdrlen - fraggap; if (copy < 0) { err = -EINVAL; kfree_skb(skb); goto error; } else if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { err = -EFAULT; kfree_skb(skb); goto error; } offset += copy; length -= datalen - fraggap; transhdrlen = 0; exthdrlen = 0; dst_exthdrlen = 0; /* * Put the packet on the pending queue */ __skb_queue_tail(queue, skb); continue; } if (copy > length) copy = length; if (!(rt->dst.dev->features&NETIF_F_SG)) { unsigned int off; off = skb->len; if (getfrag(from, skb_put(skb, copy), offset, copy, off, skb) < 0) { __skb_trim(skb, off); err = -EFAULT; goto error; } } else { int i = skb_shinfo(skb)->nr_frags; err = -ENOMEM; if (!sk_page_frag_refill(sk, pfrag)) goto error; if (!skb_can_coalesce(skb, i, pfrag->page, pfrag->offset)) { err = -EMSGSIZE; if (i == MAX_SKB_FRAGS) goto error; __skb_fill_page_desc(skb, i, pfrag->page, pfrag->offset, 0); skb_shinfo(skb)->nr_frags = ++i; get_page(pfrag->page); } copy = min_t(int, copy, pfrag->size - pfrag->offset); if (getfrag(from, page_address(pfrag->page) + pfrag->offset, offset, copy, skb->len, skb) < 0) goto error_efault; pfrag->offset += copy; skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); skb->len += copy; skb->data_len += copy; skb->truesize += copy; atomic_add(copy, &sk->sk_wmem_alloc); } offset += copy; length -= copy; } return 0; error_efault: err = -EFAULT; error: cork->length -= length; IP6_INC_STATS(sock_net(sk), rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS); return err; } int ip6_append_data(struct sock *sk, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, int hlimit, int tclass, struct ipv6_txoptions *opt, struct flowi6 *fl6, struct rt6_info *rt, unsigned int flags, int dontfrag) { struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); int exthdrlen; int err; if (flags&MSG_PROBE) return 0; if (skb_queue_empty(&sk->sk_write_queue)) { /* * setup for corking */ err = ip6_setup_cork(sk, &inet->cork, &np->cork, hlimit, tclass, opt, rt, fl6); if (err) return err; exthdrlen = (opt ? opt->opt_flen : 0); length += exthdrlen; transhdrlen += exthdrlen; } else { fl6 = &inet->cork.fl.u.ip6; transhdrlen = 0; } return __ip6_append_data(sk, fl6, &sk->sk_write_queue, &inet->cork.base, &np->cork, sk_page_frag(sk), getfrag, from, length, transhdrlen, flags, dontfrag); } EXPORT_SYMBOL_GPL(ip6_append_data); static void ip6_cork_release(struct inet_cork_full *cork, struct inet6_cork *v6_cork) { if (v6_cork->opt) { kfree(v6_cork->opt->dst0opt); kfree(v6_cork->opt->dst1opt); kfree(v6_cork->opt->hopopt); kfree(v6_cork->opt->srcrt); kfree(v6_cork->opt); v6_cork->opt = NULL; } if (cork->base.dst) { dst_release(cork->base.dst); cork->base.dst = NULL; cork->base.flags &= ~IPCORK_ALLFRAG; } memset(&cork->fl, 0, sizeof(cork->fl)); } struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue, struct inet_cork_full *cork, struct inet6_cork *v6_cork) { struct sk_buff *skb, *tmp_skb; struct sk_buff **tail_skb; struct in6_addr final_dst_buf, *final_dst = &final_dst_buf; struct ipv6_pinfo *np = inet6_sk(sk); struct net *net = sock_net(sk); struct ipv6hdr *hdr; struct ipv6_txoptions *opt = v6_cork->opt; struct rt6_info *rt = (struct rt6_info *)cork->base.dst; struct flowi6 *fl6 = &cork->fl.u.ip6; unsigned char proto = fl6->flowi6_proto; skb = __skb_dequeue(queue); if (!skb) goto out; tail_skb = &(skb_shinfo(skb)->frag_list); /* move skb->data to ip header from ext header */ if (skb->data < skb_network_header(skb)) __skb_pull(skb, skb_network_offset(skb)); while ((tmp_skb = __skb_dequeue(queue)) != NULL) { __skb_pull(tmp_skb, skb_network_header_len(skb)); *tail_skb = tmp_skb; tail_skb = &(tmp_skb->next); skb->len += tmp_skb->len; skb->data_len += tmp_skb->len; skb->truesize += tmp_skb->truesize; tmp_skb->destructor = NULL; tmp_skb->sk = NULL; } /* Allow local fragmentation. */ skb->ignore_df = ip6_sk_ignore_df(sk); *final_dst = fl6->daddr; __skb_pull(skb, skb_network_header_len(skb)); if (opt && opt->opt_flen) ipv6_push_frag_opts(skb, opt, &proto); if (opt && opt->opt_nflen) ipv6_push_nfrag_opts(skb, opt, &proto, &final_dst); skb_push(skb, sizeof(struct ipv6hdr)); skb_reset_network_header(skb); hdr = ipv6_hdr(skb); ip6_flow_hdr(hdr, v6_cork->tclass, ip6_make_flowlabel(net, skb, fl6->flowlabel, np->autoflowlabel)); hdr->hop_limit = v6_cork->hop_limit; hdr->nexthdr = proto; hdr->saddr = fl6->saddr; hdr->daddr = *final_dst; skb->priority = sk->sk_priority; skb->mark = sk->sk_mark; skb_dst_set(skb, dst_clone(&rt->dst)); IP6_UPD_PO_STATS(net, rt->rt6i_idev, IPSTATS_MIB_OUT, skb->len); if (proto == IPPROTO_ICMPV6) { struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb)); ICMP6MSGOUT_INC_STATS(net, idev, icmp6_hdr(skb)->icmp6_type); ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTMSGS); } ip6_cork_release(cork, v6_cork); out: return skb; } int ip6_send_skb(struct sk_buff *skb) { struct net *net = sock_net(skb->sk); struct rt6_info *rt = (struct rt6_info *)skb_dst(skb); int err; err = ip6_local_out(skb); if (err) { if (err > 0) err = net_xmit_errno(err); if (err) IP6_INC_STATS(net, rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS); } return err; } int ip6_push_pending_frames(struct sock *sk) { struct sk_buff *skb; skb = ip6_finish_skb(sk); if (!skb) return 0; return ip6_send_skb(skb); } EXPORT_SYMBOL_GPL(ip6_push_pending_frames); static void __ip6_flush_pending_frames(struct sock *sk, struct sk_buff_head *queue, struct inet_cork_full *cork, struct inet6_cork *v6_cork) { struct sk_buff *skb; while ((skb = __skb_dequeue_tail(queue)) != NULL) { if (skb_dst(skb)) IP6_INC_STATS(sock_net(sk), ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_OUTDISCARDS); kfree_skb(skb); } ip6_cork_release(cork, v6_cork); } void ip6_flush_pending_frames(struct sock *sk) { __ip6_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork, &inet6_sk(sk)->cork); } EXPORT_SYMBOL_GPL(ip6_flush_pending_frames); struct sk_buff *ip6_make_skb(struct sock *sk, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, int hlimit, int tclass, struct ipv6_txoptions *opt, struct flowi6 *fl6, struct rt6_info *rt, unsigned int flags, int dontfrag) { struct inet_cork_full cork; struct inet6_cork v6_cork; struct sk_buff_head queue; int exthdrlen = (opt ? opt->opt_flen : 0); int err; if (flags & MSG_PROBE) return NULL; __skb_queue_head_init(&queue); cork.base.flags = 0; cork.base.addr = 0; cork.base.opt = NULL; v6_cork.opt = NULL; err = ip6_setup_cork(sk, &cork, &v6_cork, hlimit, tclass, opt, rt, fl6); if (err) return ERR_PTR(err); if (dontfrag < 0) dontfrag = inet6_sk(sk)->dontfrag; err = __ip6_append_data(sk, fl6, &queue, &cork.base, &v6_cork, &current->task_frag, getfrag, from, length + exthdrlen, transhdrlen + exthdrlen, flags, dontfrag); if (err) { __ip6_flush_pending_frames(sk, &queue, &cork, &v6_cork); return ERR_PTR(err); } return __ip6_make_skb(sk, &queue, &cork, &v6_cork); }