summaryrefslogblamecommitdiffstats
path: root/kernel/itimer.c
blob: ab982747d9bd8121c19b3327b96c7760adb7577e (plain) (tree)
1
2
3
4
5
6
7
8
9








                                                                



                               
                          


                        








                                                                  
 
                                                   
 











                                                               




                                                    



                                  
                                                      


                                                                               
                                                        





































































                                                                           
 


                                                           
                                                      
 
                                   
                                                                      
 
                                                               
 
                                 

 
  




                                                                               


                                                                              

                              

                                                   

                                          
           


                                                
 

                         

                                                      
                                                 
                             


                                                                              
                 




                                                                
                                                            


                                                                     
                                                                        


                                                           
                                                        






















































                                                                            




































                                                                          

















                                                                              
                               

                 
/*
 * linux/kernel/itimer.c
 *
 * Copyright (C) 1992 Darren Senn
 */

/* These are all the functions necessary to implement itimers */

#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/syscalls.h>
#include <linux/time.h>
#include <linux/posix-timers.h>
#include <linux/hrtimer.h>

#include <asm/uaccess.h>

/**
 * itimer_get_remtime - get remaining time for the timer
 *
 * @timer: the timer to read
 *
 * Returns the delta between the expiry time and now, which can be
 * less than zero or 1usec for an pending expired timer
 */
static struct timeval itimer_get_remtime(struct hrtimer *timer)
{
	ktime_t rem = hrtimer_get_remaining(timer);

	/*
	 * Racy but safe: if the itimer expires after the above
	 * hrtimer_get_remtime() call but before this condition
	 * then we return 0 - which is correct.
	 */
	if (hrtimer_active(timer)) {
		if (rem.tv64 <= 0)
			rem.tv64 = NSEC_PER_USEC;
	} else
		rem.tv64 = 0;

	return ktime_to_timeval(rem);
}

int do_getitimer(int which, struct itimerval *value)
{
	struct task_struct *tsk = current;
	cputime_t cinterval, cval;

	switch (which) {
	case ITIMER_REAL:
		spin_lock_irq(&tsk->sighand->siglock);
		value->it_value = itimer_get_remtime(&tsk->signal->real_timer);
		value->it_interval =
			ktime_to_timeval(tsk->signal->it_real_incr);
		spin_unlock_irq(&tsk->sighand->siglock);
		break;
	case ITIMER_VIRTUAL:
		read_lock(&tasklist_lock);
		spin_lock_irq(&tsk->sighand->siglock);
		cval = tsk->signal->it_virt_expires;
		cinterval = tsk->signal->it_virt_incr;
		if (!cputime_eq(cval, cputime_zero)) {
			struct task_struct *t = tsk;
			cputime_t utime = tsk->signal->utime;
			do {
				utime = cputime_add(utime, t->utime);
				t = next_thread(t);
			} while (t != tsk);
			if (cputime_le(cval, utime)) { /* about to fire */
				cval = jiffies_to_cputime(1);
			} else {
				cval = cputime_sub(cval, utime);
			}
		}
		spin_unlock_irq(&tsk->sighand->siglock);
		read_unlock(&tasklist_lock);
		cputime_to_timeval(cval, &value->it_value);
		cputime_to_timeval(cinterval, &value->it_interval);
		break;
	case ITIMER_PROF:
		read_lock(&tasklist_lock);
		spin_lock_irq(&tsk->sighand->siglock);
		cval = tsk->signal->it_prof_expires;
		cinterval = tsk->signal->it_prof_incr;
		if (!cputime_eq(cval, cputime_zero)) {
			struct task_struct *t = tsk;
			cputime_t ptime = cputime_add(tsk->signal->utime,
						      tsk->signal->stime);
			do {
				ptime = cputime_add(ptime,
						    cputime_add(t->utime,
								t->stime));
				t = next_thread(t);
			} while (t != tsk);
			if (cputime_le(cval, ptime)) { /* about to fire */
				cval = jiffies_to_cputime(1);
			} else {
				cval = cputime_sub(cval, ptime);
			}
		}
		spin_unlock_irq(&tsk->sighand->siglock);
		read_unlock(&tasklist_lock);
		cputime_to_timeval(cval, &value->it_value);
		cputime_to_timeval(cinterval, &value->it_interval);
		break;
	default:
		return(-EINVAL);
	}
	return 0;
}

asmlinkage long sys_getitimer(int which, struct itimerval __user *value)
{
	int error = -EFAULT;
	struct itimerval get_buffer;

	if (value) {
		error = do_getitimer(which, &get_buffer);
		if (!error &&
		    copy_to_user(value, &get_buffer, sizeof(get_buffer)))
			error = -EFAULT;
	}
	return error;
}


/*
 * The timer is automagically restarted, when interval != 0
 */
enum hrtimer_restart it_real_fn(struct hrtimer *timer)
{
	struct signal_struct *sig =
		container_of(timer, struct signal_struct, real_timer);

	kill_pid_info(SIGALRM, SEND_SIG_PRIV, sig->leader_pid);

	return HRTIMER_NORESTART;
}

/*
 * Returns true if the timeval is in canonical form
 */
#define timeval_valid(t) \
	(((t)->tv_sec >= 0) && (((unsigned long) (t)->tv_usec) < USEC_PER_SEC))

int do_setitimer(int which, struct itimerval *value, struct itimerval *ovalue)
{
	struct task_struct *tsk = current;
	struct hrtimer *timer;
	ktime_t expires;
	cputime_t cval, cinterval, nval, ninterval;

	/*
	 * Validate the timevals in value.
	 */
	if (!timeval_valid(&value->it_value) ||
	    !timeval_valid(&value->it_interval))
		return -EINVAL;

	switch (which) {
	case ITIMER_REAL:
again:
		spin_lock_irq(&tsk->sighand->siglock);
		timer = &tsk->signal->real_timer;
		if (ovalue) {
			ovalue->it_value = itimer_get_remtime(timer);
			ovalue->it_interval
				= ktime_to_timeval(tsk->signal->it_real_incr);
		}
		/* We are sharing ->siglock with it_real_fn() */
		if (hrtimer_try_to_cancel(timer) < 0) {
			spin_unlock_irq(&tsk->sighand->siglock);
			goto again;
		}
		expires = timeval_to_ktime(value->it_value);
		if (expires.tv64 != 0) {
			tsk->signal->it_real_incr =
				timeval_to_ktime(value->it_interval);
			hrtimer_start(timer, expires, HRTIMER_MODE_REL);
		} else
			tsk->signal->it_real_incr.tv64 = 0;

		spin_unlock_irq(&tsk->sighand->siglock);
		break;
	case ITIMER_VIRTUAL:
		nval = timeval_to_cputime(&value->it_value);
		ninterval = timeval_to_cputime(&value->it_interval);
		read_lock(&tasklist_lock);
		spin_lock_irq(&tsk->sighand->siglock);
		cval = tsk->signal->it_virt_expires;
		cinterval = tsk->signal->it_virt_incr;
		if (!cputime_eq(cval, cputime_zero) ||
		    !cputime_eq(nval, cputime_zero)) {
			if (cputime_gt(nval, cputime_zero))
				nval = cputime_add(nval,
						   jiffies_to_cputime(1));
			set_process_cpu_timer(tsk, CPUCLOCK_VIRT,
					      &nval, &cval);
		}
		tsk->signal->it_virt_expires = nval;
		tsk->signal->it_virt_incr = ninterval;
		spin_unlock_irq(&tsk->sighand->siglock);
		read_unlock(&tasklist_lock);
		if (ovalue) {
			cputime_to_timeval(cval, &ovalue->it_value);
			cputime_to_timeval(cinterval, &ovalue->it_interval);
		}
		break;
	case ITIMER_PROF:
		nval = timeval_to_cputime(&value->it_value);
		ninterval = timeval_to_cputime(&value->it_interval);
		read_lock(&tasklist_lock);
		spin_lock_irq(&tsk->sighand->siglock);
		cval = tsk->signal->it_prof_expires;
		cinterval = tsk->signal->it_prof_incr;
		if (!cputime_eq(cval, cputime_zero) ||
		    !cputime_eq(nval, cputime_zero)) {
			if (cputime_gt(nval, cputime_zero))
				nval = cputime_add(nval,
						   jiffies_to_cputime(1));
			set_process_cpu_timer(tsk, CPUCLOCK_PROF,
					      &nval, &cval);
		}
		tsk->signal->it_prof_expires = nval;
		tsk->signal->it_prof_incr = ninterval;
		spin_unlock_irq(&tsk->sighand->siglock);
		read_unlock(&tasklist_lock);
		if (ovalue) {
			cputime_to_timeval(cval, &ovalue->it_value);
			cputime_to_timeval(cinterval, &ovalue->it_interval);
		}
		break;
	default:
		return -EINVAL;
	}
	return 0;
}

/**
 * alarm_setitimer - set alarm in seconds
 *
 * @seconds:	number of seconds until alarm
 *		0 disables the alarm
 *
 * Returns the remaining time in seconds of a pending timer or 0 when
 * the timer is not active.
 *
 * On 32 bit machines the seconds value is limited to (INT_MAX/2) to avoid
 * negative timeval settings which would cause immediate expiry.
 */
unsigned int alarm_setitimer(unsigned int seconds)
{
	struct itimerval it_new, it_old;

#if BITS_PER_LONG < 64
	if (seconds > INT_MAX)
		seconds = INT_MAX;
#endif
	it_new.it_value.tv_sec = seconds;
	it_new.it_value.tv_usec = 0;
	it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;

	do_setitimer(ITIMER_REAL, &it_new, &it_old);

	/*
	 * We can't return 0 if we have an alarm pending ...  And we'd
	 * better return too much than too little anyway
	 */
	if ((!it_old.it_value.tv_sec && it_old.it_value.tv_usec) ||
	      it_old.it_value.tv_usec >= 500000)
		it_old.it_value.tv_sec++;

	return it_old.it_value.tv_sec;
}

asmlinkage long sys_setitimer(int which,
			      struct itimerval __user *value,
			      struct itimerval __user *ovalue)
{
	struct itimerval set_buffer, get_buffer;
	int error;

	if (value) {
		if(copy_from_user(&set_buffer, value, sizeof(set_buffer)))
			return -EFAULT;
	} else
		memset((char *) &set_buffer, 0, sizeof(set_buffer));

	error = do_setitimer(which, &set_buffer, ovalue ? &get_buffer : NULL);
	if (error || !ovalue)
		return error;

	if (copy_to_user(ovalue, &get_buffer, sizeof(get_buffer)))
		return -EFAULT;
	return 0;
}
opt">= curr; curr = rb_prev(curr); } if (!curr) { if (size_aligned) pad_size = iova_get_pad_size(size, limit_pfn); if ((IOVA_START_PFN + size + pad_size) > limit_pfn) { spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); return -ENOMEM; } } /* pfn_lo will point to size aligned address if size_aligned is set */ new->pfn_lo = limit_pfn - (size + pad_size) + 1; new->pfn_hi = new->pfn_lo + size - 1; /* Insert the new_iova into domain rbtree by holding writer lock */ /* Add new node and rebalance tree. */ { struct rb_node **entry, *parent = NULL; /* If we have 'prev', it's a valid place to start the insertion. Otherwise, start from the root. */ if (prev) entry = &prev; else entry = &iovad->rbroot.rb_node; /* Figure out where to put new node */ while (*entry) { struct iova *this = container_of(*entry, struct iova, node); parent = *entry; if (new->pfn_lo < this->pfn_lo) entry = &((*entry)->rb_left); else if (new->pfn_lo > this->pfn_lo) entry = &((*entry)->rb_right); else BUG(); /* this should not happen */ } /* Add new node and rebalance tree. */ rb_link_node(&new->node, parent, entry); rb_insert_color(&new->node, &iovad->rbroot); } __cached_rbnode_insert_update(iovad, saved_pfn, new); spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); return 0; } static void iova_insert_rbtree(struct rb_root *root, struct iova *iova) { struct rb_node **new = &(root->rb_node), *parent = NULL; /* Figure out where to put new node */ while (*new) { struct iova *this = container_of(*new, struct iova, node); parent = *new; if (iova->pfn_lo < this->pfn_lo) new = &((*new)->rb_left); else if (iova->pfn_lo > this->pfn_lo) new = &((*new)->rb_right); else BUG(); /* this should not happen */ } /* Add new node and rebalance tree. */ rb_link_node(&iova->node, parent, new); rb_insert_color(&iova->node, root); } /** * alloc_iova - allocates an iova * @iovad - iova domain in question * @size - size of page frames to allocate * @limit_pfn - max limit address * @size_aligned - set if size_aligned address range is required * This function allocates an iova in the range limit_pfn to IOVA_START_PFN * looking from limit_pfn instead from IOVA_START_PFN. If the size_aligned * flag is set then the allocated address iova->pfn_lo will be naturally * aligned on roundup_power_of_two(size). */ struct iova * alloc_iova(struct iova_domain *iovad, unsigned long size, unsigned long limit_pfn, bool size_aligned) { struct iova *new_iova; int ret; new_iova = alloc_iova_mem(); if (!new_iova) return NULL; /* If size aligned is set then round the size to * to next power of two. */ if (size_aligned) size = __roundup_pow_of_two(size); ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn, new_iova, size_aligned); if (ret) { free_iova_mem(new_iova); return NULL; } return new_iova; } /** * find_iova - find's an iova for a given pfn * @iovad - iova domain in question. * pfn - page frame number * This function finds and returns an iova belonging to the * given doamin which matches the given pfn. */ struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn) { unsigned long flags; struct rb_node *node; /* Take the lock so that no other thread is manipulating the rbtree */ spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); node = iovad->rbroot.rb_node; while (node) { struct iova *iova = container_of(node, struct iova, node); /* If pfn falls within iova's range, return iova */ if ((pfn >= iova->pfn_lo) && (pfn <= iova->pfn_hi)) { spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); /* We are not holding the lock while this iova * is referenced by the caller as the same thread * which called this function also calls __free_iova() * and it is by desing that only one thread can possibly * reference a particular iova and hence no conflict. */ return iova; } if (pfn < iova->pfn_lo) node = node->rb_left; else if (pfn > iova->pfn_lo) node = node->rb_right; } spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); return NULL; } /** * __free_iova - frees the given iova * @iovad: iova domain in question. * @iova: iova in question. * Frees the given iova belonging to the giving domain */ void __free_iova(struct iova_domain *iovad, struct iova *iova) { unsigned long flags; spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); __cached_rbnode_delete_update(iovad, iova); rb_erase(&iova->node, &iovad->rbroot); spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); free_iova_mem(iova); } /** * free_iova - finds and frees the iova for a given pfn * @iovad: - iova domain in question. * @pfn: - pfn that is allocated previously * This functions finds an iova for a given pfn and then * frees the iova from that domain. */ void free_iova(struct iova_domain *iovad, unsigned long pfn) { struct iova *iova = find_iova(iovad, pfn); if (iova) __free_iova(iovad, iova); } /** * put_iova_domain - destroys the iova doamin * @iovad: - iova domain in question. * All the iova's in that domain are destroyed. */ void put_iova_domain(struct iova_domain *iovad) { struct rb_node *node; unsigned long flags; spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); node = rb_first(&iovad->rbroot); while (node) { struct iova *iova = container_of(node, struct iova, node); rb_erase(node, &iovad->rbroot); free_iova_mem(iova); node = rb_first(&iovad->rbroot); } spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); } static int __is_range_overlap(struct rb_node *node, unsigned long pfn_lo, unsigned long pfn_hi) { struct iova *iova = container_of(node, struct iova, node); if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo)) return 1; return 0; } static struct iova * __insert_new_range(struct iova_domain *iovad, unsigned long pfn_lo, unsigned long pfn_hi) { struct iova *iova; iova = alloc_iova_mem(); if (!iova) return iova; iova->pfn_hi = pfn_hi; iova->pfn_lo = pfn_lo; iova_insert_rbtree(&iovad->rbroot, iova); return iova; } static void __adjust_overlap_range(struct iova *iova, unsigned long *pfn_lo, unsigned long *pfn_hi) { if (*pfn_lo < iova->pfn_lo) iova->pfn_lo = *pfn_lo; if (*pfn_hi > iova->pfn_hi) *pfn_lo = iova->pfn_hi + 1; } /** * reserve_iova - reserves an iova in the given range * @iovad: - iova domain pointer * @pfn_lo: - lower page frame address * @pfn_hi:- higher pfn adderss * This function allocates reserves the address range from pfn_lo to pfn_hi so * that this address is not dished out as part of alloc_iova. */ struct iova * reserve_iova(struct iova_domain *iovad, unsigned long pfn_lo, unsigned long pfn_hi) { struct rb_node *node; unsigned long flags; struct iova *iova; unsigned int overlap = 0; spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) { if (__is_range_overlap(node, pfn_lo, pfn_hi)) { iova = container_of(node, struct iova, node); __adjust_overlap_range(iova, &pfn_lo, &pfn_hi); if ((pfn_lo >= iova->pfn_lo) && (pfn_hi <= iova->pfn_hi)) goto finish; overlap = 1; } else if (overlap) break; } /* We are here either because this is the first reserver node * or need to insert remaining non overlap addr range */ iova = __insert_new_range(iovad, pfn_lo, pfn_hi); finish: spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); return iova; } /** * copy_reserved_iova - copies the reserved between domains * @from: - source doamin from where to copy * @to: - destination domin where to copy * This function copies reserved iova's from one doamin to * other. */ void copy_reserved_iova(struct iova_domain *from, struct iova_domain *to) { unsigned long flags; struct rb_node *node; spin_lock_irqsave(&from->iova_rbtree_lock, flags); for (node = rb_first(&from->rbroot); node; node = rb_next(node)) { struct iova *iova = container_of(node, struct iova, node); struct iova *new_iova; new_iova = reserve_iova(to, iova->pfn_lo, iova->pfn_hi); if (!new_iova) printk(KERN_ERR "Reserve iova range %lx@%lx failed\n", iova->pfn_lo, iova->pfn_lo); } spin_unlock_irqrestore(&from->iova_rbtree_lock, flags); }