summaryrefslogtreecommitdiffstats
path: root/arch/x86/lguest/i386_head.S
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/lguest/i386_head.S')
-rw-r--r--arch/x86/lguest/i386_head.S93
1 files changed, 93 insertions, 0 deletions
diff --git a/arch/x86/lguest/i386_head.S b/arch/x86/lguest/i386_head.S
new file mode 100644
index 000000000000..6d7a74f07c41
--- /dev/null
+++ b/arch/x86/lguest/i386_head.S
@@ -0,0 +1,93 @@
+#include <linux/linkage.h>
+#include <linux/lguest.h>
+#include <asm/asm-offsets.h>
+#include <asm/thread_info.h>
+#include <asm/processor-flags.h>
+
+/*G:020 This is where we begin: we have a magic signature which the launcher
+ * looks for. The plan is that the Linux boot protocol will be extended with a
+ * "platform type" field which will guide us here from the normal entry point,
+ * but for the moment this suffices. The normal boot code uses %esi for the
+ * boot header, so we do too. We convert it to a virtual address by adding
+ * PAGE_OFFSET, and hand it to lguest_init() as its argument (ie. %eax).
+ *
+ * The .section line puts this code in .init.text so it will be discarded after
+ * boot. */
+.section .init.text, "ax", @progbits
+.ascii "GenuineLguest"
+ /* Set up initial stack. */
+ movl $(init_thread_union+THREAD_SIZE),%esp
+ movl %esi, %eax
+ addl $__PAGE_OFFSET, %eax
+ jmp lguest_init
+
+/*G:055 We create a macro which puts the assembler code between lgstart_ and
+ * lgend_ markers. These templates are put in the .text section: they can't be
+ * discarded after boot as we may need to patch modules, too. */
+.text
+#define LGUEST_PATCH(name, insns...) \
+ lgstart_##name: insns; lgend_##name:; \
+ .globl lgstart_##name; .globl lgend_##name
+
+LGUEST_PATCH(cli, movl $0, lguest_data+LGUEST_DATA_irq_enabled)
+LGUEST_PATCH(sti, movl $X86_EFLAGS_IF, lguest_data+LGUEST_DATA_irq_enabled)
+LGUEST_PATCH(popf, movl %eax, lguest_data+LGUEST_DATA_irq_enabled)
+LGUEST_PATCH(pushf, movl lguest_data+LGUEST_DATA_irq_enabled, %eax)
+/*:*/
+
+/* These demark the EIP range where host should never deliver interrupts. */
+.global lguest_noirq_start
+.global lguest_noirq_end
+
+/*M:004 When the Host reflects a trap or injects an interrupt into the Guest,
+ * it sets the eflags interrupt bit on the stack based on
+ * lguest_data.irq_enabled, so the Guest iret logic does the right thing when
+ * restoring it. However, when the Host sets the Guest up for direct traps,
+ * such as system calls, the processor is the one to push eflags onto the
+ * stack, and the interrupt bit will be 1 (in reality, interrupts are always
+ * enabled in the Guest).
+ *
+ * This turns out to be harmless: the only trap which should happen under Linux
+ * with interrupts disabled is Page Fault (due to our lazy mapping of vmalloc
+ * regions), which has to be reflected through the Host anyway. If another
+ * trap *does* go off when interrupts are disabled, the Guest will panic, and
+ * we'll never get to this iret! :*/
+
+/*G:045 There is one final paravirt_op that the Guest implements, and glancing
+ * at it you can see why I left it to last. It's *cool*! It's in *assembler*!
+ *
+ * The "iret" instruction is used to return from an interrupt or trap. The
+ * stack looks like this:
+ * old address
+ * old code segment & privilege level
+ * old processor flags ("eflags")
+ *
+ * The "iret" instruction pops those values off the stack and restores them all
+ * at once. The only problem is that eflags includes the Interrupt Flag which
+ * the Guest can't change: the CPU will simply ignore it when we do an "iret".
+ * So we have to copy eflags from the stack to lguest_data.irq_enabled before
+ * we do the "iret".
+ *
+ * There are two problems with this: firstly, we need to use a register to do
+ * the copy and secondly, the whole thing needs to be atomic. The first
+ * problem is easy to solve: push %eax on the stack so we can use it, and then
+ * restore it at the end just before the real "iret".
+ *
+ * The second is harder: copying eflags to lguest_data.irq_enabled will turn
+ * interrupts on before we're finished, so we could be interrupted before we
+ * return to userspace or wherever. Our solution to this is to surround the
+ * code with lguest_noirq_start: and lguest_noirq_end: labels. We tell the
+ * Host that it is *never* to interrupt us there, even if interrupts seem to be
+ * enabled. */
+ENTRY(lguest_iret)
+ pushl %eax
+ movl 12(%esp), %eax
+lguest_noirq_start:
+ /* Note the %ss: segment prefix here. Normal data accesses use the
+ * "ds" segment, but that will have already been restored for whatever
+ * we're returning to (such as userspace): we can't trust it. The %ss:
+ * prefix makes sure we use the stack segment, which is still valid. */
+ movl %eax,%ss:lguest_data+LGUEST_DATA_irq_enabled
+ popl %eax
+ iret
+lguest_noirq_end: