summaryrefslogtreecommitdiffstats
path: root/drivers/media/dvb-frontends/mb86a20s.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/media/dvb-frontends/mb86a20s.c')
-rw-r--r--drivers/media/dvb-frontends/mb86a20s.c1790
1 files changed, 1555 insertions, 235 deletions
diff --git a/drivers/media/dvb-frontends/mb86a20s.c b/drivers/media/dvb-frontends/mb86a20s.c
index fade566927c3..f19cd7367040 100644
--- a/drivers/media/dvb-frontends/mb86a20s.c
+++ b/drivers/media/dvb-frontends/mb86a20s.c
@@ -1,11 +1,9 @@
/*
* Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
*
- * Copyright (C) 2010 Mauro Carvalho Chehab <mchehab@redhat.com>
+ * Copyright (C) 2010-2013 Mauro Carvalho Chehab <mchehab@redhat.com>
* Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
*
- * FIXME: Need to port to DVB v5.2 API
- *
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
@@ -26,24 +24,15 @@ static int debug = 1;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");
-#define rc(args...) do { \
- printk(KERN_ERR "mb86a20s: " args); \
-} while (0)
-
-#define dprintk(args...) \
- do { \
- if (debug) { \
- printk(KERN_DEBUG "mb86a20s: %s: ", __func__); \
- printk(args); \
- } \
- } while (0)
-
struct mb86a20s_state {
struct i2c_adapter *i2c;
const struct mb86a20s_config *config;
+ u32 last_frequency;
struct dvb_frontend frontend;
+ u32 estimated_rate[3];
+
bool need_init;
};
@@ -52,6 +41,8 @@ struct regdata {
u8 data;
};
+#define BER_SAMPLING_RATE 1 /* Seconds */
+
/*
* Initialization sequence: Use whatevere default values that PV SBTVD
* does on its initialisation, obtained via USB snoop
@@ -94,41 +85,68 @@ static struct regdata mb86a20s_init[] = {
{ 0x04, 0x13 }, { 0x05, 0xff },
{ 0x04, 0x15 }, { 0x05, 0x4e },
{ 0x04, 0x16 }, { 0x05, 0x20 },
- { 0x52, 0x01 },
- { 0x50, 0xa7 }, { 0x51, 0xff },
+
+ /*
+ * On this demod, when the bit count reaches the count below,
+ * it collects the bit error count. The bit counters are initialized
+ * to 65535 here. This warrants that all of them will be quickly
+ * calculated when device gets locked. As TMCC is parsed, the values
+ * will be adjusted later in the driver's code.
+ */
+ { 0x52, 0x01 }, /* Turn on BER before Viterbi */
+ { 0x50, 0xa7 }, { 0x51, 0x00 },
{ 0x50, 0xa8 }, { 0x51, 0xff },
{ 0x50, 0xa9 }, { 0x51, 0xff },
- { 0x50, 0xaa }, { 0x51, 0xff },
+ { 0x50, 0xaa }, { 0x51, 0x00 },
{ 0x50, 0xab }, { 0x51, 0xff },
{ 0x50, 0xac }, { 0x51, 0xff },
- { 0x50, 0xad }, { 0x51, 0xff },
+ { 0x50, 0xad }, { 0x51, 0x00 },
{ 0x50, 0xae }, { 0x51, 0xff },
{ 0x50, 0xaf }, { 0x51, 0xff },
- { 0x5e, 0x07 },
- { 0x50, 0xdc }, { 0x51, 0x01 },
- { 0x50, 0xdd }, { 0x51, 0xf4 },
- { 0x50, 0xde }, { 0x51, 0x01 },
- { 0x50, 0xdf }, { 0x51, 0xf4 },
- { 0x50, 0xe0 }, { 0x51, 0x01 },
- { 0x50, 0xe1 }, { 0x51, 0xf4 },
- { 0x50, 0xb0 }, { 0x51, 0x07 },
- { 0x50, 0xb2 }, { 0x51, 0xff },
- { 0x50, 0xb3 }, { 0x51, 0xff },
- { 0x50, 0xb4 }, { 0x51, 0xff },
- { 0x50, 0xb5 }, { 0x51, 0xff },
- { 0x50, 0xb6 }, { 0x51, 0xff },
- { 0x50, 0xb7 }, { 0x51, 0xff },
- { 0x50, 0x50 }, { 0x51, 0x02 },
- { 0x50, 0x51 }, { 0x51, 0x04 },
- { 0x45, 0x04 },
- { 0x48, 0x04 },
+
+ /*
+ * On this demod, post BER counts blocks. When the count reaches the
+ * value below, it collects the block error count. The block counters
+ * are initialized to 127 here. This warrants that all of them will be
+ * quickly calculated when device gets locked. As TMCC is parsed, the
+ * values will be adjusted later in the driver's code.
+ */
+ { 0x5e, 0x07 }, /* Turn on BER after Viterbi */
+ { 0x50, 0xdc }, { 0x51, 0x00 },
+ { 0x50, 0xdd }, { 0x51, 0x7f },
+ { 0x50, 0xde }, { 0x51, 0x00 },
+ { 0x50, 0xdf }, { 0x51, 0x7f },
+ { 0x50, 0xe0 }, { 0x51, 0x00 },
+ { 0x50, 0xe1 }, { 0x51, 0x7f },
+
+ /*
+ * On this demod, when the block count reaches the count below,
+ * it collects the block error count. The block counters are initialized
+ * to 127 here. This warrants that all of them will be quickly
+ * calculated when device gets locked. As TMCC is parsed, the values
+ * will be adjusted later in the driver's code.
+ */
+ { 0x50, 0xb0 }, { 0x51, 0x07 }, /* Enable PER */
+ { 0x50, 0xb2 }, { 0x51, 0x00 },
+ { 0x50, 0xb3 }, { 0x51, 0x7f },
+ { 0x50, 0xb4 }, { 0x51, 0x00 },
+ { 0x50, 0xb5 }, { 0x51, 0x7f },
+ { 0x50, 0xb6 }, { 0x51, 0x00 },
+ { 0x50, 0xb7 }, { 0x51, 0x7f },
+
+ { 0x50, 0x50 }, { 0x51, 0x02 }, /* MER manual mode */
+ { 0x50, 0x51 }, { 0x51, 0x04 }, /* MER symbol 4 */
+ { 0x45, 0x04 }, /* CN symbol 4 */
+ { 0x48, 0x04 }, /* CN manual mode */
+
{ 0x50, 0xd5 }, { 0x51, 0x01 }, /* Serial */
{ 0x50, 0xd6 }, { 0x51, 0x1f },
{ 0x50, 0xd2 }, { 0x51, 0x03 },
{ 0x50, 0xd7 }, { 0x51, 0x3f },
{ 0x28, 0x74 }, { 0x29, 0x00 }, { 0x28, 0x74 }, { 0x29, 0x40 },
{ 0x28, 0x46 }, { 0x29, 0x2c }, { 0x28, 0x46 }, { 0x29, 0x0c },
- { 0x04, 0x40 }, { 0x05, 0x01 },
+
+ { 0x04, 0x40 }, { 0x05, 0x00 },
{ 0x28, 0x00 }, { 0x29, 0x10 },
{ 0x28, 0x05 }, { 0x29, 0x02 },
{ 0x1c, 0x01 },
@@ -176,8 +194,24 @@ static struct regdata mb86a20s_reset_reception[] = {
{ 0x08, 0x00 },
};
+static struct regdata mb86a20s_per_ber_reset[] = {
+ { 0x53, 0x00 }, /* pre BER Counter reset */
+ { 0x53, 0x07 },
+
+ { 0x5f, 0x00 }, /* post BER Counter reset */
+ { 0x5f, 0x07 },
+
+ { 0x50, 0xb1 }, /* PER Counter reset */
+ { 0x51, 0x07 },
+ { 0x51, 0x00 },
+};
+
+/*
+ * I2C read/write functions and macros
+ */
+
static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
- u8 i2c_addr, int reg, int data)
+ u8 i2c_addr, u8 reg, u8 data)
{
u8 buf[] = { reg, data };
struct i2c_msg msg = {
@@ -187,8 +221,9 @@ static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
rc = i2c_transfer(state->i2c, &msg, 1);
if (rc != 1) {
- printk("%s: writereg error (rc == %i, reg == 0x%02x,"
- " data == 0x%02x)\n", __func__, rc, reg, data);
+ dev_err(&state->i2c->dev,
+ "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
+ __func__, rc, reg, data);
return rc;
}
@@ -222,8 +257,9 @@ static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
rc = i2c_transfer(state->i2c, msg, 2);
if (rc != 2) {
- rc("%s: reg=0x%x (error=%d)\n", __func__, reg, rc);
- return rc;
+ dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
+ __func__, reg, rc);
+ return (rc < 0) ? rc : -EIO;
}
return val;
@@ -237,100 +273,22 @@ static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
regdata, ARRAY_SIZE(regdata))
-static int mb86a20s_initfe(struct dvb_frontend *fe)
-{
- struct mb86a20s_state *state = fe->demodulator_priv;
- int rc;
- u8 regD5 = 1;
-
- dprintk("\n");
-
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 0);
-
- /* Initialize the frontend */
- rc = mb86a20s_writeregdata(state, mb86a20s_init);
- if (rc < 0)
- goto err;
-
- if (!state->config->is_serial) {
- regD5 &= ~1;
-
- rc = mb86a20s_writereg(state, 0x50, 0xd5);
- if (rc < 0)
- goto err;
- rc = mb86a20s_writereg(state, 0x51, regD5);
- if (rc < 0)
- goto err;
- }
-
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 1);
-
-err:
- if (rc < 0) {
- state->need_init = true;
- printk(KERN_INFO "mb86a20s: Init failed. Will try again later\n");
- } else {
- state->need_init = false;
- dprintk("Initialization succeeded.\n");
- }
- return rc;
-}
-
-static int mb86a20s_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
-{
- struct mb86a20s_state *state = fe->demodulator_priv;
- unsigned rf_max, rf_min, rf;
- u8 val;
-
- dprintk("\n");
-
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 0);
-
- /* Does a binary search to get RF strength */
- rf_max = 0xfff;
- rf_min = 0;
- do {
- rf = (rf_max + rf_min) / 2;
- mb86a20s_writereg(state, 0x04, 0x1f);
- mb86a20s_writereg(state, 0x05, rf >> 8);
- mb86a20s_writereg(state, 0x04, 0x20);
- mb86a20s_writereg(state, 0x04, rf);
-
- val = mb86a20s_readreg(state, 0x02);
- if (val & 0x08)
- rf_min = (rf_max + rf_min) / 2;
- else
- rf_max = (rf_max + rf_min) / 2;
- if (rf_max - rf_min < 4) {
- *strength = (((rf_max + rf_min) / 2) * 65535) / 4095;
- break;
- }
- } while (1);
-
- dprintk("signal strength = %d\n", *strength);
-
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 1);
-
- return 0;
-}
+/*
+ * Ancillary internal routines (likely compiled inlined)
+ *
+ * The functions below assume that gateway lock has already obtained
+ */
static int mb86a20s_read_status(struct dvb_frontend *fe, fe_status_t *status)
{
struct mb86a20s_state *state = fe->demodulator_priv;
- u8 val;
+ int val;
- dprintk("\n");
*status = 0;
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 0);
val = mb86a20s_readreg(state, 0x0a) & 0xf;
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 1);
+ if (val < 0)
+ return val;
if (val >= 2)
*status |= FE_HAS_SIGNAL;
@@ -347,49 +305,56 @@ static int mb86a20s_read_status(struct dvb_frontend *fe, fe_status_t *status)
if (val >= 8) /* Maybe 9? */
*status |= FE_HAS_LOCK;
- dprintk("val = %d, status = 0x%02x\n", val, *status);
+ dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
+ __func__, *status, val);
return 0;
}
-static int mb86a20s_set_frontend(struct dvb_frontend *fe)
+static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
{
struct mb86a20s_state *state = fe->demodulator_priv;
int rc;
-#if 0
- /*
- * FIXME: Properly implement the set frontend properties
- */
- struct dtv_frontend_properties *p = &fe->dtv_property_cache;
-#endif
-
- dprintk("\n");
-
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 1);
- dprintk("Calling tuner set parameters\n");
- fe->ops.tuner_ops.set_params(fe);
+ unsigned rf_max, rf_min, rf;
- /*
- * Make it more reliable: if, for some reason, the initial
- * device initialization doesn't happen, initialize it when
- * a SBTVD parameters are adjusted.
- *
- * Unfortunately, due to a hard to track bug at tda829x/tda18271,
- * the agc callback logic is not called during DVB attach time,
- * causing mb86a20s to not be initialized with Kworld SBTVD.
- * So, this hack is needed, in order to make Kworld SBTVD to work.
- */
- if (state->need_init)
- mb86a20s_initfe(fe);
+ /* Does a binary search to get RF strength */
+ rf_max = 0xfff;
+ rf_min = 0;
+ do {
+ rf = (rf_max + rf_min) / 2;
+ rc = mb86a20s_writereg(state, 0x04, 0x1f);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x05, rf >> 8);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x04, 0x20);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x04, rf);
+ if (rc < 0)
+ return rc;
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 0);
- rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 1);
+ rc = mb86a20s_readreg(state, 0x02);
+ if (rc < 0)
+ return rc;
+ if (rc & 0x08)
+ rf_min = (rf_max + rf_min) / 2;
+ else
+ rf_max = (rf_max + rf_min) / 2;
+ if (rf_max - rf_min < 4) {
+ rf = (rf_max + rf_min) / 2;
+
+ /* Rescale it from 2^12 (4096) to 2^16 */
+ rf <<= (16 - 12);
+ dev_dbg(&state->i2c->dev,
+ "%s: signal strength = %d (%d < RF=%d < %d)\n",
+ __func__, rf, rf_min, rf >> 4, rf_max);
+ return rf;
+ }
+ } while (1);
- return rc;
+ return 0;
}
static int mb86a20s_get_modulation(struct mb86a20s_state *state,
@@ -410,7 +375,7 @@ static int mb86a20s_get_modulation(struct mb86a20s_state *state,
rc = mb86a20s_readreg(state, 0x6e);
if (rc < 0)
return rc;
- switch ((rc & 0x70) >> 4) {
+ switch ((rc >> 4) & 0x07) {
case 0:
return DQPSK;
case 1:
@@ -443,7 +408,7 @@ static int mb86a20s_get_fec(struct mb86a20s_state *state,
rc = mb86a20s_readreg(state, 0x6e);
if (rc < 0)
return rc;
- switch (rc) {
+ switch ((rc >> 4) & 0x07) {
case 0:
return FEC_1_2;
case 1:
@@ -478,24 +443,38 @@ static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
rc = mb86a20s_readreg(state, 0x6e);
if (rc < 0)
return rc;
- if (rc > 3)
- return -EINVAL; /* Not used */
- return rc;
+
+ switch ((rc >> 4) & 0x07) {
+ case 1:
+ return GUARD_INTERVAL_1_4;
+ case 2:
+ return GUARD_INTERVAL_1_8;
+ case 3:
+ return GUARD_INTERVAL_1_16;
+ case 4:
+ return GUARD_INTERVAL_1_32;
+
+ default:
+ case 0:
+ return GUARD_INTERVAL_AUTO;
+ }
}
static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
unsigned layer)
{
int rc, count;
-
static unsigned char reg[] = {
[0] = 0x89, /* Layer A */
[1] = 0x8d, /* Layer B */
[2] = 0x91, /* Layer C */
};
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
if (layer >= ARRAY_SIZE(reg))
return -EINVAL;
+
rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
if (rc < 0)
return rc;
@@ -504,113 +483,1451 @@ static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
return rc;
count = (rc >> 4) & 0x0f;
+ dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
+
return count;
}
+static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ /* Fixed parameters */
+ c->delivery_system = SYS_ISDBT;
+ c->bandwidth_hz = 6000000;
+
+ /* Initialize values that will be later autodetected */
+ c->isdbt_layer_enabled = 0;
+ c->transmission_mode = TRANSMISSION_MODE_AUTO;
+ c->guard_interval = GUARD_INTERVAL_AUTO;
+ c->isdbt_sb_mode = 0;
+ c->isdbt_sb_segment_count = 0;
+}
+
+/*
+ * Estimates the bit rate using the per-segment bit rate given by
+ * ABNT/NBR 15601 spec (table 4).
+ */
+static u32 isdbt_rate[3][5][4] = {
+ { /* DQPSK/QPSK */
+ { 280850, 312060, 330420, 340430 }, /* 1/2 */
+ { 374470, 416080, 440560, 453910 }, /* 2/3 */
+ { 421280, 468090, 495630, 510650 }, /* 3/4 */
+ { 468090, 520100, 550700, 567390 }, /* 5/6 */
+ { 491500, 546110, 578230, 595760 }, /* 7/8 */
+ }, { /* QAM16 */
+ { 561710, 624130, 660840, 680870 }, /* 1/2 */
+ { 748950, 832170, 881120, 907820 }, /* 2/3 */
+ { 842570, 936190, 991260, 1021300 }, /* 3/4 */
+ { 936190, 1040210, 1101400, 1134780 }, /* 5/6 */
+ { 983000, 1092220, 1156470, 1191520 }, /* 7/8 */
+ }, { /* QAM64 */
+ { 842570, 936190, 991260, 1021300 }, /* 1/2 */
+ { 1123430, 1248260, 1321680, 1361740 }, /* 2/3 */
+ { 1263860, 1404290, 1486900, 1531950 }, /* 3/4 */
+ { 1404290, 1560320, 1652110, 1702170 }, /* 5/6 */
+ { 1474500, 1638340, 1734710, 1787280 }, /* 7/8 */
+ }
+};
+
+static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer,
+ u32 modulation, u32 fec, u32 interleaving,
+ u32 segment)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ u32 rate;
+ int m, f, i;
+
+ /*
+ * If modulation/fec/interleaving is not detected, the default is
+ * to consider the lowest bit rate, to avoid taking too long time
+ * to get BER.
+ */
+ switch (modulation) {
+ case DQPSK:
+ case QPSK:
+ default:
+ m = 0;
+ break;
+ case QAM_16:
+ m = 1;
+ break;
+ case QAM_64:
+ m = 2;
+ break;
+ }
+
+ switch (fec) {
+ default:
+ case FEC_1_2:
+ case FEC_AUTO:
+ f = 0;
+ break;
+ case FEC_2_3:
+ f = 1;
+ break;
+ case FEC_3_4:
+ f = 2;
+ break;
+ case FEC_5_6:
+ f = 3;
+ break;
+ case FEC_7_8:
+ f = 4;
+ break;
+ }
+
+ switch (interleaving) {
+ default:
+ case GUARD_INTERVAL_1_4:
+ i = 0;
+ break;
+ case GUARD_INTERVAL_1_8:
+ i = 1;
+ break;
+ case GUARD_INTERVAL_1_16:
+ i = 2;
+ break;
+ case GUARD_INTERVAL_1_32:
+ i = 3;
+ break;
+ }
+
+ /* Samples BER at BER_SAMPLING_RATE seconds */
+ rate = isdbt_rate[m][f][i] * segment * BER_SAMPLING_RATE;
+
+ /* Avoids sampling too quickly or to overflow the register */
+ if (rate < 256)
+ rate = 256;
+ else if (rate > (1 << 24) - 1)
+ rate = (1 << 24) - 1;
+
+ dev_dbg(&state->i2c->dev,
+ "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
+ __func__, 'A' + layer, segment * isdbt_rate[m][f][i]/1000,
+ rate, rate);
+
+ state->estimated_rate[i] = rate;
+}
+
+
static int mb86a20s_get_frontend(struct dvb_frontend *fe)
{
struct mb86a20s_state *state = fe->demodulator_priv;
- struct dtv_frontend_properties *p = &fe->dtv_property_cache;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int i, rc;
- /* Fixed parameters */
- p->delivery_system = SYS_ISDBT;
- p->bandwidth_hz = 6000000;
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 0);
+ /* Reset frontend cache to default values */
+ mb86a20s_reset_frontend_cache(fe);
/* Check for partial reception */
rc = mb86a20s_writereg(state, 0x6d, 0x85);
- if (rc >= 0)
- rc = mb86a20s_readreg(state, 0x6e);
- if (rc >= 0)
- p->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x6e);
+ if (rc < 0)
+ return rc;
+ c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
/* Get per-layer data */
- p->isdbt_layer_enabled = 0;
+
for (i = 0; i < 3; i++) {
+ dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
+ __func__, 'A' + i);
+
rc = mb86a20s_get_segment_count(state, i);
- if (rc >= 0 && rc < 14)
- p->layer[i].segment_count = rc;
- if (rc == 0x0f)
+ if (rc < 0)
+ goto noperlayer_error;
+ if (rc >= 0 && rc < 14) {
+ c->layer[i].segment_count = rc;
+ } else {
+ c->layer[i].segment_count = 0;
+ state->estimated_rate[i] = 0;
continue;
- p->isdbt_layer_enabled |= 1 << i;
+ }
+ c->isdbt_layer_enabled |= 1 << i;
rc = mb86a20s_get_modulation(state, i);
- if (rc >= 0)
- p->layer[i].modulation = rc;
+ if (rc < 0)
+ goto noperlayer_error;
+ dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
+ __func__, rc);
+ c->layer[i].modulation = rc;
rc = mb86a20s_get_fec(state, i);
- if (rc >= 0)
- p->layer[i].fec = rc;
+ if (rc < 0)
+ goto noperlayer_error;
+ dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
+ __func__, rc);
+ c->layer[i].fec = rc;
rc = mb86a20s_get_interleaving(state, i);
- if (rc >= 0)
- p->layer[i].interleaving = rc;
+ if (rc < 0)
+ goto noperlayer_error;
+ dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
+ __func__, rc);
+ c->layer[i].interleaving = rc;
+ mb86a20s_layer_bitrate(fe, i, c->layer[i].modulation,
+ c->layer[i].fec,
+ c->layer[i].interleaving,
+ c->layer[i].segment_count);
}
- p->isdbt_sb_mode = 0;
rc = mb86a20s_writereg(state, 0x6d, 0x84);
- if ((rc >= 0) && ((rc & 0x60) == 0x20)) {
- p->isdbt_sb_mode = 1;
+ if (rc < 0)
+ return rc;
+ if ((rc & 0x60) == 0x20) {
+ c->isdbt_sb_mode = 1;
/* At least, one segment should exist */
- if (!p->isdbt_sb_segment_count)
- p->isdbt_sb_segment_count = 1;
- } else
- p->isdbt_sb_segment_count = 0;
+ if (!c->isdbt_sb_segment_count)
+ c->isdbt_sb_segment_count = 1;
+ }
/* Get transmission mode and guard interval */
- p->transmission_mode = TRANSMISSION_MODE_AUTO;
- p->guard_interval = GUARD_INTERVAL_AUTO;
rc = mb86a20s_readreg(state, 0x07);
- if (rc >= 0) {
- if ((rc & 0x60) == 0x20) {
- switch (rc & 0x0c >> 2) {
- case 0:
- p->transmission_mode = TRANSMISSION_MODE_2K;
- break;
- case 1:
- p->transmission_mode = TRANSMISSION_MODE_4K;
- break;
- case 2:
- p->transmission_mode = TRANSMISSION_MODE_8K;
- break;
- }
+ if (rc < 0)
+ return rc;
+ if ((rc & 0x60) == 0x20) {
+ switch (rc & 0x0c >> 2) {
+ case 0:
+ c->transmission_mode = TRANSMISSION_MODE_2K;
+ break;
+ case 1:
+ c->transmission_mode = TRANSMISSION_MODE_4K;
+ break;
+ case 2:
+ c->transmission_mode = TRANSMISSION_MODE_8K;
+ break;
+ }
+ }
+ if (!(rc & 0x10)) {
+ switch (rc & 0x3) {
+ case 0:
+ c->guard_interval = GUARD_INTERVAL_1_4;
+ break;
+ case 1:
+ c->guard_interval = GUARD_INTERVAL_1_8;
+ break;
+ case 2:
+ c->guard_interval = GUARD_INTERVAL_1_16;
+ break;
+ }
+ }
+ return 0;
+
+noperlayer_error:
+
+ /* per-layer info is incomplete; discard all per-layer */
+ c->isdbt_layer_enabled = 0;
+
+ return rc;
+}
+
+static int mb86a20s_reset_counters(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+ int rc, val;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ /* Reset the counters, if the channel changed */
+ if (state->last_frequency != c->frequency) {
+ memset(&c->strength, 0, sizeof(c->strength));
+ memset(&c->cnr, 0, sizeof(c->cnr));
+ memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
+ memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
+ memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
+ memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
+ memset(&c->block_error, 0, sizeof(c->block_error));
+ memset(&c->block_count, 0, sizeof(c->block_count));
+
+ state->last_frequency = c->frequency;
+ }
+
+ /* Clear status for most stats */
+
+ /* BER/PER counter reset */
+ rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
+ if (rc < 0)
+ goto err;
+
+ /* CNR counter reset */
+ rc = mb86a20s_readreg(state, 0x45);
+ if (rc < 0)
+ goto err;
+ val = rc;
+ rc = mb86a20s_writereg(state, 0x45, val | 0x10);
+ if (rc < 0)
+ goto err;
+ rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
+ if (rc < 0)
+ goto err;
+
+ /* MER counter reset */
+ rc = mb86a20s_writereg(state, 0x50, 0x50);
+ if (rc < 0)
+ goto err;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ goto err;
+ val = rc;
+ rc = mb86a20s_writereg(state, 0x51, val | 0x01);
+ if (rc < 0)
+ goto err;
+ rc = mb86a20s_writereg(state, 0x51, val & 0x06);
+ if (rc < 0)
+ goto err;
+
+ goto ok;
+err:
+ dev_err(&state->i2c->dev,
+ "%s: Can't reset FE statistics (error %d).\n",
+ __func__, rc);
+ok:
+ return rc;
+}
+
+static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
+ unsigned layer,
+ u32 *error, u32 *count)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ int rc, val;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ if (layer >= 3)
+ return -EINVAL;
+
+ /* Check if the BER measures are already available */
+ rc = mb86a20s_readreg(state, 0x54);
+ if (rc < 0)
+ return rc;
+
+ /* Check if data is available for that layer */
+ if (!(rc & (1 << layer))) {
+ dev_dbg(&state->i2c->dev,
+ "%s: preBER for layer %c is not available yet.\n",
+ __func__, 'A' + layer);
+ return -EBUSY;
+ }
+
+ /* Read Bit Error Count */
+ rc = mb86a20s_readreg(state, 0x55 + layer * 3);
+ if (rc < 0)
+ return rc;
+ *error = rc << 16;
+ rc = mb86a20s_readreg(state, 0x56 + layer * 3);
+ if (rc < 0)
+ return rc;
+ *error |= rc << 8;
+ rc = mb86a20s_readreg(state, 0x57 + layer * 3);
+ if (rc < 0)
+ return rc;
+ *error |= rc;
+
+ dev_dbg(&state->i2c->dev,
+ "%s: bit error before Viterbi for layer %c: %d.\n",
+ __func__, 'A' + layer, *error);
+
+ /* Read Bit Count */
+ rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ *count = rc << 16;
+ rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ *count |= rc << 8;
+ rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ *count |= rc;
+
+ dev_dbg(&state->i2c->dev,
+ "%s: bit count before Viterbi for layer %c: %d.\n",
+ __func__, 'A' + layer, *count);
+
+
+ /*
+ * As we get TMCC data from the frontend, we can better estimate the
+ * BER bit counters, in order to do the BER measure during a longer
+ * time. Use those data, if available, to update the bit count
+ * measure.
+ */
+
+ if (state->estimated_rate[layer]
+ && state->estimated_rate[layer] != *count) {
+ dev_dbg(&state->i2c->dev,
+ "%s: updating layer %c preBER counter to %d.\n",
+ __func__, 'A' + layer, state->estimated_rate[layer]);
+
+ /* Turn off BER before Viterbi */
+ rc = mb86a20s_writereg(state, 0x52, 0x00);
+
+ /* Update counter for this layer */
+ rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51,
+ state->estimated_rate[layer] >> 16);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51,
+ state->estimated_rate[layer] >> 8);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51,
+ state->estimated_rate[layer]);
+ if (rc < 0)
+ return rc;
+
+ /* Turn on BER before Viterbi */
+ rc = mb86a20s_writereg(state, 0x52, 0x01);
+
+ /* Reset all preBER counters */
+ rc = mb86a20s_writereg(state, 0x53, 0x00);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x53, 0x07);
+ } else {
+ /* Reset counter to collect new data */
+ rc = mb86a20s_readreg(state, 0x53);
+ if (rc < 0)
+ return rc;
+ val = rc;
+ rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
+ }
+
+ return rc;
+}
+
+static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
+ unsigned layer,
+ u32 *error, u32 *count)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ u32 counter, collect_rate;
+ int rc, val;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ if (layer >= 3)
+ return -EINVAL;
+
+ /* Check if the BER measures are already available */
+ rc = mb86a20s_readreg(state, 0x60);
+ if (rc < 0)
+ return rc;
+
+ /* Check if data is available for that layer */
+ if (!(rc & (1 << layer))) {
+ dev_dbg(&state->i2c->dev,
+ "%s: post BER for layer %c is not available yet.\n",
+ __func__, 'A' + layer);
+ return -EBUSY;
+ }
+
+ /* Read Bit Error Count */
+ rc = mb86a20s_readreg(state, 0x64 + layer * 3);
+ if (rc < 0)
+ return rc;
+ *error = rc << 16;
+ rc = mb86a20s_readreg(state, 0x65 + layer * 3);
+ if (rc < 0)
+ return rc;
+ *error |= rc << 8;
+ rc = mb86a20s_readreg(state, 0x66 + layer * 3);
+ if (rc < 0)
+ return rc;
+ *error |= rc;
+
+ dev_dbg(&state->i2c->dev,
+ "%s: post bit error for layer %c: %d.\n",
+ __func__, 'A' + layer, *error);
+
+ /* Read Bit Count */
+ rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ counter = rc << 8;
+ rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ counter |= rc;
+ *count = counter * 204 * 8;
+
+ dev_dbg(&state->i2c->dev,
+ "%s: post bit count for layer %c: %d.\n",
+ __func__, 'A' + layer, *count);
+
+ /*
+ * As we get TMCC data from the frontend, we can better estimate the
+ * BER bit counters, in order to do the BER measure during a longer
+ * time. Use those data, if available, to update the bit count
+ * measure.
+ */
+
+ if (!state->estimated_rate[layer])
+ goto reset_measurement;
+
+ collect_rate = state->estimated_rate[layer] / 204 / 8;
+ if (collect_rate < 32)
+ collect_rate = 32;
+ if (collect_rate > 65535)
+ collect_rate = 65535;
+ if (collect_rate != counter) {
+ dev_dbg(&state->i2c->dev,
+ "%s: updating postBER counter on layer %c to %d.\n",
+ __func__, 'A' + layer, collect_rate);
+
+ /* Turn off BER after Viterbi */
+ rc = mb86a20s_writereg(state, 0x5e, 0x00);
+
+ /* Update counter for this layer */
+ rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
+ if (rc < 0)
+ return rc;
+
+ /* Turn on BER after Viterbi */
+ rc = mb86a20s_writereg(state, 0x5e, 0x07);
+
+ /* Reset all preBER counters */
+ rc = mb86a20s_writereg(state, 0x5f, 0x00);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x5f, 0x07);
+
+ return rc;
+ }
+
+reset_measurement:
+ /* Reset counter to collect new data */
+ rc = mb86a20s_readreg(state, 0x5f);
+ if (rc < 0)
+ return rc;
+ val = rc;
+ rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
+
+ return rc;
+}
+
+static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
+ unsigned layer,
+ u32 *error, u32 *count)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ int rc, val;
+ u32 collect_rate;
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ if (layer >= 3)
+ return -EINVAL;
+
+ /* Check if the PER measures are already available */
+ rc = mb86a20s_writereg(state, 0x50, 0xb8);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+
+ /* Check if data is available for that layer */
+
+ if (!(rc & (1 << layer))) {
+ dev_dbg(&state->i2c->dev,
+ "%s: block counts for layer %c aren't available yet.\n",
+ __func__, 'A' + layer);
+ return -EBUSY;
+ }
+
+ /* Read Packet error Count */
+ rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ *error = rc << 8;
+ rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ *error |= rc;
+ dev_err(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
+ __func__, 'A' + layer, *error);
+
+ /* Read Bit Count */
+ rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ *count = rc << 8;
+ rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ *count |= rc;
+
+ dev_dbg(&state->i2c->dev,
+ "%s: block count for layer %c: %d.\n",
+ __func__, 'A' + layer, *count);
+
+ /*
+ * As we get TMCC data from the frontend, we can better estimate the
+ * BER bit counters, in order to do the BER measure during a longer
+ * time. Use those data, if available, to update the bit count
+ * measure.
+ */
+
+ if (!state->estimated_rate[layer])
+ goto reset_measurement;
+
+ collect_rate = state->estimated_rate[layer] / 204 / 8;
+ if (collect_rate < 32)
+ collect_rate = 32;
+ if (collect_rate > 65535)
+ collect_rate = 65535;
+
+ if (collect_rate != *count) {
+ dev_dbg(&state->i2c->dev,
+ "%s: updating PER counter on layer %c to %d.\n",
+ __func__, 'A' + layer, collect_rate);
+
+ /* Stop PER measurement */
+ rc = mb86a20s_writereg(state, 0x50, 0xb0);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, 0x00);
+ if (rc < 0)
+ return rc;
+
+ /* Update this layer's counter */
+ rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
+ if (rc < 0)
+ return rc;
+
+ /* start PER measurement */
+ rc = mb86a20s_writereg(state, 0x50, 0xb0);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, 0x07);
+ if (rc < 0)
+ return rc;
+
+ /* Reset all counters to collect new data */
+ rc = mb86a20s_writereg(state, 0x50, 0xb1);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, 0x07);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, 0x00);
+
+ return rc;
+ }
+
+reset_measurement:
+ /* Reset counter to collect new data */
+ rc = mb86a20s_writereg(state, 0x50, 0xb1);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ val = rc;
+ rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
+
+ return rc;
+}
+
+struct linear_segments {
+ unsigned x, y;
+};
+
+/*
+ * All tables below return a dB/1000 measurement
+ */
+
+static struct linear_segments cnr_to_db_table[] = {
+ { 19648, 0},
+ { 18187, 1000},
+ { 16534, 2000},
+ { 14823, 3000},
+ { 13161, 4000},
+ { 11622, 5000},
+ { 10279, 6000},
+ { 9089, 7000},
+ { 8042, 8000},
+ { 7137, 9000},
+ { 6342, 10000},
+ { 5641, 11000},
+ { 5030, 12000},
+ { 4474, 13000},
+ { 3988, 14000},
+ { 3556, 15000},
+ { 3180, 16000},
+ { 2841, 17000},
+ { 2541, 18000},
+ { 2276, 19000},
+ { 2038, 20000},
+ { 1800, 21000},
+ { 1625, 22000},
+ { 1462, 23000},
+ { 1324, 24000},
+ { 1175, 25000},
+ { 1063, 26000},
+ { 980, 27000},
+ { 907, 28000},
+ { 840, 29000},
+ { 788, 30000},
+};
+
+static struct linear_segments cnr_64qam_table[] = {
+ { 3922688, 0},
+ { 3920384, 1000},
+ { 3902720, 2000},
+ { 3894784, 3000},
+ { 3882496, 4000},
+ { 3872768, 5000},
+ { 3858944, 6000},
+ { 3851520, 7000},
+ { 3838976, 8000},
+ { 3829248, 9000},
+ { 3818240, 10000},
+ { 3806976, 11000},
+ { 3791872, 12000},
+ { 3767040, 13000},
+ { 3720960, 14000},
+ { 3637504, 15000},
+ { 3498496, 16000},
+ { 3296000, 17000},
+ { 3031040, 18000},
+ { 2715392, 19000},
+ { 2362624, 20000},
+ { 1963264, 21000},
+ { 1649664, 22000},
+ { 1366784, 23000},
+ { 1120768, 24000},
+ { 890880, 25000},
+ { 723456, 26000},
+ { 612096, 27000},
+ { 518912, 28000},
+ { 448256, 29000},
+ { 388864, 30000},
+};
+
+static struct linear_segments cnr_16qam_table[] = {
+ { 5314816, 0},
+ { 5219072, 1000},
+ { 5118720, 2000},
+ { 4998912, 3000},
+ { 4875520, 4000},
+ { 4736000, 5000},
+ { 4604160, 6000},
+ { 4458752, 7000},
+ { 4300288, 8000},
+ { 4092928, 9000},
+ { 3836160, 10000},
+ { 3521024, 11000},
+ { 3155968, 12000},
+ { 2756864, 13000},
+ { 2347008, 14000},
+ { 1955072, 15000},
+ { 1593600, 16000},
+ { 1297920, 17000},
+ { 1043968, 18000},
+ { 839680, 19000},
+ { 672256, 20000},
+ { 523008, 21000},
+ { 424704, 22000},
+ { 345088, 23000},
+ { 280064, 24000},
+ { 221440, 25000},
+ { 179712, 26000},
+ { 151040, 27000},
+ { 128512, 28000},
+ { 110080, 29000},
+ { 95744, 30000},
+};
+
+struct linear_segments cnr_qpsk_table[] = {
+ { 2834176, 0},
+ { 2683648, 1000},
+ { 2536960, 2000},
+ { 2391808, 3000},
+ { 2133248, 4000},
+ { 1906176, 5000},
+ { 1666560, 6000},
+ { 1422080, 7000},
+ { 1189632, 8000},
+ { 976384, 9000},
+ { 790272, 10000},
+ { 633344, 11000},
+ { 505600, 12000},
+ { 402944, 13000},
+ { 320768, 14000},
+ { 255488, 15000},
+ { 204032, 16000},
+ { 163072, 17000},
+ { 130304, 18000},
+ { 105216, 19000},
+ { 83456, 20000},
+ { 65024, 21000},
+ { 52480, 22000},
+ { 42752, 23000},
+ { 34560, 24000},
+ { 27136, 25000},
+ { 22016, 26000},
+ { 18432, 27000},
+ { 15616, 28000},
+ { 13312, 29000},
+ { 11520, 30000},
+};
+
+static u32 interpolate_value(u32 value, struct linear_segments *segments,
+ unsigned len)
+{
+ u64 tmp64;
+ u32 dx, dy;
+ int i, ret;
+
+ if (value >= segments[0].x)
+ return segments[0].y;
+ if (value < segments[len-1].x)
+ return segments[len-1].y;
+
+ for (i = 1; i < len - 1; i++) {
+ /* If value is identical, no need to interpolate */
+ if (value == segments[i].x)
+ return segments[i].y;
+ if (value > segments[i].x)
+ break;
+ }
+
+ /* Linear interpolation between the two (x,y) points */
+ dy = segments[i].y - segments[i - 1].y;
+ dx = segments[i - 1].x - segments[i].x;
+ tmp64 = value - segments[i].x;
+ tmp64 *= dy;
+ do_div(tmp64, dx);
+ ret = segments[i].y - tmp64;
+
+ return ret;
+}
+
+static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+ u32 cnr_linear, cnr;
+ int rc, val;
+
+ /* Check if CNR is available */
+ rc = mb86a20s_readreg(state, 0x45);
+ if (rc < 0)
+ return rc;
+
+ if (!(rc & 0x40)) {
+ dev_info(&state->i2c->dev, "%s: CNR is not available yet.\n",
+ __func__);
+ return -EBUSY;
+ }
+ val = rc;
+
+ rc = mb86a20s_readreg(state, 0x46);
+ if (rc < 0)
+ return rc;
+ cnr_linear = rc << 8;
+
+ rc = mb86a20s_readreg(state, 0x46);
+ if (rc < 0)
+ return rc;
+ cnr_linear |= rc;
+
+ cnr = interpolate_value(cnr_linear,
+ cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
+
+ c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
+ c->cnr.stat[0].svalue = cnr;
+
+ dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
+ __func__, cnr / 1000, cnr % 1000, cnr_linear);
+
+ /* CNR counter reset */
+ rc = mb86a20s_writereg(state, 0x45, val | 0x10);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
+
+ return rc;
+}
+
+static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+ u32 mer, cnr;
+ int rc, val, i;
+ struct linear_segments *segs;
+ unsigned segs_len;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ /* Check if the measures are already available */
+ rc = mb86a20s_writereg(state, 0x50, 0x5b);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+
+ /* Check if data is available */
+ if (!(rc & 0x01)) {
+ dev_info(&state->i2c->dev,
+ "%s: MER measures aren't available yet.\n", __func__);
+ return -EBUSY;
+ }
+
+ /* Read all layers */
+ for (i = 0; i < 3; i++) {
+ if (!(c->isdbt_layer_enabled & (1 << i))) {
+ c->cnr.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
+ continue;
+ }
+
+ rc = mb86a20s_writereg(state, 0x50, 0x52 + i * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ mer = rc << 16;
+ rc = mb86a20s_writereg(state, 0x50, 0x53 + i * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ mer |= rc << 8;
+ rc = mb86a20s_writereg(state, 0x50, 0x54 + i * 3);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ mer |= rc;
+
+ switch (c->layer[i].modulation) {
+ case DQPSK:
+ case QPSK:
+ segs = cnr_qpsk_table;
+ segs_len = ARRAY_SIZE(cnr_qpsk_table);
+ break;
+ case QAM_16:
+ segs = cnr_16qam_table;
+ segs_len = ARRAY_SIZE(cnr_16qam_table);
+ break;
+ default:
+ case QAM_64:
+ segs = cnr_64qam_table;
+ segs_len = ARRAY_SIZE(cnr_64qam_table);
+ break;
}
- if (!(rc & 0x10)) {
- switch (rc & 0x3) {
- case 0:
- p->guard_interval = GUARD_INTERVAL_1_4;
- break;
- case 1:
- p->guard_interval = GUARD_INTERVAL_1_8;
- break;
- case 2:
- p->guard_interval = GUARD_INTERVAL_1_16;
- break;
+ cnr = interpolate_value(mer, segs, segs_len);
+
+ c->cnr.stat[1 + i].scale = FE_SCALE_DECIBEL;
+ c->cnr.stat[1 + i].svalue = cnr;
+
+ dev_dbg(&state->i2c->dev,
+ "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
+ __func__, 'A' + i, cnr / 1000, cnr % 1000, mer);
+
+ }
+
+ /* Start a new MER measurement */
+ /* MER counter reset */
+ rc = mb86a20s_writereg(state, 0x50, 0x50);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_readreg(state, 0x51);
+ if (rc < 0)
+ return rc;
+ val = rc;
+
+ rc = mb86a20s_writereg(state, 0x51, val | 0x01);
+ if (rc < 0)
+ return rc;
+ rc = mb86a20s_writereg(state, 0x51, val & 0x06);
+ if (rc < 0)
+ return rc;
+
+ return 0;
+}
+
+static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+ int i;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ /* Fill the length of each status counter */
+
+ /* Only global stats */
+ c->strength.len = 1;
+
+ /* Per-layer stats - 3 layers + global */
+ c->cnr.len = 4;
+ c->pre_bit_error.len = 4;
+ c->pre_bit_count.len = 4;
+ c->post_bit_error.len = 4;
+ c->post_bit_count.len = 4;
+ c->block_error.len = 4;
+ c->block_count.len = 4;
+
+ /* Signal is always available */
+ c->strength.stat[0].scale = FE_SCALE_RELATIVE;
+ c->strength.stat[0].uvalue = 0;
+
+ /* Put all of them at FE_SCALE_NOT_AVAILABLE */
+ for (i = 0; i < 4; i++) {
+ c->cnr.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
+ c->pre_bit_error.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
+ c->pre_bit_count.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
+ c->post_bit_error.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
+ c->post_bit_count.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
+ c->block_error.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
+ c->block_count.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
+ }
+}
+
+static int mb86a20s_get_stats(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+ int rc = 0, i;
+ u32 bit_error = 0, bit_count = 0;
+ u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
+ u32 t_post_bit_error = 0, t_post_bit_count = 0;
+ u32 block_error = 0, block_count = 0;
+ u32 t_block_error = 0, t_block_count = 0;
+ int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
+ int per_layers = 0;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ mb86a20s_get_main_CNR(fe);
+
+ /* Get per-layer stats */
+ mb86a20s_get_blk_error_layer_CNR(fe);
+
+ for (i = 0; i < 3; i++) {
+ if (c->isdbt_layer_enabled & (1 << i)) {
+ /* Layer is active and has rc segments */
+ active_layers++;
+
+ /* Handle BER before vterbi */
+ rc = mb86a20s_get_pre_ber(fe, i,
+ &bit_error, &bit_count);
+ if (rc >= 0) {
+ c->pre_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER;
+ c->pre_bit_error.stat[1 + i].uvalue += bit_error;
+ c->pre_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER;
+ c->pre_bit_count.stat[1 + i].uvalue += bit_count;
+ } else if (rc != -EBUSY) {
+ /*
+ * If an I/O error happened,
+ * measures are now unavailable
+ */
+ c->pre_bit_error.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
+ c->pre_bit_count.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
+ dev_err(&state->i2c->dev,
+ "%s: Can't get BER for layer %c (error %d).\n",
+ __func__, 'A' + i, rc);
}
+ if (c->block_error.stat[1 + i].scale != FE_SCALE_NOT_AVAILABLE)
+ pre_ber_layers++;
+
+ /* Handle BER post vterbi */
+ rc = mb86a20s_get_post_ber(fe, i,
+ &bit_error, &bit_count);
+ if (rc >= 0) {
+ c->post_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER;
+ c->post_bit_error.stat[1 + i].uvalue += bit_error;
+ c->post_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER;
+ c->post_bit_count.stat[1 + i].uvalue += bit_count;
+ } else if (rc != -EBUSY) {
+ /*
+ * If an I/O error happened,
+ * measures are now unavailable
+ */
+ c->post_bit_error.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
+ c->post_bit_count.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
+ dev_err(&state->i2c->dev,
+ "%s: Can't get BER for layer %c (error %d).\n",
+ __func__, 'A' + i, rc);
+ }
+ if (c->block_error.stat[1 + i].scale != FE_SCALE_NOT_AVAILABLE)
+ post_ber_layers++;
+
+ /* Handle Block errors for PER/UCB reports */
+ rc = mb86a20s_get_blk_error(fe, i,
+ &block_error,
+ &block_count);
+ if (rc >= 0) {
+ c->block_error.stat[1 + i].scale = FE_SCALE_COUNTER;
+ c->block_error.stat[1 + i].uvalue += block_error;
+ c->block_count.stat[1 + i].scale = FE_SCALE_COUNTER;
+ c->block_count.stat[1 + i].uvalue += block_count;
+ } else if (rc != -EBUSY) {
+ /*
+ * If an I/O error happened,
+ * measures are now unavailable
+ */
+ c->block_error.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
+ c->block_count.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
+ dev_err(&state->i2c->dev,
+ "%s: Can't get PER for layer %c (error %d).\n",
+ __func__, 'A' + i, rc);
+
+ }
+ if (c->block_error.stat[1 + i].scale != FE_SCALE_NOT_AVAILABLE)
+ per_layers++;
+
+ /* Update total preBER */
+ t_pre_bit_error += c->pre_bit_error.stat[1 + i].uvalue;
+ t_pre_bit_count += c->pre_bit_count.stat[1 + i].uvalue;
+
+ /* Update total postBER */
+ t_post_bit_error += c->post_bit_error.stat[1 + i].uvalue;
+ t_post_bit_count += c->post_bit_count.stat[1 + i].uvalue;
+
+ /* Update total PER */
+ t_block_error += c->block_error.stat[1 + i].uvalue;
+ t_block_count += c->block_count.stat[1 + i].uvalue;
}
}
+ /*
+ * Start showing global count if at least one error count is
+ * available.
+ */
+ if (pre_ber_layers) {
+ /*
+ * At least one per-layer BER measure was read. We can now
+ * calculate the total BER
+ *
+ * Total Bit Error/Count is calculated as the sum of the
+ * bit errors on all active layers.
+ */
+ c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
+ c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
+ c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
+ c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
+ } else {
+ c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
+ c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
+ }
+
+ /*
+ * Start showing global count if at least one error count is
+ * available.
+ */
+ if (post_ber_layers) {
+ /*
+ * At least one per-layer BER measure was read. We can now
+ * calculate the total BER
+ *
+ * Total Bit Error/Count is calculated as the sum of the
+ * bit errors on all active layers.
+ */
+ c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
+ c->post_bit_error.stat[0].uvalue = t_post_bit_error;
+ c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
+ c->post_bit_count.stat[0].uvalue = t_post_bit_count;
+ } else {
+ c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
+ c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
+ }
+
+ if (per_layers) {
+ /*
+ * At least one per-layer UCB measure was read. We can now
+ * calculate the total UCB
+ *
+ * Total block Error/Count is calculated as the sum of the
+ * block errors on all active layers.
+ */
+ c->block_error.stat[0].scale = FE_SCALE_COUNTER;
+ c->block_error.stat[0].uvalue = t_block_error;
+ c->block_count.stat[0].scale = FE_SCALE_COUNTER;
+ c->block_count.stat[0].uvalue = t_block_count;
+ } else {
+ c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
+ c->block_count.stat[0].scale = FE_SCALE_COUNTER;
+ }
+
+ return rc;
+}
+
+/*
+ * The functions below are called via DVB callbacks, so they need to
+ * properly use the I2C gate control
+ */
+
+static int mb86a20s_initfe(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ int rc;
+ u8 regD5 = 1;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 0);
+
+ /* Initialize the frontend */
+ rc = mb86a20s_writeregdata(state, mb86a20s_init);
+ if (rc < 0)
+ goto err;
+
+ if (!state->config->is_serial) {
+ regD5 &= ~1;
+
+ rc = mb86a20s_writereg(state, 0x50, 0xd5);
+ if (rc < 0)
+ goto err;
+ rc = mb86a20s_writereg(state, 0x51, regD5);
+ if (rc < 0)
+ goto err;
+ }
+
+err:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
+ if (rc < 0) {
+ state->need_init = true;
+ dev_info(&state->i2c->dev,
+ "mb86a20s: Init failed. Will try again later\n");
+ } else {
+ state->need_init = false;
+ dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
+ }
+ return rc;
+}
+
+static int mb86a20s_set_frontend(struct dvb_frontend *fe)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ int rc;
+#if 0
+ /*
+ * FIXME: Properly implement the set frontend properties
+ */
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+#endif
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ /*
+ * Gate should already be opened, but it doesn't hurt to
+ * double-check
+ */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 1);
+ fe->ops.tuner_ops.set_params(fe);
+
+ /*
+ * Make it more reliable: if, for some reason, the initial
+ * device initialization doesn't happen, initialize it when
+ * a SBTVD parameters are adjusted.
+ *
+ * Unfortunately, due to a hard to track bug at tda829x/tda18271,
+ * the agc callback logic is not called during DVB attach time,
+ * causing mb86a20s to not be initialized with Kworld SBTVD.
+ * So, this hack is needed, in order to make Kworld SBTVD to work.
+ */
+ if (state->need_init)
+ mb86a20s_initfe(fe);
+
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 0);
+
+ rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
+ mb86a20s_reset_counters(fe);
+
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 1);
+
+ return rc;
+}
+
+static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
+ fe_status_t *status)
+{
+ struct mb86a20s_state *state = fe->demodulator_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+ int rc;
+
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
+
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 0);
+
+ /* Get lock */
+ rc = mb86a20s_read_status(fe, status);
+ if (!(*status & FE_HAS_LOCK)) {
+ mb86a20s_stats_not_ready(fe);
+ mb86a20s_reset_frontend_cache(fe);
+ }
+ if (rc < 0) {
+ dev_err(&state->i2c->dev,
+ "%s: Can't read frontend lock status\n", __func__);
+ goto error;
+ }
+
+ /* Get signal strength */
+ rc = mb86a20s_read_signal_strength(fe);
+ if (rc < 0) {
+ dev_err(&state->i2c->dev,
+ "%s: Can't reset VBER registers.\n", __func__);
+ mb86a20s_stats_not_ready(fe);
+ mb86a20s_reset_frontend_cache(fe);
+
+ rc = 0; /* Status is OK */
+ goto error;
+ }
+ /* Fill signal strength */
+ c->strength.stat[0].uvalue = rc;
+
+ if (*status & FE_HAS_LOCK) {
+ /* Get TMCC info*/
+ rc = mb86a20s_get_frontend(fe);
+ if (rc < 0) {
+ dev_err(&state->i2c->dev,
+ "%s: Can't get FE TMCC data.\n", __func__);
+ rc = 0; /* Status is OK */
+ goto error;
+ }
+
+ /* Get statistics */
+ rc = mb86a20s_get_stats(fe);
+ if (rc < 0 && rc != -EBUSY) {
+ dev_err(&state->i2c->dev,
+ "%s: Can't get FE statistics.\n", __func__);
+ rc = 0;
+ goto error;
+ }
+ rc = 0; /* Don't return EBUSY to userspace */
+ }
+ goto ok;
+
+error:
+ mb86a20s_stats_not_ready(fe);
+
+ok:
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 1);
+
+ return rc;
+}
+
+static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
+ u16 *strength)
+{
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+
+
+ *strength = c->strength.stat[0].uvalue;
+
return 0;
}
+static int mb86a20s_get_frontend_dummy(struct dvb_frontend *fe)
+{
+ /*
+ * get_frontend is now handled together with other stats
+ * retrival, when read_status() is called, as some statistics
+ * will depend on the layers detection.
+ */
+ return 0;
+};
+
static int mb86a20s_tune(struct dvb_frontend *fe,
bool re_tune,
unsigned int mode_flags,
unsigned int *delay,
fe_status_t *status)
{
+ struct mb86a20s_state *state = fe->demodulator_priv;
int rc = 0;
- dprintk("\n");
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
if (re_tune)
rc = mb86a20s_set_frontend(fe);
if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
- mb86a20s_read_status(fe, status);
+ mb86a20s_read_status_and_stats(fe, status);
return rc;
}
@@ -619,7 +1936,7 @@ static void mb86a20s_release(struct dvb_frontend *fe)
{
struct mb86a20s_state *state = fe->demodulator_priv;
- dprintk("\n");
+ dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
kfree(state);
}
@@ -629,15 +1946,16 @@ static struct dvb_frontend_ops mb86a20s_ops;
struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
struct i2c_adapter *i2c)
{
+ struct mb86a20s_state *state;
u8 rev;
- /* allocate memory for the internal state */
- struct mb86a20s_state *state =
- kzalloc(sizeof(struct mb86a20s_state), GFP_KERNEL);
+ dev_dbg(&i2c->dev, "%s called.\n", __func__);
- dprintk("\n");
+ /* allocate memory for the internal state */
+ state = kzalloc(sizeof(struct mb86a20s_state), GFP_KERNEL);
if (state == NULL) {
- rc("Unable to kzalloc\n");
+ dev_err(&i2c->dev,
+ "%s: unable to allocate memory for state\n", __func__);
goto error;
}
@@ -654,9 +1972,11 @@ struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
rev = mb86a20s_readreg(state, 0);
if (rev == 0x13) {
- printk(KERN_INFO "Detected a Fujitsu mb86a20s frontend\n");
+ dev_info(&i2c->dev,
+ "Detected a Fujitsu mb86a20s frontend\n");
} else {
- printk(KERN_ERR "Frontend revision %d is unknown - aborting.\n",
+ dev_dbg(&i2c->dev,
+ "Frontend revision %d is unknown - aborting.\n",
rev);
goto error;
}
@@ -690,9 +2010,9 @@ static struct dvb_frontend_ops mb86a20s_ops = {
.init = mb86a20s_initfe,
.set_frontend = mb86a20s_set_frontend,
- .get_frontend = mb86a20s_get_frontend,
- .read_status = mb86a20s_read_status,
- .read_signal_strength = mb86a20s_read_signal_strength,
+ .get_frontend = mb86a20s_get_frontend_dummy,
+ .read_status = mb86a20s_read_status_and_stats,
+ .read_signal_strength = mb86a20s_read_signal_strength_from_cache,
.tune = mb86a20s_tune,
};