summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/chips/jedec.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/chips/jedec.c')
-rw-r--r--drivers/mtd/chips/jedec.c934
1 files changed, 934 insertions, 0 deletions
diff --git a/drivers/mtd/chips/jedec.c b/drivers/mtd/chips/jedec.c
new file mode 100644
index 000000000000..62d235a9a4e2
--- /dev/null
+++ b/drivers/mtd/chips/jedec.c
@@ -0,0 +1,934 @@
+
+/* JEDEC Flash Interface.
+ * This is an older type of interface for self programming flash. It is
+ * commonly use in older AMD chips and is obsolete compared with CFI.
+ * It is called JEDEC because the JEDEC association distributes the ID codes
+ * for the chips.
+ *
+ * See the AMD flash databook for information on how to operate the interface.
+ *
+ * This code does not support anything wider than 8 bit flash chips, I am
+ * not going to guess how to send commands to them, plus I expect they will
+ * all speak CFI..
+ *
+ * $Id: jedec.c,v 1.22 2005/01/05 18:05:11 dwmw2 Exp $
+ */
+
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/mtd/jedec.h>
+#include <linux/mtd/map.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/compatmac.h>
+
+static struct mtd_info *jedec_probe(struct map_info *);
+static int jedec_probe8(struct map_info *map,unsigned long base,
+ struct jedec_private *priv);
+static int jedec_probe16(struct map_info *map,unsigned long base,
+ struct jedec_private *priv);
+static int jedec_probe32(struct map_info *map,unsigned long base,
+ struct jedec_private *priv);
+static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start,
+ unsigned long len);
+static int flash_erase(struct mtd_info *mtd, struct erase_info *instr);
+static int flash_write(struct mtd_info *mtd, loff_t start, size_t len,
+ size_t *retlen, const u_char *buf);
+
+static unsigned long my_bank_size;
+
+/* Listing of parts and sizes. We need this table to learn the sector
+ size of the chip and the total length */
+static const struct JEDECTable JEDEC_table[] = {
+ {
+ .jedec = 0x013D,
+ .name = "AMD Am29F017D",
+ .size = 2*1024*1024,
+ .sectorsize = 64*1024,
+ .capabilities = MTD_CAP_NORFLASH
+ },
+ {
+ .jedec = 0x01AD,
+ .name = "AMD Am29F016",
+ .size = 2*1024*1024,
+ .sectorsize = 64*1024,
+ .capabilities = MTD_CAP_NORFLASH
+ },
+ {
+ .jedec = 0x01D5,
+ .name = "AMD Am29F080",
+ .size = 1*1024*1024,
+ .sectorsize = 64*1024,
+ .capabilities = MTD_CAP_NORFLASH
+ },
+ {
+ .jedec = 0x01A4,
+ .name = "AMD Am29F040",
+ .size = 512*1024,
+ .sectorsize = 64*1024,
+ .capabilities = MTD_CAP_NORFLASH
+ },
+ {
+ .jedec = 0x20E3,
+ .name = "AMD Am29W040B",
+ .size = 512*1024,
+ .sectorsize = 64*1024,
+ .capabilities = MTD_CAP_NORFLASH
+ },
+ {
+ .jedec = 0xC2AD,
+ .name = "Macronix MX29F016",
+ .size = 2*1024*1024,
+ .sectorsize = 64*1024,
+ .capabilities = MTD_CAP_NORFLASH
+ },
+ { .jedec = 0x0 }
+};
+
+static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id);
+static void jedec_sync(struct mtd_info *mtd) {};
+static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf);
+static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf);
+
+static struct mtd_info *jedec_probe(struct map_info *map);
+
+
+
+static struct mtd_chip_driver jedec_chipdrv = {
+ .probe = jedec_probe,
+ .name = "jedec",
+ .module = THIS_MODULE
+};
+
+/* Probe entry point */
+
+static struct mtd_info *jedec_probe(struct map_info *map)
+{
+ struct mtd_info *MTD;
+ struct jedec_private *priv;
+ unsigned long Base;
+ unsigned long SectorSize;
+ unsigned count;
+ unsigned I,Uniq;
+ char Part[200];
+ memset(&priv,0,sizeof(priv));
+
+ MTD = kmalloc(sizeof(struct mtd_info) + sizeof(struct jedec_private), GFP_KERNEL);
+ if (!MTD)
+ return NULL;
+
+ memset(MTD, 0, sizeof(struct mtd_info) + sizeof(struct jedec_private));
+ priv = (struct jedec_private *)&MTD[1];
+
+ my_bank_size = map->size;
+
+ if (map->size/my_bank_size > MAX_JEDEC_CHIPS)
+ {
+ printk("mtd: Increase MAX_JEDEC_CHIPS, too many banks.\n");
+ kfree(MTD);
+ return NULL;
+ }
+
+ for (Base = 0; Base < map->size; Base += my_bank_size)
+ {
+ // Perhaps zero could designate all tests?
+ if (map->buswidth == 0)
+ map->buswidth = 1;
+
+ if (map->buswidth == 1){
+ if (jedec_probe8(map,Base,priv) == 0) {
+ printk("did recognize jedec chip\n");
+ kfree(MTD);
+ return NULL;
+ }
+ }
+ if (map->buswidth == 2)
+ jedec_probe16(map,Base,priv);
+ if (map->buswidth == 4)
+ jedec_probe32(map,Base,priv);
+ }
+
+ // Get the biggest sector size
+ SectorSize = 0;
+ for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
+ {
+ // printk("priv->chips[%d].jedec is %x\n",I,priv->chips[I].jedec);
+ // printk("priv->chips[%d].sectorsize is %lx\n",I,priv->chips[I].sectorsize);
+ if (priv->chips[I].sectorsize > SectorSize)
+ SectorSize = priv->chips[I].sectorsize;
+ }
+
+ // Quickly ensure that the other sector sizes are factors of the largest
+ for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
+ {
+ if ((SectorSize/priv->chips[I].sectorsize)*priv->chips[I].sectorsize != SectorSize)
+ {
+ printk("mtd: Failed. Device has incompatible mixed sector sizes\n");
+ kfree(MTD);
+ return NULL;
+ }
+ }
+
+ /* Generate a part name that includes the number of different chips and
+ other configuration information */
+ count = 1;
+ strlcpy(Part,map->name,sizeof(Part)-10);
+ strcat(Part," ");
+ Uniq = 0;
+ for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
+ {
+ const struct JEDECTable *JEDEC;
+
+ if (priv->chips[I+1].jedec == priv->chips[I].jedec)
+ {
+ count++;
+ continue;
+ }
+
+ // Locate the chip in the jedec table
+ JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec);
+ if (JEDEC == 0)
+ {
+ printk("mtd: Internal Error, JEDEC not set\n");
+ kfree(MTD);
+ return NULL;
+ }
+
+ if (Uniq != 0)
+ strcat(Part,",");
+ Uniq++;
+
+ if (count != 1)
+ sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name);
+ else
+ sprintf(Part+strlen(Part),"%s",JEDEC->name);
+ if (strlen(Part) > sizeof(Part)*2/3)
+ break;
+ count = 1;
+ }
+
+ /* Determine if the chips are organized in a linear fashion, or if there
+ are empty banks. Note, the last bank does not count here, only the
+ first banks are important. Holes on non-bank boundaries can not exist
+ due to the way the detection algorithm works. */
+ if (priv->size < my_bank_size)
+ my_bank_size = priv->size;
+ priv->is_banked = 0;
+ //printk("priv->size is %x, my_bank_size is %x\n",priv->size,my_bank_size);
+ //printk("priv->bank_fill[0] is %x\n",priv->bank_fill[0]);
+ if (!priv->size) {
+ printk("priv->size is zero\n");
+ kfree(MTD);
+ return NULL;
+ }
+ if (priv->size/my_bank_size) {
+ if (priv->size/my_bank_size == 1) {
+ priv->size = my_bank_size;
+ }
+ else {
+ for (I = 0; I != priv->size/my_bank_size - 1; I++)
+ {
+ if (priv->bank_fill[I] != my_bank_size)
+ priv->is_banked = 1;
+
+ /* This even could be eliminated, but new de-optimized read/write
+ functions have to be written */
+ printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lx\n",I,priv->bank_fill[I],priv->bank_fill[0]);
+ if (priv->bank_fill[I] != priv->bank_fill[0])
+ {
+ printk("mtd: Failed. Cannot handle unsymmetric banking\n");
+ kfree(MTD);
+ return NULL;
+ }
+ }
+ }
+ }
+ if (priv->is_banked == 1)
+ strcat(Part,", banked");
+
+ // printk("Part: '%s'\n",Part);
+
+ memset(MTD,0,sizeof(*MTD));
+ // strlcpy(MTD->name,Part,sizeof(MTD->name));
+ MTD->name = map->name;
+ MTD->type = MTD_NORFLASH;
+ MTD->flags = MTD_CAP_NORFLASH;
+ MTD->erasesize = SectorSize*(map->buswidth);
+ // printk("MTD->erasesize is %x\n",(unsigned int)MTD->erasesize);
+ MTD->size = priv->size;
+ // printk("MTD->size is %x\n",(unsigned int)MTD->size);
+ //MTD->module = THIS_MODULE; // ? Maybe this should be the low level module?
+ MTD->erase = flash_erase;
+ if (priv->is_banked == 1)
+ MTD->read = jedec_read_banked;
+ else
+ MTD->read = jedec_read;
+ MTD->write = flash_write;
+ MTD->sync = jedec_sync;
+ MTD->priv = map;
+ map->fldrv_priv = priv;
+ map->fldrv = &jedec_chipdrv;
+ __module_get(THIS_MODULE);
+ return MTD;
+}
+
+/* Helper for the JEDEC function, JEDEC numbers all have odd parity */
+static int checkparity(u_char C)
+{
+ u_char parity = 0;
+ while (C != 0)
+ {
+ parity ^= C & 1;
+ C >>= 1;
+ }
+
+ return parity == 1;
+}
+
+
+/* Take an array of JEDEC numbers that represent interleved flash chips
+ and process them. Check to make sure they are good JEDEC numbers, look
+ them up and then add them to the chip list */
+static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count,
+ unsigned long base,struct jedec_private *priv)
+{
+ unsigned I,J;
+ unsigned long Size;
+ unsigned long SectorSize;
+ const struct JEDECTable *JEDEC;
+
+ // Test #2 JEDEC numbers exhibit odd parity
+ for (I = 0; I != Count; I++)
+ {
+ if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0)
+ return 0;
+ }
+
+ // Finally, just make sure all the chip sizes are the same
+ JEDEC = jedec_idtoinf(Mfg[0],Id[0]);
+
+ if (JEDEC == 0)
+ {
+ printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]);
+ return 0;
+ }
+
+ Size = JEDEC->size;
+ SectorSize = JEDEC->sectorsize;
+ for (I = 0; I != Count; I++)
+ {
+ JEDEC = jedec_idtoinf(Mfg[0],Id[0]);
+ if (JEDEC == 0)
+ {
+ printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]);
+ return 0;
+ }
+
+ if (Size != JEDEC->size || SectorSize != JEDEC->sectorsize)
+ {
+ printk("mtd: Failed. Interleved flash does not have matching characteristics\n");
+ return 0;
+ }
+ }
+
+ // Load the Chips
+ for (I = 0; I != MAX_JEDEC_CHIPS; I++)
+ {
+ if (priv->chips[I].jedec == 0)
+ break;
+ }
+
+ if (I + Count > MAX_JEDEC_CHIPS)
+ {
+ printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPS\n");
+ return 0;
+ }
+
+ // Add them to the table
+ for (J = 0; J != Count; J++)
+ {
+ unsigned long Bank;
+
+ JEDEC = jedec_idtoinf(Mfg[J],Id[J]);
+ priv->chips[I].jedec = (Mfg[J] << 8) | Id[J];
+ priv->chips[I].size = JEDEC->size;
+ priv->chips[I].sectorsize = JEDEC->sectorsize;
+ priv->chips[I].base = base + J;
+ priv->chips[I].datashift = J*8;
+ priv->chips[I].capabilities = JEDEC->capabilities;
+ priv->chips[I].offset = priv->size + J;
+
+ // log2 n :|
+ priv->chips[I].addrshift = 0;
+ for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++);
+
+ // Determine how filled this bank is.
+ Bank = base & (~(my_bank_size-1));
+ if (priv->bank_fill[Bank/my_bank_size] < base +
+ (JEDEC->size << priv->chips[I].addrshift) - Bank)
+ priv->bank_fill[Bank/my_bank_size] = base + (JEDEC->size << priv->chips[I].addrshift) - Bank;
+ I++;
+ }
+
+ priv->size += priv->chips[I-1].size*Count;
+
+ return priv->chips[I-1].size;
+}
+
+/* Lookup the chip information from the JEDEC ID table. */
+static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id)
+{
+ __u16 Id = (mfr << 8) | id;
+ unsigned long I = 0;
+ for (I = 0; JEDEC_table[I].jedec != 0; I++)
+ if (JEDEC_table[I].jedec == Id)
+ return JEDEC_table + I;
+ return NULL;
+}
+
+// Look for flash using an 8 bit bus interface
+static int jedec_probe8(struct map_info *map,unsigned long base,
+ struct jedec_private *priv)
+{
+ #define flread(x) map_read8(map,base+x)
+ #define flwrite(v,x) map_write8(map,v,base+x)
+
+ const unsigned long AutoSel1 = 0xAA;
+ const unsigned long AutoSel2 = 0x55;
+ const unsigned long AutoSel3 = 0x90;
+ const unsigned long Reset = 0xF0;
+ __u32 OldVal;
+ __u8 Mfg[1];
+ __u8 Id[1];
+ unsigned I;
+ unsigned long Size;
+
+ // Wait for any write/erase operation to settle
+ OldVal = flread(base);
+ for (I = 0; OldVal != flread(base) && I < 10000; I++)
+ OldVal = flread(base);
+
+ // Reset the chip
+ flwrite(Reset,0x555);
+
+ // Send the sequence
+ flwrite(AutoSel1,0x555);
+ flwrite(AutoSel2,0x2AA);
+ flwrite(AutoSel3,0x555);
+
+ // Get the JEDEC numbers
+ Mfg[0] = flread(0);
+ Id[0] = flread(1);
+ // printk("Mfg is %x, Id is %x\n",Mfg[0],Id[0]);
+
+ Size = handle_jedecs(map,Mfg,Id,1,base,priv);
+ // printk("handle_jedecs Size is %x\n",(unsigned int)Size);
+ if (Size == 0)
+ {
+ flwrite(Reset,0x555);
+ return 0;
+ }
+
+
+ // Reset.
+ flwrite(Reset,0x555);
+
+ return 1;
+
+ #undef flread
+ #undef flwrite
+}
+
+// Look for flash using a 16 bit bus interface (ie 2 8-bit chips)
+static int jedec_probe16(struct map_info *map,unsigned long base,
+ struct jedec_private *priv)
+{
+ return 0;
+}
+
+// Look for flash using a 32 bit bus interface (ie 4 8-bit chips)
+static int jedec_probe32(struct map_info *map,unsigned long base,
+ struct jedec_private *priv)
+{
+ #define flread(x) map_read32(map,base+((x)<<2))
+ #define flwrite(v,x) map_write32(map,v,base+((x)<<2))
+
+ const unsigned long AutoSel1 = 0xAAAAAAAA;
+ const unsigned long AutoSel2 = 0x55555555;
+ const unsigned long AutoSel3 = 0x90909090;
+ const unsigned long Reset = 0xF0F0F0F0;
+ __u32 OldVal;
+ __u8 Mfg[4];
+ __u8 Id[4];
+ unsigned I;
+ unsigned long Size;
+
+ // Wait for any write/erase operation to settle
+ OldVal = flread(base);
+ for (I = 0; OldVal != flread(base) && I < 10000; I++)
+ OldVal = flread(base);
+
+ // Reset the chip
+ flwrite(Reset,0x555);
+
+ // Send the sequence
+ flwrite(AutoSel1,0x555);
+ flwrite(AutoSel2,0x2AA);
+ flwrite(AutoSel3,0x555);
+
+ // Test #1, JEDEC numbers are readable from 0x??00/0x??01
+ if (flread(0) != flread(0x100) ||
+ flread(1) != flread(0x101))
+ {
+ flwrite(Reset,0x555);
+ return 0;
+ }
+
+ // Split up the JEDEC numbers
+ OldVal = flread(0);
+ for (I = 0; I != 4; I++)
+ Mfg[I] = (OldVal >> (I*8));
+ OldVal = flread(1);
+ for (I = 0; I != 4; I++)
+ Id[I] = (OldVal >> (I*8));
+
+ Size = handle_jedecs(map,Mfg,Id,4,base,priv);
+ if (Size == 0)
+ {
+ flwrite(Reset,0x555);
+ return 0;
+ }
+
+ /* Check if there is address wrap around within a single bank, if this
+ returns JEDEC numbers then we assume that it is wrap around. Notice
+ we call this routine with the JEDEC return still enabled, if two or
+ more flashes have a truncated address space the probe test will still
+ work */
+ if (base + (Size<<2)+0x555 < map->size &&
+ base + (Size<<2)+0x555 < (base & (~(my_bank_size-1))) + my_bank_size)
+ {
+ if (flread(base+Size) != flread(base+Size + 0x100) ||
+ flread(base+Size + 1) != flread(base+Size + 0x101))
+ {
+ jedec_probe32(map,base+Size,priv);
+ }
+ }
+
+ // Reset.
+ flwrite(0xF0F0F0F0,0x555);
+
+ return 1;
+
+ #undef flread
+ #undef flwrite
+}
+
+/* Linear read. */
+static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ struct map_info *map = mtd->priv;
+
+ map_copy_from(map, buf, from, len);
+ *retlen = len;
+ return 0;
+}
+
+/* Banked read. Take special care to jump past the holes in the bank
+ mapping. This version assumes symetry in the holes.. */
+static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ struct map_info *map = mtd->priv;
+ struct jedec_private *priv = map->fldrv_priv;
+
+ *retlen = 0;
+ while (len > 0)
+ {
+ // Determine what bank and offset into that bank the first byte is
+ unsigned long bank = from & (~(priv->bank_fill[0]-1));
+ unsigned long offset = from & (priv->bank_fill[0]-1);
+ unsigned long get = len;
+ if (priv->bank_fill[0] - offset < len)
+ get = priv->bank_fill[0] - offset;
+
+ bank /= priv->bank_fill[0];
+ map_copy_from(map,buf + *retlen,bank*my_bank_size + offset,get);
+
+ len -= get;
+ *retlen += get;
+ from += get;
+ }
+ return 0;
+}
+
+/* Pass the flags value that the flash return before it re-entered read
+ mode. */
+static void jedec_flash_failed(unsigned char code)
+{
+ /* Bit 5 being high indicates that there was an internal device
+ failure, erasure time limits exceeded or something */
+ if ((code & (1 << 5)) != 0)
+ {
+ printk("mtd: Internal Flash failure\n");
+ return;
+ }
+ printk("mtd: Programming didn't take\n");
+}
+
+/* This uses the erasure function described in the AMD Flash Handbook,
+ it will work for flashes with a fixed sector size only. Flashes with
+ a selection of sector sizes (ie the AMD Am29F800B) will need a different
+ routine. This routine tries to parallize erasing multiple chips/sectors
+ where possible */
+static int flash_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ // Does IO to the currently selected chip
+ #define flread(x) map_read8(map,chip->base+((x)<<chip->addrshift))
+ #define flwrite(v,x) map_write8(map,v,chip->base+((x)<<chip->addrshift))
+
+ unsigned long Time = 0;
+ unsigned long NoTime = 0;
+ unsigned long start = instr->addr, len = instr->len;
+ unsigned int I;
+ struct map_info *map = mtd->priv;
+ struct jedec_private *priv = map->fldrv_priv;
+
+ // Verify the arguments..
+ if (start + len > mtd->size ||
+ (start % mtd->erasesize) != 0 ||
+ (len % mtd->erasesize) != 0 ||
+ (len/mtd->erasesize) == 0)
+ return -EINVAL;
+
+ jedec_flash_chip_scan(priv,start,len);
+
+ // Start the erase sequence on each chip
+ for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
+ {
+ unsigned long off;
+ struct jedec_flash_chip *chip = priv->chips + I;
+
+ if (chip->length == 0)
+ continue;
+
+ if (chip->start + chip->length > chip->size)
+ {
+ printk("DIE\n");
+ return -EIO;
+ }
+
+ flwrite(0xF0,chip->start + 0x555);
+ flwrite(0xAA,chip->start + 0x555);
+ flwrite(0x55,chip->start + 0x2AA);
+ flwrite(0x80,chip->start + 0x555);
+ flwrite(0xAA,chip->start + 0x555);
+ flwrite(0x55,chip->start + 0x2AA);
+
+ /* Once we start selecting the erase sectors the delay between each
+ command must not exceed 50us or it will immediately start erasing
+ and ignore the other sectors */
+ for (off = 0; off < len; off += chip->sectorsize)
+ {
+ // Check to make sure we didn't timeout
+ flwrite(0x30,chip->start + off);
+ if (off == 0)
+ continue;
+ if ((flread(chip->start + off) & (1 << 3)) != 0)
+ {
+ printk("mtd: Ack! We timed out the erase timer!\n");
+ return -EIO;
+ }
+ }
+ }
+
+ /* We could split this into a timer routine and return early, performing
+ background erasure.. Maybe later if the need warrents */
+
+ /* Poll the flash for erasure completion, specs say this can take as long
+ as 480 seconds to do all the sectors (for a 2 meg flash).
+ Erasure time is dependent on chip age, temp and wear.. */
+
+ /* This being a generic routine assumes a 32 bit bus. It does read32s
+ and bundles interleved chips into the same grouping. This will work
+ for all bus widths */
+ Time = 0;
+ NoTime = 0;
+ for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
+ {
+ struct jedec_flash_chip *chip = priv->chips + I;
+ unsigned long off = 0;
+ unsigned todo[4] = {0,0,0,0};
+ unsigned todo_left = 0;
+ unsigned J;
+
+ if (chip->length == 0)
+ continue;
+
+ /* Find all chips in this data line, realistically this is all
+ or nothing up to the interleve count */
+ for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
+ {
+ if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
+ (chip->base & (~((1<<chip->addrshift)-1))))
+ {
+ todo_left++;
+ todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1;
+ }
+ }
+
+ /* printk("todo: %x %x %x %x\n",(short)todo[0],(short)todo[1],
+ (short)todo[2],(short)todo[3]);
+ */
+ while (1)
+ {
+ __u32 Last[4];
+ unsigned long Count = 0;
+
+ /* During erase bit 7 is held low and bit 6 toggles, we watch this,
+ should it stop toggling or go high then the erase is completed,
+ or this is not really flash ;> */
+ switch (map->buswidth) {
+ case 1:
+ Last[0] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
+ Last[1] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
+ Last[2] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
+ break;
+ case 2:
+ Last[0] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
+ Last[1] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
+ Last[2] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
+ break;
+ case 3:
+ Last[0] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
+ Last[1] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
+ Last[2] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
+ break;
+ }
+ Count = 3;
+ while (todo_left != 0)
+ {
+ for (J = 0; J != 4; J++)
+ {
+ __u8 Byte1 = (Last[(Count-1)%4] >> (J*8)) & 0xFF;
+ __u8 Byte2 = (Last[(Count-2)%4] >> (J*8)) & 0xFF;
+ __u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF;
+ if (todo[J] == 0)
+ continue;
+
+ if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2)
+ {
+// printk("Check %x %x %x\n",(short)J,(short)Byte1,(short)Byte2);
+ continue;
+ }
+
+ if (Byte1 == Byte2)
+ {
+ jedec_flash_failed(Byte3);
+ return -EIO;
+ }
+
+ todo[J] = 0;
+ todo_left--;
+ }
+
+/* if (NoTime == 0)
+ Time += HZ/10 - schedule_timeout(HZ/10);*/
+ NoTime = 0;
+
+ switch (map->buswidth) {
+ case 1:
+ Last[Count % 4] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
+ break;
+ case 2:
+ Last[Count % 4] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
+ break;
+ case 4:
+ Last[Count % 4] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
+ break;
+ }
+ Count++;
+
+/* // Count time, max of 15s per sector (according to AMD)
+ if (Time > 15*len/mtd->erasesize*HZ)
+ {
+ printk("mtd: Flash Erase Timed out\n");
+ return -EIO;
+ } */
+ }
+
+ // Skip to the next chip if we used chip erase
+ if (chip->length == chip->size)
+ off = chip->size;
+ else
+ off += chip->sectorsize;
+
+ if (off >= chip->length)
+ break;
+ NoTime = 1;
+ }
+
+ for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
+ {
+ if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
+ (chip->base & (~((1<<chip->addrshift)-1))))
+ priv->chips[J].length = 0;
+ }
+ }
+
+ //printk("done\n");
+ instr->state = MTD_ERASE_DONE;
+ mtd_erase_callback(instr);
+ return 0;
+
+ #undef flread
+ #undef flwrite
+}
+
+/* This is the simple flash writing function. It writes to every byte, in
+ sequence. It takes care of how to properly address the flash if
+ the flash is interleved. It can only be used if all the chips in the
+ array are identical!*/
+static int flash_write(struct mtd_info *mtd, loff_t start, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+ /* Does IO to the currently selected chip. It takes the bank addressing
+ base (which is divisible by the chip size) adds the necessary lower bits
+ of addrshift (interleave index) and then adds the control register index. */
+ #define flread(x) map_read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
+ #define flwrite(v,x) map_write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
+
+ struct map_info *map = mtd->priv;
+ struct jedec_private *priv = map->fldrv_priv;
+ unsigned long base;
+ unsigned long off;
+ size_t save_len = len;
+
+ if (start + len > mtd->size)
+ return -EIO;
+
+ //printk("Here");
+
+ //printk("flash_write: start is %x, len is %x\n",start,(unsigned long)len);
+ while (len != 0)
+ {
+ struct jedec_flash_chip *chip = priv->chips;
+ unsigned long bank;
+ unsigned long boffset;
+
+ // Compute the base of the flash.
+ off = ((unsigned long)start) % (chip->size << chip->addrshift);
+ base = start - off;
+
+ // Perform banked addressing translation.
+ bank = base & (~(priv->bank_fill[0]-1));
+ boffset = base & (priv->bank_fill[0]-1);
+ bank = (bank/priv->bank_fill[0])*my_bank_size;
+ base = bank + boffset;
+
+ // printk("Flasing %X %X %X\n",base,chip->size,len);
+ // printk("off is %x, compare with %x\n",off,chip->size << chip->addrshift);
+
+ // Loop over this page
+ for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++)
+ {
+ unsigned char oldbyte = map_read8(map,base+off);
+ unsigned char Last[4];
+ unsigned long Count = 0;
+
+ if (oldbyte == *buf) {
+ // printk("oldbyte and *buf is %x,len is %x\n",oldbyte,len);
+ continue;
+ }
+ if (((~oldbyte) & *buf) != 0)
+ printk("mtd: warn: Trying to set a 0 to a 1\n");
+
+ // Write
+ flwrite(0xAA,0x555);
+ flwrite(0x55,0x2AA);
+ flwrite(0xA0,0x555);
+ map_write8(map,*buf,base + off);
+ Last[0] = map_read8(map,base + off);
+ Last[1] = map_read8(map,base + off);
+ Last[2] = map_read8(map,base + off);
+
+ /* Wait for the flash to finish the operation. We store the last 4
+ status bytes that have been retrieved so we can determine why
+ it failed. The toggle bits keep toggling when there is a
+ failure */
+ for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] &&
+ Count < 10000; Count++)
+ Last[Count % 4] = map_read8(map,base + off);
+ if (Last[(Count - 1) % 4] != *buf)
+ {
+ jedec_flash_failed(Last[(Count - 3) % 4]);
+ return -EIO;
+ }
+ }
+ }
+ *retlen = save_len;
+ return 0;
+}
+
+/* This is used to enhance the speed of the erase routine,
+ when things are being done to multiple chips it is possible to
+ parallize the operations, particularly full memory erases of multi
+ chip memories benifit */
+static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start,
+ unsigned long len)
+{
+ unsigned int I;
+
+ // Zero the records
+ for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
+ priv->chips[I].start = priv->chips[I].length = 0;
+
+ // Intersect the region with each chip
+ for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
+ {
+ struct jedec_flash_chip *chip = priv->chips + I;
+ unsigned long ByteStart;
+ unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift);
+
+ // End is before this chip or the start is after it
+ if (start+len < chip->offset ||
+ ChipEndByte - (1 << chip->addrshift) < start)
+ continue;
+
+ if (start < chip->offset)
+ {
+ ByteStart = chip->offset;
+ chip->start = 0;
+ }
+ else
+ {
+ chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift;
+ ByteStart = start;
+ }
+
+ if (start + len >= ChipEndByte)
+ chip->length = (ChipEndByte - ByteStart) >> chip->addrshift;
+ else
+ chip->length = (start + len - ByteStart + (1 << chip->addrshift)-1) >> chip->addrshift;
+ }
+}
+
+int __init jedec_init(void)
+{
+ register_mtd_chip_driver(&jedec_chipdrv);
+ return 0;
+}
+
+static void __exit jedec_exit(void)
+{
+ unregister_mtd_chip_driver(&jedec_chipdrv);
+}
+
+module_init(jedec_init);
+module_exit(jedec_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Jason Gunthorpe <jgg@deltatee.com> et al.");
+MODULE_DESCRIPTION("Old MTD chip driver for JEDEC-compliant flash chips");