summaryrefslogtreecommitdiffstats
path: root/drivers/scsi/cyberstorm.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/scsi/cyberstorm.c')
-rw-r--r--drivers/scsi/cyberstorm.c377
1 files changed, 377 insertions, 0 deletions
diff --git a/drivers/scsi/cyberstorm.c b/drivers/scsi/cyberstorm.c
new file mode 100644
index 000000000000..bdbca85d1675
--- /dev/null
+++ b/drivers/scsi/cyberstorm.c
@@ -0,0 +1,377 @@
+/* cyberstorm.c: Driver for CyberStorm SCSI Controller.
+ *
+ * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
+ *
+ * The CyberStorm SCSI driver is based on David S. Miller's ESP driver
+ * for the Sparc computers.
+ *
+ * This work was made possible by Phase5 who willingly (and most generously)
+ * supported me with hardware and all the information I needed.
+ */
+
+/* TODO:
+ *
+ * 1) Figure out how to make a cleaner merge with the sparc driver with regard
+ * to the caches and the Sparc MMU mapping.
+ * 2) Make as few routines required outside the generic driver. A lot of the
+ * routines in this file used to be inline!
+ */
+
+#include <linux/module.h>
+
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/delay.h>
+#include <linux/types.h>
+#include <linux/string.h>
+#include <linux/slab.h>
+#include <linux/blkdev.h>
+#include <linux/proc_fs.h>
+#include <linux/stat.h>
+#include <linux/interrupt.h>
+
+#include "scsi.h"
+#include <scsi/scsi_host.h>
+#include "NCR53C9x.h"
+
+#include <linux/zorro.h>
+#include <asm/irq.h>
+#include <asm/amigaints.h>
+#include <asm/amigahw.h>
+
+#include <asm/pgtable.h>
+
+/* The controller registers can be found in the Z2 config area at these
+ * offsets:
+ */
+#define CYBER_ESP_ADDR 0xf400
+#define CYBER_DMA_ADDR 0xf800
+
+
+/* The CyberStorm DMA interface */
+struct cyber_dma_registers {
+ volatile unsigned char dma_addr0; /* DMA address (MSB) [0x000] */
+ unsigned char dmapad1[1];
+ volatile unsigned char dma_addr1; /* DMA address [0x002] */
+ unsigned char dmapad2[1];
+ volatile unsigned char dma_addr2; /* DMA address [0x004] */
+ unsigned char dmapad3[1];
+ volatile unsigned char dma_addr3; /* DMA address (LSB) [0x006] */
+ unsigned char dmapad4[0x3fb];
+ volatile unsigned char cond_reg; /* DMA cond (ro) [0x402] */
+#define ctrl_reg cond_reg /* DMA control (wo) [0x402] */
+};
+
+/* DMA control bits */
+#define CYBER_DMA_LED 0x80 /* HD led control 1 = on */
+#define CYBER_DMA_WRITE 0x40 /* DMA direction. 1 = write */
+#define CYBER_DMA_Z3 0x20 /* 16 (Z2) or 32 (CHIP/Z3) bit DMA transfer */
+
+/* DMA status bits */
+#define CYBER_DMA_HNDL_INTR 0x80 /* DMA IRQ pending? */
+
+/* The bits below appears to be Phase5 Debug bits only; they were not
+ * described by Phase5 so using them may seem a bit stupid...
+ */
+#define CYBER_HOST_ID 0x02 /* If set, host ID should be 7, otherwise
+ * it should be 6.
+ */
+#define CYBER_SLOW_CABLE 0x08 /* If *not* set, assume SLOW_CABLE */
+
+static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count);
+static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp);
+static void dma_dump_state(struct NCR_ESP *esp);
+static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length);
+static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length);
+static void dma_ints_off(struct NCR_ESP *esp);
+static void dma_ints_on(struct NCR_ESP *esp);
+static int dma_irq_p(struct NCR_ESP *esp);
+static void dma_led_off(struct NCR_ESP *esp);
+static void dma_led_on(struct NCR_ESP *esp);
+static int dma_ports_p(struct NCR_ESP *esp);
+static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write);
+
+static unsigned char ctrl_data = 0; /* Keep backup of the stuff written
+ * to ctrl_reg. Always write a copy
+ * to this register when writing to
+ * the hardware register!
+ */
+
+static volatile unsigned char cmd_buffer[16];
+ /* This is where all commands are put
+ * before they are transferred to the ESP chip
+ * via PIO.
+ */
+
+/***************************************************************** Detection */
+int __init cyber_esp_detect(Scsi_Host_Template *tpnt)
+{
+ struct NCR_ESP *esp;
+ struct zorro_dev *z = NULL;
+ unsigned long address;
+
+ while ((z = zorro_find_device(ZORRO_WILDCARD, z))) {
+ unsigned long board = z->resource.start;
+ if ((z->id == ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM ||
+ z->id == ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060) &&
+ request_mem_region(board+CYBER_ESP_ADDR,
+ sizeof(struct ESP_regs), "NCR53C9x")) {
+ /* Figure out if this is a CyberStorm or really a
+ * Fastlane/Blizzard Mk II by looking at the board size.
+ * CyberStorm maps 64kB
+ * (ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM does anyway)
+ */
+ if(z->resource.end-board != 0xffff) {
+ release_mem_region(board+CYBER_ESP_ADDR,
+ sizeof(struct ESP_regs));
+ return 0;
+ }
+ esp = esp_allocate(tpnt, (void *)board+CYBER_ESP_ADDR);
+
+ /* Do command transfer with programmed I/O */
+ esp->do_pio_cmds = 1;
+
+ /* Required functions */
+ esp->dma_bytes_sent = &dma_bytes_sent;
+ esp->dma_can_transfer = &dma_can_transfer;
+ esp->dma_dump_state = &dma_dump_state;
+ esp->dma_init_read = &dma_init_read;
+ esp->dma_init_write = &dma_init_write;
+ esp->dma_ints_off = &dma_ints_off;
+ esp->dma_ints_on = &dma_ints_on;
+ esp->dma_irq_p = &dma_irq_p;
+ esp->dma_ports_p = &dma_ports_p;
+ esp->dma_setup = &dma_setup;
+
+ /* Optional functions */
+ esp->dma_barrier = 0;
+ esp->dma_drain = 0;
+ esp->dma_invalidate = 0;
+ esp->dma_irq_entry = 0;
+ esp->dma_irq_exit = 0;
+ esp->dma_led_on = &dma_led_on;
+ esp->dma_led_off = &dma_led_off;
+ esp->dma_poll = 0;
+ esp->dma_reset = 0;
+
+ /* SCSI chip speed */
+ esp->cfreq = 40000000;
+
+ /* The DMA registers on the CyberStorm are mapped
+ * relative to the device (i.e. in the same Zorro
+ * I/O block).
+ */
+ address = (unsigned long)ZTWO_VADDR(board);
+ esp->dregs = (void *)(address + CYBER_DMA_ADDR);
+
+ /* ESP register base */
+ esp->eregs = (struct ESP_regs *)(address + CYBER_ESP_ADDR);
+
+ /* Set the command buffer */
+ esp->esp_command = cmd_buffer;
+ esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer);
+
+ esp->irq = IRQ_AMIGA_PORTS;
+ request_irq(IRQ_AMIGA_PORTS, esp_intr, SA_SHIRQ,
+ "CyberStorm SCSI", esp->ehost);
+ /* Figure out our scsi ID on the bus */
+ /* The DMA cond flag contains a hardcoded jumper bit
+ * which can be used to select host number 6 or 7.
+ * However, even though it may change, we use a hardcoded
+ * value of 7.
+ */
+ esp->scsi_id = 7;
+
+ /* We don't have a differential SCSI-bus. */
+ esp->diff = 0;
+
+ esp_initialize(esp);
+
+ printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use);
+ esps_running = esps_in_use;
+ return esps_in_use;
+ }
+ }
+ return 0;
+}
+
+/************************************************************* DMA Functions */
+static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count)
+{
+ /* Since the CyberStorm DMA is fully dedicated to the ESP chip,
+ * the number of bytes sent (to the ESP chip) equals the number
+ * of bytes in the FIFO - there is no buffering in the DMA controller.
+ * XXXX Do I read this right? It is from host to ESP, right?
+ */
+ return fifo_count;
+}
+
+static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp)
+{
+ /* I don't think there's any limit on the CyberDMA. So we use what
+ * the ESP chip can handle (24 bit).
+ */
+ unsigned long sz = sp->SCp.this_residual;
+ if(sz > 0x1000000)
+ sz = 0x1000000;
+ return sz;
+}
+
+static void dma_dump_state(struct NCR_ESP *esp)
+{
+ ESPLOG(("esp%d: dma -- cond_reg<%02x>\n",
+ esp->esp_id, ((struct cyber_dma_registers *)
+ (esp->dregs))->cond_reg));
+ ESPLOG(("intreq:<%04x>, intena:<%04x>\n",
+ custom.intreqr, custom.intenar));
+}
+
+static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length)
+{
+ struct cyber_dma_registers *dregs =
+ (struct cyber_dma_registers *) esp->dregs;
+
+ cache_clear(addr, length);
+
+ addr &= ~(1);
+ dregs->dma_addr0 = (addr >> 24) & 0xff;
+ dregs->dma_addr1 = (addr >> 16) & 0xff;
+ dregs->dma_addr2 = (addr >> 8) & 0xff;
+ dregs->dma_addr3 = (addr ) & 0xff;
+ ctrl_data &= ~(CYBER_DMA_WRITE);
+
+ /* Check if physical address is outside Z2 space and of
+ * block length/block aligned in memory. If this is the
+ * case, enable 32 bit transfer. In all other cases, fall back
+ * to 16 bit transfer.
+ * Obviously 32 bit transfer should be enabled if the DMA address
+ * and length are 32 bit aligned. However, this leads to some
+ * strange behavior. Even 64 bit aligned addr/length fails.
+ * Until I've found a reason for this, 32 bit transfer is only
+ * used for full-block transfers (1kB).
+ * -jskov
+ */
+#if 0
+ if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) &&
+ (addr < 0xff0000)))
+ ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
+ else
+ ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */
+#else
+ ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
+#endif
+ dregs->ctrl_reg = ctrl_data;
+}
+
+static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length)
+{
+ struct cyber_dma_registers *dregs =
+ (struct cyber_dma_registers *) esp->dregs;
+
+ cache_push(addr, length);
+
+ addr |= 1;
+ dregs->dma_addr0 = (addr >> 24) & 0xff;
+ dregs->dma_addr1 = (addr >> 16) & 0xff;
+ dregs->dma_addr2 = (addr >> 8) & 0xff;
+ dregs->dma_addr3 = (addr ) & 0xff;
+ ctrl_data |= CYBER_DMA_WRITE;
+
+ /* See comment above */
+#if 0
+ if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) &&
+ (addr < 0xff0000)))
+ ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
+ else
+ ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */
+#else
+ ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
+#endif
+ dregs->ctrl_reg = ctrl_data;
+}
+
+static void dma_ints_off(struct NCR_ESP *esp)
+{
+ disable_irq(esp->irq);
+}
+
+static void dma_ints_on(struct NCR_ESP *esp)
+{
+ enable_irq(esp->irq);
+}
+
+static int dma_irq_p(struct NCR_ESP *esp)
+{
+ /* It's important to check the DMA IRQ bit in the correct way! */
+ return ((esp_read(esp->eregs->esp_status) & ESP_STAT_INTR) &&
+ ((((struct cyber_dma_registers *)(esp->dregs))->cond_reg) &
+ CYBER_DMA_HNDL_INTR));
+}
+
+static void dma_led_off(struct NCR_ESP *esp)
+{
+ ctrl_data &= ~CYBER_DMA_LED;
+ ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data;
+}
+
+static void dma_led_on(struct NCR_ESP *esp)
+{
+ ctrl_data |= CYBER_DMA_LED;
+ ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data;
+}
+
+static int dma_ports_p(struct NCR_ESP *esp)
+{
+ return ((custom.intenar) & IF_PORTS);
+}
+
+static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write)
+{
+ /* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
+ * so when (write) is true, it actually means READ!
+ */
+ if(write){
+ dma_init_read(esp, addr, count);
+ } else {
+ dma_init_write(esp, addr, count);
+ }
+}
+
+#define HOSTS_C
+
+int cyber_esp_release(struct Scsi_Host *instance)
+{
+#ifdef MODULE
+ unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev;
+
+ esp_deallocate((struct NCR_ESP *)instance->hostdata);
+ esp_release();
+ release_mem_region(address, sizeof(struct ESP_regs));
+ free_irq(IRQ_AMIGA_PORTS, esp_intr);
+#endif
+ return 1;
+}
+
+
+static Scsi_Host_Template driver_template = {
+ .proc_name = "esp-cyberstorm",
+ .proc_info = esp_proc_info,
+ .name = "CyberStorm SCSI",
+ .detect = cyber_esp_detect,
+ .slave_alloc = esp_slave_alloc,
+ .slave_destroy = esp_slave_destroy,
+ .release = cyber_esp_release,
+ .queuecommand = esp_queue,
+ .eh_abort_handler = esp_abort,
+ .eh_bus_reset_handler = esp_reset,
+ .can_queue = 7,
+ .this_id = 7,
+ .sg_tablesize = SG_ALL,
+ .cmd_per_lun = 1,
+ .use_clustering = ENABLE_CLUSTERING
+};
+
+
+#include "scsi_module.c"
+
+MODULE_LICENSE("GPL");