summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/mmu.c
Commit message (Collapse)AuthorAgeFilesLines
* Revert "KVM: x86/mmu: Zap only the relevant pages when removing a memslot"Paolo Bonzini2019-08-211-32/+1Star
| | | | | | | | | | | | | This reverts commit 4e103134b862314dc2f2f18f2fb0ab972adc3f5f. Alex Williamson reported regressions with device assignment with this patch. Even though the bug is probably elsewhere and still latent, this is needed to fix the regression. Fixes: 4e103134b862 ("KVM: x86/mmu: Zap only the relevant pages when removing a memslot", 2019-02-05) Reported-by: Alex Willamson <alex.williamson@redhat.com> Cc: stable@vger.kernel.org Cc: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Documentation: move Documentation/virtual to Documentation/virtChristoph Hellwig2019-07-241-1/+1
| | | | | | | | | | | | Renaming docs seems to be en vogue at the moment, so fix on of the grossly misnamed directories. We usually never use "virtual" as a shortcut for virtualization in the kernel, but always virt, as seen in the virt/ top-level directory. Fix up the documentation to match that. Fixes: ed16648eb5b8 ("Move kvm, uml, and lguest subdirectories under a common "virtual" directory, I.E:") Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* x86: kvm: avoid constant-conversion warningArnd Bergmann2019-07-151-3/+3
| | | | | | | | | | | | | | | | | | | | | | clang finds a contruct suspicious that converts an unsigned character to a signed integer and back, causing an overflow: arch/x86/kvm/mmu.c:4605:39: error: implicit conversion from 'int' to 'u8' (aka 'unsigned char') changes value from -205 to 51 [-Werror,-Wconstant-conversion] u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0; ~~ ^~ arch/x86/kvm/mmu.c:4607:38: error: implicit conversion from 'int' to 'u8' (aka 'unsigned char') changes value from -241 to 15 [-Werror,-Wconstant-conversion] u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0; ~~ ^~ arch/x86/kvm/mmu.c:4609:39: error: implicit conversion from 'int' to 'u8' (aka 'unsigned char') changes value from -171 to 85 [-Werror,-Wconstant-conversion] u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0; ~~ ^~ Add an explicit cast to tell clang that everything works as intended here. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Link: https://github.com/ClangBuiltLinux/linux/issues/95 Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds2019-07-131-74/+108
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull KVM updates from Paolo Bonzini: "ARM: - support for chained PMU counters in guests - improved SError handling - handle Neoverse N1 erratum #1349291 - allow side-channel mitigation status to be migrated - standardise most AArch64 system register accesses to msr_s/mrs_s - fix host MPIDR corruption on 32bit - selftests ckleanups x86: - PMU event {white,black}listing - ability for the guest to disable host-side interrupt polling - fixes for enlightened VMCS (Hyper-V pv nested virtualization), - new hypercall to yield to IPI target - support for passing cstate MSRs through to the guest - lots of cleanups and optimizations Generic: - Some txt->rST conversions for the documentation" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (128 commits) Documentation: virtual: Add toctree hooks Documentation: kvm: Convert cpuid.txt to .rst Documentation: virtual: Convert paravirt_ops.txt to .rst KVM: x86: Unconditionally enable irqs in guest context KVM: x86: PMU Event Filter kvm: x86: Fix -Wmissing-prototypes warnings KVM: Properly check if "page" is valid in kvm_vcpu_unmap KVM: arm/arm64: Initialise host's MPIDRs by reading the actual register KVM: LAPIC: Retry tune per-vCPU timer_advance_ns if adaptive tuning goes insane kvm: LAPIC: write down valid APIC registers KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s KVM: doc: Add API documentation on the KVM_REG_ARM_WORKAROUNDS register KVM: arm/arm64: Add save/restore support for firmware workaround state arm64: KVM: Propagate full Spectre v2 workaround state to KVM guests KVM: arm/arm64: Support chained PMU counters KVM: arm/arm64: Remove pmc->bitmask KVM: arm/arm64: Re-create event when setting counter value KVM: arm/arm64: Extract duplicated code to own function KVM: arm/arm64: Rename kvm_pmu_{enable/disable}_counter functions KVM: LAPIC: ARBPRI is a reserved register for x2APIC ...
| * Merge tag 'kvm-arm-for-5.3' of ↵Paolo Bonzini2019-07-111-10/+11
| |\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm updates for 5.3 - Add support for chained PMU counters in guests - Improve SError handling - Handle Neoverse N1 erratum #1349291 - Allow side-channel mitigation status to be migrated - Standardise most AArch64 system register accesses to msr_s/mrs_s - Fix host MPIDR corruption on 32bit
| * | KVM: x86: add tracepoints around __direct_map and FNAME(fetch)Paolo Bonzini2019-07-051-7/+6Star
| | | | | | | | | | | | | | | | | | These are useful in debugging shadow paging. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * | KVM: x86: change kvm_mmu_page_get_gfn BUG_ON to WARN_ONPaolo Bonzini2019-07-051-3/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | Note that in such a case it is quite likely that KVM will BUG_ON in __pte_list_remove when the VM is closed. However, there is no immediate risk of memory corruption in the host so a WARN_ON is enough and it lets you gather traces for debugging. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * | KVM: x86: remove now unneeded hugepage gfn adjustmentPaolo Bonzini2019-07-051-6/+3Star
| | | | | | | | | | | | | | | | | | | | | | | | After the previous patch, the low bits of the gfn are masked in both FNAME(fetch) and __direct_map, so we do not need to clear them in transparent_hugepage_adjust. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * | KVM: x86: make FNAME(fetch) and __direct_map more similarPaolo Bonzini2019-07-051-28/+25Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | These two functions are basically doing the same thing through kvm_mmu_get_page, link_shadow_page and mmu_set_spte; yet, for historical reasons, their code looks very different. This patch tries to take the best of each and make them very similar, so that it is easy to understand changes that apply to both of them. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * | kvm: x86: Do not release the page inside mmu_set_spte()Junaid Shahid2019-07-051-11/+7Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Release the page at the call-site where it was originally acquired. This makes the exit code cleaner for most call sites, since they do not need to duplicate code between success and the failure label. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * | KVM: x86: clean up conditions for asynchronous page fault handlingPaolo Bonzini2019-06-131-13/+0Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Even when asynchronous page fault is disabled, KVM does not want to pause the host if a guest triggers a page fault; instead it will put it into an artificial HLT state that allows running other host processes while allowing interrupt delivery into the guest. However, the way this feature is triggered is a bit confusing. First, it is not used for page faults while a nested guest is running: but this is not an issue since the artificial halt is completely invisible to the guest, either L1 or L2. Second, it is used even if kvm_halt_in_guest() returns true; in this case, the guest probably should not pay the additional latency cost of the artificial halt, and thus we should handle the page fault in a completely synchronous way. By introducing a new function kvm_can_deliver_async_pf, this patch commonizes the code that chooses whether to deliver an async page fault (kvm_arch_async_page_not_present) and the code that chooses whether a page fault should be handled synchronously (kvm_can_do_async_pf). Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * | kvm: Convert kvm_lock to a mutexJunaid Shahid2019-06-051-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | It doesn't seem as if there is any particular need for kvm_lock to be a spinlock, so convert the lock to a mutex so that sleepable functions (in particular cond_resched()) can be called while holding it. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * | kvm: x86: Fix reserved bits related calculation errors caused by MKTMEKai Huang2019-06-041-6/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Intel MKTME repurposes several high bits of physical address as 'keyID' for memory encryption thus effectively reduces platform's maximum physical address bits. Exactly how many bits are reduced is configured by BIOS. To honor such HW behavior, the repurposed bits are reduced from cpuinfo_x86->x86_phys_bits when MKTME is detected in CPU detection. Similarly, AMD SME/SEV also reduces physical address bits for memory encryption, and cpuinfo->x86_phys_bits is reduced too when SME/SEV is detected, so for both MKTME and SME/SEV, boot_cpu_data.x86_phys_bits doesn't hold physical address bits reported by CPUID anymore. Currently KVM treats bits from boot_cpu_data.x86_phys_bits to 51 as reserved bits, but it's not true anymore for MKTME, since MKTME treats those reduced bits as 'keyID', but not reserved bits. Therefore boot_cpu_data.x86_phys_bits cannot be used to calculate reserved bits anymore, although we can still use it for AMD SME/SEV since SME/SEV treats the reduced bits differently -- they are treated as reserved bits, the same as other reserved bits in page table entity [1]. Fix by introducing a new 'shadow_phys_bits' variable in KVM x86 MMU code to store the effective physical bits w/o reserved bits -- for MKTME, it equals to physical address reported by CPUID, and for SME/SEV, it is boot_cpu_data.x86_phys_bits. Note that for the physical address bits reported to guest should remain unchanged -- KVM should report physical address reported by CPUID to guest, but not boot_cpu_data.x86_phys_bits. Because for Intel MKTME, there's no harm if guest sets up 'keyID' bits in guest page table (since MKTME only works at physical address level), and KVM doesn't even expose MKTME to guest. Arguably, for AMD SME/SEV, guest is aware of SEV thus it should adjust boot_cpu_data.x86_phys_bits when it detects SEV, therefore KVM should still reports physcial address reported by CPUID to guest. Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Kai Huang <kai.huang@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * | kvm: x86: Move kvm_set_mmio_spte_mask() from x86.c to mmu.cKai Huang2019-06-041-0/+31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As a prerequisite to fix several SPTE reserved bits related calculation errors caused by MKTME, which requires kvm_set_mmio_spte_mask() to use local static variable defined in mmu.c. Also move call site of kvm_set_mmio_spte_mask() from kvm_arch_init() to kvm_mmu_module_init() so that kvm_set_mmio_spte_mask() can be static. Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Kai Huang <kai.huang@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | mm: lift the x86_32 PAE version of gup_get_pte to common codeChristoph Hellwig2019-07-121-1/+1
| |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The split low/high access is the only non-READ_ONCE version of gup_get_pte that did show up in the various arch implemenations. Lift it to common code and drop the ifdef based arch override. Link: http://lkml.kernel.org/r/20190625143715.1689-4-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jason Gunthorpe <jgg@mellanox.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Miller <davem@davemloft.net> Cc: James Hogan <jhogan@kernel.org> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | Merge tag 'spdx-5.2-rc6' of ↵Linus Torvalds2019-06-211-4/+1Star
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/spdx Pull still more SPDX updates from Greg KH: "Another round of SPDX updates for 5.2-rc6 Here is what I am guessing is going to be the last "big" SPDX update for 5.2. It contains all of the remaining GPLv2 and GPLv2+ updates that were "easy" to determine by pattern matching. The ones after this are going to be a bit more difficult and the people on the spdx list will be discussing them on a case-by-case basis now. Another 5000+ files are fixed up, so our overall totals are: Files checked: 64545 Files with SPDX: 45529 Compared to the 5.1 kernel which was: Files checked: 63848 Files with SPDX: 22576 This is a huge improvement. Also, we deleted another 20000 lines of boilerplate license crud, always nice to see in a diffstat" * tag 'spdx-5.2-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/spdx: (65 commits) treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 507 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 506 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 505 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 504 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 503 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 502 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 501 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 499 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 498 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 497 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 496 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 495 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 491 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 490 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 489 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 488 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 487 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 486 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 485 ...
| * | treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 499Thomas Gleixner2019-06-191-4/+1Star
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Based on 1 normalized pattern(s): this work is licensed under the terms of the gnu gpl version 2 see the copying file in the top level directory extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 35 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Enrico Weigelt <info@metux.net> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190604081206.797835076@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* / KVM: x86/mmu: Allocate PAE root array when using SVM's 32-bit NPTSean Christopherson2019-06-191-6/+10
|/ | | | | | | | | | | | SVM's Nested Page Tables (NPT) reuses x86 paging for the host-controlled page walk. For 32-bit KVM, this means PAE paging is used even when TDP is enabled, i.e. the PAE root array needs to be allocated. Fixes: ee6268ba3a68 ("KVM: x86: Skip pae_root shadow allocation if tdp enabled") Cc: stable@vger.kernel.org Reported-by: Jiri Palecek <jpalecek@web.de> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds2019-05-171-6/+17
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull KVM updates from Paolo Bonzini: "ARM: - support for SVE and Pointer Authentication in guests - PMU improvements POWER: - support for direct access to the POWER9 XIVE interrupt controller - memory and performance optimizations x86: - support for accessing memory not backed by struct page - fixes and refactoring Generic: - dirty page tracking improvements" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (155 commits) kvm: fix compilation on aarch64 Revert "KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU" kvm: x86: Fix L1TF mitigation for shadow MMU KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible KVM: PPC: Book3S: Remove useless checks in 'release' method of KVM device KVM: PPC: Book3S HV: XIVE: Fix spelling mistake "acessing" -> "accessing" KVM: PPC: Book3S HV: Make sure to load LPID for radix VCPUs kvm: nVMX: Set nested_run_pending in vmx_set_nested_state after checks complete tests: kvm: Add tests for KVM_SET_NESTED_STATE KVM: nVMX: KVM_SET_NESTED_STATE - Tear down old EVMCS state before setting new state tests: kvm: Add tests for KVM_CAP_MAX_VCPUS and KVM_CAP_MAX_CPU_ID tests: kvm: Add tests to .gitignore KVM: Introduce KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 KVM: Fix kvm_clear_dirty_log_protect off-by-(minus-)one KVM: Fix the bitmap range to copy during clear dirty KVM: arm64: Fix ptrauth ID register masking logic KVM: x86: use direct accessors for RIP and RSP KVM: VMX: Use accessors for GPRs outside of dedicated caching logic KVM: x86: Omit caching logic for always-available GPRs kvm, x86: Properly check whether a pfn is an MMIO or not ...
| * kvm: x86: Fix L1TF mitigation for shadow MMUKai Huang2019-05-151-5/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently KVM sets 5 most significant bits of physical address bits reported by CPUID (boot_cpu_data.x86_phys_bits) for nonpresent or reserved bits SPTE to mitigate L1TF attack from guest when using shadow MMU. However for some particular Intel CPUs the physical address bits of internal cache is greater than physical address bits reported by CPUID. Use the kernel's existing boot_cpu_data.x86_cache_bits to determine the five most significant bits. Doing so improves KVM's L1TF mitigation in the unlikely scenario that system RAM overlaps the high order bits of the "real" physical address space as reported by CPUID. This aligns with the kernel's warnings regarding L1TF mitigation, e.g. in the above scenario the kernel won't warn the user about lack of L1TF mitigation if x86_cache_bits is greater than x86_phys_bits. Also initialize shadow_nonpresent_or_rsvd_mask explicitly to make it consistent with other 'shadow_{xxx}_mask', and opportunistically add a WARN once if KVM's L1TF mitigation cannot be applied on a system that is marked as being susceptible to L1TF. Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Kai Huang <kai.huang@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * kvm, x86: Properly check whether a pfn is an MMIO or notKarimAllah Ahmed2019-04-301-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | pfn_valid check is not sufficient because it only checks if a page has a struct page or not, if "mem=" was passed to the kernel some valid pages won't have a struct page. This means that if guests were assigned valid memory that lies after the mem= boundary it will be passed uncached to the guest no matter what the guest caching attributes are for this memory. Introduce a new function e820__mapped_raw_any which is equivalent to e820__mapped_any but uses the original e820 unmodified and use it to identify real *RAM*. Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | x86/kvm/mmu: reset MMU context when 32-bit guest switches PAEVitaly Kuznetsov2019-04-301-0/+1
|/ | | | | | | | | | | | | | | Commit 47c42e6b4192 ("KVM: x86: fix handling of role.cr4_pae and rename it to 'gpte_size'") introduced a regression: 32-bit PAE guests stopped working. The issue appears to be: when guest switches (enables) PAE we need to re-initialize MMU context (set context->root_level, do reset_rsvds_bits_mask(), ...) but init_kvm_tdp_mmu() doesn't do that because we threw away is_pae(vcpu) flag from mmu role. Restore it to kvm_mmu_extended_role (as we now don't need it in base role) to fix the issue. Fixes: 47c42e6b4192 ("KVM: x86: fix handling of role.cr4_pae and rename it to 'gpte_size'") Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* kvm: mmu: Fix overflow on kvm mmu page limit calculationBen Gardon2019-04-161-7/+6Star
| | | | | | | | | | | | | | | | | KVM bases its memory usage limits on the total number of guest pages across all memslots. However, those limits, and the calculations to produce them, use 32 bit unsigned integers. This can result in overflow if a VM has more guest pages that can be represented by a u32. As a result of this overflow, KVM can use a low limit on the number of MMU pages it will allocate. This makes KVM unable to map all of guest memory at once, prompting spurious faults. Tested: Ran all kvm-unit-tests on an Intel Haswell machine. This patch introduced no new failures. Signed-off-by: Ben Gardon <bgardon@google.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: x86/mmu: Fix an inverted list_empty() check when zapping sptesSean Christopherson2019-04-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A recently introduced helper for handling zap vs. remote flush incorrectly bails early, effectively leaking defunct shadow pages. Manifests as a slab BUG when exiting KVM due to the shadow pages being alive when their associated cache is destroyed. ========================================================================== BUG kvm_mmu_page_header: Objects remaining in kvm_mmu_page_header on ... -------------------------------------------------------------------------- Disabling lock debugging due to kernel taint INFO: Slab 0x00000000fc436387 objects=26 used=23 fp=0x00000000d023caee ... CPU: 6 PID: 4315 Comm: rmmod Tainted: G B 5.1.0-rc2+ #19 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: dump_stack+0x46/0x5b slab_err+0xad/0xd0 ? on_each_cpu_mask+0x3c/0x50 ? ksm_migrate_page+0x60/0x60 ? on_each_cpu_cond_mask+0x7c/0xa0 ? __kmalloc+0x1ca/0x1e0 __kmem_cache_shutdown+0x13a/0x310 shutdown_cache+0xf/0x130 kmem_cache_destroy+0x1d5/0x200 kvm_mmu_module_exit+0xa/0x30 [kvm] kvm_arch_exit+0x45/0x60 [kvm] kvm_exit+0x6f/0x80 [kvm] vmx_exit+0x1a/0x50 [kvm_intel] __x64_sys_delete_module+0x153/0x1f0 ? exit_to_usermode_loop+0x88/0xc0 do_syscall_64+0x4f/0x100 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: a21136345cb6f ("KVM: x86/mmu: Split remote_flush+zap case out of kvm_mmu_flush_or_zap()") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* kvm: mmu: Used range based flushing in slot_handle_level_rangeBen Gardon2019-03-281-2/+5
| | | | | | | | | | | | | | | | | | | | Replace kvm_flush_remote_tlbs with kvm_flush_remote_tlbs_with_address in slot_handle_level_range. When range based flushes are not enabled kvm_flush_remote_tlbs_with_address falls back to kvm_flush_remote_tlbs. This changes the behavior of many functions that indirectly use slot_handle_level_range, iff the range based flushes are enabled. The only potential problem I see with this is that kvm->tlbs_dirty will be cleared less often, however the only caller of slot_handle_level_range that checks tlbs_dirty is kvm_mmu_notifier_invalidate_range_start which checks it and does a kvm_flush_remote_tlbs after calling kvm_unmap_hva_range anyway. Tested: Ran all kvm-unit-tests on a Intel Haswell machine with and without this patch. The patch introduced no new failures. Signed-off-by: Ben Gardon <bgardon@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: x86: remove check on nr_mmu_pages in kvm_arch_commit_memory_region()Wei Yang2019-03-281-1/+1
| | | | | | | | | | | | | | | | | * nr_mmu_pages would be non-zero only if kvm->arch.n_requested_mmu_pages is non-zero. * nr_mmu_pages is always non-zero, since kvm_mmu_calculate_mmu_pages() never return zero. Based on these two reasons, we can merge the two *if* clause and use the return value from kvm_mmu_calculate_mmu_pages() directly. This simplify the code and also eliminate the possibility for reader to believe nr_mmu_pages would be zero. Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: SVM: Workaround errata#1096 (insn_len maybe zero on SMAP violation)Singh, Brijesh2019-03-281-3/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Errata#1096: On a nested data page fault when CR.SMAP=1 and the guest data read generates a SMAP violation, GuestInstrBytes field of the VMCB on a VMEXIT will incorrectly return 0h instead the correct guest instruction bytes . Recommend Workaround: To determine what instruction the guest was executing the hypervisor will have to decode the instruction at the instruction pointer. The recommended workaround can not be implemented for the SEV guest because guest memory is encrypted with the guest specific key, and instruction decoder will not be able to decode the instruction bytes. If we hit this errata in the SEV guest then log the message and request a guest shutdown. Reported-by: Venkatesh Srinivas <venkateshs@google.com> Cc: Jim Mattson <jmattson@google.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Joerg Roedel <joro@8bytes.org> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: x86: fix handling of role.cr4_pae and rename it to 'gpte_size'Sean Christopherson2019-03-281-14/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The cr4_pae flag is a bit of a misnomer, its purpose is really to track whether the guest PTE that is being shadowed is a 4-byte entry or an 8-byte entry. Prior to supporting nested EPT, the size of the gpte was reflected purely by CR4.PAE. KVM fudged things a bit for direct sptes, but it was mostly harmless since the size of the gpte never mattered. Now that a spte may be tracking an indirect EPT entry, relying on CR4.PAE is wrong and ill-named. For direct shadow pages, force the gpte_size to '1' as they are always 8-byte entries; EPT entries can only be 8-bytes and KVM always uses 8-byte entries for NPT and its identity map (when running with EPT but not unrestricted guest). Likewise, nested EPT entries are always 8-bytes. Nested EPT presents a unique scenario as the size of the entries are not dictated by CR4.PAE, but neither is the shadow page a direct map. To handle this scenario, set cr0_wp=1 and smap_andnot_wp=1, an otherwise impossible combination, to denote a nested EPT shadow page. Use the information to avoid incorrectly zapping an unsync'd indirect page in __kvm_sync_page(). Providing a consistent and accurate gpte_size fixes a bug reported by Vitaly where fast_cr3_switch() always fails when switching from L2 to L1 as kvm_mmu_get_page() would force role.cr4_pae=0 for direct pages, whereas kvm_calc_mmu_role_common() would set it according to CR4.PAE. Fixes: 7dcd575520082 ("x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed") Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com> Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* KVM: nVMX: Do not inherit quadrant and invalid for the root shadow EPTSean Christopherson2019-03-281-4/+9
| | | | | | | | | | | | | | | Explicitly zero out quadrant and invalid instead of inheriting them from the root_mmu. Functionally, this patch is a nop as we (should) never set quadrant for a direct mapped (EPT) root_mmu and nested EPT is only allowed if EPT is used for L1, and the root_mmu will never be invalid at this point. Explicitly setting flags sets the stage for repurposing the legacy paging bits in role, e.g. nxe, cr0_wp, and sm{a,e}p_andnot_wp, at which point 'smm' would be the only flag to be inherited from root_mmu. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds2019-03-151-246/+220Star
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull KVM updates from Paolo Bonzini: "ARM: - some cleanups - direct physical timer assignment - cache sanitization for 32-bit guests s390: - interrupt cleanup - introduction of the Guest Information Block - preparation for processor subfunctions in cpu models PPC: - bug fixes and improvements, especially related to machine checks and protection keys x86: - many, many cleanups, including removing a bunch of MMU code for unnecessary optimizations - AVIC fixes Generic: - memcg accounting" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (147 commits) kvm: vmx: fix formatting of a comment KVM: doc: Document the life cycle of a VM and its resources MAINTAINERS: Add KVM selftests to existing KVM entry Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()" KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char() KVM: PPC: Fix compilation when KVM is not enabled KVM: Minor cleanups for kvm_main.c KVM: s390: add debug logging for cpu model subfunctions KVM: s390: implement subfunction processor calls arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2 KVM: arm/arm64: Remove unused timer variable KVM: PPC: Book3S: Improve KVM reference counting KVM: PPC: Book3S HV: Fix build failure without IOMMU support Revert "KVM: Eliminate extra function calls in kvm_get_dirty_log_protect()" x86: kvmguest: use TSC clocksource if invariant TSC is exposed KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes() KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children ...
| * Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"Ben Gardon2019-03-151-13/+3Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This reverts commit 71883a62fcd6c70639fa12cda733378b4d997409. The above commit contains an optimization to kvm_zap_gfn_range which uses gfn-limited TLB flushes, if enabled. If using these limited flushes, kvm_zap_gfn_range passes lock_flush_tlb=false to slot_handle_level_range which creates a race when the function unlocks to call cond_resched. See an example of this race below: CPU 0 CPU 1 CPU 3 // zap_direct_gfn_range mmu_lock() // *ptep == pte_1 *ptep = 0 if (lock_flush_tlb) flush_tlbs() mmu_unlock() // In invalidate range // MMU notifier mmu_lock() if (pte != 0) *ptep = 0 flush = true if (flush) flush_remote_tlbs() mmu_unlock() return // Host MM reallocates // page previously // backing guest memory. // Guest accesses // invalid page // through pte_1 // in its TLB!! Tested: Ran all kvm-unit-tests on a Intel Haswell machine with and without this patch. The patch introduced no new failures. Signed-off-by: Ben Gardon <bgardon@google.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()Sean Christopherson2019-02-201-23/+10Star
| | | | | | | | | | | | | | | | | | | | | | | | | | ...via a new helper, __kvm_mmu_zap_all(). An alternative to passing a 'bool mmio_only' would be to pass a callback function to filter the shadow page, i.e. to make __kvm_mmu_zap_all() generic and reusable, but zapping all shadow pages is a last resort, i.e. making the helper less extensible is a feature of sorts. And the explicit MMIO parameter makes it easy to preserve the WARN_ON_ONCE() if a restart is triggered when zapping MMIO sptes. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping childrenSean Christopherson2019-02-201-2/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Paolo expressed a concern that kvm_mmu_zap_mmio_sptes() could have a quadratic runtime[1], i.e. restarting the spte walk while zapping only MMIO sptes could result in re-walking large portions of the list over and over due to the non-MMIO sptes encountered before the restart not being removed. At the time, the concern was legitimate as the walk was restarted when any spte was zapped. But that is no longer the case as the walk is now restarted iff one or more children have been zapped, which is necessary because zapping children makes the active_mmu_pages list unstable. Furthermore, it should be impossible for an MMIO spte to have children, i.e. zapping an MMIO spte should never result in zapping children. In other words, kvm_mmu_zap_mmio_sptes() should never restart its walk, and so should always execute in linear time. WARN if this assertion fails. Although it should never be needed, leave the restart logic in place. In normal operation, the cost is at worst an extra CMP+Jcc, and if for some reason the list does become unstable, not restarting would likely crash KVM, or worse, the kernel. [1] https://patchwork.kernel.org/patch/10756589/#22452085 Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * KVM: x86/mmu: Differentiate between nr zapped and list unstableSean Christopherson2019-02-201-10/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The return value of kvm_mmu_prepare_zap_page() has evolved to become overloaded to convey two separate pieces of information. 1) was at least one page zapped and 2) has the list of MMU pages become unstable. In it's original incarnation (as kvm_mmu_zap_page()), there was no return value at all. Commit 0738541396be ("KVM: MMU: awareness of new kvm_mmu_zap_page behaviour") added a return value in preparation for commit 4731d4c7a077 ("KVM: MMU: out of sync shadow core"). Although the return value was of type 'int', it was actually used as a boolean to indicate whether or not active_mmu_pages may have become unstable due to zapping children. Walking a list with list_for_each_entry_safe() only protects against deleting/moving the current entry, i.e. zapping a child page would break iteration due to modifying any number of entries. Later, commit 60c8aec6e2c9 ("KVM: MMU: use page array in unsync walk") modified mmu_zap_unsync_children() to return an approximation of the number of children zapped. This was not intentional, it was simply a side effect of how the code was written. The unintented side affect was then morphed into an actual feature by commit 77662e0028c7 ("KVM: MMU: fix kvm_mmu_zap_page() and its calling path"), which modified kvm_mmu_change_mmu_pages() to use the number of zapped pages when determining the number of MMU pages in use by the VM. Finally, commit 54a4f0239f2e ("KVM: MMU: make kvm_mmu_zap_page() return the number of pages it actually freed") added the initial page to the return value to make its behavior more consistent with what most users would expect. Incorporating the initial parent page in the return value of kvm_mmu_zap_page() breaks the original usage of restarting a list walk on a non-zero return value to handle a potentially unstable list, i.e. walks will unnecessarily restart when any page is zapped. Fix this by restoring the original behavior of kvm_mmu_zap_page(), i.e. return a boolean to indicate that the list may be unstable and move the number of zapped children to a dedicated parameter. Since the majority of callers to kvm_mmu_prepare_zap_page() don't care about either return value, preserve the current definition of kvm_mmu_prepare_zap_page() by making it a wrapper of a new helper, __kvm_mmu_prepare_zap_page(). This avoids having to update every call site and also provides cleaner code for functions that only care about the number of pages zapped. Fixes: 54a4f0239f2e ("KVM: MMU: make kvm_mmu_zap_page() return the number of pages it actually freed") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * Revert "KVM: MMU: fast invalidate all pages"Sean Christopherson2019-02-201-97/+1Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Remove x86 KVM's fast invalidate mechanism, i.e. revert all patches from the original series[1], now that all users of the fast invalidate mechanism are gone. This reverts commit 5304b8d37c2a5ebca48330f5e7868d240eafbed1. [1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * KVM: x86/mmu: Voluntarily reschedule as needed when zapping all sptesSean Christopherson2019-02-201-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Call cond_resched_lock() when zapping all sptes to reschedule if needed or to release and reacquire mmu_lock in case of contention. There is no need to flush or zap when temporarily dropping mmu_lock as zapping all sptes is done only when the owning userspace VMM has exited or when the VM is being destroyed, i.e. there is no interplay with memslots or MMIO generations to worry about. Be paranoid and restart the walk if mmu_lock is dropped to avoid any potential issues with consuming a stale iterator. The overhead in doing so is negligible as at worst there will be a few root shadow pages at the head of the list, i.e. the iterator is essentially the head of the list already. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * KVM: x86/mmu: skip over invalid root pages when zapping all sptesSean Christopherson2019-02-201-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ...to guarantee forward progress. When zapped, root pages are marked invalid and moved to the head of the active pages list until they are explicitly freed. Theoretically, having unzappable root pages at the head of the list could prevent kvm_mmu_zap_all() from making forward progress were a future patch to add a loop restart after processing a page, e.g. to drop mmu_lock on contention. Although kvm_mmu_prepare_zap_page() can theoretically take action on invalid pages, e.g. to zap unsync children, functionally it's not necessary (root pages will be re-zapped when freed) and practically speaking the odds of e.g. @unsync or @unsync_children becoming %true while zapping all pages is basically nil. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * Revert "KVM: x86: use the fast way to invalidate all pages"Sean Christopherson2019-02-201-0/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Revert to a slow kvm_mmu_zap_all() for kvm_arch_flush_shadow_all(). Flushing all shadow entries is only done during VM teardown, i.e. kvm_arch_flush_shadow_all() is only called when the associated MM struct is being released or when the VM instance is being freed. Although the performance of teardown itself isn't critical, KVM should still voluntarily schedule to play nice with the rest of the kernel; but that can be done without the fast invalidate mechanism in a future patch. This reverts commit 6ca18b6950f8dee29361722f28f69847724b276f. Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * Revert "KVM: MMU: add tracepoint for kvm_mmu_invalidate_all_pages"Sean Christopherson2019-02-201-1/+0Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | ...as part of removing x86 KVM's fast invalidate mechanism, i.e. this is one part of a revert all patches from the series that introduced the mechanism[1]. This reverts commit 35006126f024f68727c67001b9cb703c38f69268. [1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * Revert "KVM: MMU: zap pages in batch"Sean Christopherson2019-02-201-11/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Unwinding optimizations related to obsolete pages is a step towards removing x86 KVM's fast invalidate mechanism, i.e. this is one part of a revert all patches from the series that introduced the mechanism[1]. This reverts commit e7d11c7a894986a13817c1c001e1e7668c5c4eb4. [1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * Revert "KVM: MMU: collapse TLB flushes when zap all pages"Sean Christopherson2019-02-201-28/+3Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Unwinding optimizations related to obsolete pages is a step towards removing x86 KVM's fast invalidate mechanism, i.e. this is one part of a revert all patches from the series that introduced the mechanism[1]. This reverts commit f34d251d66ba263c077ed9d2bbd1874339a4c887. [1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * Revert "KVM: MMU: reclaim the zapped-obsolete page first"Sean Christopherson2019-02-201-17/+4Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Unwinding optimizations related to obsolete pages is a step towards removing x86 KVM's fast invalidate mechanism, i.e. this is one part of a revert all patches from the series that introduced the mechanism[1]. This reverts commit 365c886860c4ba670d245e762b23987c912c129a. [1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * KVM: x86/mmu: Remove is_obsolete() callSean Christopherson2019-02-201-5/+1Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Unwinding usage of is_obsolete() is a step towards removing x86's fast invalidate mechanism, i.e. this is one part of a revert all patches from the series that introduced the mechanism[1]. This is a partial revert of commit 05988d728dcd ("KVM: MMU: reduce KVM_REQ_MMU_RELOAD when root page is zapped"). [1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * KVM: x86/mmu: Voluntarily reschedule as needed when zapping MMIO sptesSean Christopherson2019-02-201-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | Call cond_resched_lock() when zapping MMIO to reschedule if needed or to release and reacquire mmu_lock in case of contention. There is no need to flush or zap when temporarily dropping mmu_lock as zapping MMIO sptes is done when holding the memslots lock and with the "update in-progress" bit set in the memslots generation, which disables MMIO spte caching. The walk does need to be restarted if mmu_lock is dropped as the active pages list may be modified. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * Revert "KVM: MMU: drop kvm_mmu_zap_mmio_sptes"Sean Christopherson2019-02-201-1/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Revert back to a dedicated (and slower) mechanism for handling the scenario where all MMIO shadow PTEs need to be zapped due to overflowing the MMIO generation number. The MMIO generation scenario is almost literally a one-in-a-million occurrence, i.e. is not a performance sensitive scenario. Restoring kvm_mmu_zap_mmio_sptes() leaves VM teardown as the only user of kvm_mmu_invalidate_zap_all_pages() and paves the way for removing the fast invalidate mechanism altogether. This reverts commit a8eca9dcc656a405a28ffba43f3d86a1ff0eb331. Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * KVM: x86/mmu: Zap only the relevant pages when removing a memslotSean Christopherson2019-02-201-1/+32
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Modify kvm_mmu_invalidate_zap_pages_in_memslot(), a.k.a. the x86 MMU's handler for kvm_arch_flush_shadow_memslot(), to zap only the pages/PTEs that actually belong to the memslot being removed. This improves performance, especially why the deleted memslot has only a few shadow entries, or even no entries. E.g. a microbenchmark to access regular memory while concurrently reading PCI ROM to trigger memslot deletion showed a 5% improvement in throughput. Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * KVM: x86/mmu: Split remote_flush+zap case out of kvm_mmu_flush_or_zap()Sean Christopherson2019-02-201-6/+16
| | | | | | | | | | | | | | | | | | ...and into a separate helper, kvm_mmu_remote_flush_or_zap(), that does not require a vcpu so that the code can be (re)used by kvm_mmu_invalidate_zap_pages_in_memslot(). Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * KVM: x86/mmu: Move slot_level_*() helper functions up a few linesSean Christopherson2019-02-201-69/+70
| | | | | | | | | | | | | | | | ...so that kvm_mmu_invalidate_zap_pages_in_memslot() can utilize the helpers in future patches. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * KVM: Move the memslot update in-progress flag to bit 63Sean Christopherson2019-02-201-19/+12Star
| | | | | | | | | | | | | | | | | | | | ...now that KVM won't explode by moving it out of bit 0. Using bit 63 eliminates the need to jump over bit 0, e.g. when calculating a new memslots generation or when propagating the memslots generation to an MMIO spte. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * KVM: x86: Refactor the MMIO SPTE generation handlingSean Christopherson2019-02-201-33/+43
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The code to propagate the memslots generation number into MMIO sptes is a bit convoluted. The "what" is relatively straightfoward, e.g. the comment explaining which bits go where is quite readable, but the "how" requires a lot of staring to understand what is happening. For example, 'MMIO_GEN_LOW_SHIFT' is actually used to calculate the high bits of the spte, while 'MMIO_SPTE_GEN_LOW_SHIFT' is used to calculate the low bits. Refactor the code to: - use #defines whose values align with the bits defined in the comment - use consistent code for both the high and low mask - explicitly highlight the handling of bit 0 (update in-progress flag) - explicitly call out that the defines are for MMIO sptes (to avoid confusion with the per-vCPU MMIO cache, which uses the full memslots generation) In addition to making the code a little less magical, this paves the way for moving the update in-progress flag to bit 63 without having to simultaneously rewrite all of the MMIO spte code. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>