summaryrefslogtreecommitdiffstats
path: root/kernel/sched
Commit message (Collapse)AuthorAgeFilesLines
* Merge branch 'pm-cpufreq'Rafael J. Wysocki2019-08-161-4/+10
|\ | | | | | | | | | | * pm-cpufreq: cpufreq: schedutil: Don't skip freq update when limits change cpufreq: dev_pm_qos_update_request() can return 1 on success
| * cpufreq: schedutil: Don't skip freq update when limits changeViresh Kumar2019-08-101-4/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | To avoid reducing the frequency of a CPU prematurely, we skip reducing the frequency if the CPU had been busy recently. This should not be done when the limits of the policy are changed, for example due to thermal throttling. We should always get the frequency within the new limits as soon as possible. Trying to fix this by using only one flag, i.e. need_freq_update, can lead to a race condition where the flag gets cleared without forcing us to change the frequency at least once. And so this patch introduces another flag to avoid that race condition. Fixes: ecd288429126 ("cpufreq: schedutil: Don't set next_freq to UINT_MAX") Cc: v4.18+ <stable@vger.kernel.org> # v4.18+ Reported-by: Doug Smythies <dsmythies@telus.net> Tested-by: Doug Smythies <dsmythies@telus.net> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* | sched/psi: Do not require setsched permission from the trigger creatorSuren Baghdasaryan2019-08-061-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When a process creates a new trigger by writing into /proc/pressure/* files, permissions to write such a file should be used to determine whether the process is allowed to do so or not. Current implementation would also require such a process to have setsched capability. Setting of psi trigger thread's scheduling policy is an implementation detail and should not be exposed to the user level. Remove the permission check by using _nocheck version of the function. Suggested-by: Nick Kralevich <nnk@google.com> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: lizefan@huawei.com Cc: mingo@redhat.com Cc: akpm@linux-foundation.org Cc: kernel-team@android.com Cc: dennisszhou@gmail.com Cc: dennis@kernel.org Cc: hannes@cmpxchg.org Cc: axboe@kernel.dk Link: https://lkml.kernel.org/r/20190730013310.162367-1-surenb@google.com
* | sched/psi: Reduce psimon FIFO priorityPeter Zijlstra2019-08-061-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | PSI defaults to a FIFO-99 thread, reduce this to FIFO-1. FIFO-99 is the very highest priority available to SCHED_FIFO and it not a suitable default; it would indicate the psi work is the most important work on the machine. Since Real-Time tasks will have pre-allocated memory and locked it in place, Real-Time tasks do not care about PSI. All it needs is to be above OTHER. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Tested-by: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Gleixner <tglx@linutronix.de>
* | sched/deadline: Fix double accounting of rq/running bw in push & pullDietmar Eggemann2019-08-061-8/+0Star
|/ | | | | | | | | | | | | | | | | | | | | | | | {push,pull}_dl_task() always calls {de,}activate_task() with .flags=0 which sets p->on_rq=TASK_ON_RQ_MIGRATING. {push,pull}_dl_task()->{de,}activate_task()->{de,en}queue_task()-> {de,en}queue_task_dl() calls {sub,add}_{running,rq}_bw() since p->on_rq==TASK_ON_RQ_MIGRATING. So {sub,add}_{running,rq}_bw() in {push,pull}_dl_task() is double-accounting for that task. Fix it by removing rq/running bw accounting in [push/pull]_dl_task(). Fixes: 7dd778841164 ("sched/core: Unify p->on_rq updates") Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Luca Abeni <luca.abeni@santannapisa.it> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Qais Yousef <qais.yousef@arm.com> Link: https://lkml.kernel.org/r/20190802145945.18702-2-dietmar.eggemann@arm.com
* sched/fair: Use RCU accessors consistently for ->numa_groupJann Horn2019-07-251-39/+81
| | | | | | | | | | | | | | | | | | | | The old code used RCU annotations and accessors inconsistently for ->numa_group, which can lead to use-after-frees and NULL dereferences. Let all accesses to ->numa_group use proper RCU helpers to prevent such issues. Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Fixes: 8c8a743c5087 ("sched/numa: Use {cpu, pid} to create task groups for shared faults") Link: https://lkml.kernel.org/r/20190716152047.14424-3-jannh@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sched/fair: Don't free p->numa_faults with concurrent readersJann Horn2019-07-251-4/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | When going through execve(), zero out the NUMA fault statistics instead of freeing them. During execve, the task is reachable through procfs and the scheduler. A concurrent /proc/*/sched reader can read data from a freed ->numa_faults allocation (confirmed by KASAN) and write it back to userspace. I believe that it would also be possible for a use-after-free read to occur through a race between a NUMA fault and execve(): task_numa_fault() can lead to task_numa_compare(), which invokes task_weight() on the currently running task of a different CPU. Another way to fix this would be to make ->numa_faults RCU-managed or add extra locking, but it seems easier to wipe the NUMA fault statistics on execve. Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Fixes: 82727018b0d3 ("sched/numa: Call task_numa_free() from do_execve()") Link: https://lkml.kernel.org/r/20190716152047.14424-1-jannh@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds2019-07-201-0/+6
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull more KVM updates from Paolo Bonzini: "Mostly bugfixes, but also: - s390 support for KVM selftests - LAPIC timer offloading to housekeeping CPUs - Extend an s390 optimization for overcommitted hosts to all architectures - Debugging cleanups and improvements" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (25 commits) KVM: x86: Add fixed counters to PMU filter KVM: nVMX: do not use dangling shadow VMCS after guest reset KVM: VMX: dump VMCS on failed entry KVM: x86/vPMU: refine kvm_pmu err msg when event creation failed KVM: s390: Use kvm_vcpu_wake_up in kvm_s390_vcpu_wakeup KVM: Boost vCPUs that are delivering interrupts KVM: selftests: Remove superfluous define from vmx.c KVM: SVM: Fix detection of AMD Errata 1096 KVM: LAPIC: Inject timer interrupt via posted interrupt KVM: LAPIC: Make lapic timer unpinned KVM: x86/vPMU: reset pmc->counter to 0 for pmu fixed_counters KVM: nVMX: Ignore segment base for VMX memory operand when segment not FS or GS kvm: x86: ioapic and apic debug macros cleanup kvm: x86: some tsc debug cleanup kvm: vmx: fix coccinelle warnings x86: kvm: avoid constant-conversion warning x86: kvm: avoid -Wsometimes-uninitized warning KVM: x86: expose AVX512_BF16 feature to guest KVM: selftests: enable pgste option for the linker on s390 KVM: selftests: Move kvm_create_max_vcpus test to generic code ...
| * KVM: LAPIC: Inject timer interrupt via posted interruptWanpeng Li2019-07-201-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Dedicated instances are currently disturbed by unnecessary jitter due to the emulated lapic timers firing on the same pCPUs where the vCPUs reside. There is no hardware virtual timer on Intel for guest like ARM, so both programming timer in guest and the emulated timer fires incur vmexits. This patch tries to avoid vmexit when the emulated timer fires, at least in dedicated instance scenario when nohz_full is enabled. In that case, the emulated timers can be offload to the nearest busy housekeeping cpus since APICv has been found for several years in server processors. The guest timer interrupt can then be injected via posted interrupts, which are delivered by the housekeeping cpu once the emulated timer fires. The host should tuned so that vCPUs are placed on isolated physical processors, and with several pCPUs surplus for busy housekeeping. If disabled mwait/hlt/pause vmexits keep the vCPUs in non-root mode, ~3% redis performance benefit can be observed on Skylake server, and the number of external interrupt vmexits drops substantially. Without patch VM-EXIT Samples Samples% Time% Min Time Max Time Avg time EXTERNAL_INTERRUPT 42916 49.43% 39.30% 0.47us 106.09us 0.71us ( +- 1.09% ) While with patch: VM-EXIT Samples Samples% Time% Min Time Max Time Avg time EXTERNAL_INTERRUPT 6871 9.29% 2.96% 0.44us 57.88us 0.72us ( +- 4.02% ) Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | sched/core: Fix preempt warning in ttwuPeter Zijlstra2019-07-131-1/+3
|/ | | | | | | | | | | | | | | | | | | John reported a DEBUG_PREEMPT warning caused by commit: aacedf26fb76 ("sched/core: Optimize try_to_wake_up() for local wakeups") I overlooked that ttwu_stat() requires preemption disabled. Reported-by: John Stultz <john.stultz@linaro.org> Tested-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: aacedf26fb76 ("sched/core: Optimize try_to_wake_up() for local wakeups") Link: https://lkml.kernel.org/r/20190710105736.GK3402@hirez.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Merge tag 'docs-5.3' of git://git.lwn.net/linuxLinus Torvalds2019-07-091-1/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull Documentation updates from Jonathan Corbet: "It's been a relatively busy cycle for docs: - A fair pile of RST conversions, many from Mauro. These create more than the usual number of simple but annoying merge conflicts with other trees, unfortunately. He has a lot more of these waiting on the wings that, I think, will go to you directly later on. - A new document on how to use merges and rebases in kernel repos, and one on Spectre vulnerabilities. - Various improvements to the build system, including automatic markup of function() references because some people, for reasons I will never understand, were of the opinion that :c:func:``function()`` is unattractive and not fun to type. - We now recommend using sphinx 1.7, but still support back to 1.4. - Lots of smaller improvements, warning fixes, typo fixes, etc" * tag 'docs-5.3' of git://git.lwn.net/linux: (129 commits) docs: automarkup.py: ignore exceptions when seeking for xrefs docs: Move binderfs to admin-guide Disable Sphinx SmartyPants in HTML output doc: RCU callback locks need only _bh, not necessarily _irq docs: format kernel-parameters -- as code Doc : doc-guide : Fix a typo platform: x86: get rid of a non-existent document Add the RCU docs to the core-api manual Documentation: RCU: Add TOC tree hooks Documentation: RCU: Rename txt files to rst Documentation: RCU: Convert RCU UP systems to reST Documentation: RCU: Convert RCU linked list to reST Documentation: RCU: Convert RCU basic concepts to reST docs: filesystems: Remove uneeded .rst extension on toctables scripts/sphinx-pre-install: fix out-of-tree build docs: zh_CN: submitting-drivers.rst: Remove a duplicated Documentation/ Documentation: PGP: update for newer HW devices Documentation: Add section about CPU vulnerabilities for Spectre Documentation: platform: Delete x86-laptop-drivers.txt docs: Note that :c:func: should no longer be used ...
| * docs: scheduler: convert docs to ReST and rename to *.rstMauro Carvalho Chehab2019-06-141-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In order to prepare to add them to the Kernel API book, convert the files to ReST format. The conversion is actually: - add blank lines and identation in order to identify paragraphs; - fix tables markups; - add some lists markups; - mark literal blocks; - adjust title markups. At its new index.rst, let's add a :orphan: while this is not linked to the main index.rst file, in order to avoid build warnings. Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
* | Merge branch 'sched-core-for-linus' of ↵Linus Torvalds2019-07-0916-540/+887
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: - Remove the unused per rq load array and all its infrastructure, by Dietmar Eggemann. - Add utilization clamping support by Patrick Bellasi. This is a refinement of the energy aware scheduling framework with support for boosting of interactive and capping of background workloads: to make sure critical GUI threads get maximum frequency ASAP, and to make sure background processing doesn't unnecessarily move to cpufreq governor to higher frequencies and less energy efficient CPU modes. - Add the bare minimum of tracepoints required for LISA EAS regression testing, by Qais Yousef - which allows automated testing of various power management features, including energy aware scheduling. - Restructure the former tsk_nr_cpus_allowed() facility that the -rt kernel used to modify the scheduler's CPU affinity logic such as migrate_disable() - introduce the task->cpus_ptr value instead of taking the address of &task->cpus_allowed directly - by Sebastian Andrzej Siewior. - Misc optimizations, fixes, cleanups and small enhancements - see the Git log for details. * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits) sched/uclamp: Add uclamp support to energy_compute() sched/uclamp: Add uclamp_util_with() sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks sched/uclamp: Set default clamps for RT tasks sched/uclamp: Reset uclamp values on RESET_ON_FORK sched/uclamp: Extend sched_setattr() to support utilization clamping sched/core: Allow sched_setattr() to use the current policy sched/uclamp: Add system default clamps sched/uclamp: Enforce last task's UCLAMP_MAX sched/uclamp: Add bucket local max tracking sched/uclamp: Add CPU's clamp buckets refcounting sched/fair: Rename weighted_cpuload() to cpu_runnable_load() sched/debug: Export the newly added tracepoints sched/debug: Add sched_overutilized tracepoint sched/debug: Add new tracepoint to track PELT at se level sched/debug: Add new tracepoints to track PELT at rq level sched/debug: Add a new sched_trace_*() helper functions sched/autogroup: Make autogroup_path() always available sched/wait: Deduplicate code with do-while sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity() ...
| * | sched/uclamp: Add uclamp support to energy_compute()Patrick Bellasi2019-06-243-22/+48
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The Energy Aware Scheduler (EAS) estimates the energy impact of waking up a task on a given CPU. This estimation is based on: a) an (active) power consumption defined for each CPU frequency b) an estimation of which frequency will be used on each CPU c) an estimation of the busy time (utilization) of each CPU Utilization clamping can affect both b) and c). A CPU is expected to run: - on an higher than required frequency, but for a shorter time, in case its estimated utilization will be smaller than the minimum utilization enforced by uclamp - on a smaller than required frequency, but for a longer time, in case its estimated utilization is bigger than the maximum utilization enforced by uclamp While compute_energy() already accounts clamping effects on busy time, the clamping effects on frequency selection are currently ignored. Fix it by considering how CPU clamp values will be affected by a task waking up and being RUNNABLE on that CPU. Do that by refactoring schedutil_freq_util() to take an additional task_struct* which allows EAS to evaluate the impact on clamp values of a task being eventually queued in a CPU. Clamp values are applied to the RT+CFS utilization only when a FREQUENCY_UTIL is required by compute_energy(). Do note that switching from ENERGY_UTIL to FREQUENCY_UTIL in the computation of the cpu_util signal implies that we are more likely to estimate the highest OPP when a RT task is running in another CPU of the same performance domain. This can have an impact on energy estimation but: - it's not easy to say which approach is better, since it depends on the use case - the original approach could still be obtained by setting a smaller task-specific util_min whenever required Since we are at that: - rename schedutil_freq_util() into schedutil_cpu_util(), since it's not only used for frequency selection. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-12-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/uclamp: Add uclamp_util_with()Patrick Bellasi2019-06-242-1/+33
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | So far uclamp_util() allows to clamp a specified utilization considering the clamp values requested by RUNNABLE tasks in a CPU. For the Energy Aware Scheduler (EAS) it is interesting to test how clamp values will change when a task is becoming RUNNABLE on a given CPU. For example, EAS is interested in comparing the energy impact of different scheduling decisions and the clamp values can play a role on that. Add uclamp_util_with() which allows to clamp a given utilization by considering the possible impact on CPU clamp values of a specified task. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-11-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasksPatrick Bellasi2019-06-244-3/+43
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Each time a frequency update is required via schedutil, a frequency is selected to (possibly) satisfy the utilization reported by each scheduling class and irqs. However, when utilization clamping is in use, the frequency selection should consider userspace utilization clamping hints. This will allow, for example, to: - boost tasks which are directly affecting the user experience by running them at least at a minimum "requested" frequency - cap low priority tasks not directly affecting the user experience by running them only up to a maximum "allowed" frequency These constraints are meant to support a per-task based tuning of the frequency selection thus supporting a fine grained definition of performance boosting vs energy saving strategies in kernel space. Add support to clamp the utilization of RUNNABLE FAIR and RT tasks within the boundaries defined by their aggregated utilization clamp constraints. Do that by considering the max(min_util, max_util) to give boosted tasks the performance they need even when they happen to be co-scheduled with other capped tasks. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-10-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/uclamp: Set default clamps for RT tasksPatrick Bellasi2019-06-241-2/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | By default FAIR tasks start without clamps, i.e. neither boosted nor capped, and they run at the best frequency matching their utilization demand. This default behavior does not fit RT tasks which instead are expected to run at the maximum available frequency, if not otherwise required by explicitly capping them. Enforce the correct behavior for RT tasks by setting util_min to max whenever: 1. the task is switched to the RT class and it does not already have a user-defined clamp value assigned. 2. an RT task is forked from a parent with RESET_ON_FORK set. NOTE: utilization clamp values are cross scheduling class attributes and thus they are never changed/reset once a value has been explicitly defined from user-space. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-9-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/uclamp: Reset uclamp values on RESET_ON_FORKPatrick Bellasi2019-06-241-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A forked tasks gets the same clamp values of its parent however, when the RESET_ON_FORK flag is set on parent, e.g. via: sys_sched_setattr() sched_setattr() __sched_setscheduler(attr::SCHED_FLAG_RESET_ON_FORK) the new forked task is expected to start with all attributes reset to default values. Do that for utilization clamp values too by checking the reset request from the existing uclamp_fork() call which already provides the required initialization for other uclamp related bits. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-8-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/uclamp: Extend sched_setattr() to support utilization clampingPatrick Bellasi2019-06-241-7/+84
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The SCHED_DEADLINE scheduling class provides an advanced and formal model to define tasks requirements that can translate into proper decisions for both task placements and frequencies selections. Other classes have a more simplified model based on the POSIX concept of priorities. Such a simple priority based model however does not allow to exploit most advanced features of the Linux scheduler like, for example, driving frequencies selection via the schedutil cpufreq governor. However, also for non SCHED_DEADLINE tasks, it's still interesting to define tasks properties to support scheduler decisions. Utilization clamping exposes to user-space a new set of per-task attributes the scheduler can use as hints about the expected/required utilization for a task. This allows to implement a "proactive" per-task frequency control policy, a more advanced policy than the current one based just on "passive" measured task utilization. For example, it's possible to boost interactive tasks (e.g. to get better performance) or cap background tasks (e.g. to be more energy/thermal efficient). Introduce a new API to set utilization clamping values for a specified task by extending sched_setattr(), a syscall which already allows to define task specific properties for different scheduling classes. A new pair of attributes allows to specify a minimum and maximum utilization the scheduler can consider for a task. Do that by validating the required clamp values before and then applying the required changes using _the_ same pattern already in use for __setscheduler(). This ensures that the task is re-enqueued with the new clamp values. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-7-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/core: Allow sched_setattr() to use the current policyPatrick Bellasi2019-06-241-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The sched_setattr() syscall mandates that a policy is always specified. This requires to always know which policy a task will have when attributes are configured and this makes it impossible to add more generic task attributes valid across different scheduling policies. Reading the policy before setting generic tasks attributes is racy since we cannot be sure it is not changed concurrently. Introduce the required support to change generic task attributes without affecting the current task policy. This is done by adding an attribute flag (SCHED_FLAG_KEEP_POLICY) to enforce the usage of the current policy. Add support for the SETPARAM_POLICY policy, which is already used by the sched_setparam() POSIX syscall, to the sched_setattr() non-POSIX syscall. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-6-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/uclamp: Add system default clampsPatrick Bellasi2019-06-241-1/+98
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Tasks without a user-defined clamp value are considered not clamped and by default their utilization can have any value in the [0..SCHED_CAPACITY_SCALE] range. Tasks with a user-defined clamp value are allowed to request any value in that range, and the required clamp is unconditionally enforced. However, a "System Management Software" could be interested in limiting the range of clamp values allowed for all tasks. Add a privileged interface to define a system default configuration via: /proc/sys/kernel/sched_uclamp_util_{min,max} which works as an unconditional clamp range restriction for all tasks. With the default configuration, the full SCHED_CAPACITY_SCALE range of values is allowed for each clamp index. Otherwise, the task-specific clamp is capped by the corresponding system default value. Do that by tracking, for each task, the "effective" clamp value and bucket the task has been refcounted in at enqueue time. This allows to lazy aggregate "requested" and "system default" values at enqueue time and simplifies refcounting updates at dequeue time. The cached bucket ids are used to avoid (relatively) more expensive integer divisions every time a task is enqueued. An active flag is used to report when the "effective" value is valid and thus the task is actually refcounted in the corresponding rq's bucket. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-5-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/uclamp: Enforce last task's UCLAMP_MAXPatrick Bellasi2019-06-242-5/+46
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When a task sleeps it removes its max utilization clamp from its CPU. However, the blocked utilization on that CPU can be higher than the max clamp value enforced while the task was running. This allows undesired CPU frequency increases while a CPU is idle, for example, when another CPU on the same frequency domain triggers a frequency update, since schedutil can now see the full not clamped blocked utilization of the idle CPU. Fix this by using: uclamp_rq_dec_id(p, rq, UCLAMP_MAX) uclamp_rq_max_value(rq, UCLAMP_MAX, clamp_value) to detect when a CPU has no more RUNNABLE clamped tasks and to flag this condition. Don't track any minimum utilization clamps since an idle CPU never requires a minimum frequency. The decay of the blocked utilization is good enough to reduce the CPU frequency. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-4-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/uclamp: Add bucket local max trackingPatrick Bellasi2019-06-241-18/+25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Because of bucketization, different task-specific clamp values are tracked in the same bucket. For example, with 20% bucket size and assuming to have: Task1: util_min=25% Task2: util_min=35% both tasks will be refcounted in the [20..39]% bucket and always boosted only up to 20% thus implementing a simple floor aggregation normally used in histograms. In systems with only few and well-defined clamp values, it would be useful to track the exact clamp value required by a task whenever possible. For example, if a system requires only 23% and 47% boost values then it's possible to track the exact boost required by each task using only 3 buckets of ~33% size each. Introduce a mechanism to max aggregate the requested clamp values of RUNNABLE tasks in the same bucket. Keep it simple by resetting the bucket value to its base value only when a bucket becomes inactive. Allow a limited and controlled overboosting margin for tasks recounted in the same bucket. In systems where the boost values are not known in advance, it is still possible to control the maximum acceptable overboosting margin by tuning the number of clamp groups. For example, 20 groups ensure a 5% maximum overboost. Remove the rq bucket initialization code since a correct bucket value is now computed when a task is refcounted into a CPU's rq. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-3-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/uclamp: Add CPU's clamp buckets refcountingPatrick Bellasi2019-06-242-0/+217
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Utilization clamping allows to clamp the CPU's utilization within a [util_min, util_max] range, depending on the set of RUNNABLE tasks on that CPU. Each task references two "clamp buckets" defining its minimum and maximum (util_{min,max}) utilization "clamp values". A CPU's clamp bucket is active if there is at least one RUNNABLE tasks enqueued on that CPU and refcounting that bucket. When a task is {en,de}queued {on,from} a rq, the set of active clamp buckets on that CPU can change. If the set of active clamp buckets changes for a CPU a new "aggregated" clamp value is computed for that CPU. This is because each clamp bucket enforces a different utilization clamp value. Clamp values are always MAX aggregated for both util_min and util_max. This ensures that no task can affect the performance of other co-scheduled tasks which are more boosted (i.e. with higher util_min clamp) or less capped (i.e. with higher util_max clamp). A task has: task_struct::uclamp[clamp_id]::bucket_id to track the "bucket index" of the CPU's clamp bucket it refcounts while enqueued, for each clamp index (clamp_id). A runqueue has: rq::uclamp[clamp_id]::bucket[bucket_id].tasks to track how many RUNNABLE tasks on that CPU refcount each clamp bucket (bucket_id) of a clamp index (clamp_id). It also has a: rq::uclamp[clamp_id]::bucket[bucket_id].value to track the clamp value of each clamp bucket (bucket_id) of a clamp index (clamp_id). The rq::uclamp::bucket[clamp_id][] array is scanned every time it's needed to find a new MAX aggregated clamp value for a clamp_id. This operation is required only when it's dequeued the last task of a clamp bucket tracking the current MAX aggregated clamp value. In this case, the CPU is either entering IDLE or going to schedule a less boosted or more clamped task. The expected number of different clamp values configured at build time is small enough to fit the full unordered array into a single cache line, for configurations of up to 7 buckets. Add to struct rq the basic data structures required to refcount the number of RUNNABLE tasks for each clamp bucket. Add also the max aggregation required to update the rq's clamp value at each enqueue/dequeue event. Use a simple linear mapping of clamp values into clamp buckets. Pre-compute and cache bucket_id to avoid integer divisions at enqueue/dequeue time. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-2-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/fair: Rename weighted_cpuload() to cpu_runnable_load()Dietmar Eggemann2019-06-241-21/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The term 'weighted' is not needed since there is no 'unweighted' load. Instead use the term 'runnable' to distinguish 'runnable' load (avg.runnable_load_avg) used in load balance from load (avg.load_avg) which is the sum of 'runnable' and 'blocked' load. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/57f27a7f-2775-d832-e965-0f4d51bb1954@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/debug: Export the newly added tracepointsQais Yousef2019-06-241-0/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | So that external modules can hook into them and extract the info they need. Since these new tracepoints have no events associated with them exporting these tracepoints make them useful for external modules to perform testing and debugging. There's no other way otherwise to access them. BPF doesn't have infrastructure to access these bare tracepoints either. Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavankumar Kondeti <pkondeti@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de> Link: https://lkml.kernel.org/r/20190604111459.2862-7-qais.yousef@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/debug: Add sched_overutilized tracepointQais Yousef2019-06-241-2/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The new tracepoint allows us to track the changes in overutilized status. Overutilized status is associated with EAS. It indicates that the system is in high performance state. EAS is disabled when the system is in this state since there's not much energy savings while high performance tasks are pushing the system to the limit and it's better to default to the spreading behavior of the scheduler. This tracepoint helps understanding and debugging the conditions under which this happens. Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavankumar Kondeti <pkondeti@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de> Link: https://lkml.kernel.org/r/20190604111459.2862-6-qais.yousef@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/debug: Add new tracepoint to track PELT at se levelQais Yousef2019-06-242-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The new tracepoint allows tracking PELT signals at sched_entity level. Which is supported in CFS tasks and taskgroups only. Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavankumar Kondeti <pkondeti@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de> Link: https://lkml.kernel.org/r/20190604111459.2862-5-qais.yousef@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/debug: Add new tracepoints to track PELT at rq levelQais Yousef2019-06-242-1/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The new tracepoints allow tracking PELT signals at rq level for all scheduling classes + irq. Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavankumar Kondeti <pkondeti@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de> Link: https://lkml.kernel.org/r/20190604111459.2862-4-qais.yousef@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/debug: Add a new sched_trace_*() helper functionsQais Yousef2019-06-241-0/+99
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The new functions allow modules to access internal data structures of unexported struct cfs_rq and struct rq to extract important information from the tracepoints to be introduced in later patches. While at it fix alphabetical order of struct declarations in sched.h Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavankumar Kondeti <pkondeti@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de> Link: https://lkml.kernel.org/r/20190604111459.2862-3-qais.yousef@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/autogroup: Make autogroup_path() always availableQais Yousef2019-06-241-2/+0Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Remove the #ifdef CONFIG_SCHED_DEBUG. Some of the tracepoints to be introduced in later patches need to access this function. Hence make it always available since the tracepoints are not protected by CONFIG_SCHED_DEBUG. Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavankumar Kondeti <pkondeti@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de> Link: https://lkml.kernel.org/r/20190604111459.2862-2-qais.yousef@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/wait: Deduplicate code with do-whilePavel Begunkov2019-06-241-6/+2Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Statements in the loop's body and before it are identical. Use do-while to not repeat it. Signed-off-by: Pavel Begunkov <asml.silence@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/43ffea6ee2152b90dedf962eac851609e4197218.1560256112.git.asml.silence@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity()Vincent Guittot2019-06-247-12/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The 'struct sched_domain *sd' parameter to arch_scale_cpu_capacity() is unused since commit: 765d0af19f5f ("sched/topology: Remove the ::smt_gain field from 'struct sched_domain'") Remove it. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: gregkh@linuxfoundation.org Cc: linux@armlinux.org.uk Cc: quentin.perret@arm.com Cc: rafael@kernel.org Link: https://lkml.kernel.org/r/1560783617-5827-1-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | Merge tag 'v5.2-rc6' into sched/core, to refresh the branchIngo Molnar2019-06-241-4/+1Star
| |\ \ | | | | | | | | | | | | Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | sched/fair: Don't push cfs_bandwith slack timers forwardbsegall@google.com2019-06-172-4/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When a cfs_rq sleeps and returns its quota, we delay for 5ms before waking any throttled cfs_rqs to coalesce with other cfs_rqs going to sleep, as this has to be done outside of the rq lock we hold. The current code waits for 5ms without any sleeps, instead of waiting for 5ms from the first sleep, which can delay the unthrottle more than we want. Switch this around so that we can't push this forward forever. This requires an extra flag rather than using hrtimer_active, since we need to start a new timer if the current one is in the process of finishing. Signed-off-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Xunlei Pang <xlpang@linux.alibaba.com> Acked-by: Phil Auld <pauld@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/xm26a7euy6iq.fsf_-_@bsegall-linux.svl.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | sched/core: Optimize try_to_wake_up() for local wakeupsPeter Zijlstra2019-06-171-5/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Jens reported that significant performance can be had on some block workloads by special casing local wakeups. That is, wakeups on the current task before it schedules out. Given something like the normal wait pattern: for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (cond) break; schedule(); } __set_current_state(TASK_RUNNING); Any wakeup (on this CPU) after set_current_state() and before schedule() would benefit from this. Normal wakeups take p->pi_lock, which serializes wakeups to the same task. By eliding that we gain concurrency on: - ttwu_stat(); we already had concurrency on rq stats, this now also brings it to task stats. -ENOCARE - tracepoints; it is now possible to get multiple instances of trace_sched_waking() (and possibly trace_sched_wakeup()) for the same task. Tracers will have to learn to cope. Furthermore, p->pi_lock is used by set_special_state(), to order against TASK_RUNNING stores from other CPUs. But since this is strictly CPU local, we don't need the lock, and set_special_state()'s disabling of IRQs is sufficient. After the normal wakeup takes p->pi_lock it issues smp_mb__after_spinlock(), in order to ensure the woken task must observe prior stores before we observe the p->state. If this is CPU local, this will be satisfied with a compiler barrier, and we rely on try_to_wake_up() being a funcation call, which implies such. Since, when 'p == current', 'p->on_rq' must be true, the normal wakeup would continue into the ttwu_remote() branch, which normally is concerned with exactly this wakeup scenario, except from a remote CPU. IOW we're waking a task that is still running. In this case, we can trivially avoid taking rq->lock, all that's left from this is to set p->state. This then yields an extremely simple and fast path for 'p == current'. Reported-by: Jens Axboe <axboe@kernel.dk> Tested-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qian Cai <cai@lca.pw> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: gkohli@codeaurora.org Cc: hch@lst.de Cc: oleg@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | sched/fair: Fix "runnable_avg_yN_inv" not used warningsQian Cai2019-06-171-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | runnable_avg_yN_inv[] is only used in kernel/sched/pelt.c but was included in several other places because they need other macros all came from kernel/sched/sched-pelt.h which was generated by Documentation/scheduler/sched-pelt. As the result, it causes compilation a lot of warnings, kernel/sched/sched-pelt.h:4:18: warning: 'runnable_avg_yN_inv' defined but not used [-Wunused-const-variable=] kernel/sched/sched-pelt.h:4:18: warning: 'runnable_avg_yN_inv' defined but not used [-Wunused-const-variable=] kernel/sched/sched-pelt.h:4:18: warning: 'runnable_avg_yN_inv' defined but not used [-Wunused-const-variable=] ... Silence it by appending the __maybe_unused attribute for it, so all generated variables and macros can still be kept in the same file. Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/1559596304-31581-1-git-send-email-cai@lca.pw Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | sched/fair: Clean up definition of NOHZ blocked load functionsValentin Schneider2019-06-171-10/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cfs_rq_has_blocked() and others_have_blocked() are only used within update_blocked_averages(). The !CONFIG_FAIR_GROUP_SCHED version of the latter calls them within a #define CONFIG_NO_HZ_COMMON block, whereas the CONFIG_FAIR_GROUP_SCHED one calls them unconditionnally. As reported by Qian, the above leads to this warning in !CONFIG_NO_HZ_COMMON configs: kernel/sched/fair.c: In function 'update_blocked_averages': kernel/sched/fair.c:7750:7: warning: variable 'done' set but not used [-Wunused-but-set-variable] It wouldn't be wrong to keep cfs_rq_has_blocked() and others_have_blocked() as they are, but since their only current use is to figure out when we can stop calling update_blocked_averages() on fully decayed NOHZ idle CPUs, we can give them a new definition for !CONFIG_NO_HZ_COMMON. Change the definition of cfs_rq_has_blocked() and others_have_blocked() for !CONFIG_NO_HZ_COMMON so that the NOHZ-specific blocks of update_blocked_averages() become no-ops and the 'done' variable gets optimised out. While at it, remove the CONFIG_NO_HZ_COMMON block from the !CONFIG_FAIR_GROUP_SCHED definition of update_blocked_averages() by using the newly-introduced update_blocked_load_status() helper. No change in functionality intended. [ Additions by Peter Zijlstra. ] Reported-by: Qian Cai <cai@lca.pw> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190603115424.7951-1-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | sched/core: Add __sched tag for io_schedule()Gao Xiang2019-06-171-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Non-inline io_schedule() was introduced in: commit 10ab56434f2f ("sched/core: Separate out io_schedule_prepare() and io_schedule_finish()") Keep in line with io_schedule_timeout(), otherwise "/proc/<pid>/wchan" will report io_schedule() rather than its callers when waiting for IO. Reported-by: Jilong Kou <koujilong@huawei.com> Signed-off-by: Gao Xiang <gaoxiang25@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Miao Xie <miaoxie@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 10ab56434f2f ("sched/core: Separate out io_schedule_prepare() and io_schedule_finish()") Link: https://lkml.kernel.org/r/20190603091338.2695-1-gaoxiang25@huawei.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | Merge tag 'v5.2-rc5' into sched/core, to pick up fixesIngo Molnar2019-06-172-10/+2Star
| |\ \ \ | | | |/ | | |/| | | | | Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | sched/fair: Remove sgs->sum_weighted_loadDietmar Eggemann2019-06-031-3/+1Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since sg_lb_stats::sum_weighted_load is now identical with sg_lb_stats::group_load remove it and replace its use case (calculating load per task) with the latter. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20190527062116.11512-7-dietmar.eggemann@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | sched/core: Remove sd->*_idxDietmar Eggemann2019-06-032-25/+10Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The sched domain per rq load index files also disappear from the /proc/sys/kernel/sched_domain/cpuX/domainY directories. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rik van Riel <riel@surriel.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20190527062116.11512-6-dietmar.eggemann@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | sched/core: Remove rq->cpu_load[]Dietmar Eggemann2019-06-033-12/+1Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The per rq load array values also disappear from the cpu#X sections in /proc/sched_debug. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rik van Riel <riel@surriel.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20190527062116.11512-5-dietmar.eggemann@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | sched/debug: Remove sd->*_idx range on sysctlDietmar Eggemann2019-06-031-23/+14Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This reverts: commit 201c373e8e48 ("sched/debug: Limit sd->*_idx range on sysctl") Load indexes (sd->*_idx) are no longer needed without rq->cpu_load[]. The range check for load indexes can be removed as well. Get rid of it before the rq->cpu_load[] since it uses CPU_LOAD_IDX_MAX. At the same time, fix the following coding style issues detected by scripts/checkpatch.pl: ERROR: space prohibited before that ',' ERROR: space prohibited before that close parenthesis ')' Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rik van Riel <riel@surriel.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20190527062116.11512-4-dietmar.eggemann@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | sched/fair: Replace source_load() & target_load() with weighted_cpuload()Dietmar Eggemann2019-06-032-87/+4Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With LB_BIAS disabled, source_load() & target_load() return weighted_cpuload(). Replace both with calls to weighted_cpuload(). The function to obtain the load index (sd->*_idx) for an sd, get_sd_load_idx(), can be removed as well. Finally, get rid of the sched feature LB_BIAS. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rik van Riel <riel@surriel.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20190527062116.11512-3-dietmar.eggemann@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | sched/fair: Remove the rq->cpu_load[] update codeDietmar Eggemann2019-06-033-262/+0Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With LB_BIAS disabled, there is no need to update the rq->cpu_load[idx] any more. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rik van Riel <riel@surriel.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20190527062116.11512-2-dietmar.eggemann@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | sched/fair: Remove rq->loadDietmar Eggemann2019-06-033-9/+2Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The CFS class is the only one maintaining and using the CPU wide load (rq->load(.weight)). The last use case of the CPU wide load in CFS's set_next_entity() can be replaced by using the load of the CFS class (rq->cfs.load(.weight)) instead. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190424084556.604-1-dietmar.eggemann@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | sched/core: Provide a pointer to the valid CPU maskSebastian Andrzej Siewior2019-06-036-46/+46
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In commit: 4b53a3412d66 ("sched/core: Remove the tsk_nr_cpus_allowed() wrapper") the tsk_nr_cpus_allowed() wrapper was removed. There was not much difference in !RT but in RT we used this to implement migrate_disable(). Within a migrate_disable() section the CPU mask is restricted to single CPU while the "normal" CPU mask remains untouched. As an alternative implementation Ingo suggested to use: struct task_struct { const cpumask_t *cpus_ptr; cpumask_t cpus_mask; }; with t->cpus_ptr = &t->cpus_mask; In -RT we then can switch the cpus_ptr to: t->cpus_ptr = &cpumask_of(task_cpu(p)); in a migration disabled region. The rules are simple: - Code that 'uses' ->cpus_allowed would use the pointer. - Code that 'modifies' ->cpus_allowed would use the direct mask. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20190423142636.14347-1-bigeasy@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
* | | | Merge branch 'locking-core-for-linus' of ↵Linus Torvalds2019-07-091-2/+3
|\ \ \ \ | |_|_|/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking updates from Ingo Molnar: "The main changes in this cycle are: - rwsem scalability improvements, phase #2, by Waiman Long, which are rather impressive: "On a 2-socket 40-core 80-thread Skylake system with 40 reader and writer locking threads, the min/mean/max locking operations done in a 5-second testing window before the patchset were: 40 readers, Iterations Min/Mean/Max = 1,807/1,808/1,810 40 writers, Iterations Min/Mean/Max = 1,807/50,344/151,255 After the patchset, they became: 40 readers, Iterations Min/Mean/Max = 30,057/31,359/32,741 40 writers, Iterations Min/Mean/Max = 94,466/95,845/97,098" There's a lot of changes to the locking implementation that makes it similar to qrwlock, including owner handoff for more fair locking. Another microbenchmark shows how across the spectrum the improvements are: "With a locking microbenchmark running on 5.1 based kernel, the total locking rates (in kops/s) on a 2-socket Skylake system with equal numbers of readers and writers (mixed) before and after this patchset were: # of Threads Before Patch After Patch ------------ ------------ ----------- 2 2,618 4,193 4 1,202 3,726 8 802 3,622 16 729 3,359 32 319 2,826 64 102 2,744" The changes are extensive and the patch-set has been through several iterations addressing various locking workloads. There might be more regressions, but unless they are pathological I believe we want to use this new implementation as the baseline going forward. - jump-label optimizations by Daniel Bristot de Oliveira: the primary motivation was to remove IPI disturbance of isolated RT-workload CPUs, which resulted in the implementation of batched jump-label updates. Beyond the improvement of the real-time characteristics kernel, in one test this patchset improved static key update overhead from 57 msecs to just 1.4 msecs - which is a nice speedup as well. - atomic64_t cross-arch type cleanups by Mark Rutland: over the last ~10 years of atomic64_t existence the various types used by the APIs only had to be self-consistent within each architecture - which means they became wildly inconsistent across architectures. Mark puts and end to this by reworking all the atomic64 implementations to use 's64' as the base type for atomic64_t, and to ensure that this type is consistently used for parameters and return values in the API, avoiding further problems in this area. - A large set of small improvements to lockdep by Yuyang Du: type cleanups, output cleanups, function return type and othr cleanups all around the place. - A set of percpu ops cleanups and fixes by Peter Zijlstra. - Misc other changes - please see the Git log for more details" * 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (82 commits) locking/lockdep: increase size of counters for lockdep statistics locking/atomics: Use sed(1) instead of non-standard head(1) option locking/lockdep: Move mark_lock() inside CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING x86/jump_label: Make tp_vec_nr static x86/percpu: Optimize raw_cpu_xchg() x86/percpu, sched/fair: Avoid local_clock() x86/percpu, x86/irq: Relax {set,get}_irq_regs() x86/percpu: Relax smp_processor_id() x86/percpu: Differentiate this_cpu_{}() and __this_cpu_{}() locking/rwsem: Guard against making count negative locking/rwsem: Adaptive disabling of reader optimistic spinning locking/rwsem: Enable time-based spinning on reader-owned rwsem locking/rwsem: Make rwsem->owner an atomic_long_t locking/rwsem: Enable readers spinning on writer locking/rwsem: Clarify usage of owner's nonspinaable bit locking/rwsem: Wake up almost all readers in wait queue locking/rwsem: More optimal RT task handling of null owner locking/rwsem: Always release wait_lock before waking up tasks locking/rwsem: Implement lock handoff to prevent lock starvation locking/rwsem: Make rwsem_spin_on_owner() return owner state ...
| * | | x86/percpu, sched/fair: Avoid local_clock()Peter Zijlstra2019-06-171-2/+3
| | |/ | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Nadav reported that code-gen changed because of the this_cpu_*() constraints, avoid this for select_idle_cpu() because that runs with preemption (and IRQs) disabled anyway. Reported-by: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>