summaryrefslogtreecommitdiffstats
path: root/mm/memcontrol.c
Commit message (Collapse)AuthorAgeFilesLines
* mm: workingset: fix vmstat counters for shadow nodesRoman Gushchin2019-08-141-0/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | Memcg counters for shadow nodes are broken because the memcg pointer is obtained in a wrong way. The following approach is used: virt_to_page(xa_node)->mem_cgroup Since commit 4d96ba353075 ("mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages") page->mem_cgroup pointer isn't set for slab pages, so memcg_from_slab_page() should be used instead. Also I doubt that it ever worked correctly: virt_to_head_page() should be used instead of virt_to_page(). Otherwise objects residing on tail pages are not accounted, because only the head page contains a valid mem_cgroup pointer. That was a case since the introduction of these counters by the commit 68d48e6a2df5 ("mm: workingset: add vmstat counter for shadow nodes"). Link: http://lkml.kernel.org/r/20190801233532.138743-1-guro@fb.com Fixes: 4d96ba353075 ("mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages") Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/memcontrol.c: fix use after free in mem_cgroup_iter()Miles Chen2019-08-141-10/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch is sent to report an use after free in mem_cgroup_iter() after merging commit be2657752e9e ("mm: memcg: fix use after free in mem_cgroup_iter()"). I work with android kernel tree (4.9 & 4.14), and commit be2657752e9e ("mm: memcg: fix use after free in mem_cgroup_iter()") has been merged to the trees. However, I can still observe use after free issues addressed in the commit be2657752e9e. (on low-end devices, a few times this month) backtrace: css_tryget <- crash here mem_cgroup_iter shrink_node shrink_zones do_try_to_free_pages try_to_free_pages __perform_reclaim __alloc_pages_direct_reclaim __alloc_pages_slowpath __alloc_pages_nodemask To debug, I poisoned mem_cgroup before freeing it: static void __mem_cgroup_free(struct mem_cgroup *memcg) for_each_node(node) free_mem_cgroup_per_node_info(memcg, node); free_percpu(memcg->stat); + /* poison memcg before freeing it */ + memset(memcg, 0x78, sizeof(struct mem_cgroup)); kfree(memcg); } The coredump shows the position=0xdbbc2a00 is freed. (gdb) p/x ((struct mem_cgroup_per_node *)0xe5009e00)->iter[8] $13 = {position = 0xdbbc2a00, generation = 0x2efd} 0xdbbc2a00: 0xdbbc2e00 0x00000000 0xdbbc2800 0x00000100 0xdbbc2a10: 0x00000200 0x78787878 0x00026218 0x00000000 0xdbbc2a20: 0xdcad6000 0x00000001 0x78787800 0x00000000 0xdbbc2a30: 0x78780000 0x00000000 0x0068fb84 0x78787878 0xdbbc2a40: 0x78787878 0x78787878 0x78787878 0xe3fa5cc0 0xdbbc2a50: 0x78787878 0x78787878 0x00000000 0x00000000 0xdbbc2a60: 0x00000000 0x00000000 0x00000000 0x00000000 0xdbbc2a70: 0x00000000 0x00000000 0x00000000 0x00000000 0xdbbc2a80: 0x00000000 0x00000000 0x00000000 0x00000000 0xdbbc2a90: 0x00000001 0x00000000 0x00000000 0x00100000 0xdbbc2aa0: 0x00000001 0xdbbc2ac8 0x00000000 0x00000000 0xdbbc2ab0: 0x00000000 0x00000000 0x00000000 0x00000000 0xdbbc2ac0: 0x00000000 0x00000000 0xe5b02618 0x00001000 0xdbbc2ad0: 0x00000000 0x78787878 0x78787878 0x78787878 0xdbbc2ae0: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2af0: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b00: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b10: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b20: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b30: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b40: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b50: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b60: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b70: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b80: 0x78787878 0x78787878 0x00000000 0x78787878 0xdbbc2b90: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2ba0: 0x78787878 0x78787878 0x78787878 0x78787878 In the reclaim path, try_to_free_pages() does not setup sc.target_mem_cgroup and sc is passed to do_try_to_free_pages(), ..., shrink_node(). In mem_cgroup_iter(), root is set to root_mem_cgroup because sc->target_mem_cgroup is NULL. It is possible to assign a memcg to root_mem_cgroup.nodeinfo.iter in mem_cgroup_iter(). try_to_free_pages struct scan_control sc = {...}, target_mem_cgroup is 0x0; do_try_to_free_pages shrink_zones shrink_node mem_cgroup *root = sc->target_mem_cgroup; memcg = mem_cgroup_iter(root, NULL, &reclaim); mem_cgroup_iter() if (!root) root = root_mem_cgroup; ... css = css_next_descendant_pre(css, &root->css); memcg = mem_cgroup_from_css(css); cmpxchg(&iter->position, pos, memcg); My device uses memcg non-hierarchical mode. When we release a memcg: invalidate_reclaim_iterators() reaches only dead_memcg and its parents. If non-hierarchical mode is used, invalidate_reclaim_iterators() never reaches root_mem_cgroup. static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) { struct mem_cgroup *memcg = dead_memcg; for (; memcg; memcg = parent_mem_cgroup(memcg) ... } So the use after free scenario looks like: CPU1 CPU2 try_to_free_pages do_try_to_free_pages shrink_zones shrink_node mem_cgroup_iter() if (!root) root = root_mem_cgroup; ... css = css_next_descendant_pre(css, &root->css); memcg = mem_cgroup_from_css(css); cmpxchg(&iter->position, pos, memcg); invalidate_reclaim_iterators(memcg); ... __mem_cgroup_free() kfree(memcg); try_to_free_pages do_try_to_free_pages shrink_zones shrink_node mem_cgroup_iter() if (!root) root = root_mem_cgroup; ... mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); iter = &mz->iter[reclaim->priority]; pos = READ_ONCE(iter->position); css_tryget(&pos->css) <- use after free To avoid this, we should also invalidate root_mem_cgroup.nodeinfo.iter in invalidate_reclaim_iterators(). [cai@lca.pw: fix -Wparentheses compilation warning] Link: http://lkml.kernel.org/r/1564580753-17531-1-git-send-email-cai@lca.pw Link: http://lkml.kernel.org/r/20190730015729.4406-1-miles.chen@mediatek.com Fixes: 5ac8fb31ad2e ("mm: memcontrol: convert reclaim iterator to simple css refcounting") Signed-off-by: Miles Chen <miles.chen@mediatek.com> Signed-off-by: Qian Cai <cai@lca.pw> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/memcontrol.c: keep local VM counters in sync with the hierarchical onesYafang Shao2019-07-171-7/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | After commit 815744d75152 ("mm: memcontrol: don't batch updates of local VM stats and events"), the local VM counter are not in sync with the hierarchical ones. Below is one example in a leaf memcg on my server (with 8 CPUs): inactive_file 3567570944 total_inactive_file 3568029696 We find that the deviation is very great because the 'val' in __mod_memcg_state() is in pages while the effective value in memcg_stat_show() is in bytes. So the maximum of this deviation between local VM stats and total VM stats can be (32 * number_of_cpu * PAGE_SIZE), that may be an unacceptably great value. We should keep the local VM stats in sync with the total stats. In order to keep this behavior the same across counters, this patch updates __mod_lruvec_state() and __count_memcg_events() as well. Link: http://lkml.kernel.org/r/1562851979-10610-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Yafang Shao <shaoyafang@didiglobal.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge tag 'for-linus-hmm' of ↵Linus Torvalds2019-07-151-7/+6Star
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma Pull HMM updates from Jason Gunthorpe: "Improvements and bug fixes for the hmm interface in the kernel: - Improve clarity, locking and APIs related to the 'hmm mirror' feature merged last cycle. In linux-next we now see AMDGPU and nouveau to be using this API. - Remove old or transitional hmm APIs. These are hold overs from the past with no users, or APIs that existed only to manage cross tree conflicts. There are still a few more of these cleanups that didn't make the merge window cut off. - Improve some core mm APIs: - export alloc_pages_vma() for driver use - refactor into devm_request_free_mem_region() to manage DEVICE_PRIVATE resource reservations - refactor duplicative driver code into the core dev_pagemap struct - Remove hmm wrappers of improved core mm APIs, instead have drivers use the simplified API directly - Remove DEVICE_PUBLIC - Simplify the kconfig flow for the hmm users and core code" * tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (42 commits) mm: don't select MIGRATE_VMA_HELPER from HMM_MIRROR mm: remove the HMM config option mm: sort out the DEVICE_PRIVATE Kconfig mess mm: simplify ZONE_DEVICE page private data mm: remove hmm_devmem_add mm: remove hmm_vma_alloc_locked_page nouveau: use devm_memremap_pages directly nouveau: use alloc_page_vma directly PCI/P2PDMA: use the dev_pagemap internal refcount device-dax: use the dev_pagemap internal refcount memremap: provide an optional internal refcount in struct dev_pagemap memremap: replace the altmap_valid field with a PGMAP_ALTMAP_VALID flag memremap: remove the data field in struct dev_pagemap memremap: add a migrate_to_ram method to struct dev_pagemap_ops memremap: lift the devmap_enable manipulation into devm_memremap_pages memremap: pass a struct dev_pagemap to ->kill and ->cleanup memremap: move dev_pagemap callbacks into a separate structure memremap: validate the pagemap type passed to devm_memremap_pages mm: factor out a devm_request_free_mem_region helper mm: export alloc_pages_vma ...
| * mm: remove MEMORY_DEVICE_PUBLIC supportChristoph Hellwig2019-07-021-7/+6Star
| | | | | | | | | | | | | | | | | | | | | | | | The code hasn't been used since it was added to the tree, and doesn't appear to actually be usable. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jason Gunthorpe <jgg@mellanox.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
* | mm, oom: remove redundant task_in_mem_cgroup() checkShakeel Butt2019-07-121-26/+0Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oom_unkillable_task() can be called from three different contexts i.e. global OOM, memcg OOM and oom_score procfs interface. At the moment oom_unkillable_task() does a task_in_mem_cgroup() check on the given process. Since there is no reason to perform task_in_mem_cgroup() check for global OOM and oom_score procfs interface, those contexts provide NULL memcg and skips the task_in_mem_cgroup() check. However for memcg OOM context, the oom_unkillable_task() is always called from mem_cgroup_scan_tasks() and thus task_in_mem_cgroup() check becomes redundant and effectively dead code. So, just remove the task_in_mem_cgroup() check altogether. Link: http://lkml.kernel.org/r/20190624212631.87212-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: memcontrol: use CSS_TASK_ITER_PROCS at mem_cgroup_scan_tasks()Tetsuo Handa2019-07-121-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since commit c03cd7738a83 ("cgroup: Include dying leaders with live threads in PROCS iterations") corrected how CSS_TASK_ITER_PROCS works, mem_cgroup_scan_tasks() can use CSS_TASK_ITER_PROCS in order to check only one thread from each thread group. [penguin-kernel@I-love.SAKURA.ne.jp: remove thread group leader check in oom_evaluate_task()] Link: http://lkml.kernel.org/r/1560853257-14934-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp Link: http://lkml.kernel.org/r/c763afc8-f0ae-756a-56a7-395f625b95fc@i-love.sakura.ne.jp Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: memcg/slab: reparent memcg kmem_caches on cgroup removalRoman Gushchin2019-07-121-6/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Let's reparent non-root kmem_caches on memcg offlining. This allows us to release the memory cgroup without waiting for the last outstanding kernel object (e.g. dentry used by another application). Since the parent cgroup is already charged, everything we need to do is to splice the list of kmem_caches to the parent's kmem_caches list, swap the memcg pointer, drop the css refcounter for each kmem_cache and adjust the parent's css refcounter. Please, note that kmem_cache->memcg_params.memcg isn't a stable pointer anymore. It's safe to read it under rcu_read_lock(), cgroup_mutex held, or any other way that protects the memory cgroup from being released. We can race with the slab allocation and deallocation paths. It's not a big problem: parent's charge and slab global stats are always correct, and we don't care anymore about the child usage and global stats. The child cgroup is already offline, so we don't use or show it anywhere. Local slab stats (NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE) aren't used anywhere except count_shadow_nodes(). But even there it won't break anything: after reparenting "nodes" will be 0 on child level (because we're already reparenting shrinker lists), and on parent level page stats always were 0, and this patch won't change anything. [guro@fb.com: properly handle kmem_caches reparented to root_mem_cgroup] Link: http://lkml.kernel.org/r/20190620213427.1691847-1-guro@fb.com Link: http://lkml.kernel.org/r/20190611231813.3148843-11-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Waiman Long <longman@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Andrei Vagin <avagin@gmail.com> Cc: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pagesRoman Gushchin2019-07-121-5/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Every slab page charged to a non-root memory cgroup has a pointer to the memory cgroup and holds a reference to it, which protects a non-empty memory cgroup from being released. At the same time the page has a pointer to the corresponding kmem_cache, and also hold a reference to the kmem_cache. And kmem_cache by itself holds a reference to the cgroup. So there is clearly some redundancy, which allows to stop setting the page->mem_cgroup pointer and rely on getting memcg pointer indirectly via kmem_cache. Further it will allow to change this pointer easier, without a need to go over all charged pages. So let's stop setting page->mem_cgroup pointer for slab pages, and stop using the css refcounter directly for protecting the memory cgroup from going away. Instead rely on kmem_cache as an intermediate object. Make sure that vmstats and shrinker lists are working as previously, as well as /proc/kpagecgroup interface. Link: http://lkml.kernel.org/r/20190611231813.3148843-10-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Waiman Long <longman@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Andrei Vagin <avagin@gmail.com> Cc: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: memcg/slab: rework non-root kmem_cache lifecycle managementRoman Gushchin2019-07-121-12/+38
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently each charged slab page holds a reference to the cgroup to which it's charged. Kmem_caches are held by the memcg and are released all together with the memory cgroup. It means that none of kmem_caches are released unless at least one reference to the memcg exists, which is very far from optimal. Let's rework it in a way that allows releasing individual kmem_caches as soon as the cgroup is offline, the kmem_cache is empty and there are no pending allocations. To make it possible, let's introduce a new percpu refcounter for non-root kmem caches. The counter is initialized to the percpu mode, and is switched to the atomic mode during kmem_cache deactivation. The counter is bumped for every charged page and also for every running allocation. So the kmem_cache can't be released unless all allocations complete. To shutdown non-active empty kmem_caches, let's reuse the work queue, previously used for the kmem_cache deactivation. Once the reference counter reaches 0, let's schedule an asynchronous kmem_cache release. * I used the following simple approach to test the performance (stolen from another patchset by T. Harding): time find / -name fname-no-exist echo 2 > /proc/sys/vm/drop_caches repeat 10 times Results: orig patched real 0m1.455s real 0m1.355s user 0m0.206s user 0m0.219s sys 0m0.855s sys 0m0.807s real 0m1.487s real 0m1.699s user 0m0.221s user 0m0.256s sys 0m0.806s sys 0m0.948s real 0m1.515s real 0m1.505s user 0m0.183s user 0m0.215s sys 0m0.876s sys 0m0.858s real 0m1.291s real 0m1.380s user 0m0.193s user 0m0.198s sys 0m0.843s sys 0m0.786s real 0m1.364s real 0m1.374s user 0m0.180s user 0m0.182s sys 0m0.868s sys 0m0.806s real 0m1.352s real 0m1.312s user 0m0.201s user 0m0.212s sys 0m0.820s sys 0m0.761s real 0m1.302s real 0m1.349s user 0m0.205s user 0m0.203s sys 0m0.803s sys 0m0.792s real 0m1.334s real 0m1.301s user 0m0.194s user 0m0.201s sys 0m0.806s sys 0m0.779s real 0m1.426s real 0m1.434s user 0m0.216s user 0m0.181s sys 0m0.824s sys 0m0.864s real 0m1.350s real 0m1.295s user 0m0.200s user 0m0.190s sys 0m0.842s sys 0m0.811s So it looks like the difference is not noticeable in this test. [cai@lca.pw: fix an use-after-free in kmemcg_workfn()] Link: http://lkml.kernel.org/r/1560977573-10715-1-git-send-email-cai@lca.pw Link: http://lkml.kernel.org/r/20190611231813.3148843-9-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Qian Cai <cai@lca.pw> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Waiman Long <longman@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Andrei Vagin <avagin@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: memcg/slab: introduce __memcg_kmem_uncharge_memcg()Roman Gushchin2019-07-121-8/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Let's separate the page counter modification code out of __memcg_kmem_uncharge() in a way similar to what __memcg_kmem_charge() and __memcg_kmem_charge_memcg() work. This will allow to reuse this code later using a new memcg_kmem_uncharge_memcg() wrapper, which calls __memcg_kmem_uncharge_memcg() if memcg_kmem_enabled() check is passed. Link: http://lkml.kernel.org/r/20190611231813.3148843-5-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Waiman Long <longman@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Andrei Vagin <avagin@gmail.com> Cc: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: memcontrol: dump memory.stat during cgroup OOMJohannes Weiner2019-07-121-132/+157
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The current cgroup OOM memory info dump doesn't include all the memory we are tracking, nor does it give insight into what the VM tried to do leading up to the OOM. All that useful info is in memory.stat. Furthermore, the recursive printing for every child cgroup can generate absurd amounts of data on the console for larger cgroup trees, and it's not like we provide a per-cgroup breakdown during global OOM kills. When an OOM kill is triggered, print one set of recursive memory.stat items at the level whose limit triggered the OOM condition. Example output: stress invoked oom-killer: gfp_mask=0x100cca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=0 CPU: 2 PID: 210 Comm: stress Not tainted 5.2.0-rc2-mm1-00247-g47d49835983c #135 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-20181126_142135-anatol 04/01/2014 Call Trace: dump_stack+0x46/0x60 dump_header+0x4c/0x2d0 oom_kill_process.cold.10+0xb/0x10 out_of_memory+0x200/0x270 ? try_to_free_mem_cgroup_pages+0xdf/0x130 mem_cgroup_out_of_memory+0xb7/0xc0 try_charge+0x680/0x6f0 mem_cgroup_try_charge+0xb5/0x160 __add_to_page_cache_locked+0xc6/0x300 ? list_lru_destroy+0x80/0x80 add_to_page_cache_lru+0x45/0xc0 pagecache_get_page+0x11b/0x290 filemap_fault+0x458/0x6d0 ext4_filemap_fault+0x27/0x36 __do_fault+0x2f/0xb0 __handle_mm_fault+0x9c5/0x1140 ? apic_timer_interrupt+0xa/0x20 handle_mm_fault+0xc5/0x180 __do_page_fault+0x1ab/0x440 ? page_fault+0x8/0x30 page_fault+0x1e/0x30 RIP: 0033:0x55c32167fc10 Code: Bad RIP value. RSP: 002b:00007fff1d031c50 EFLAGS: 00010206 RAX: 000000000dc00000 RBX: 00007fd2db000010 RCX: 00007fd2db000010 RDX: 0000000000000000 RSI: 0000000010001000 RDI: 0000000000000000 RBP: 000055c321680a54 R08: 00000000ffffffff R09: 0000000000000000 R10: 0000000000000022 R11: 0000000000000246 R12: ffffffffffffffff R13: 0000000000000002 R14: 0000000000001000 R15: 0000000010000000 memory: usage 1024kB, limit 1024kB, failcnt 75131 swap: usage 0kB, limit 9007199254740988kB, failcnt 0 Memory cgroup stats for /foo: anon 0 file 0 kernel_stack 36864 slab 274432 sock 0 shmem 0 file_mapped 0 file_dirty 0 file_writeback 0 anon_thp 0 inactive_anon 126976 active_anon 0 inactive_file 0 active_file 0 unevictable 0 slab_reclaimable 0 slab_unreclaimable 274432 pgfault 59466 pgmajfault 1617 workingset_refault 2145 workingset_activate 0 workingset_nodereclaim 0 pgrefill 98952 pgscan 200060 pgsteal 59340 pgactivate 40095 pgdeactivate 96787 pglazyfree 0 pglazyfreed 0 thp_fault_alloc 0 thp_collapse_alloc 0 Tasks state (memory values in pages): [ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name [ 200] 0 200 1121 884 53248 29 0 bash [ 209] 0 209 905 246 45056 19 0 stress [ 210] 0 210 66442 56 499712 56349 0 stress oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null),oom_memcg=/foo,task_memcg=/foo,task=stress,pid=210,uid=0 Memory cgroup out of memory: Killed process 210 (stress) total-vm:265768kB, anon-rss:0kB, file-rss:224kB, shmem-rss:0kB oom_reaper: reaped process 210 (stress), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB [hannes@cmpxchg.org: s/kvmalloc/kmalloc/ per Michal] Link: http://lkml.kernel.org/r/20190605161133.GA12453@cmpxchg.org Link: http://lkml.kernel.org/r/20190604210509.9744-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm, memcg: introduce memory.events.localShakeel Butt2019-07-121-10/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The memory controller in cgroup v2 exposes memory.events file for each memcg which shows the number of times events like low, high, max, oom and oom_kill have happened for the whole tree rooted at that memcg. Users can also poll or register notification to monitor the changes in that file. Any event at any level of the tree rooted at memcg will notify all the listeners along the path till root_mem_cgroup. There are existing users which depend on this behavior. However there are users which are only interested in the events happening at a specific level of the memcg tree and not in the events in the underlying tree rooted at that memcg. One such use-case is a centralized resource monitor which can dynamically adjust the limits of the jobs running on a system. The jobs can create their sub-hierarchy for their own sub-tasks. The centralized monitor is only interested in the events at the top level memcgs of the jobs as it can then act and adjust the limits of the jobs. Using the current memory.events for such centralized monitor is very inconvenient. The monitor will keep receiving events which it is not interested and to find if the received event is interesting, it has to read memory.event files of the next level and compare it with the top level one. So, let's introduce memory.events.local to the memcg which shows and notify for the events at the memcg level. Now, does memory.stat and memory.pressure need their local versions. IMHO no due to the no internal process contraint of the cgroup v2. The memory.stat file of the top level memcg of a job shows the stats and vmevents of the whole tree. The local stats or vmevents of the top level memcg will only change if there is a process running in that memcg but v2 does not allow that. Similarly for memory.pressure there will not be any process in the internal nodes and thus no chance of local pressure. Link: http://lkml.kernel.org/r/20190527174643.209172-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | memcg, oom: no oom-kill for __GFP_RETRY_MAYFAILShakeel Butt2019-07-121-3/+1Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The documentation of __GFP_RETRY_MAYFAIL clearly mentioned that the OOM killer will not be triggered and indeed the page alloc does not invoke OOM killer for such allocations. However we do trigger memcg OOM killer for __GFP_RETRY_MAYFAIL. Fix that. This flag will used later to not trigger oom-killer in the charging path for fanotify and inotify event allocations. Link: http://lkml.kernel.org/r/20190514212259.156585-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm/memcontrol: fix wrong statistics in memory.statYafang Shao2019-07-121-2/+3
|/ | | | | | | | | | | | | | | | | When we calculate total statistics for memcg1_stats and memcg1_events, we use the the index 'i' in the for loop as the events index. Actually we should use memcg1_stats[i] and memcg1_events[i] as the events index. Link: http://lkml.kernel.org/r/1562116978-19539-1-git-send-email-laoar.shao@gmail.com Fixes: 42a300353577 ("mm: memcontrol: fix recursive statistics correctness & scalabilty"). Signed-off-by: Yafang Shao <laoar.shao@gmail.com Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Yafang Shao <shaoyafang@didiglobal.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: memcontrol: don't batch updates of local VM stats and eventsJohannes Weiner2019-06-141-13/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The kernel test robot noticed a 26% will-it-scale pagefault regression from commit 42a300353577 ("mm: memcontrol: fix recursive statistics correctness & scalabilty"). This appears to be caused by bouncing the additional cachelines from the new hierarchical statistics counters. We can fix this by getting rid of the batched local counters instead. Originally, there were *only* group-local counters, and they were fully maintained per cpu. A reader of a stats file high up in the cgroup tree would have to walk the entire subtree and collect each level's per-cpu counters to get the recursive view. This was prohibitively expensive, and so we switched to per-cpu batched updates of the local counters during a983b5ebee57 ("mm: memcontrol: fix excessive complexity in memory.stat reporting"), reducing the complexity from nr_subgroups * nr_cpus to nr_subgroups. With growing machines and cgroup trees, the tree walk itself became too expensive for monitoring top-level groups, and this is when the culprit patch added hierarchy counters on each cgroup level. When the per-cpu batch size would be reached, both the local and the hierarchy counters would get batch-updated from the per-cpu delta simultaneously. This makes local and hierarchical counter reads blazingly fast, but it unfortunately makes the write-side too cache line intense. Since local counter reads were never a problem - we only centralized them to accelerate the hierarchy walk - and use of the local counters are becoming rarer due to replacement with hierarchical views (ongoing rework in the page reclaim and workingset code), we can make those local counters unbatched per-cpu counters again. The scheme will then be as such: when a memcg statistic changes, the writer will: - update the local counter (per-cpu) - update the batch counter (per-cpu). If the batch is full: - spill the batch into the group's atomic_t - spill the batch into all ancestors' atomic_ts - empty out the batch counter (per-cpu) when a local memcg counter is read, the reader will: - collect the local counter from all cpus when a hiearchy memcg counter is read, the reader will: - read the atomic_t We might be able to simplify this further and make the recursive counters unbatched per-cpu counters as well (batch upward propagation, but leave per-cpu collection to the readers), but that will require a more in-depth analysis and testing of all the callsites. Deal with the immediate regression for now. Link: http://lkml.kernel.org/r/20190521151647.GB2870@cmpxchg.org Fixes: 42a300353577 ("mm: memcontrol: fix recursive statistics correctness & scalabilty") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: kernel test robot <rong.a.chen@intel.com> Tested-by: kernel test robot <rong.a.chen@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157Thomas Gleixner2019-05-301-10/+1Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Based on 3 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [graeme] [gregory] [gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema] [hk] [hemahk]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 1105 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Richard Fontana <rfontana@redhat.com> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* mm: memcontrol: fix NUMA round-robin reclaim at intermediate levelJohannes Weiner2019-05-151-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When a cgroup is reclaimed on behalf of a configured limit, reclaim needs to round-robin through all NUMA nodes that hold pages of the memcg in question. However, when assembling the mask of candidate NUMA nodes, the code only consults the *local* cgroup LRU counters, not the recursive counters for the entire subtree. Cgroup limits are frequently configured against intermediate cgroups that do not have memory on their own LRUs. In this case, the node mask will always come up empty and reclaim falls back to scanning only the current node. If a cgroup subtree has some memory on one node but the processes are bound to another node afterwards, the limit reclaim will never age or reclaim that memory anymore. To fix this, use the recursive LRU counts for a cgroup subtree to determine which nodes hold memory of that cgroup. The code has been broken like this forever, so it doesn't seem to be a problem in practice. I just noticed it while reviewing the way the LRU counters are used in general. Link: http://lkml.kernel.org/r/20190412151507.2769-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: memcontrol: fix recursive statistics correctness & scalabiltyJohannes Weiner2019-05-151-106/+99Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Right now, when somebody needs to know the recursive memory statistics and events of a cgroup subtree, they need to walk the entire subtree and sum up the counters manually. There are two issues with this: 1. When a cgroup gets deleted, its stats are lost. The state counters should all be 0 at that point, of course, but the events are not. When this happens, the event counters, which are supposed to be monotonic, can go backwards in the parent cgroups. 2. During regular operation, we always have a certain number of lazily freed cgroups sitting around that have been deleted, have no tasks, but have a few cache pages remaining. These groups' statistics do not change until we eventually hit memory pressure, but somebody watching, say, memory.stat on an ancestor has to iterate those every time. This patch addresses both issues by introducing recursive counters at each level that are propagated from the write side when stats change. Upward propagation happens when the per-cpu caches spill over into the local atomic counter. This is the same thing we do during charge and uncharge, except that the latter uses atomic RMWs, which are more expensive; stat changes happen at around the same rate. In a sparse file test (page faults and reclaim at maximum CPU speed) with 5 cgroup nesting levels, perf shows __mod_memcg_page state at ~1%. Link: http://lkml.kernel.org/r/20190412151507.2769-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: memcontrol: move stat/event counting functions out-of-lineJohannes Weiner2019-05-151-0/+79
| | | | | | | | | | | | | | | | | | These are getting too big to be inlined in every callsite. They were stolen from vmstat.c, which already out-of-lines them, and they have only been growing since. The callsites aren't that hot, either. Move __mod_memcg_state() __mod_lruvec_state() and __count_memcg_events() out of line and add kerneldoc comments. Link: http://lkml.kernel.org/r/20190412151507.2769-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: memcontrol: make cgroup stats and events query API explicitly localJohannes Weiner2019-05-151-19/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "mm: memcontrol: memory.stat cost & correctness". The cgroup memory.stat file holds recursive statistics for the entire subtree. The current implementation does this tree walk on-demand whenever the file is read. This is giving us problems in production. 1. The cost of aggregating the statistics on-demand is high. A lot of system service cgroups are mostly idle and their stats don't change between reads, yet we always have to check them. There are also always some lazily-dying cgroups sitting around that are pinned by a handful of remaining page cache; the same applies to them. In an application that periodically monitors memory.stat in our fleet, we have seen the aggregation consume up to 5% CPU time. 2. When cgroups die and disappear from the cgroup tree, so do their accumulated vm events. The result is that the event counters at higher-level cgroups can go backwards and confuse some of our automation, let alone people looking at the graphs over time. To address both issues, this patch series changes the stat implementation to spill counts upwards when the counters change. The upward spilling is batched using the existing per-cpu cache. In a sparse file stress test with 5 level cgroup nesting, the additional cost of the flushing was negligible (a little under 1% of CPU at 100% CPU utilization, compared to the 5% of reading memory.stat during regular operation). This patch (of 4): memcg_page_state(), lruvec_page_state(), memcg_sum_events() are currently returning the state of the local memcg or lruvec, not the recursive state. In practice there is a demand for both versions, although the callers that want the recursive counts currently sum them up by hand. Per default, cgroups are considered recursive entities and generally we expect more users of the recursive counters, with the local counts being special cases. To reflect that in the name, add a _local suffix to the current implementations. The following patch will re-incarnate these functions with recursive semantics, but with an O(1) implementation. [hannes@cmpxchg.org: fix bisection hole] Link: http://lkml.kernel.org/r/20190417160347.GC23013@cmpxchg.org Link: http://lkml.kernel.org/r/20190412151507.2769-2-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, memcg: rename ambiguously named memory.stat counters and functionsChris Down2019-05-151-72/+76
| | | | | | | | | | | | | | | | | | | | | | | | | | | | I spent literally an hour trying to work out why an earlier version of my memory.events aggregation code doesn't work properly, only to find out I was calling memcg->events instead of memcg->memory_events, which is fairly confusing. This naming seems in need of reworking, so make it harder to do the wrong thing by using vmevents instead of events, which makes it more clear that these are vm counters rather than memcg-specific counters. There are also a few other inconsistent names in both the percpu and aggregated structs, so these are all cleaned up to be more coherent and easy to understand. This commit contains code cleanup only: there are no logic changes. [akpm@linux-foundation.org: fix it for preceding changes] Link: http://lkml.kernel.org/r/20190208224319.GA23801@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Dennis Zhou <dennis@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: memcontrol: quarantine the mem_cgroup_[node_]nr_lru_pages() APIJohannes Weiner2019-05-141-31/+36
| | | | | | | | | | | | | Only memcg_numa_stat_show() uses those wrappers and the lru bitmasks, group them together. Link: http://lkml.kernel.org/r/20190228163020.24100-7-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: memcontrol: push down mem_cgroup_nr_lru_pages()Johannes Weiner2019-05-141-6/+7
| | | | | | | | | | | | | | | | | mem_cgroup_nr_lru_pages() is just a convenience wrapper around memcg_page_state() that takes bitmasks of lru indexes and aggregates the counts for those. Replace callsites where the bitmask is simple enough with direct memcg_page_state() call(s). Link: http://lkml.kernel.org/r/20190228163020.24100-6-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: memcontrol: push down mem_cgroup_node_nr_lru_pages()Johannes Weiner2019-05-141-3/+7
| | | | | | | | | | | | | | | | | | | | mem_cgroup_node_nr_lru_pages() is just a convenience wrapper around lruvec_page_state() that takes bitmasks of lru indexes and aggregates the counts for those. Replace callsites where the bitmask is simple enough with direct lruvec_page_state() calls. This removes the last extern user of mem_cgroup_node_nr_lru_pages(), so make that function private again, too. Link: http://lkml.kernel.org/r/20190228163020.24100-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: memcontrol: replace node summing with memcg_page_state()Johannes Weiner2019-05-141-3/+6
| | | | | | | | | | | | | Instead of adding up the node counters, use memcg_page_state() to get the memcg state directly. This is a bit cheaper and more stream-lined. Link: http://lkml.kernel.org/r/20190228163020.24100-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: memcontrol: replace zone summing with lruvec_page_state()Johannes Weiner2019-05-141-1/+1
| | | | | | | | | | | | | Instead of adding up the zone counters, use lruvec_page_state() to get the node state directly. This is a bit cheaper and more stream-lined. Link: http://lkml.kernel.org/r/20190228163020.24100-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: writeback: use exact memcg dirty countsGreg Thelen2019-04-061-2/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since commit a983b5ebee57 ("mm: memcontrol: fix excessive complexity in memory.stat reporting") memcg dirty and writeback counters are managed as: 1) per-memcg per-cpu values in range of [-32..32] 2) per-memcg atomic counter When a per-cpu counter cannot fit in [-32..32] it's flushed to the atomic. Stat readers only check the atomic. Thus readers such as balance_dirty_pages() may see a nontrivial error margin: 32 pages per cpu. Assuming 100 cpus: 4k x86 page_size: 13 MiB error per memcg 64k ppc page_size: 200 MiB error per memcg Considering that dirty+writeback are used together for some decisions the errors double. This inaccuracy can lead to undeserved oom kills. One nasty case is when all per-cpu counters hold positive values offsetting an atomic negative value (i.e. per_cpu[*]=32, atomic=n_cpu*-32). balance_dirty_pages() only consults the atomic and does not consider throttling the next n_cpu*32 dirty pages. If the file_lru is in the 13..200 MiB range then there's absolutely no dirty throttling, which burdens vmscan with only dirty+writeback pages thus resorting to oom kill. It could be argued that tiny containers are not supported, but it's more subtle. It's the amount the space available for file lru that matters. If a container has memory.max-200MiB of non reclaimable memory, then it will also suffer such oom kills on a 100 cpu machine. The following test reliably ooms without this patch. This patch avoids oom kills. $ cat test mount -t cgroup2 none /dev/cgroup cd /dev/cgroup echo +io +memory > cgroup.subtree_control mkdir test cd test echo 10M > memory.max (echo $BASHPID > cgroup.procs && exec /memcg-writeback-stress /foo) (echo $BASHPID > cgroup.procs && exec dd if=/dev/zero of=/foo bs=2M count=100) $ cat memcg-writeback-stress.c /* * Dirty pages from all but one cpu. * Clean pages from the non dirtying cpu. * This is to stress per cpu counter imbalance. * On a 100 cpu machine: * - per memcg per cpu dirty count is 32 pages for each of 99 cpus * - per memcg atomic is -99*32 pages * - thus the complete dirty limit: sum of all counters 0 * - balance_dirty_pages() only sees atomic count -99*32 pages, which * it max()s to 0. * - So a workload can dirty -99*32 pages before balance_dirty_pages() * cares. */ #define _GNU_SOURCE #include <err.h> #include <fcntl.h> #include <sched.h> #include <stdlib.h> #include <stdio.h> #include <sys/stat.h> #include <sys/sysinfo.h> #include <sys/types.h> #include <unistd.h> static char *buf; static int bufSize; static void set_affinity(int cpu) { cpu_set_t affinity; CPU_ZERO(&affinity); CPU_SET(cpu, &affinity); if (sched_setaffinity(0, sizeof(affinity), &affinity)) err(1, "sched_setaffinity"); } static void dirty_on(int output_fd, int cpu) { int i, wrote; set_affinity(cpu); for (i = 0; i < 32; i++) { for (wrote = 0; wrote < bufSize; ) { int ret = write(output_fd, buf+wrote, bufSize-wrote); if (ret == -1) err(1, "write"); wrote += ret; } } } int main(int argc, char **argv) { int cpu, flush_cpu = 1, output_fd; const char *output; if (argc != 2) errx(1, "usage: output_file"); output = argv[1]; bufSize = getpagesize(); buf = malloc(getpagesize()); if (buf == NULL) errx(1, "malloc failed"); output_fd = open(output, O_CREAT|O_RDWR); if (output_fd == -1) err(1, "open(%s)", output); for (cpu = 0; cpu < get_nprocs(); cpu++) { if (cpu != flush_cpu) dirty_on(output_fd, cpu); } set_affinity(flush_cpu); if (fsync(output_fd)) err(1, "fsync(%s)", output); if (close(output_fd)) err(1, "close(%s)", output); free(buf); } Make balance_dirty_pages() and wb_over_bg_thresh() work harder to collect exact per memcg counters. This avoids the aforementioned oom kills. This does not affect the overhead of memory.stat, which still reads the single atomic counter. Why not use percpu_counter? memcg already handles cpus going offline, so no need for that overhead from percpu_counter. And the percpu_counter spinlocks are more heavyweight than is required. It probably also makes sense to use exact dirty and writeback counters in memcg oom reports. But that is saved for later. Link: http://lkml.kernel.org/r/20190329174609.164344-1-gthelen@google.com Signed-off-by: Greg Thelen <gthelen@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: <stable@vger.kernel.org> [4.16+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/memcontrol.c: fix bad line in commentQian Cai2019-03-061-1/+1
| | | | | | | | | | | | | | Commit 230671533d64 ("mm: memory.low hierarchical behavior") missed an asterisk in one of the comments. mm/memcontrol.c:5774: warning: bad line: | 0, otherwise. Link: http://lkml.kernel.org/r/20190301143734.94393-1-cai@lca.pw Acked-by: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Qian Cai <cai@lca.pw> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: remove zone_lru_lock() function, access ->lru_lock directlyAndrey Ryabinin2019-03-061-7/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | We have common pattern to access lru_lock from a page pointer: zone_lru_lock(page_zone(page)) Which is silly, because it unfolds to this: &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]->zone_pgdat->lru_lock while we can simply do &NODE_DATA(page_to_nid(page))->lru_lock Remove zone_lru_lock() function, since it's only complicate things. Use 'page_pgdat(page)->lru_lock' pattern instead. [aryabinin@virtuozzo.com: a slightly better version of __split_huge_page()] Link: http://lkml.kernel.org/r/20190301121651.7741-1-aryabinin@virtuozzo.com Link: http://lkml.kernel.org/r/20190228083329.31892-2-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* numa: make "nr_node_ids" unsigned intAlexey Dobriyan2019-03-061-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Number of NUMA nodes can't be negative. This saves a few bytes on x86_64: add/remove: 0/0 grow/shrink: 4/21 up/down: 27/-265 (-238) Function old new delta hv_synic_alloc.cold 88 110 +22 prealloc_shrinker 260 262 +2 bootstrap 249 251 +2 sched_init_numa 1566 1567 +1 show_slab_objects 778 777 -1 s_show 1201 1200 -1 kmem_cache_init 346 345 -1 __alloc_workqueue_key 1146 1145 -1 mem_cgroup_css_alloc 1614 1612 -2 __do_sys_swapon 4702 4699 -3 __list_lru_init 655 651 -4 nic_probe 2379 2374 -5 store_user_store 118 111 -7 red_zone_store 106 99 -7 poison_store 106 99 -7 wq_numa_init 348 338 -10 __kmem_cache_empty 75 65 -10 task_numa_free 186 173 -13 merge_across_nodes_store 351 336 -15 irq_create_affinity_masks 1261 1246 -15 do_numa_crng_init 343 321 -22 task_numa_fault 4760 4737 -23 swapfile_init 179 156 -23 hv_synic_alloc 536 492 -44 apply_wqattrs_prepare 746 695 -51 Link: http://lkml.kernel.org/r/20190201223029.GA15820@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: memcontrol: expose THP events on a per-memcg basisChris Down2019-03-061-0/+16
| | | | | | | | | | | | | | | | | | | | | | | | Currently THP allocation events data is fairly opaque, since you can only get it system-wide. This patch makes it easier to reason about transparent hugepage behaviour on a per-memcg basis. For anonymous THP-backed pages, we already have MEMCG_RSS_HUGE in v1, which is used for v1's rss_huge [sic]. This is reused here as it's fairly involved to untangle NR_ANON_THPS right now to make it per-memcg, since right now some of this is delegated to rmap before we have any memcg actually assigned to the page. It's a good idea to rework that, but let's leave untangling THP allocation for a future patch. [akpm@linux-foundation.org: fix build] [chris@chrisdown.name: fix memcontrol build when THP is disabled] Link: http://lkml.kernel.org/r/20190131160802.GA5777@chrisdown.name Link: http://lkml.kernel.org/r/20190129205852.GA7310@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg: killed threads should not invoke memcg OOM killerTetsuo Handa2019-03-061-5/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If a memory cgroup contains a single process with many threads (including different process group sharing the mm) then it is possible to trigger a race when the oom killer complains that there are no oom elible tasks and complain into the log which is both annoying and confusing because there is no actual problem. The race looks as follows: P1 oom_reaper P2 try_charge try_charge mem_cgroup_out_of_memory mutex_lock(oom_lock) out_of_memory oom_kill_process(P1,P2) wake_oom_reaper mutex_unlock(oom_lock) oom_reap_task mutex_lock(oom_lock) select_bad_process # no victim The problem is more visible with many threads. Fix this by checking for fatal_signal_pending from mem_cgroup_out_of_memory when the oom_lock is already held. The oom bypass is safe because we do the same early in the try_charge path already. The situation migh have changed in the mean time. It should be safe to check for fatal_signal_pending and tsk_is_oom_victim but for a better code readability abstract the current charge bypass condition into should_force_charge and reuse it from that path. " Link: http://lkml.kernel.org/r/01370f70-e1f6-ebe4-b95e-0df21a0bc15e@i-love.sakura.ne.jp Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, memcg: extract memcg maxable seq_file logic to seq_show_memcg_tunableChris Down2019-03-061-45/+19Star
| | | | | | | | | | | | | | | | | | | | memcg has a significant number of files exposed to kernfs where their value is either exposed directly or is "max" in the case of PAGE_COUNTER_MAX. This patch makes this generic by providing a single function to do this work. In combination with the previous patch adding mem_cgroup_from_seq, this makes all of the seq_show feeder functions significantly more simple. Link: http://lkml.kernel.org/r/20190124194100.GA31425@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, memcg: create mem_cgroup_from_seqChris Down2019-03-061-12/+12
| | | | | | | | | | | | | | | | | | | This is the start of a series of patches similar to my earlier DEFINE_MEMCG_MAX_OR_VAL work, but with less Macro Magic(tm). There are a bunch of places we go from seq_file to mem_cgroup, which currently requires manually getting the css, then getting the mem_cgroup from the css. It's in enough places now that having mem_cgroup_from_seq makes sense (and also makes the next patch a bit nicer). Link: http://lkml.kernel.org/r/20190124194050.GA31341@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/memcontrol.c: use struct_size() in kmalloc()Gustavo A. R. Silva2019-03-061-2/+1Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | One of the more common cases of allocation size calculations is finding the size of a structure that has a zero-sized array at the end, along with memory for some number of elements for that array. For example: struct foo { int stuff; void *entry[]; }; instance = kmalloc(sizeof(struct foo) + sizeof(void *) * count, GFP_KERNEL); Instead of leaving these open-coded and prone to type mistakes, we can now use the new struct_size() helper: instance = kmalloc(struct_size(instance, entry, count), GFP_KERNEL); This code was detected with the help of Coccinelle. Link: http://lkml.kernel.org/r/20190104183726.GA6374@embeddedor Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg: localize memcg_kmem_enabled() checkShakeel Butt2019-03-061-8/+8
| | | | | | | | | | | | | | | | | | | Move the memcg_kmem_enabled() checks into memcg kmem charge/uncharge functions, so, the users don't have to explicitly check that condition. This is purely code cleanup patch without any functional change. Only the order of checks in memcg_charge_slab() can potentially be changed but the functionally it will be same. This should not matter as memcg_charge_slab() is not in the hot path. Link: http://lkml.kernel.org/r/20190103161203.162375-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg, oom: notify on oom killer invocation from the charge pathMichal Hocko2018-12-281-2/+18
| | | | | | | | | | | | | | | | | | | | | Burt Holzman has noticed that memcg v1 doesn't notify about OOM events via eventfd anymore. The reason is that 29ef680ae7c2 ("memcg, oom: move out_of_memory back to the charge path") has moved the oom handling back to the charge path. While doing so the notification was left behind in mem_cgroup_oom_synchronize. Fix the issue by replicating the oom hierarchy locking and the notification. Link: http://lkml.kernel.org/r/20181224091107.18354-1-mhocko@kernel.org Fixes: 29ef680ae7c2 ("memcg, oom: move out_of_memory back to the charge path") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Burt Holzman <burt@fnal.gov> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com Cc: <stable@vger.kernel.org> [4.19+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, oom: add oom victim's memcg to the oom context informationyuzhoujian2018-12-281-13/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The current oom report doesn't display victim's memcg context during the global OOM situation. While this information is not strictly needed, it can be really helpful for containerized environments to locate which container has lost a process. Now that we have a single line for the oom context, we can trivially add both the oom memcg (this can be either global_oom or a specific memcg which hits its hard limits) and task_memcg which is the victim's memcg. Below is the single line output in the oom report after this patch. - global oom context information: oom-kill:constraint=<constraint>,nodemask=<nodemask>,cpuset=<cpuset>,mems_allowed=<mems_allowed>,global_oom,task_memcg=<memcg>,task=<comm>,pid=<pid>,uid=<uid> - memcg oom context information: oom-kill:constraint=<constraint>,nodemask=<nodemask>,cpuset=<cpuset>,mems_allowed=<mems_allowed>,oom_memcg=<memcg>,task_memcg=<memcg>,task=<comm>,pid=<pid>,uid=<uid> [penguin-kernel@I-love.SAKURA.ne.jp: use pr_cont() in mem_cgroup_print_oom_context()] Link: http://lkml.kernel.org/r/201812190723.wBJ7NdkN032628@www262.sakura.ne.jp Link: http://lkml.kernel.org/r/1542799799-36184-2-git-send-email-ufo19890607@gmail.com Signed-off-by: yuzhoujian <yuzhoujian@didichuxing.com> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Roman Gushchin <guro@fb.com> Cc: Yang Shi <yang.s@alibaba-inc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: handle no memcg case in memcg_kmem_charge() properlyRoman Gushchin2018-11-031-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Mike Galbraith reported a regression caused by the commit 9b6f7e163cd0 ("mm: rework memcg kernel stack accounting") on a system with "cgroup_disable=memory" boot option: the system panics with the following stack trace: BUG: unable to handle kernel NULL pointer dereference at 00000000000000f8 PGD 0 P4D 0 Oops: 0002 [#1] PREEMPT SMP PTI CPU: 0 PID: 1 Comm: systemd Not tainted 4.19.0-preempt+ #410 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20180531_142017-buildhw-08.phx2.fed4 RIP: 0010:page_counter_try_charge+0x22/0xc0 Code: 41 5d c3 c3 0f 1f 40 00 0f 1f 44 00 00 48 85 ff 0f 84 a7 00 00 00 41 56 48 89 f8 49 89 fe 49 Call Trace: try_charge+0xcb/0x780 memcg_kmem_charge_memcg+0x28/0x80 memcg_kmem_charge+0x8b/0x1d0 copy_process.part.41+0x1ca/0x2070 _do_fork+0xd7/0x3d0 do_syscall_64+0x5a/0x180 entry_SYSCALL_64_after_hwframe+0x49/0xbe The problem occurs because get_mem_cgroup_from_current() returns the NULL pointer if memory controller is disabled. Let's check if this is a case at the beginning of memcg_kmem_charge() and just return 0 if mem_cgroup_disabled() returns true. This is how we handle this case in many other places in the memory controller code. Link: http://lkml.kernel.org/r/20181029215123.17830-1-guro@fb.com Fixes: 9b6f7e163cd0 ("mm: rework memcg kernel stack accounting") Signed-off-by: Roman Gushchin <guro@fb.com> Reported-by: Mike Galbraith <efault@gmx.de> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'xarray' of git://git.infradead.org/users/willy/linux-daxLinus Torvalds2018-10-281-1/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull XArray conversion from Matthew Wilcox: "The XArray provides an improved interface to the radix tree data structure, providing locking as part of the API, specifying GFP flags at allocation time, eliminating preloading, less re-walking the tree, more efficient iterations and not exposing RCU-protected pointers to its users. This patch set 1. Introduces the XArray implementation 2. Converts the pagecache to use it 3. Converts memremap to use it The page cache is the most complex and important user of the radix tree, so converting it was most important. Converting the memremap code removes the only other user of the multiorder code, which allows us to remove the radix tree code that supported it. I have 40+ followup patches to convert many other users of the radix tree over to the XArray, but I'd like to get this part in first. The other conversions haven't been in linux-next and aren't suitable for applying yet, but you can see them in the xarray-conv branch if you're interested" * 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits) radix tree: Remove multiorder support radix tree test: Convert multiorder tests to XArray radix tree tests: Convert item_delete_rcu to XArray radix tree tests: Convert item_kill_tree to XArray radix tree tests: Move item_insert_order radix tree test suite: Remove multiorder benchmarking radix tree test suite: Remove __item_insert memremap: Convert to XArray xarray: Add range store functionality xarray: Move multiorder_check to in-kernel tests xarray: Move multiorder_shrink to kernel tests xarray: Move multiorder account test in-kernel radix tree test suite: Convert iteration test to XArray radix tree test suite: Convert tag_tagged_items to XArray radix tree: Remove radix_tree_clear_tags radix tree: Remove radix_tree_maybe_preload_order radix tree: Remove split/join code radix tree: Remove radix_tree_update_node_t page cache: Finish XArray conversion dax: Convert page fault handlers to XArray ...
| * xarray: Replace exceptional entriesMatthew Wilcox2018-09-301-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | Introduce xarray value entries and tagged pointers to replace radix tree exceptional entries. This is a slight change in encoding to allow the use of an extra bit (we can now store BITS_PER_LONG - 1 bits in a value entry). It is also a change in emphasis; exceptional entries are intimidating and different. As the comment explains, you can choose to store values or pointers in the xarray and they are both first-class citizens. Signed-off-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Josef Bacik <jbacik@fb.com>
* | mm: don't raise MEMCG_OOM event due to failed high-order allocationRoman Gushchin2018-10-271-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It was reported that on some of our machines containers were restarted with OOM symptoms without an obvious reason. Despite there were almost no memory pressure and plenty of page cache, MEMCG_OOM event was raised occasionally, causing the container management software to think, that OOM has happened. However, no tasks have been killed. The following investigation showed that the problem is caused by a failing attempt to charge a high-order page. In such case, the OOM killer is never invoked. As shown below, it can happen under conditions, which are very far from a real OOM: e.g. there is plenty of clean page cache and no memory pressure. There is no sense in raising an OOM event in this case, as it might confuse a user and lead to wrong and excessive actions (e.g. restart the workload, as in my case). Let's look at the charging path in try_charge(). If the memory usage is about memory.max, which is absolutely natural for most memory cgroups, we try to reclaim some pages. Even if we were able to reclaim enough memory for the allocation, the following check can fail due to a race with another concurrent allocation: if (mem_cgroup_margin(mem_over_limit) >= nr_pages) goto retry; For regular pages the following condition will save us from triggering the OOM: if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) goto retry; But for high-order allocation this condition will intentionally fail. The reason behind is that we'll likely fall to regular pages anyway, so it's ok and even preferred to return ENOMEM. In this case the idea of raising MEMCG_OOM looks dubious. Fix this by moving MEMCG_OOM raising to mem_cgroup_oom() after allocation order check, so that the event won't be raised for high order allocations. This change doesn't affect regular pages allocation and charging. Link: http://lkml.kernel.org/r/20181004214050.7417-1-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm/memcontrol.c: convert mem_cgroup_id::ref to refcount_t typeKirill Tkhai2018-10-271-6/+4Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This will allow to use generic refcount_t interfaces to check counters overflow instead of currently existing VM_BUG_ON(). The only difference after the patch is VM_BUG_ON() may cause BUG(), while refcount_t fires with WARN(). But this seems not to be significant here, since such the problems are usually caught by syzbot with panic-on-warn enabled. Link: http://lkml.kernel.org/r/153910718919.7006.13400779039257185427.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Andrea Parri <andrea.parri@amarulasolutions.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | memcg: remove memcg_kmem_skip_accountShakeel Butt2018-10-271-23/+1Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The flag memcg_kmem_skip_account was added during the era of opt-out kmem accounting. There is no need for such flag in the opt-in world as there aren't any __GFP_ACCOUNT allocations within memcg_create_cache_enqueue(). Link: http://lkml.kernel.org/r/20180919004501.178023-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm/memcontrol.c: fix memory.stat item orderingJohannes Weiner2018-10-271-7/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The refault stats go better with the page fault stats, and are of higher interest than the stats on LRU operations. In fact they used to be grouped together; when the LRU operation stats were added later on, they were wedged in between. Move them back together. Documentation/admin-guide/cgroup-v2.rst already lists them in the right order. Link: http://lkml.kernel.org/r/20181010140239.GA2527@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: drain memcg stocks on css offliningRoman Gushchin2018-10-271-0/+2
|/ | | | | | | | | | | | | | | | | | | | | | Memcg charge is batched using per-cpu stocks, so an offline memcg can be pinned by a cached charge up to a moment, when a process belonging to some other cgroup will charge some memory on the same cpu. In other words, cached charges can prevent a memory cgroup from being reclaimed for some time, without any clear need. Let's optimize it by explicit draining of all stocks on css offlining. As draining is performed asynchronously, and is skipped if any parallel draining is happening, it's cheap. Link: http://lkml.kernel.org/r/20180827162621.30187-2-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: memcontrol: print proper OOM header when no eligible victim leftJohannes Weiner2018-09-051-2/+0Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When the memcg OOM killer runs out of killable tasks, it currently prints a WARN with no further OOM context. This has caused some user confusion. Warnings indicate a kernel problem. In a reported case, however, the situation was triggered by a nonsensical memcg configuration (hard limit set to 0). But without any VM context this wasn't obvious from the report, and it took some back and forth on the mailing list to identify what is actually a trivial issue. Handle this OOM condition like we handle it in the global OOM killer: dump the full OOM context and tell the user we ran out of tasks. This way the user can identify misconfigurations easily by themselves and rectify the problem - without having to go through the hassle of running into an obscure but unsettling warning, finding the appropriate kernel mailing list and waiting for a kernel developer to remote-analyze that the memcg configuration caused this. If users cannot make sense of why the OOM killer was triggered or why it failed, they will still report it to the mailing list, we know that from experience. So in case there is an actual kernel bug causing this, kernel developers will very likely hear about it. Link: http://lkml.kernel.org/r/20180821160406.22578-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, oom: introduce memory.oom.groupRoman Gushchin2018-08-221-0/+93
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For some workloads an intervention from the OOM killer can be painful. Killing a random task can bring the workload into an inconsistent state. Historically, there are two common solutions for this problem: 1) enabling panic_on_oom, 2) using a userspace daemon to monitor OOMs and kill all outstanding processes. Both approaches have their downsides: rebooting on each OOM is an obvious waste of capacity, and handling all in userspace is tricky and requires a userspace agent, which will monitor all cgroups for OOMs. In most cases an in-kernel after-OOM cleaning-up mechanism can eliminate the necessity of enabling panic_on_oom. Also, it can simplify the cgroup management for userspace applications. This commit introduces a new knob for cgroup v2 memory controller: memory.oom.group. The knob determines whether the cgroup should be treated as an indivisible workload by the OOM killer. If set, all tasks belonging to the cgroup or to its descendants (if the memory cgroup is not a leaf cgroup) are killed together or not at all. To determine which cgroup has to be killed, we do traverse the cgroup hierarchy from the victim task's cgroup up to the OOMing cgroup (or root) and looking for the highest-level cgroup with memory.oom.group set. Tasks with the OOM protection (oom_score_adj set to -1000) are treated as an exception and are never killed. This patch doesn't change the OOM victim selection algorithm. Link: http://lkml.kernel.org/r/20180802003201.817-4-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memcg: reduce memcg tree traversals for stats collectionShakeel Butt2018-08-221-77/+73Star
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently cgroup-v1's memcg_stat_show traverses the memcg tree ~17 times to collect the stats while cgroup-v2's memory_stat_show traverses the memcg tree thrice. On a large machine, a couple thousand memcgs is very normal and if the churn is high and memcgs stick around during to several reasons, tens of thousands of nodes in memcg tree can exist. This patch has refactored and shared the stat collection code between cgroup-v1 and cgroup-v2 and has reduced the tree traversal to just one. I ran a simple benchmark which reads the root_mem_cgroup's stat file 1000 times in the presense of 2500 memcgs on cgroup-v1. The results are: Without the patch: $ time ./read-root-stat-1000-times real 0m1.663s user 0m0.000s sys 0m1.660s With the patch: $ time ./read-root-stat-1000-times real 0m0.468s user 0m0.000s sys 0m0.467s Link: http://lkml.kernel.org/r/20180724224635.143944-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Bruce Merry <bmerry@ska.ac.za> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>