summaryrefslogtreecommitdiffstats
path: root/arch/arm/kernel/topology.c
blob: f10316b4ecdc7558b05644d3758532a26fa6de58 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/*
 * arch/arm/kernel/topology.c
 *
 * Copyright (C) 2011 Linaro Limited.
 * Written by: Vincent Guittot
 *
 * based on arch/sh/kernel/topology.c
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/node.h>
#include <linux/nodemask.h>
#include <linux/of.h>
#include <linux/sched.h>
#include <linux/slab.h>

#include <asm/cputype.h>
#include <asm/topology.h>

/*
 * cpu power scale management
 */

/*
 * cpu power table
 * This per cpu data structure describes the relative capacity of each core.
 * On a heteregenous system, cores don't have the same computation capacity
 * and we reflect that difference in the cpu_power field so the scheduler can
 * take this difference into account during load balance. A per cpu structure
 * is preferred because each CPU updates its own cpu_power field during the
 * load balance except for idle cores. One idle core is selected to run the
 * rebalance_domains for all idle cores and the cpu_power can be updated
 * during this sequence.
 */
static DEFINE_PER_CPU(unsigned long, cpu_scale);

unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return per_cpu(cpu_scale, cpu);
}

static void set_power_scale(unsigned int cpu, unsigned long power)
{
	per_cpu(cpu_scale, cpu) = power;
}

#ifdef CONFIG_OF
struct cpu_efficiency {
	const char *compatible;
	unsigned long efficiency;
};

/*
 * Table of relative efficiency of each processors
 * The efficiency value must fit in 20bit and the final
 * cpu_scale value must be in the range
 *   0 < cpu_scale < 3*SCHED_POWER_SCALE/2
 * in order to return at most 1 when DIV_ROUND_CLOSEST
 * is used to compute the capacity of a CPU.
 * Processors that are not defined in the table,
 * use the default SCHED_POWER_SCALE value for cpu_scale.
 */
struct cpu_efficiency table_efficiency[] = {
	{"arm,cortex-a15", 3891},
	{"arm,cortex-a7",  2048},
	{NULL, },
};

struct cpu_capacity {
	unsigned long hwid;
	unsigned long capacity;
};

struct cpu_capacity *cpu_capacity;

unsigned long middle_capacity = 1;

/*
 * Iterate all CPUs' descriptor in DT and compute the efficiency
 * (as per table_efficiency). Also calculate a middle efficiency
 * as close as possible to  (max{eff_i} - min{eff_i}) / 2
 * This is later used to scale the cpu_power field such that an
 * 'average' CPU is of middle power. Also see the comments near
 * table_efficiency[] and update_cpu_power().
 */
static void __init parse_dt_topology(void)
{
	struct cpu_efficiency *cpu_eff;
	struct device_node *cn = NULL;
	unsigned long min_capacity = (unsigned long)(-1);
	unsigned long max_capacity = 0;
	unsigned long capacity = 0;
	int alloc_size, cpu = 0;

	alloc_size = nr_cpu_ids * sizeof(struct cpu_capacity);
	cpu_capacity = kzalloc(alloc_size, GFP_NOWAIT);

	while ((cn = of_find_node_by_type(cn, "cpu"))) {
		const u32 *rate, *reg;
		int len;

		if (cpu >= num_possible_cpus())
			break;

		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
			if (of_device_is_compatible(cn, cpu_eff->compatible))
				break;

		if (cpu_eff->compatible == NULL)
			continue;

		rate = of_get_property(cn, "clock-frequency", &len);
		if (!rate || len != 4) {
			pr_err("%s missing clock-frequency property\n",
				cn->full_name);
			continue;
		}

		reg = of_get_property(cn, "reg", &len);
		if (!reg || len != 4) {
			pr_err("%s missing reg property\n", cn->full_name);
			continue;
		}

		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;

		/* Save min capacity of the system */
		if (capacity < min_capacity)
			min_capacity = capacity;

		/* Save max capacity of the system */
		if (capacity > max_capacity)
			max_capacity = capacity;

		cpu_capacity[cpu].capacity = capacity;
		cpu_capacity[cpu++].hwid = be32_to_cpup(reg);
	}

	if (cpu < num_possible_cpus())
		cpu_capacity[cpu].hwid = (unsigned long)(-1);

	/* If min and max capacities are equals, we bypass the update of the
	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
	 * compute a middle_capacity factor that will ensure that the capacity
	 * of an 'average' CPU of the system will be as close as possible to
	 * SCHED_POWER_SCALE, which is the default value, but with the
	 * constraint explained near table_efficiency[].
	 */
	if (min_capacity == max_capacity)
		cpu_capacity[0].hwid = (unsigned long)(-1);
	else if (4*max_capacity < (3*(max_capacity + min_capacity)))
		middle_capacity = (min_capacity + max_capacity)
				>> (SCHED_POWER_SHIFT+1);
	else
		middle_capacity = ((max_capacity / 3)
				>> (SCHED_POWER_SHIFT-1)) + 1;

}

/*
 * Look for a customed capacity of a CPU in the cpu_capacity table during the
 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
 * function returns directly for SMP system.
 */
void update_cpu_power(unsigned int cpu, unsigned long hwid)
{
	unsigned int idx = 0;

	/* look for the cpu's hwid in the cpu capacity table */
	for (idx = 0; idx < num_possible_cpus(); idx++) {
		if (cpu_capacity[idx].hwid == hwid)
			break;

		if (cpu_capacity[idx].hwid == -1)
			return;
	}

	if (idx == num_possible_cpus())
		return;

	set_power_scale(cpu, cpu_capacity[idx].capacity / middle_capacity);

	printk(KERN_INFO "CPU%u: update cpu_power %lu\n",
		cpu, arch_scale_freq_power(NULL, cpu));
}

#else
static inline void parse_dt_topology(void) {}
static inline void update_cpu_power(unsigned int cpuid, unsigned int mpidr) {}
#endif

 /*
 * cpu topology table
 */
struct cputopo_arm cpu_topology[NR_CPUS];

const struct cpumask *cpu_coregroup_mask(int cpu)
{
	return &cpu_topology[cpu].core_sibling;
}

void update_siblings_masks(unsigned int cpuid)
{
	struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
	int cpu;

	/* update core and thread sibling masks */
	for_each_possible_cpu(cpu) {
		cpu_topo = &cpu_topology[cpu];

		if (cpuid_topo->socket_id != cpu_topo->socket_id)
			continue;

		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
		if (cpu != cpuid)
			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);

		if (cpuid_topo->core_id != cpu_topo->core_id)
			continue;

		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
		if (cpu != cpuid)
			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
	}
	smp_wmb();
}

/*
 * store_cpu_topology is called at boot when only one cpu is running
 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
 * which prevents simultaneous write access to cpu_topology array
 */
void store_cpu_topology(unsigned int cpuid)
{
	struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
	unsigned int mpidr;

	/* If the cpu topology has been already set, just return */
	if (cpuid_topo->core_id != -1)
		return;

	mpidr = read_cpuid_mpidr();

	/* create cpu topology mapping */
	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
		/*
		 * This is a multiprocessor system
		 * multiprocessor format & multiprocessor mode field are set
		 */

		if (mpidr & MPIDR_MT_BITMASK) {
			/* core performance interdependency */
			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
		} else {
			/* largely independent cores */
			cpuid_topo->thread_id = -1;
			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
		}
	} else {
		/*
		 * This is an uniprocessor system
		 * we are in multiprocessor format but uniprocessor system
		 * or in the old uniprocessor format
		 */
		cpuid_topo->thread_id = -1;
		cpuid_topo->core_id = 0;
		cpuid_topo->socket_id = -1;
	}

	update_siblings_masks(cpuid);

	update_cpu_power(cpuid, mpidr & MPIDR_HWID_BITMASK);

	printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
		cpuid, cpu_topology[cpuid].thread_id,
		cpu_topology[cpuid].core_id,
		cpu_topology[cpuid].socket_id, mpidr);
}

/*
 * init_cpu_topology is called at boot when only one cpu is running
 * which prevent simultaneous write access to cpu_topology array
 */
void __init init_cpu_topology(void)
{
	unsigned int cpu;

	/* init core mask and power*/
	for_each_possible_cpu(cpu) {
		struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);

		cpu_topo->thread_id = -1;
		cpu_topo->core_id =  -1;
		cpu_topo->socket_id = -1;
		cpumask_clear(&cpu_topo->core_sibling);
		cpumask_clear(&cpu_topo->thread_sibling);

		set_power_scale(cpu, SCHED_POWER_SCALE);
	}
	smp_wmb();

	parse_dt_topology();
}