summaryrefslogtreecommitdiffstats
path: root/arch/arm64/kernel/kaslr.c
blob: 708051655ad9c597138419af816583c9f5ed2299 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
 */

#include <linux/cache.h>
#include <linux/crc32.h>
#include <linux/init.h>
#include <linux/libfdt.h>
#include <linux/mm_types.h>
#include <linux/sched.h>
#include <linux/types.h>

#include <asm/cacheflush.h>
#include <asm/fixmap.h>
#include <asm/kernel-pgtable.h>
#include <asm/memory.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/sections.h>

u64 __ro_after_init module_alloc_base;
u16 __initdata memstart_offset_seed;

static __init u64 get_kaslr_seed(void *fdt)
{
	int node, len;
	fdt64_t *prop;
	u64 ret;

	node = fdt_path_offset(fdt, "/chosen");
	if (node < 0)
		return 0;

	prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
	if (!prop || len != sizeof(u64))
		return 0;

	ret = fdt64_to_cpu(*prop);
	*prop = 0;
	return ret;
}

static __init const u8 *kaslr_get_cmdline(void *fdt)
{
	static __initconst const u8 default_cmdline[] = CONFIG_CMDLINE;

	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
		int node;
		const u8 *prop;

		node = fdt_path_offset(fdt, "/chosen");
		if (node < 0)
			goto out;

		prop = fdt_getprop(fdt, node, "bootargs", NULL);
		if (!prop)
			goto out;
		return prop;
	}
out:
	return default_cmdline;
}

extern void *__init __fixmap_remap_fdt(phys_addr_t dt_phys, int *size,
				       pgprot_t prot);

/*
 * This routine will be executed with the kernel mapped at its default virtual
 * address, and if it returns successfully, the kernel will be remapped, and
 * start_kernel() will be executed from a randomized virtual offset. The
 * relocation will result in all absolute references (e.g., static variables
 * containing function pointers) to be reinitialized, and zero-initialized
 * .bss variables will be reset to 0.
 */
u64 __init kaslr_early_init(u64 dt_phys)
{
	void *fdt;
	u64 seed, offset, mask, module_range;
	const u8 *cmdline, *str;
	int size;

	/*
	 * Set a reasonable default for module_alloc_base in case
	 * we end up running with module randomization disabled.
	 */
	module_alloc_base = (u64)_etext - MODULES_VSIZE;
	__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));

	/*
	 * Try to map the FDT early. If this fails, we simply bail,
	 * and proceed with KASLR disabled. We will make another
	 * attempt at mapping the FDT in setup_machine()
	 */
	early_fixmap_init();
	fdt = __fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
	if (!fdt)
		return 0;

	/*
	 * Retrieve (and wipe) the seed from the FDT
	 */
	seed = get_kaslr_seed(fdt);
	if (!seed)
		return 0;

	/*
	 * Check if 'nokaslr' appears on the command line, and
	 * return 0 if that is the case.
	 */
	cmdline = kaslr_get_cmdline(fdt);
	str = strstr(cmdline, "nokaslr");
	if (str == cmdline || (str > cmdline && *(str - 1) == ' '))
		return 0;

	/*
	 * OK, so we are proceeding with KASLR enabled. Calculate a suitable
	 * kernel image offset from the seed. Let's place the kernel in the
	 * middle half of the VMALLOC area (VA_BITS - 2), and stay clear of
	 * the lower and upper quarters to avoid colliding with other
	 * allocations.
	 * Even if we could randomize at page granularity for 16k and 64k pages,
	 * let's always round to 2 MB so we don't interfere with the ability to
	 * map using contiguous PTEs
	 */
	mask = ((1UL << (VA_BITS - 2)) - 1) & ~(SZ_2M - 1);
	offset = BIT(VA_BITS - 3) + (seed & mask);

	/* use the top 16 bits to randomize the linear region */
	memstart_offset_seed = seed >> 48;

	if (IS_ENABLED(CONFIG_KASAN))
		/*
		 * KASAN does not expect the module region to intersect the
		 * vmalloc region, since shadow memory is allocated for each
		 * module at load time, whereas the vmalloc region is shadowed
		 * by KASAN zero pages. So keep modules out of the vmalloc
		 * region if KASAN is enabled, and put the kernel well within
		 * 4 GB of the module region.
		 */
		return offset % SZ_2G;

	if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
		/*
		 * Randomize the module region over a 2 GB window covering the
		 * kernel. This reduces the risk of modules leaking information
		 * about the address of the kernel itself, but results in
		 * branches between modules and the core kernel that are
		 * resolved via PLTs. (Branches between modules will be
		 * resolved normally.)
		 */
		module_range = SZ_2G - (u64)(_end - _stext);
		module_alloc_base = max((u64)_end + offset - SZ_2G,
					(u64)MODULES_VADDR);
	} else {
		/*
		 * Randomize the module region by setting module_alloc_base to
		 * a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
		 * _stext) . This guarantees that the resulting region still
		 * covers [_stext, _etext], and that all relative branches can
		 * be resolved without veneers.
		 */
		module_range = MODULES_VSIZE - (u64)(_etext - _stext);
		module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
	}

	/* use the lower 21 bits to randomize the base of the module region */
	module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
	module_alloc_base &= PAGE_MASK;

	__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
	__flush_dcache_area(&memstart_offset_seed, sizeof(memstart_offset_seed));

	return offset;
}