summaryrefslogtreecommitdiffstats
path: root/crypto/lrw.c
blob: be829f6afc8e5bbcf6fabec3a0135740b1cb966c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
// SPDX-License-Identifier: GPL-2.0-or-later
/* LRW: as defined by Cyril Guyot in
 *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
 *
 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
 *
 * Based on ecb.c
 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 */
/* This implementation is checked against the test vectors in the above
 * document and by a test vector provided by Ken Buchanan at
 * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
 *
 * The test vectors are included in the testing module tcrypt.[ch] */

#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>

#include <crypto/b128ops.h>
#include <crypto/gf128mul.h>

#define LRW_BLOCK_SIZE 16

struct priv {
	struct crypto_skcipher *child;

	/*
	 * optimizes multiplying a random (non incrementing, as at the
	 * start of a new sector) value with key2, we could also have
	 * used 4k optimization tables or no optimization at all. In the
	 * latter case we would have to store key2 here
	 */
	struct gf128mul_64k *table;

	/*
	 * stores:
	 *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
	 *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
	 *  key2*{ 0,0,...1,1,1,1,1 }, etc
	 * needed for optimized multiplication of incrementing values
	 * with key2
	 */
	be128 mulinc[128];
};

struct rctx {
	be128 t;
	struct skcipher_request subreq;
};

static inline void setbit128_bbe(void *b, int bit)
{
	__set_bit(bit ^ (0x80 -
#ifdef __BIG_ENDIAN
			 BITS_PER_LONG
#else
			 BITS_PER_BYTE
#endif
			), b);
}

static int setkey(struct crypto_skcipher *parent, const u8 *key,
		  unsigned int keylen)
{
	struct priv *ctx = crypto_skcipher_ctx(parent);
	struct crypto_skcipher *child = ctx->child;
	int err, bsize = LRW_BLOCK_SIZE;
	const u8 *tweak = key + keylen - bsize;
	be128 tmp = { 0 };
	int i;

	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
					 CRYPTO_TFM_REQ_MASK);
	err = crypto_skcipher_setkey(child, key, keylen - bsize);
	crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
					  CRYPTO_TFM_RES_MASK);
	if (err)
		return err;

	if (ctx->table)
		gf128mul_free_64k(ctx->table);

	/* initialize multiplication table for Key2 */
	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
	if (!ctx->table)
		return -ENOMEM;

	/* initialize optimization table */
	for (i = 0; i < 128; i++) {
		setbit128_bbe(&tmp, i);
		ctx->mulinc[i] = tmp;
		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
	}

	return 0;
}

/*
 * Returns the number of trailing '1' bits in the words of the counter, which is
 * represented by 4 32-bit words, arranged from least to most significant.
 * At the same time, increments the counter by one.
 *
 * For example:
 *
 * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
 * int i = next_index(&counter);
 * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
 */
static int next_index(u32 *counter)
{
	int i, res = 0;

	for (i = 0; i < 4; i++) {
		if (counter[i] + 1 != 0)
			return res + ffz(counter[i]++);

		counter[i] = 0;
		res += 32;
	}

	/*
	 * If we get here, then x == 128 and we are incrementing the counter
	 * from all ones to all zeros. This means we must return index 127, i.e.
	 * the one corresponding to key2*{ 1,...,1 }.
	 */
	return 127;
}

/*
 * We compute the tweak masks twice (both before and after the ECB encryption or
 * decryption) to avoid having to allocate a temporary buffer and/or make
 * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
 * just doing the next_index() calls again.
 */
static int xor_tweak(struct skcipher_request *req, bool second_pass)
{
	const int bs = LRW_BLOCK_SIZE;
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct priv *ctx = crypto_skcipher_ctx(tfm);
	struct rctx *rctx = skcipher_request_ctx(req);
	be128 t = rctx->t;
	struct skcipher_walk w;
	__be32 *iv;
	u32 counter[4];
	int err;

	if (second_pass) {
		req = &rctx->subreq;
		/* set to our TFM to enforce correct alignment: */
		skcipher_request_set_tfm(req, tfm);
	}

	err = skcipher_walk_virt(&w, req, false);
	if (err)
		return err;

	iv = (__be32 *)w.iv;
	counter[0] = be32_to_cpu(iv[3]);
	counter[1] = be32_to_cpu(iv[2]);
	counter[2] = be32_to_cpu(iv[1]);
	counter[3] = be32_to_cpu(iv[0]);

	while (w.nbytes) {
		unsigned int avail = w.nbytes;
		be128 *wsrc;
		be128 *wdst;

		wsrc = w.src.virt.addr;
		wdst = w.dst.virt.addr;

		do {
			be128_xor(wdst++, &t, wsrc++);

			/* T <- I*Key2, using the optimization
			 * discussed in the specification */
			be128_xor(&t, &t, &ctx->mulinc[next_index(counter)]);
		} while ((avail -= bs) >= bs);

		if (second_pass && w.nbytes == w.total) {
			iv[0] = cpu_to_be32(counter[3]);
			iv[1] = cpu_to_be32(counter[2]);
			iv[2] = cpu_to_be32(counter[1]);
			iv[3] = cpu_to_be32(counter[0]);
		}

		err = skcipher_walk_done(&w, avail);
	}

	return err;
}

static int xor_tweak_pre(struct skcipher_request *req)
{
	return xor_tweak(req, false);
}

static int xor_tweak_post(struct skcipher_request *req)
{
	return xor_tweak(req, true);
}

static void crypt_done(struct crypto_async_request *areq, int err)
{
	struct skcipher_request *req = areq->data;

	if (!err) {
		struct rctx *rctx = skcipher_request_ctx(req);

		rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
		err = xor_tweak_post(req);
	}

	skcipher_request_complete(req, err);
}

static void init_crypt(struct skcipher_request *req)
{
	struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
	struct rctx *rctx = skcipher_request_ctx(req);
	struct skcipher_request *subreq = &rctx->subreq;

	skcipher_request_set_tfm(subreq, ctx->child);
	skcipher_request_set_callback(subreq, req->base.flags, crypt_done, req);
	/* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
	skcipher_request_set_crypt(subreq, req->dst, req->dst,
				   req->cryptlen, req->iv);

	/* calculate first value of T */
	memcpy(&rctx->t, req->iv, sizeof(rctx->t));

	/* T <- I*Key2 */
	gf128mul_64k_bbe(&rctx->t, ctx->table);
}

static int encrypt(struct skcipher_request *req)
{
	struct rctx *rctx = skcipher_request_ctx(req);
	struct skcipher_request *subreq = &rctx->subreq;

	init_crypt(req);
	return xor_tweak_pre(req) ?:
		crypto_skcipher_encrypt(subreq) ?:
		xor_tweak_post(req);
}

static int decrypt(struct skcipher_request *req)
{
	struct rctx *rctx = skcipher_request_ctx(req);
	struct skcipher_request *subreq = &rctx->subreq;

	init_crypt(req);
	return xor_tweak_pre(req) ?:
		crypto_skcipher_decrypt(subreq) ?:
		xor_tweak_post(req);
}

static int init_tfm(struct crypto_skcipher *tfm)
{
	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
	struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
	struct priv *ctx = crypto_skcipher_ctx(tfm);
	struct crypto_skcipher *cipher;

	cipher = crypto_spawn_skcipher(spawn);
	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	ctx->child = cipher;

	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
					 sizeof(struct rctx));

	return 0;
}

static void exit_tfm(struct crypto_skcipher *tfm)
{
	struct priv *ctx = crypto_skcipher_ctx(tfm);

	if (ctx->table)
		gf128mul_free_64k(ctx->table);
	crypto_free_skcipher(ctx->child);
}

static void free(struct skcipher_instance *inst)
{
	crypto_drop_skcipher(skcipher_instance_ctx(inst));
	kfree(inst);
}

static int create(struct crypto_template *tmpl, struct rtattr **tb)
{
	struct crypto_skcipher_spawn *spawn;
	struct skcipher_instance *inst;
	struct crypto_attr_type *algt;
	struct skcipher_alg *alg;
	const char *cipher_name;
	char ecb_name[CRYPTO_MAX_ALG_NAME];
	int err;

	algt = crypto_get_attr_type(tb);
	if (IS_ERR(algt))
		return PTR_ERR(algt);

	if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
		return -EINVAL;

	cipher_name = crypto_attr_alg_name(tb[1]);
	if (IS_ERR(cipher_name))
		return PTR_ERR(cipher_name);

	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
	if (!inst)
		return -ENOMEM;

	spawn = skcipher_instance_ctx(inst);

	crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
	err = crypto_grab_skcipher(spawn, cipher_name, 0,
				   crypto_requires_sync(algt->type,
							algt->mask));
	if (err == -ENOENT) {
		err = -ENAMETOOLONG;
		if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
			     cipher_name) >= CRYPTO_MAX_ALG_NAME)
			goto err_free_inst;

		err = crypto_grab_skcipher(spawn, ecb_name, 0,
					   crypto_requires_sync(algt->type,
								algt->mask));
	}

	if (err)
		goto err_free_inst;

	alg = crypto_skcipher_spawn_alg(spawn);

	err = -EINVAL;
	if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
		goto err_drop_spawn;

	if (crypto_skcipher_alg_ivsize(alg))
		goto err_drop_spawn;

	err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
				  &alg->base);
	if (err)
		goto err_drop_spawn;

	err = -EINVAL;
	cipher_name = alg->base.cra_name;

	/* Alas we screwed up the naming so we have to mangle the
	 * cipher name.
	 */
	if (!strncmp(cipher_name, "ecb(", 4)) {
		unsigned len;

		len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
		if (len < 2 || len >= sizeof(ecb_name))
			goto err_drop_spawn;

		if (ecb_name[len - 1] != ')')
			goto err_drop_spawn;

		ecb_name[len - 1] = 0;

		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
			     "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
			err = -ENAMETOOLONG;
			goto err_drop_spawn;
		}
	} else
		goto err_drop_spawn;

	inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
	inst->alg.base.cra_priority = alg->base.cra_priority;
	inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
	inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
				       (__alignof__(be128) - 1);

	inst->alg.ivsize = LRW_BLOCK_SIZE;
	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
				LRW_BLOCK_SIZE;
	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
				LRW_BLOCK_SIZE;

	inst->alg.base.cra_ctxsize = sizeof(struct priv);

	inst->alg.init = init_tfm;
	inst->alg.exit = exit_tfm;

	inst->alg.setkey = setkey;
	inst->alg.encrypt = encrypt;
	inst->alg.decrypt = decrypt;

	inst->free = free;

	err = skcipher_register_instance(tmpl, inst);
	if (err)
		goto err_drop_spawn;

out:
	return err;

err_drop_spawn:
	crypto_drop_skcipher(spawn);
err_free_inst:
	kfree(inst);
	goto out;
}

static struct crypto_template crypto_tmpl = {
	.name = "lrw",
	.create = create,
	.module = THIS_MODULE,
};

static int __init crypto_module_init(void)
{
	return crypto_register_template(&crypto_tmpl);
}

static void __exit crypto_module_exit(void)
{
	crypto_unregister_template(&crypto_tmpl);
}

subsys_initcall(crypto_module_init);
module_exit(crypto_module_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("LRW block cipher mode");
MODULE_ALIAS_CRYPTO("lrw");