1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
|
/*
* STMicroelectronics pressures driver
*
* Copyright 2013 STMicroelectronics Inc.
*
* Denis Ciocca <denis.ciocca@st.com>
*
* Licensed under the GPL-2.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/mutex.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/gpio.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/buffer.h>
#include <asm/unaligned.h>
#include <linux/iio/common/st_sensors.h>
#include "st_pressure.h"
/*
* About determining pressure scaling factors
* ------------------------------------------
*
* Datasheets specify typical pressure sensitivity so that pressure is computed
* according to the following equation :
* pressure[mBar] = raw / sensitivity
* where :
* raw the 24 bits long raw sampled pressure
* sensitivity a scaling factor specified by the datasheet in LSB/mBar
*
* IIO ABI expects pressure to be expressed as kPascal, hence pressure should be
* computed according to :
* pressure[kPascal] = pressure[mBar] / 10
* = raw / (sensitivity * 10) (1)
*
* Finally, st_press_read_raw() returns pressure scaling factor as an
* IIO_VAL_INT_PLUS_NANO with a zero integral part and "gain" as decimal part.
* Therefore, from (1), "gain" becomes :
* gain = 10^9 / (sensitivity * 10)
* = 10^8 / sensitivity
*
* About determining temperature scaling factors and offsets
* ---------------------------------------------------------
*
* Datasheets specify typical temperature sensitivity and offset so that
* temperature is computed according to the following equation :
* temp[Celsius] = offset[Celsius] + (raw / sensitivity)
* where :
* raw the 16 bits long raw sampled temperature
* offset a constant specified by the datasheet in degree Celsius
* (sometimes zero)
* sensitivity a scaling factor specified by the datasheet in LSB/Celsius
*
* IIO ABI expects temperature to be expressed as milli degree Celsius such as
* user space should compute temperature according to :
* temp[mCelsius] = temp[Celsius] * 10^3
* = (offset[Celsius] + (raw / sensitivity)) * 10^3
* = ((offset[Celsius] * sensitivity) + raw) *
* (10^3 / sensitivity) (2)
*
* IIO ABI expects user space to apply offset and scaling factors to raw samples
* according to :
* temp[mCelsius] = (OFFSET + raw) * SCALE
* where :
* OFFSET an arbitrary constant exposed by device
* SCALE an arbitrary scaling factor exposed by device
*
* Matching OFFSET and SCALE with members of (2) gives :
* OFFSET = offset[Celsius] * sensitivity (3)
* SCALE = 10^3 / sensitivity (4)
*
* st_press_read_raw() returns temperature scaling factor as an
* IIO_VAL_FRACTIONAL with a 10^3 numerator and "gain2" as denominator.
* Therefore, from (3), "gain2" becomes :
* gain2 = sensitivity
*
* When declared within channel, i.e. for a non zero specified offset,
* st_press_read_raw() will return the latter as an IIO_VAL_FRACTIONAL such as :
* numerator = OFFSET * 10^3
* denominator = 10^3
* giving from (4):
* numerator = offset[Celsius] * 10^3 * sensitivity
* = offset[mCelsius] * gain2
*/
#define MCELSIUS_PER_CELSIUS 1000
/* Default pressure sensitivity */
#define ST_PRESS_LSB_PER_MBAR 4096UL
#define ST_PRESS_KPASCAL_NANO_SCALE (100000000UL / \
ST_PRESS_LSB_PER_MBAR)
/* Default temperature sensitivity */
#define ST_PRESS_LSB_PER_CELSIUS 480UL
#define ST_PRESS_MILLI_CELSIUS_OFFSET 42500UL
/* FULLSCALE */
#define ST_PRESS_FS_AVL_1100MB 1100
#define ST_PRESS_FS_AVL_1260MB 1260
#define ST_PRESS_1_OUT_XL_ADDR 0x28
#define ST_TEMP_1_OUT_L_ADDR 0x2b
/* LPS001WP pressure resolution */
#define ST_PRESS_LPS001WP_LSB_PER_MBAR 16UL
/* LPS001WP temperature resolution */
#define ST_PRESS_LPS001WP_LSB_PER_CELSIUS 64UL
/* LPS001WP pressure gain */
#define ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN \
(100000000UL / ST_PRESS_LPS001WP_LSB_PER_MBAR)
/* LPS001WP pressure and temp L addresses */
#define ST_PRESS_LPS001WP_OUT_L_ADDR 0x28
#define ST_TEMP_LPS001WP_OUT_L_ADDR 0x2a
/* LPS25H pressure and temp L addresses */
#define ST_PRESS_LPS25H_OUT_XL_ADDR 0x28
#define ST_TEMP_LPS25H_OUT_L_ADDR 0x2b
/* LPS22HB temperature sensitivity */
#define ST_PRESS_LPS22HB_LSB_PER_CELSIUS 100UL
static const struct iio_chan_spec st_press_1_channels[] = {
{
.type = IIO_PRESSURE,
.address = ST_PRESS_1_OUT_XL_ADDR,
.scan_index = 0,
.scan_type = {
.sign = 's',
.realbits = 24,
.storagebits = 32,
.endianness = IIO_LE,
},
.info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
},
{
.type = IIO_TEMP,
.address = ST_TEMP_1_OUT_L_ADDR,
.scan_index = 1,
.scan_type = {
.sign = 's',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_LE,
},
.info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
},
IIO_CHAN_SOFT_TIMESTAMP(2)
};
static const struct iio_chan_spec st_press_lps001wp_channels[] = {
{
.type = IIO_PRESSURE,
.address = ST_PRESS_LPS001WP_OUT_L_ADDR,
.scan_index = 0,
.scan_type = {
.sign = 's',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_LE,
},
.info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
},
{
.type = IIO_TEMP,
.address = ST_TEMP_LPS001WP_OUT_L_ADDR,
.scan_index = 1,
.scan_type = {
.sign = 's',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_LE,
},
.info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
},
IIO_CHAN_SOFT_TIMESTAMP(2)
};
static const struct iio_chan_spec st_press_lps22hb_channels[] = {
{
.type = IIO_PRESSURE,
.address = ST_PRESS_1_OUT_XL_ADDR,
.scan_index = 0,
.scan_type = {
.sign = 's',
.realbits = 24,
.storagebits = 32,
.endianness = IIO_LE,
},
.info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
},
{
.type = IIO_TEMP,
.address = ST_TEMP_1_OUT_L_ADDR,
.scan_index = 1,
.scan_type = {
.sign = 's',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_LE,
},
.info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
},
IIO_CHAN_SOFT_TIMESTAMP(2)
};
static const struct st_sensor_settings st_press_sensors_settings[] = {
{
/*
* CUSTOM VALUES FOR LPS331AP SENSOR
* See LPS331AP datasheet:
* http://www2.st.com/resource/en/datasheet/lps331ap.pdf
*/
.wai = 0xbb,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LPS331AP_PRESS_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_press_1_channels,
.num_ch = ARRAY_SIZE(st_press_1_channels),
.odr = {
.addr = 0x20,
.mask = 0x70,
.odr_avl = {
{ .hz = 1, .value = 0x01 },
{ .hz = 7, .value = 0x05 },
{ .hz = 13, .value = 0x06 },
{ .hz = 25, .value = 0x07 },
},
},
.pw = {
.addr = 0x20,
.mask = 0x80,
.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.fs = {
.addr = 0x23,
.mask = 0x30,
.fs_avl = {
/*
* Pressure and temperature sensitivity values
* as defined in table 3 of LPS331AP datasheet.
*/
[0] = {
.num = ST_PRESS_FS_AVL_1260MB,
.gain = ST_PRESS_KPASCAL_NANO_SCALE,
.gain2 = ST_PRESS_LSB_PER_CELSIUS,
},
},
},
.bdu = {
.addr = 0x20,
.mask = 0x04,
},
.drdy_irq = {
.addr = 0x22,
.mask_int1 = 0x04,
.mask_int2 = 0x20,
.addr_ihl = 0x22,
.mask_ihl = 0x80,
.addr_od = 0x22,
.mask_od = 0x40,
.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
},
.multi_read_bit = true,
.bootime = 2,
},
{
/*
* CUSTOM VALUES FOR LPS001WP SENSOR
*/
.wai = 0xba,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LPS001WP_PRESS_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_press_lps001wp_channels,
.num_ch = ARRAY_SIZE(st_press_lps001wp_channels),
.odr = {
.addr = 0x20,
.mask = 0x30,
.odr_avl = {
{ .hz = 1, .value = 0x01 },
{ .hz = 7, .value = 0x02 },
{ .hz = 13, .value = 0x03 },
},
},
.pw = {
.addr = 0x20,
.mask = 0x40,
.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.fs = {
.fs_avl = {
/*
* Pressure and temperature resolution values
* as defined in table 3 of LPS001WP datasheet.
*/
[0] = {
.num = ST_PRESS_FS_AVL_1100MB,
.gain = ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN,
.gain2 = ST_PRESS_LPS001WP_LSB_PER_CELSIUS,
},
},
},
.bdu = {
.addr = 0x20,
.mask = 0x04,
},
.drdy_irq = {
.addr = 0,
},
.multi_read_bit = true,
.bootime = 2,
},
{
/*
* CUSTOM VALUES FOR LPS25H SENSOR
* See LPS25H datasheet:
* http://www2.st.com/resource/en/datasheet/lps25h.pdf
*/
.wai = 0xbd,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LPS25H_PRESS_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_press_1_channels,
.num_ch = ARRAY_SIZE(st_press_1_channels),
.odr = {
.addr = 0x20,
.mask = 0x70,
.odr_avl = {
{ .hz = 1, .value = 0x01 },
{ .hz = 7, .value = 0x02 },
{ .hz = 13, .value = 0x03 },
{ .hz = 25, .value = 0x04 },
},
},
.pw = {
.addr = 0x20,
.mask = 0x80,
.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.fs = {
.fs_avl = {
/*
* Pressure and temperature sensitivity values
* as defined in table 3 of LPS25H datasheet.
*/
[0] = {
.num = ST_PRESS_FS_AVL_1260MB,
.gain = ST_PRESS_KPASCAL_NANO_SCALE,
.gain2 = ST_PRESS_LSB_PER_CELSIUS,
},
},
},
.bdu = {
.addr = 0x20,
.mask = 0x04,
},
.drdy_irq = {
.addr = 0x23,
.mask_int1 = 0x01,
.mask_int2 = 0x10,
.addr_ihl = 0x22,
.mask_ihl = 0x80,
.addr_od = 0x22,
.mask_od = 0x40,
.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
},
.multi_read_bit = true,
.bootime = 2,
},
{
/*
* CUSTOM VALUES FOR LPS22HB SENSOR
* See LPS22HB datasheet:
* http://www2.st.com/resource/en/datasheet/lps22hb.pdf
*/
.wai = 0xb1,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LPS22HB_PRESS_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_press_lps22hb_channels,
.num_ch = ARRAY_SIZE(st_press_lps22hb_channels),
.odr = {
.addr = 0x10,
.mask = 0x70,
.odr_avl = {
{ .hz = 1, .value = 0x01 },
{ .hz = 10, .value = 0x02 },
{ .hz = 25, .value = 0x03 },
{ .hz = 50, .value = 0x04 },
{ .hz = 75, .value = 0x05 },
},
},
.pw = {
.addr = 0x10,
.mask = 0x70,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.fs = {
.fs_avl = {
/*
* Pressure and temperature sensitivity values
* as defined in table 3 of LPS22HB datasheet.
*/
[0] = {
.num = ST_PRESS_FS_AVL_1260MB,
.gain = ST_PRESS_KPASCAL_NANO_SCALE,
.gain2 = ST_PRESS_LPS22HB_LSB_PER_CELSIUS,
},
},
},
.bdu = {
.addr = 0x10,
.mask = 0x02,
},
.drdy_irq = {
.addr = 0x12,
.mask_int1 = 0x04,
.mask_int2 = 0x08,
.addr_ihl = 0x12,
.mask_ihl = 0x80,
.addr_od = 0x12,
.mask_od = 0x40,
.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
},
.multi_read_bit = true,
},
};
static int st_press_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *ch,
int val,
int val2,
long mask)
{
int err;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
if (val2)
return -EINVAL;
mutex_lock(&indio_dev->mlock);
err = st_sensors_set_odr(indio_dev, val);
mutex_unlock(&indio_dev->mlock);
return err;
default:
return -EINVAL;
}
}
static int st_press_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *ch, int *val,
int *val2, long mask)
{
int err;
struct st_sensor_data *press_data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
err = st_sensors_read_info_raw(indio_dev, ch, val);
if (err < 0)
goto read_error;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
switch (ch->type) {
case IIO_PRESSURE:
*val = 0;
*val2 = press_data->current_fullscale->gain;
return IIO_VAL_INT_PLUS_NANO;
case IIO_TEMP:
*val = MCELSIUS_PER_CELSIUS;
*val2 = press_data->current_fullscale->gain2;
return IIO_VAL_FRACTIONAL;
default:
err = -EINVAL;
goto read_error;
}
case IIO_CHAN_INFO_OFFSET:
switch (ch->type) {
case IIO_TEMP:
*val = ST_PRESS_MILLI_CELSIUS_OFFSET *
press_data->current_fullscale->gain2;
*val2 = MCELSIUS_PER_CELSIUS;
break;
default:
err = -EINVAL;
goto read_error;
}
return IIO_VAL_FRACTIONAL;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = press_data->odr;
return IIO_VAL_INT;
default:
return -EINVAL;
}
read_error:
return err;
}
static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL();
static struct attribute *st_press_attributes[] = {
&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
NULL,
};
static const struct attribute_group st_press_attribute_group = {
.attrs = st_press_attributes,
};
static const struct iio_info press_info = {
.driver_module = THIS_MODULE,
.attrs = &st_press_attribute_group,
.read_raw = &st_press_read_raw,
.write_raw = &st_press_write_raw,
.debugfs_reg_access = &st_sensors_debugfs_reg_access,
};
#ifdef CONFIG_IIO_TRIGGER
static const struct iio_trigger_ops st_press_trigger_ops = {
.owner = THIS_MODULE,
.set_trigger_state = ST_PRESS_TRIGGER_SET_STATE,
.validate_device = st_sensors_validate_device,
};
#define ST_PRESS_TRIGGER_OPS (&st_press_trigger_ops)
#else
#define ST_PRESS_TRIGGER_OPS NULL
#endif
int st_press_common_probe(struct iio_dev *indio_dev)
{
struct st_sensor_data *press_data = iio_priv(indio_dev);
int irq = press_data->get_irq_data_ready(indio_dev);
int err;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &press_info;
mutex_init(&press_data->tb.buf_lock);
err = st_sensors_power_enable(indio_dev);
if (err)
return err;
err = st_sensors_check_device_support(indio_dev,
ARRAY_SIZE(st_press_sensors_settings),
st_press_sensors_settings);
if (err < 0)
goto st_press_power_off;
/*
* Skip timestamping channel while declaring available channels to
* common st_sensor layer. Look at st_sensors_get_buffer_element() to
* see how timestamps are explicitly pushed as last samples block
* element.
*/
press_data->num_data_channels = press_data->sensor_settings->num_ch - 1;
press_data->multiread_bit = press_data->sensor_settings->multi_read_bit;
indio_dev->channels = press_data->sensor_settings->ch;
indio_dev->num_channels = press_data->sensor_settings->num_ch;
press_data->current_fullscale =
(struct st_sensor_fullscale_avl *)
&press_data->sensor_settings->fs.fs_avl[0];
press_data->odr = press_data->sensor_settings->odr.odr_avl[0].hz;
/* Some devices don't support a data ready pin. */
if (!press_data->dev->platform_data &&
press_data->sensor_settings->drdy_irq.addr)
press_data->dev->platform_data =
(struct st_sensors_platform_data *)&default_press_pdata;
err = st_sensors_init_sensor(indio_dev, press_data->dev->platform_data);
if (err < 0)
goto st_press_power_off;
err = st_press_allocate_ring(indio_dev);
if (err < 0)
goto st_press_power_off;
if (irq > 0) {
err = st_sensors_allocate_trigger(indio_dev,
ST_PRESS_TRIGGER_OPS);
if (err < 0)
goto st_press_probe_trigger_error;
}
err = iio_device_register(indio_dev);
if (err)
goto st_press_device_register_error;
dev_info(&indio_dev->dev, "registered pressure sensor %s\n",
indio_dev->name);
return err;
st_press_device_register_error:
if (irq > 0)
st_sensors_deallocate_trigger(indio_dev);
st_press_probe_trigger_error:
st_press_deallocate_ring(indio_dev);
st_press_power_off:
st_sensors_power_disable(indio_dev);
return err;
}
EXPORT_SYMBOL(st_press_common_probe);
void st_press_common_remove(struct iio_dev *indio_dev)
{
struct st_sensor_data *press_data = iio_priv(indio_dev);
st_sensors_power_disable(indio_dev);
iio_device_unregister(indio_dev);
if (press_data->get_irq_data_ready(indio_dev) > 0)
st_sensors_deallocate_trigger(indio_dev);
st_press_deallocate_ring(indio_dev);
}
EXPORT_SYMBOL(st_press_common_remove);
MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
MODULE_DESCRIPTION("STMicroelectronics pressures driver");
MODULE_LICENSE("GPL v2");
|