summaryrefslogtreecommitdiffstats
path: root/drivers/media/pci/tw68/tw68-core.c
blob: 4e77618fbb2b9aa742de7bdcc218ab1f5feb7f3d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/*
 *  tw68-core.c
 *  Core functions for the Techwell 68xx driver
 *
 *  Much of this code is derived from the cx88 and sa7134 drivers, which
 *  were in turn derived from the bt87x driver.  The original work was by
 *  Gerd Knorr; more recently the code was enhanced by Mauro Carvalho Chehab,
 *  Hans Verkuil, Andy Walls and many others.  Their work is gratefully
 *  acknowledged.  Full credit goes to them - any problems within this code
 *  are mine.
 *
 *  Copyright (C) 2009  William M. Brack
 *
 *  Refactored and updated to the latest v4l core frameworks:
 *
 *  Copyright (C) 2014 Hans Verkuil <hverkuil@xs4all.nl>
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 */

#include <linux/init.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/kmod.h>
#include <linux/sound.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/dma-mapping.h>
#include <linux/pci_ids.h>
#include <linux/pm.h>

#include <media/v4l2-dev.h>
#include "tw68.h"
#include "tw68-reg.h"

MODULE_DESCRIPTION("v4l2 driver module for tw6800 based video capture cards");
MODULE_AUTHOR("William M. Brack");
MODULE_AUTHOR("Hans Verkuil <hverkuil@xs4all.nl>");
MODULE_LICENSE("GPL");

static unsigned int latency = UNSET;
module_param(latency, int, 0444);
MODULE_PARM_DESC(latency, "pci latency timer");

static unsigned int video_nr[] = {[0 ... (TW68_MAXBOARDS - 1)] = UNSET };
module_param_array(video_nr, int, NULL, 0444);
MODULE_PARM_DESC(video_nr, "video device number");

static unsigned int card[] = {[0 ... (TW68_MAXBOARDS - 1)] = UNSET };
module_param_array(card, int, NULL, 0444);
MODULE_PARM_DESC(card, "card type");

static atomic_t tw68_instance = ATOMIC_INIT(0);

/* ------------------------------------------------------------------ */

/*
 * Please add any new PCI IDs to: http://pci-ids.ucw.cz.  This keeps
 * the PCI ID database up to date.  Note that the entries must be
 * added under vendor 0x1797 (Techwell Inc.) as subsystem IDs.
 */
static const struct pci_device_id tw68_pci_tbl[] = {
	{PCI_DEVICE(PCI_VENDOR_ID_TECHWELL, PCI_DEVICE_ID_TECHWELL_6800)},
	{PCI_DEVICE(PCI_VENDOR_ID_TECHWELL, PCI_DEVICE_ID_TECHWELL_6801)},
	{PCI_DEVICE(PCI_VENDOR_ID_TECHWELL, PCI_DEVICE_ID_TECHWELL_6804)},
	{PCI_DEVICE(PCI_VENDOR_ID_TECHWELL, PCI_DEVICE_ID_TECHWELL_6816_1)},
	{PCI_DEVICE(PCI_VENDOR_ID_TECHWELL, PCI_DEVICE_ID_TECHWELL_6816_2)},
	{PCI_DEVICE(PCI_VENDOR_ID_TECHWELL, PCI_DEVICE_ID_TECHWELL_6816_3)},
	{PCI_DEVICE(PCI_VENDOR_ID_TECHWELL, PCI_DEVICE_ID_TECHWELL_6816_4)},
	{0,}
};

/* ------------------------------------------------------------------ */


/*
 * The device is given a "soft reset". According to the specifications,
 * after this "all register content remain unchanged", so we also write
 * to all specified registers manually as well (mostly to manufacturer's
 * specified reset values)
 */
static int tw68_hw_init1(struct tw68_dev *dev)
{
	/* Assure all interrupts are disabled */
	tw_writel(TW68_INTMASK, 0);		/* 020 */
	/* Clear any pending interrupts */
	tw_writel(TW68_INTSTAT, 0xffffffff);	/* 01C */
	/* Stop risc processor, set default buffer level */
	tw_writel(TW68_DMAC, 0x1600);

	tw_writeb(TW68_ACNTL, 0x80);	/* 218	soft reset */
	msleep(100);

	tw_writeb(TW68_INFORM, 0x40);	/* 208	mux0, 27mhz xtal */
	tw_writeb(TW68_OPFORM, 0x04);	/* 20C	analog line-lock */
	tw_writeb(TW68_HSYNC, 0);	/* 210	color-killer high sens */
	tw_writeb(TW68_ACNTL, 0x42);	/* 218	int vref #2, chroma adc off */

	tw_writeb(TW68_CROP_HI, 0x02);	/* 21C	Hactive m.s. bits */
	tw_writeb(TW68_VDELAY_LO, 0x12);/* 220	Mfg specified reset value */
	tw_writeb(TW68_VACTIVE_LO, 0xf0);
	tw_writeb(TW68_HDELAY_LO, 0x0f);
	tw_writeb(TW68_HACTIVE_LO, 0xd0);

	tw_writeb(TW68_CNTRL1, 0xcd);	/* 230	Wide Chroma BPF B/W
					 *	Secam reduction, Adap comb for
					 *	NTSC, Op Mode 1 */

	tw_writeb(TW68_VSCALE_LO, 0);	/* 234 */
	tw_writeb(TW68_SCALE_HI, 0x11);	/* 238 */
	tw_writeb(TW68_HSCALE_LO, 0);	/* 23c */
	tw_writeb(TW68_BRIGHT, 0);	/* 240 */
	tw_writeb(TW68_CONTRAST, 0x5c);	/* 244 */
	tw_writeb(TW68_SHARPNESS, 0x51);/* 248 */
	tw_writeb(TW68_SAT_U, 0x80);	/* 24C */
	tw_writeb(TW68_SAT_V, 0x80);	/* 250 */
	tw_writeb(TW68_HUE, 0x00);	/* 254 */

	/* TODO - Check that none of these are set by control defaults */
	tw_writeb(TW68_SHARP2, 0x53);	/* 258	Mfg specified reset val */
	tw_writeb(TW68_VSHARP, 0x80);	/* 25C	Sharpness Coring val 8 */
	tw_writeb(TW68_CORING, 0x44);	/* 260	CTI and Vert Peak coring */
	tw_writeb(TW68_CNTRL2, 0x00);	/* 268	No power saving enabled */
	tw_writeb(TW68_SDT, 0x07);	/* 270	Enable shadow reg, auto-det */
	tw_writeb(TW68_SDTR, 0x7f);	/* 274	All stds recog, don't start */
	tw_writeb(TW68_CLMPG, 0x50);	/* 280	Clamp end at 40 sys clocks */
	tw_writeb(TW68_IAGC, 0x22);	/* 284	Mfg specified reset val */
	tw_writeb(TW68_AGCGAIN, 0xf0);	/* 288	AGC gain when loop disabled */
	tw_writeb(TW68_PEAKWT, 0xd8);	/* 28C	White peak threshold */
	tw_writeb(TW68_CLMPL, 0x3c);	/* 290	Y channel clamp level */
/*	tw_writeb(TW68_SYNCT, 0x38);*/	/* 294	Sync amplitude */
	tw_writeb(TW68_SYNCT, 0x30);	/* 294	Sync amplitude */
	tw_writeb(TW68_MISSCNT, 0x44);	/* 298	Horiz sync, VCR detect sens */
	tw_writeb(TW68_PCLAMP, 0x28);	/* 29C	Clamp pos from PLL sync */
	/* Bit DETV of VCNTL1 helps sync multi cams/chip board */
	tw_writeb(TW68_VCNTL1, 0x04);	/* 2A0 */
	tw_writeb(TW68_VCNTL2, 0);	/* 2A4 */
	tw_writeb(TW68_CKILL, 0x68);	/* 2A8	Mfg specified reset val */
	tw_writeb(TW68_COMB, 0x44);	/* 2AC	Mfg specified reset val */
	tw_writeb(TW68_LDLY, 0x30);	/* 2B0	Max positive luma delay */
	tw_writeb(TW68_MISC1, 0x14);	/* 2B4	Mfg specified reset val */
	tw_writeb(TW68_LOOP, 0xa5);	/* 2B8	Mfg specified reset val */
	tw_writeb(TW68_MISC2, 0xe0);	/* 2BC	Enable colour killer */
	tw_writeb(TW68_MVSN, 0);	/* 2C0 */
	tw_writeb(TW68_CLMD, 0x05);	/* 2CC	slice level auto, clamp med. */
	tw_writeb(TW68_IDCNTL, 0);	/* 2D0	Writing zero to this register
					 *	selects NTSC ID detection,
					 *	but doesn't change the
					 *	sensitivity (which has a reset
					 *	value of 1E).  Since we are
					 *	not doing auto-detection, it
					 *	has no real effect */
	tw_writeb(TW68_CLCNTL1, 0);	/* 2D4 */
	tw_writel(TW68_VBIC, 0x03);	/* 010 */
	tw_writel(TW68_CAP_CTL, 0x03);	/* 040	Enable both even & odd flds */
	tw_writel(TW68_DMAC, 0x2000);	/* patch set had 0x2080 */
	tw_writel(TW68_TESTREG, 0);	/* 02C */

	/*
	 * Some common boards, especially inexpensive single-chip models,
	 * use the GPIO bits 0-3 to control an on-board video-output mux.
	 * For these boards, we need to set up the GPIO register into
	 * "normal" mode, set bits 0-3 as output, and then set those bits
	 * zero.
	 *
	 * Eventually, it would be nice if we could identify these boards
	 * uniquely, and only do this initialisation if the board has been
	 * identify.  For the moment, however, it shouldn't hurt anything
	 * to do these steps.
	 */
	tw_writel(TW68_GPIOC, 0);	/* Set the GPIO to "normal", no ints */
	tw_writel(TW68_GPOE, 0x0f);	/* Set bits 0-3 to "output" */
	tw_writel(TW68_GPDATA, 0);	/* Set all bits to low state */

	/* Initialize the device control structures */
	mutex_init(&dev->lock);
	spin_lock_init(&dev->slock);

	/* Initialize any subsystems */
	tw68_video_init1(dev);
	return 0;
}

static irqreturn_t tw68_irq(int irq, void *dev_id)
{
	struct tw68_dev *dev = dev_id;
	u32 status, orig;
	int loop;

	status = orig = tw_readl(TW68_INTSTAT) & dev->pci_irqmask;
	/* Check if anything to do */
	if (0 == status)
		return IRQ_NONE;	/* Nope - return */
	for (loop = 0; loop < 10; loop++) {
		if (status & dev->board_virqmask)	/* video interrupt */
			tw68_irq_video_done(dev, status);
		status = tw_readl(TW68_INTSTAT) & dev->pci_irqmask;
		if (0 == status)
			return IRQ_HANDLED;
	}
	dev_dbg(&dev->pci->dev, "%s: **** INTERRUPT NOT HANDLED - clearing mask (orig 0x%08x, cur 0x%08x)",
			dev->name, orig, tw_readl(TW68_INTSTAT));
	dev_dbg(&dev->pci->dev, "%s: pci_irqmask 0x%08x; board_virqmask 0x%08x ****\n",
			dev->name, dev->pci_irqmask, dev->board_virqmask);
	tw_clearl(TW68_INTMASK, dev->pci_irqmask);
	return IRQ_HANDLED;
}

static int tw68_initdev(struct pci_dev *pci_dev,
				     const struct pci_device_id *pci_id)
{
	struct tw68_dev *dev;
	int vidnr = -1;
	int err;

	dev = devm_kzalloc(&pci_dev->dev, sizeof(*dev), GFP_KERNEL);
	if (NULL == dev)
		return -ENOMEM;

	dev->instance = v4l2_device_set_name(&dev->v4l2_dev, "tw68",
						&tw68_instance);

	err = v4l2_device_register(&pci_dev->dev, &dev->v4l2_dev);
	if (err)
		return err;

	/* pci init */
	dev->pci = pci_dev;
	if (pci_enable_device(pci_dev)) {
		err = -EIO;
		goto fail1;
	}

	dev->name = dev->v4l2_dev.name;

	if (UNSET != latency) {
		pr_info("%s: setting pci latency timer to %d\n",
		       dev->name, latency);
		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
	}

	/* print pci info */
	pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &dev->pci_rev);
	pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER,  &dev->pci_lat);
	pr_info("%s: found at %s, rev: %d, irq: %d, latency: %d, mmio: 0x%llx\n",
		dev->name, pci_name(pci_dev), dev->pci_rev, pci_dev->irq,
		dev->pci_lat, (u64)pci_resource_start(pci_dev, 0));
	pci_set_master(pci_dev);
	err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
	if (err) {
		pr_info("%s: Oops: no 32bit PCI DMA ???\n", dev->name);
		goto fail1;
	}

	switch (pci_id->device) {
	case PCI_DEVICE_ID_TECHWELL_6800:	/* TW6800 */
		dev->vdecoder = TW6800;
		dev->board_virqmask = TW68_VID_INTS;
		break;
	case PCI_DEVICE_ID_TECHWELL_6801:	/* Video decoder for TW6802 */
		dev->vdecoder = TW6801;
		dev->board_virqmask = TW68_VID_INTS | TW68_VID_INTSX;
		break;
	case PCI_DEVICE_ID_TECHWELL_6804:	/* Video decoder for TW6804 */
		dev->vdecoder = TW6804;
		dev->board_virqmask = TW68_VID_INTS | TW68_VID_INTSX;
		break;
	default:
		dev->vdecoder = TWXXXX;	/* To be announced */
		dev->board_virqmask = TW68_VID_INTS | TW68_VID_INTSX;
		break;
	}

	/* get mmio */
	if (!request_mem_region(pci_resource_start(pci_dev, 0),
				pci_resource_len(pci_dev, 0),
				dev->name)) {
		err = -EBUSY;
		pr_err("%s: can't get MMIO memory @ 0x%llx\n",
			dev->name,
			(unsigned long long)pci_resource_start(pci_dev, 0));
		goto fail1;
	}
	dev->lmmio = ioremap(pci_resource_start(pci_dev, 0),
			     pci_resource_len(pci_dev, 0));
	dev->bmmio = (__u8 __iomem *)dev->lmmio;
	if (NULL == dev->lmmio) {
		err = -EIO;
		pr_err("%s: can't ioremap() MMIO memory\n",
		       dev->name);
		goto fail2;
	}
	/* initialize hardware #1 */
	/* Then do any initialisation wanted before interrupts are on */
	tw68_hw_init1(dev);

	dev->alloc_ctx = vb2_dma_sg_init_ctx(&pci_dev->dev);
	if (IS_ERR(dev->alloc_ctx)) {
		err = PTR_ERR(dev->alloc_ctx);
		goto fail3;
	}

	/* get irq */
	err = devm_request_irq(&pci_dev->dev, pci_dev->irq, tw68_irq,
			  IRQF_SHARED, dev->name, dev);
	if (err < 0) {
		pr_err("%s: can't get IRQ %d\n",
		       dev->name, pci_dev->irq);
		goto fail4;
	}

	/*
	 *  Now do remainder of initialisation, first for
	 *  things unique for this card, then for general board
	 */
	if (dev->instance < TW68_MAXBOARDS)
		vidnr = video_nr[dev->instance];
	/* initialise video function first */
	err = tw68_video_init2(dev, vidnr);
	if (err < 0) {
		pr_err("%s: can't register video device\n",
		       dev->name);
		goto fail5;
	}
	tw_setl(TW68_INTMASK, dev->pci_irqmask);

	pr_info("%s: registered device %s\n",
	       dev->name, video_device_node_name(&dev->vdev));

	return 0;

fail5:
	video_unregister_device(&dev->vdev);
fail4:
	vb2_dma_sg_cleanup_ctx(dev->alloc_ctx);
fail3:
	iounmap(dev->lmmio);
fail2:
	release_mem_region(pci_resource_start(pci_dev, 0),
			   pci_resource_len(pci_dev, 0));
fail1:
	v4l2_device_unregister(&dev->v4l2_dev);
	return err;
}

static void tw68_finidev(struct pci_dev *pci_dev)
{
	struct v4l2_device *v4l2_dev = pci_get_drvdata(pci_dev);
	struct tw68_dev *dev =
		container_of(v4l2_dev, struct tw68_dev, v4l2_dev);

	/* shutdown subsystems */
	tw_clearl(TW68_DMAC, TW68_DMAP_EN | TW68_FIFO_EN);
	tw_writel(TW68_INTMASK, 0);

	/* unregister */
	video_unregister_device(&dev->vdev);
	v4l2_ctrl_handler_free(&dev->hdl);
	vb2_dma_sg_cleanup_ctx(dev->alloc_ctx);

	/* release resources */
	iounmap(dev->lmmio);
	release_mem_region(pci_resource_start(pci_dev, 0),
			   pci_resource_len(pci_dev, 0));

	v4l2_device_unregister(&dev->v4l2_dev);
}

#ifdef CONFIG_PM

static int tw68_suspend(struct pci_dev *pci_dev , pm_message_t state)
{
	struct v4l2_device *v4l2_dev = pci_get_drvdata(pci_dev);
	struct tw68_dev *dev = container_of(v4l2_dev,
				struct tw68_dev, v4l2_dev);

	tw_clearl(TW68_DMAC, TW68_DMAP_EN | TW68_FIFO_EN);
	dev->pci_irqmask &= ~TW68_VID_INTS;
	tw_writel(TW68_INTMASK, 0);

	synchronize_irq(pci_dev->irq);

	pci_save_state(pci_dev);
	pci_set_power_state(pci_dev, pci_choose_state(pci_dev, state));
	vb2_discard_done(&dev->vidq);

	return 0;
}

static int tw68_resume(struct pci_dev *pci_dev)
{
	struct v4l2_device *v4l2_dev = pci_get_drvdata(pci_dev);
	struct tw68_dev *dev = container_of(v4l2_dev,
					    struct tw68_dev, v4l2_dev);
	struct tw68_buf *buf;
	unsigned long flags;

	pci_set_power_state(pci_dev, PCI_D0);
	pci_restore_state(pci_dev);

	/* Do things that are done in tw68_initdev ,
		except of initializing memory structures.*/

	msleep(100);

	tw68_set_tvnorm_hw(dev);

	/*resume unfinished buffer(s)*/
	spin_lock_irqsave(&dev->slock, flags);
	buf = container_of(dev->active.next, struct tw68_buf, list);

	tw68_video_start_dma(dev, buf);

	spin_unlock_irqrestore(&dev->slock, flags);

	return 0;
}
#endif

/* ----------------------------------------------------------- */

static struct pci_driver tw68_pci_driver = {
	.name	  = "tw68",
	.id_table = tw68_pci_tbl,
	.probe	  = tw68_initdev,
	.remove	  = tw68_finidev,
#ifdef CONFIG_PM
	.suspend  = tw68_suspend,
	.resume   = tw68_resume
#endif
};

module_pci_driver(tw68_pci_driver);
> 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/device.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/rbtree.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/log2.h>

#define CREATE_TRACE_POINTS
#include "trace.h"

#include "internal.h"

/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change, bool force_write);

static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);

bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
EXPORT_SYMBOL_GPL(regmap_check_range_table);

bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

	if (map->wr_table)
		return regmap_check_range_table(map, reg, map->wr_table);

	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
	if (!map->reg_read)
		return false;

	if (map->max_register && reg > map->max_register)
		return false;

	if (map->format.format_write)
		return false;

	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

	if (map->rd_table)
		return regmap_check_range_table(map, reg, map->rd_table);

	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
	if (!map->format.format_write && !regmap_readable(map, reg))
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

	if (map->volatile_table)
		return regmap_check_range_table(map, reg, map->volatile_table);

	if (map->cache_ops)
		return false;
	else
		return true;
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
	if (!regmap_readable(map, reg))
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

	if (map->precious_table)
		return regmap_check_range_table(map, reg, map->precious_table);

	return false;
}

static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
	size_t num)
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
{
	u8 *b = buf;

	b[0] = val << shift;
}

static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
{
	__be16 *b = buf;

	b[0] = cpu_to_be16(val << shift);
}

static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
{
	u8 *b = buf;

	val <<= shift;

	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
{
	__be32 *b = buf;

	b[0] = cpu_to_be32(val << shift);
}

static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

#ifdef CONFIG_64BIT
static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
{
	__be64 *b = buf;

	b[0] = cpu_to_be64((u64)val << shift);
}

static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
{
	__le64 *b = buf;

	b[0] = cpu_to_le64((u64)val << shift);
}

static void regmap_format_64_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u64 *)buf = (u64)val << shift;
}
#endif

static void regmap_parse_inplace_noop(void *buf)
{
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;

	return b[0];
}

static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

static void regmap_parse_16_be_inplace(void *buf)
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

static unsigned int regmap_parse_16_native(const void *buf)
{
	return *(u16 *)buf;
}

static unsigned int regmap_parse_24(const void *buf)
{
	const u8 *b = buf;
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

static void regmap_parse_32_be_inplace(void *buf)
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

static unsigned int regmap_parse_32_native(const void *buf)
{
	return *(u32 *)buf;
}

#ifdef CONFIG_64BIT
static unsigned int regmap_parse_64_be(const void *buf)
{
	const __be64 *b = buf;

	return be64_to_cpu(b[0]);
}

static unsigned int regmap_parse_64_le(const void *buf)
{
	const __le64 *b = buf;

	return le64_to_cpu(b[0]);
}

static void regmap_parse_64_be_inplace(void *buf)
{
	__be64 *b = buf;

	b[0] = be64_to_cpu(b[0]);
}

static void regmap_parse_64_le_inplace(void *buf)
{
	__le64 *b = buf;

	b[0] = le64_to_cpu(b[0]);
}

static unsigned int regmap_parse_64_native(const void *buf)
{
	return *(u64 *)buf;
}
#endif

static void regmap_lock_mutex(void *__map)
{
	struct regmap *map = __map;
	mutex_lock(&map->mutex);
}

static void regmap_unlock_mutex(void *__map)
{
	struct regmap *map = __map;
	mutex_unlock(&map->mutex);
}

static void regmap_lock_spinlock(void *__map)
__acquires(&map->spinlock)
{
	struct regmap *map = __map;
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
}

static void regmap_unlock_spinlock(void *__map)
__releases(&map->spinlock)
{
	struct regmap *map = __map;
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
}

static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;

	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

enum regmap_endian regmap_get_val_endian(struct device *dev,
					 const struct regmap_bus *bus,
					 const struct regmap_config *config)
{
	struct device_node *np;
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->val_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* If the dev and dev->of_node exist try to get endianness from DT */
	if (dev && dev->of_node) {
		np = dev->of_node;

		/* Parse the device's DT node for an endianness specification */
		if (of_property_read_bool(np, "big-endian"))
			endian = REGMAP_ENDIAN_BIG;
		else if (of_property_read_bool(np, "little-endian"))
			endian = REGMAP_ENDIAN_LITTLE;
		else if (of_property_read_bool(np, "native-endian"))
			endian = REGMAP_ENDIAN_NATIVE;

		/* If the endianness was specified in DT, use that */
		if (endian != REGMAP_ENDIAN_DEFAULT)
			return endian;
	}

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;

	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}
EXPORT_SYMBOL_GPL(regmap_get_val_endian);

struct regmap *__regmap_init(struct device *dev,
			     const struct regmap_bus *bus,
			     void *bus_context,
			     const struct regmap_config *config,
			     struct lock_class_key *lock_key,
			     const char *lock_name)
{
	struct regmap *map;
	int ret = -EINVAL;
	enum regmap_endian reg_endian, val_endian;
	int i, j;

	if (!config)
		goto err;

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
	} else {
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
			lockdep_set_class_and_name(&map->spinlock,
						   lock_key, lock_name);
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
			lockdep_set_class_and_name(&map->mutex,
						   lock_key, lock_name);
		}
		map->lock_arg = map;
	}

	/*
	 * When we write in fast-paths with regmap_bulk_write() don't allocate
	 * scratch buffers with sleeping allocations.
	 */
	if ((bus && bus->fast_io) || config->fast_io)
		map->alloc_flags = GFP_ATOMIC;
	else
		map->alloc_flags = GFP_KERNEL;

	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
	map->format.pad_bytes = config->pad_bits / 8;
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
	map->reg_shift = config->pad_bits % 8;
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
	if (is_power_of_2(map->reg_stride))
		map->reg_stride_order = ilog2(map->reg_stride);
	else
		map->reg_stride_order = -1;
	map->use_single_read = config->use_single_rw || !bus || !bus->read;
	map->use_single_write = config->use_single_rw || !bus || !bus->write;
	map->can_multi_write = config->can_multi_write && bus && bus->write;
	if (bus) {
		map->max_raw_read = bus->max_raw_read;
		map->max_raw_write = bus->max_raw_write;
	}
	map->dev = dev;
	map->bus = bus;
	map->bus_context = bus_context;
	map->max_register = config->max_register;
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;
	map->name = config->name;

	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
	INIT_LIST_HEAD(&map->async_free);
	init_waitqueue_head(&map->async_waitq);

	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
	} else if (bus) {
		map->read_flag_mask = bus->read_flag_mask;
	}

	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
		map->reg_update_bits = bus->reg_update_bits;
	}

	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);

	switch (config->reg_bits + map->reg_shift) {
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
		break;

	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

	case 32:
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
		break;

#ifdef CONFIG_64BIT
	case 64:
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_64_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_64_native;
			break;
		default:
			goto err_map;
		}
		break;
#endif

	default:
		goto err_map;
	}

	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
		map->format.parse_inplace = regmap_parse_inplace_noop;
		break;
	case 16:
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
			map->format.parse_inplace = regmap_parse_16_be_inplace;
			break;
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
		break;
	case 24:
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
	case 32:
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
			map->format.parse_inplace = regmap_parse_32_be_inplace;
			break;
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
		break;
#ifdef CONFIG_64BIT
	case 64:
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_64_be;
			map->format.parse_val = regmap_parse_64_be;
			map->format.parse_inplace = regmap_parse_64_be_inplace;
			break;
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_64_le;
			map->format.parse_val = regmap_parse_64_le;
			map->format.parse_inplace = regmap_parse_64_le_inplace;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_64_native;
			map->format.parse_val = regmap_parse_64_native;
			break;
		default:
			goto err_map;
		}
		break;
#endif
	}

	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
		map->use_single_write = true;
	}

	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
		goto err_map;
	}

	if (map->format.format_write) {
		map->defer_caching = false;
		map->reg_write = _regmap_bus_formatted_write;
	} else if (map->format.format_val) {
		map->defer_caching = true;
		map->reg_write = _regmap_bus_raw_write;
	}

skip_format_initialization:

	map->range_tree = RB_ROOT;
	for (i = 0; i < config->num_ranges; i++) {
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
			goto err_range;
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
		for (j = 0; j < config->num_ranges; j++) {
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

		new->map = map;
		new->name = range_cfg->name;
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

		if (!_regmap_range_add(map, new)) {
			dev_err(map->dev, "Failed to add range %d\n", i);
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}

	ret = regcache_init(map, config);
	if (ret != 0)
		goto err_range;

	if (dev) {
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
	}

	return map;

err_regcache:
	regcache_exit(map);
err_range:
	regmap_range_exit(map);
	kfree(map->work_buf);
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(__regmap_init);

static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

struct regmap *__devm_regmap_init(struct device *dev,
				  const struct regmap_bus *bus,
				  void *bus_context,
				  const struct regmap_config *config,
				  struct lock_class_key *lock_key,
				  const char *lock_name)
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	regmap = __regmap_init(dev, bus, bus_context, config,
			       lock_key, lock_name);
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
EXPORT_SYMBOL_GPL(__devm_regmap_init);

static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
	regmap_debugfs_exit(map);

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

	regmap_debugfs_init(map, config->name);

	map->cache_bypass = false;
	map->cache_only = false;

	return regcache_init(map, config);
}
EXPORT_SYMBOL_GPL(regmap_reinit_cache);

/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
	struct regmap_async *async;

	regcache_exit(map);
	regmap_debugfs_exit(map);
	regmap_range_exit(map);
	if (map->bus && map->bus->free_context)
		map->bus->free_context(map->bus_context);
	kfree(map->work_buf);
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

/**
 * regmap_get_device(): Obtain the device from a regmap
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
EXPORT_SYMBOL_GPL(regmap_get_device);

static int _regmap_select_page(struct regmap *map, unsigned int *reg,
			       struct regmap_range_node *range,
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;

	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;

		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}

	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;

		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
					  &page_chg, false);

		map->work_buf = orig_work_buf;

		if (ret != 0)
			return ret;
	}

	*reg = range->window_start + win_offset;

	return 0;
}

int _regmap_raw_write(struct regmap *map, unsigned int reg,
		      const void *val, size_t val_len)
{
	struct regmap_range_node *range;
	unsigned long flags;
	u8 *u8 = map->work_buf;
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
	int i;

	WARN_ON(!map->bus);

	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
			if (!map->writeable_reg(map->dev,
					       reg + regmap_get_offset(map, i)))
				return -EINVAL;

	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
			ival = map->format.parse_val(val + (i * val_bytes));
			ret = regcache_write(map,
					     reg + regmap_get_offset(map, i),
					     ival);
			if (ret) {
				dev_err(map->dev,
					"Error in caching of register: %x ret: %d\n",
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	range = _regmap_range_lookup(map, reg);
	if (range) {
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
			dev_dbg(map->dev, "Writing window %d/%zu\n",
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
						map->format.val_bytes);
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
		if (ret != 0)
			return ret;
	}

	map->format.format_reg(map->work_buf, reg, map->reg_shift);

	u8[0] |= map->write_flag_mask;

	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

	if (map->async && map->bus->async_write) {
		struct regmap_async *async;

		trace_regmap_async_write_start(map, reg, val_len);

		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
			list_move(&async->list, &map->async_free);
			spin_unlock_irqrestore(&map->async_lock, flags);
		}

		return ret;
	}

	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);

	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
	if (val == work_val)
		ret = map->bus->write(map->bus_context, map->work_buf,
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
	else if (map->bus->gather_write)
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
					     map->format.reg_bytes +
					     map->format.pad_bytes,
					     val, val_len);

	/* If that didn't work fall back on linearising by hand. */
	if (ret == -ENOTSUPP) {
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
		ret = map->bus->write(map->bus_context, buf, len);

		kfree(buf);
	}

	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);

	return ret;
}

/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
	return map->bus && map->bus->write && map->format.format_val &&
		map->format.format_reg;
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

/**
 * regmap_get_raw_read_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_read_max(struct regmap *map)
{
	return map->max_raw_read;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);

/**
 * regmap_get_raw_write_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_write_max(struct regmap *map)
{
	return map->max_raw_write;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);

static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

	WARN_ON(!map->bus || !map->format.format_write);

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

	trace_regmap_hw_write_start(map, reg, 1);

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

	trace_regmap_hw_write_done(map, reg, 1);

	return ret;
}

static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	WARN_ON(!map->bus || !map->format.format_val);

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
				 map->format.val_bytes);
}

static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
{
	int ret;
	void *context = _regmap_map_get_context(map);

	if (!regmap_writeable(map, reg))
		return -EIO;

	if (!map->cache_bypass && !map->defer_caching) {
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

#ifdef LOG_DEVICE
	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

	trace_regmap_reg_write(map, reg, val);

	return map->reg_write(context, reg, val);
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;

	map->lock(map->lock_arg);

	ret = _regmap_write(map, reg, val);

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

	if (!regmap_can_raw_write(map))
		return -EINVAL;
	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (map->max_raw_write && map->max_raw_write > val_len)
		return -E2BIG;

	map->lock(map->lock_arg);

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

/**
 * regmap_field_update_bits_base():
 *	Perform a read/modify/write cycle on the register field
 *	with change, async, force option
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits_base(struct regmap_field *field,
				  unsigned int mask, unsigned int val,
				  bool *change, bool async, bool force)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits_base(field->regmap, field->reg,
				       mask, val << field->shift,
				       change, async, force);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);

/**
 * regmap_fields_update_bits_base():
 *	Perform a read/modify/write cycle on the register field
 *	with change, async, force option
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
				   unsigned int mask, unsigned int val,
				   bool *change, bool async, bool force)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits_base(field->regmap,
				       field->reg + (field->id_offset * id),
				       mask, val << field->shift,
				       change, async, force);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);

/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
 * data to the device either in single transfer or multiple transfer.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;
	size_t total_size = val_bytes * val_count;

	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;

	/*
	 * Some devices don't support bulk write, for
	 * them we have a series of single write operations in the first two if
	 * blocks.
	 *
	 * The first if block is used for memory mapped io. It does not allow
	 * val_bytes of 3 for example.
	 * The second one is for busses that do not provide raw I/O.
	 * The third one is used for busses which do not have these limitations
	 * and can write arbitrary value lengths.
	 */
	if (!map->bus) {
		map->lock(map->lock_arg);
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}

			ret = _regmap_write(map,
					    reg + regmap_get_offset(map, i),
					    ival);
			if (ret != 0)
				goto out;
		}
out:
		map->unlock(map->lock_arg);
	} else if (map->bus && !map->format.parse_inplace) {
		const u8 *u8 = val;
		const u16 *u16 = val;
		const u32 *u32 = val;
		unsigned int ival;

		for (i = 0; i < val_count; i++) {
			switch (map->format.val_bytes) {
			case 4:
				ival = u32[i];
				break;
			case 2:
				ival = u16[i];
				break;
			case 1:
				ival = u8[i];
				break;
			default:
				return -EINVAL;
			}

			ret = regmap_write(map, reg + (i * map->reg_stride),
					   ival);
			if (ret)
				return ret;
		}
	} else if (map->use_single_write ||
		   (map->max_raw_write && map->max_raw_write < total_size)) {
		int chunk_stride = map->reg_stride;
		size_t chunk_size = val_bytes;
		size_t chunk_count = val_count;

		if (!map->use_single_write) {
			chunk_size = map->max_raw_write;
			if (chunk_size % val_bytes)
				chunk_size -= chunk_size % val_bytes;
			chunk_count = total_size / chunk_size;
			chunk_stride *= chunk_size / val_bytes;
		}

		map->lock(map->lock_arg);
		/* Write as many bytes as possible with chunk_size */
		for (i = 0; i < chunk_count; i++) {
			ret = _regmap_raw_write(map,
						reg + (i * chunk_stride),
						val + (i * chunk_size),
						chunk_size);
			if (ret)
				break;
		}

		/* Write remaining bytes */
		if (!ret && chunk_size * i < total_size) {
			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
						val + (i * chunk_size),
						total_size - i * chunk_size);
		}
		map->unlock(map->lock_arg);
	} else {
		void *wval;

		if (!val_count)
			return -EINVAL;

		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
			return -ENOMEM;
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
			map->format.parse_inplace(wval + i);

		map->lock(map->lock_arg);
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
		map->unlock(map->lock_arg);

		kfree(wval);
	}
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
 * relative. The page register has been written if that was necessary.
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
				       const struct reg_sequence *regs,
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

	if (!len)
		return -EINVAL;

	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
		unsigned int reg = regs[i].reg;
		unsigned int val = regs[i].def;
		trace_regmap_hw_write_start(map, reg, 1);
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		trace_regmap_hw_write_done(map, reg, 1);
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
					       struct reg_sequence *regs,
					       size_t num_regs)
{
	int ret;
	int i, n;
	struct reg_sequence *base;
	unsigned int this_page = 0;
	unsigned int page_change = 0;
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
	 * chops the set each time the page changes. This also applies
	 * if there is a delay required at any point in the sequence.
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
				page_change = 1;
			}
		}

		/* If we have both a page change and a delay make sure to
		 * write the regs and apply the delay before we change the
		 * page.
		 */

		if (page_change || regs[i].delay_us) {

				/* For situations where the first write requires
				 * a delay we need to make sure we don't call
				 * raw_multi_reg_write with n=0
				 * This can't occur with page breaks as we
				 * never write on the first iteration
				 */
				if (regs[i].delay_us && i == 0)
					n = 1;

				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;

				if (regs[i].delay_us)
					udelay(regs[i].delay_us);

				base += n;
				n = 0;

				if (page_change) {
					ret = _regmap_select_page(map,
								  &base[n].reg,
								  range, 1);
					if (ret != 0)
						return ret;

					page_change = 0;
				}

		}

	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

static int _regmap_multi_reg_write(struct regmap *map,
				   const struct reg_sequence *regs,
				   size_t num_regs)
{
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;

			if (regs[i].delay_us)
				udelay(regs[i].delay_us);
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
			if (!IS_ALIGNED(reg, map->reg_stride))
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);

	for (i = 0; i < num_regs; i++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		/* Coalesce all the writes between a page break or a delay
		 * in a sequence
		 */
		range = _regmap_range_lookup(map, reg);
		if (range || regs[i].delay_us) {
			size_t len = sizeof(struct reg_sequence)*num_regs;
			struct reg_sequence *base = kmemdup(regs, len,
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

			return ret;
		}
	}
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
}

/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
 * where the set of register,value pairs are supplied in any order,
 * possibly not all in a single range.
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * The 'normal' block write mode will send ultimately send data on the
 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
 *
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
 */
int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
			   int num_regs)
{
	int ret;

	map->lock(map->lock_arg);

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

/*
 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
 *                                    device but not the cache
 *
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_multi_reg_write_bypassed(struct regmap *map,
				    const struct reg_sequence *regs,
				    int num_regs)
{
	int ret;
	bool bypass;

	map->lock(map->lock_arg);

	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);

/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
	struct regmap_range_node *range;
	u8 *u8 = map->work_buf;
	int ret;

	WARN_ON(!map->bus);

	if (!map->bus || !map->bus->read)
		return -EINVAL;

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
		if (ret != 0)
			return ret;
	}

	map->format.format_reg(map->work_buf, reg, map->reg_shift);

	/*
	 * Some buses or devices flag reads by setting the high bits in the
	 * register address; since it's always the high bits for all
	 * current formats we can do this here rather than in