summaryrefslogtreecommitdiffstats
path: root/drivers/mfd/mcp-core.c
blob: 84815f9ef636eb0e91c26c1869094bb5c83977d0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*
 *  linux/drivers/mfd/mcp-core.c
 *
 *  Copyright (C) 2001 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License.
 *
 *  Generic MCP (Multimedia Communications Port) layer.  All MCP locking
 *  is solely held within this file.
 */
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/smp.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/mfd/mcp.h>

#include <mach/dma.h>
#include <asm/system.h>


#define to_mcp(d)		container_of(d, struct mcp, attached_device)
#define to_mcp_driver(d)	container_of(d, struct mcp_driver, drv)

static int mcp_bus_match(struct device *dev, struct device_driver *drv)
{
	return 1;
}

static int mcp_bus_probe(struct device *dev)
{
	struct mcp *mcp = to_mcp(dev);
	struct mcp_driver *drv = to_mcp_driver(dev->driver);

	return drv->probe(mcp);
}

static int mcp_bus_remove(struct device *dev)
{
	struct mcp *mcp = to_mcp(dev);
	struct mcp_driver *drv = to_mcp_driver(dev->driver);

	drv->remove(mcp);
	return 0;
}

static int mcp_bus_suspend(struct device *dev, pm_message_t state)
{
	struct mcp *mcp = to_mcp(dev);
	int ret = 0;

	if (dev->driver) {
		struct mcp_driver *drv = to_mcp_driver(dev->driver);

		ret = drv->suspend(mcp, state);
	}
	return ret;
}

static int mcp_bus_resume(struct device *dev)
{
	struct mcp *mcp = to_mcp(dev);
	int ret = 0;

	if (dev->driver) {
		struct mcp_driver *drv = to_mcp_driver(dev->driver);

		ret = drv->resume(mcp);
	}
	return ret;
}

static struct bus_type mcp_bus_type = {
	.name		= "mcp",
	.match		= mcp_bus_match,
	.probe		= mcp_bus_probe,
	.remove		= mcp_bus_remove,
	.suspend	= mcp_bus_suspend,
	.resume		= mcp_bus_resume,
};

/**
 *	mcp_set_telecom_divisor - set the telecom divisor
 *	@mcp: MCP interface structure
 *	@div: SIB clock divisor
 *
 *	Set the telecom divisor on the MCP interface.  The resulting
 *	sample rate is SIBCLOCK/div.
 */
void mcp_set_telecom_divisor(struct mcp *mcp, unsigned int div)
{
	spin_lock_irq(&mcp->lock);
	mcp->ops->set_telecom_divisor(mcp, div);
	spin_unlock_irq(&mcp->lock);
}
EXPORT_SYMBOL(mcp_set_telecom_divisor);

/**
 *	mcp_set_audio_divisor - set the audio divisor
 *	@mcp: MCP interface structure
 *	@div: SIB clock divisor
 *
 *	Set the audio divisor on the MCP interface.
 */
void mcp_set_audio_divisor(struct mcp *mcp, unsigned int div)
{
	spin_lock_irq(&mcp->lock);
	mcp->ops->set_audio_divisor(mcp, div);
	spin_unlock_irq(&mcp->lock);
}
EXPORT_SYMBOL(mcp_set_audio_divisor);

/**
 *	mcp_reg_write - write a device register
 *	@mcp: MCP interface structure
 *	@reg: 4-bit register index
 *	@val: 16-bit data value
 *
 *	Write a device register.  The MCP interface must be enabled
 *	to prevent this function hanging.
 */
void mcp_reg_write(struct mcp *mcp, unsigned int reg, unsigned int val)
{
	unsigned long flags;

	spin_lock_irqsave(&mcp->lock, flags);
	mcp->ops->reg_write(mcp, reg, val);
	spin_unlock_irqrestore(&mcp->lock, flags);
}
EXPORT_SYMBOL(mcp_reg_write);

/**
 *	mcp_reg_read - read a device register
 *	@mcp: MCP interface structure
 *	@reg: 4-bit register index
 *
 *	Read a device register and return its value.  The MCP interface
 *	must be enabled to prevent this function hanging.
 */
unsigned int mcp_reg_read(struct mcp *mcp, unsigned int reg)
{
	unsigned long flags;
	unsigned int val;

	spin_lock_irqsave(&mcp->lock, flags);
	val = mcp->ops->reg_read(mcp, reg);
	spin_unlock_irqrestore(&mcp->lock, flags);

	return val;
}
EXPORT_SYMBOL(mcp_reg_read);

/**
 *	mcp_enable - enable the MCP interface
 *	@mcp: MCP interface to enable
 *
 *	Enable the MCP interface.  Each call to mcp_enable will need
 *	a corresponding call to mcp_disable to disable the interface.
 */
void mcp_enable(struct mcp *mcp)
{
	spin_lock_irq(&mcp->lock);
	if (mcp->use_count++ == 0)
		mcp->ops->enable(mcp);
	spin_unlock_irq(&mcp->lock);
}
EXPORT_SYMBOL(mcp_enable);

/**
 *	mcp_disable - disable the MCP interface
 *	@mcp: MCP interface to disable
 *
 *	Disable the MCP interface.  The MCP interface will only be
 *	disabled once the number of calls to mcp_enable matches the
 *	number of calls to mcp_disable.
 */
void mcp_disable(struct mcp *mcp)
{
	unsigned long flags;

	spin_lock_irqsave(&mcp->lock, flags);
	if (--mcp->use_count == 0)
		mcp->ops->disable(mcp);
	spin_unlock_irqrestore(&mcp->lock, flags);
}
EXPORT_SYMBOL(mcp_disable);

static void mcp_release(struct device *dev)
{
	struct mcp *mcp = container_of(dev, struct mcp, attached_device);

	kfree(mcp);
}

struct mcp *mcp_host_alloc(struct device *parent, size_t size)
{
	struct mcp *mcp;

	mcp = kzalloc(sizeof(struct mcp) + size, GFP_KERNEL);
	if (mcp) {
		spin_lock_init(&mcp->lock);
		mcp->attached_device.parent = parent;
		mcp->attached_device.bus = &mcp_bus_type;
		mcp->attached_device.dma_mask = parent->dma_mask;
		mcp->attached_device.release = mcp_release;
	}
	return mcp;
}
EXPORT_SYMBOL(mcp_host_alloc);

int mcp_host_register(struct mcp *mcp)
{
	dev_set_name(&mcp->attached_device, "mcp0");
	return device_register(&mcp->attached_device);
}
EXPORT_SYMBOL(mcp_host_register);

void mcp_host_unregister(struct mcp *mcp)
{
	device_unregister(&mcp->attached_device);
}
EXPORT_SYMBOL(mcp_host_unregister);

int mcp_driver_register(struct mcp_driver *mcpdrv)
{
	mcpdrv->drv.bus = &mcp_bus_type;
	return driver_register(&mcpdrv->drv);
}
EXPORT_SYMBOL(mcp_driver_register);

void mcp_driver_unregister(struct mcp_driver *mcpdrv)
{
	driver_unregister(&mcpdrv->drv);
}
EXPORT_SYMBOL(mcp_driver_unregister);

static int __init mcp_init(void)
{
	return bus_register(&mcp_bus_type);
}

static void __exit mcp_exit(void)
{
	bus_unregister(&mcp_bus_type);
}

module_init(mcp_init);
module_exit(mcp_exit);

MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
MODULE_DESCRIPTION("Core multimedia communications port driver");
MODULE_LICENSE("GPL");
an class="hl com"> */ #include <linux/types.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/hdreg.h> #include <linux/ide.h> #include <linux/init.h> #include <asm/io.h> struct it821x_dev { unsigned int smart:1, /* Are we in smart raid mode */ timing10:1; /* Rev 0x10 */ u8 clock_mode; /* 0, ATA_50 or ATA_66 */ u8 want[2][2]; /* Mode/Pri log for master slave */ /* We need these for switching the clock when DMA goes on/off The high byte is the 66Mhz timing */ u16 pio[2]; /* Cached PIO values */ u16 mwdma[2]; /* Cached MWDMA values */ u16 udma[2]; /* Cached UDMA values (per drive) */ }; #define ATA_66 0 #define ATA_50 1 #define ATA_ANY 2 #define UDMA_OFF 0 #define MWDMA_OFF 0 /* * We allow users to force the card into non raid mode without * flashing the alternative BIOS. This is also neccessary right now * for embedded platforms that cannot run a PC BIOS but are using this * device. */ static int it8212_noraid; /** * it821x_program - program the PIO/MWDMA registers * @drive: drive to tune * * Program the PIO/MWDMA timing for this channel according to the * current clock. */ static void it821x_program(ide_drive_t *drive, u16 timing) { ide_hwif_t *hwif = drive->hwif; struct it821x_dev *itdev = ide_get_hwifdata(hwif); int channel = hwif->channel; u8 conf; /* Program PIO/MWDMA timing bits */ if(itdev->clock_mode == ATA_66) conf = timing >> 8; else conf = timing & 0xFF; pci_write_config_byte(hwif->pci_dev, 0x54 + 4 * channel, conf); } /** * it821x_program_udma - program the UDMA registers * @drive: drive to tune * * Program the UDMA timing for this drive according to the * current clock. */ static void it821x_program_udma(ide_drive_t *drive, u16 timing) { ide_hwif_t *hwif = drive->hwif; struct it821x_dev *itdev = ide_get_hwifdata(hwif); int channel = hwif->channel; int unit = drive->select.b.unit; u8 conf; /* Program UDMA timing bits */ if(itdev->clock_mode == ATA_66) conf = timing >> 8; else conf = timing & 0xFF; if(itdev->timing10 == 0) pci_write_config_byte(hwif->pci_dev, 0x56 + 4 * channel + unit, conf); else { pci_write_config_byte(hwif->pci_dev, 0x56 + 4 * channel, conf); pci_write_config_byte(hwif->pci_dev, 0x56 + 4 * channel + 1, conf); } } /** * it821x_clock_strategy * @hwif: hardware interface * * Select between the 50 and 66Mhz base clocks to get the best * results for this interface. */ static void it821x_clock_strategy(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; struct it821x_dev *itdev = ide_get_hwifdata(hwif); u8 unit = drive->select.b.unit; ide_drive_t *pair = &hwif->drives[1-unit]; int clock, altclock; u8 v; int sel = 0; if(itdev->want[0][0] > itdev->want[1][0]) { clock = itdev->want[0][1]; altclock = itdev->want[1][1]; } else { clock = itdev->want[1][1]; altclock = itdev->want[0][1]; } /* Master doesn't care does the slave ? */ if(clock == ATA_ANY) clock = altclock; /* Nobody cares - keep the same clock */ if(clock == ATA_ANY) return; /* No change */ if(clock == itdev->clock_mode) return; /* Load this into the controller ? */ if(clock == ATA_66) itdev->clock_mode = ATA_66; else { itdev->clock_mode = ATA_50; sel = 1; } pci_read_config_byte(hwif->pci_dev, 0x50, &v); v &= ~(1 << (1 + hwif->channel)); v |= sel << (1 + hwif->channel); pci_write_config_byte(hwif->pci_dev, 0x50, v); /* * Reprogram the UDMA/PIO of the pair drive for the switch * MWDMA will be dealt with by the dma switcher */ if(pair && itdev->udma[1-unit] != UDMA_OFF) { it821x_program_udma(pair, itdev->udma[1-unit]); it821x_program(pair, itdev->pio[1-unit]); } /* * Reprogram the UDMA/PIO of our drive for the switch. * MWDMA will be dealt with by the dma switcher */ if(itdev->udma[unit] != UDMA_OFF) { it821x_program_udma(drive, itdev->udma[unit]); it821x_program(drive, itdev->pio[unit]); } } /** * it821x_ratemask - Compute available modes * @drive: IDE drive * * Compute the available speeds for the devices on the interface. This * is all modes to ATA133 clipped by drive cable setup. */ static u8 it821x_ratemask (ide_drive_t *drive) { u8 mode = 4; if (!eighty_ninty_three(drive)) mode = min(mode, (u8)1); return mode; } /** * it821x_tuneproc - tune a drive * @drive: drive to tune * @mode_wanted: the target operating mode * * Load the timing settings for this device mode into the * controller. By the time we are called the mode has been * modified as neccessary to handle the absence of seperate * master/slave timers for MWDMA/PIO. * * This code is only used in pass through mode. */ static void it821x_tuneproc (ide_drive_t *drive, byte mode_wanted) { ide_hwif_t *hwif = drive->hwif; struct it821x_dev *itdev = ide_get_hwifdata(hwif); int unit = drive->select.b.unit; /* Spec says 89 ref driver uses 88 */ static u16 pio[] = { 0xAA88, 0xA382, 0xA181, 0x3332, 0x3121 }; static u8 pio_want[] = { ATA_66, ATA_66, ATA_66, ATA_66, ATA_ANY }; if(itdev->smart) return; /* We prefer 66Mhz clock for PIO 0-3, don't care for PIO4 */ itdev->want[unit][1] = pio_want[mode_wanted]; itdev->want[unit][0] = 1; /* PIO is lowest priority */ itdev->pio[unit] = pio[mode_wanted]; it821x_clock_strategy(drive); it821x_program(drive, itdev->pio[unit]); } /** * it821x_tune_mwdma - tune a channel for MWDMA * @drive: drive to set up * @mode_wanted: the target operating mode * * Load the timing settings for this device mode into the * controller when doing MWDMA in pass through mode. The caller * must manage the whole lack of per device MWDMA/PIO timings and * the shared MWDMA/PIO timing register. */ static void it821x_tune_mwdma (ide_drive_t *drive, byte mode_wanted) { ide_hwif_t *hwif = drive->hwif; struct it821x_dev *itdev = (void *)ide_get_hwifdata(hwif); int unit = drive->select.b.unit; int channel = hwif->channel; u8 conf; static u16 dma[] = { 0x8866, 0x3222, 0x3121 }; static u8 mwdma_want[] = { ATA_ANY, ATA_66, ATA_ANY }; itdev->want[unit][1] = mwdma_want[mode_wanted]; itdev->want[unit][0] = 2; /* MWDMA is low priority */ itdev->mwdma[unit] = dma[mode_wanted]; itdev->udma[unit] = UDMA_OFF; /* UDMA bits off - Revision 0x10 do them in pairs */ pci_read_config_byte(hwif->pci_dev, 0x50, &conf); if(itdev->timing10) conf |= channel ? 0x60: 0x18; else conf |= 1 << (3 + 2 * channel + unit); pci_write_config_byte(hwif->pci_dev, 0x50, conf); it821x_clock_strategy(drive); /* FIXME: do we need to program this ? */ /* it821x_program(drive, itdev->mwdma[unit]); */ } /** * it821x_tune_udma - tune a channel for UDMA * @drive: drive to set up * @mode_wanted: the target operating mode * * Load the timing settings for this device mode into the * controller when doing UDMA modes in pass through. */ static void it821x_tune_udma (ide_drive_t *drive, byte mode_wanted) { ide_hwif_t *hwif = drive->hwif; struct it821x_dev *itdev = ide_get_hwifdata(hwif); int unit = drive->select.b.unit; int channel = hwif->channel; u8 conf; static u16 udma[] = { 0x4433, 0x4231, 0x3121, 0x2121, 0x1111, 0x2211, 0x1111 }; static u8 udma_want[] = { ATA_ANY, ATA_50, ATA_ANY, ATA_66, ATA_66, ATA_50, ATA_66 }; itdev->want[unit][1] = udma_want[mode_wanted]; itdev->want[unit][0] = 3; /* UDMA is high priority */ itdev->mwdma[unit] = MWDMA_OFF; itdev->udma[unit] = udma[mode_wanted]; if(mode_wanted >= 5) itdev->udma[unit] |= 0x8080; /* UDMA 5/6 select on */ /* UDMA on. Again revision 0x10 must do the pair */ pci_read_config_byte(hwif->pci_dev, 0x50, &conf); if(itdev->timing10) conf &= channel ? 0x9F: 0xE7; else conf &= ~ (1 << (3 + 2 * channel + unit)); pci_write_config_byte(hwif->pci_dev, 0x50, conf); it821x_clock_strategy(drive); it821x_program_udma(drive, itdev->udma[unit]); } /** * config_it821x_chipset_for_pio - set drive timings * @drive: drive to tune * @speed we want * * Compute the best pio mode we can for a given device. We must * pick a speed that does not cause problems with the other device * on the cable. */ static void config_it821x_chipset_for_pio (ide_drive_t *drive, byte set_speed) { u8 unit = drive->select.b.unit; ide_hwif_t *hwif = drive->hwif; ide_drive_t *pair = &hwif->drives[1-unit]; u8 speed = 0, set_pio = ide_get_best_pio_mode(drive, 255, 5, NULL); u8 pair_pio; /* We have to deal with this mess in pairs */ if(pair != NULL) { pair_pio = ide_get_best_pio_mode(pair, 255, 5, NULL); /* Trim PIO to the slowest of the master/slave */ if(pair_pio < set_pio) set_pio = pair_pio; } it821x_tuneproc(drive, set_pio); speed = XFER_PIO_0 + set_pio; /* XXX - We trim to the lowest of the pair so the other drive will always be fine at this point until we do hotplug passthru */ if (set_speed) (void) ide_config_drive_speed(drive, speed); } /** * it821x_dma_read - DMA hook * @drive: drive for DMA * * The IT821x has a single timing register for MWDMA and for PIO * operations. As we flip back and forth we have to reload the * clock. In addition the rev 0x10 device only works if the same * timing value is loaded into the master and slave UDMA clock * so we must also reload that. * * FIXME: we could figure out in advance if we need to do reloads */ static void it821x_dma_start(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; struct it821x_dev *itdev = ide_get_hwifdata(hwif); int unit = drive->select.b.unit; if(itdev->mwdma[unit] != MWDMA_OFF) it821x_program(drive, itdev->mwdma[unit]); else if(itdev->udma[unit] != UDMA_OFF && itdev->timing10) it821x_program_udma(drive, itdev->udma[unit]); ide_dma_start(drive); } /** * it821x_dma_write - DMA hook * @drive: drive for DMA stop * * The IT821x has a single timing register for MWDMA and for PIO * operations. As we flip back and forth we have to reload the * clock. */ static int it821x_dma_end(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; int unit = drive->select.b.unit; struct it821x_dev *itdev = ide_get_hwifdata(hwif); int ret = __ide_dma_end(drive); if(itdev->mwdma[unit] != MWDMA_OFF) it821x_program(drive, itdev->pio[unit]); return ret; } /** * it821x_tune_chipset - set controller timings * @drive: Drive to set up * @xferspeed: speed we want to achieve * * Tune the ITE chipset for the desired mode. If we can't achieve * the desired mode then tune for a lower one, but ultimately * make the thing work. */ static int it821x_tune_chipset (ide_drive_t *drive, byte xferspeed) { ide_hwif_t *hwif = drive->hwif; struct it821x_dev *itdev = ide_get_hwifdata(hwif); u8 speed = ide_rate_filter(it821x_ratemask(drive), xferspeed); if(!itdev->smart) { switch(speed) { case XFER_PIO_4: case XFER_PIO_3: case XFER_PIO_2: case XFER_PIO_1: case XFER_PIO_0: it821x_tuneproc(drive, (speed - XFER_PIO_0)); break; /* MWDMA tuning is really hard because our MWDMA and PIO timings are kept in the same place. We can switch in the host dma on/off callbacks */ case XFER_MW_DMA_2: case XFER_MW_DMA_1: case XFER_MW_DMA_0: it821x_tune_mwdma(drive, (speed - XFER_MW_DMA_0)); break; case XFER_UDMA_6: case XFER_UDMA_5: case XFER_UDMA_4: case XFER_UDMA_3: case XFER_UDMA_2: case XFER_UDMA_1: case XFER_UDMA_0: it821x_tune_udma(drive, (speed - XFER_UDMA_0)); break; default: return 1; } } /* * In smart mode the clocking is done by the host controller * snooping the mode we picked. The rest of it is not our problem */ return ide_config_drive_speed(drive, speed); } /** * config_chipset_for_dma - configure for DMA * @drive: drive to configure * * Called by the IDE layer when it wants the timings set up. */ static int config_chipset_for_dma (ide_drive_t *drive) { u8 speed = ide_dma_speed(drive, it821x_ratemask(drive)); if (speed) { config_it821x_chipset_for_pio(drive, 0); it821x_tune_chipset(drive, speed); return ide_dma_enable(drive); } return 0; } /** * it821x_configure_drive_for_dma - set up for DMA transfers * @drive: drive we are going to set up * * Set up the drive for DMA, tune the controller and drive as * required. If the drive isn't suitable for DMA or we hit * other problems then we will drop down to PIO and set up * PIO appropriately */ static int it821x_config_drive_for_dma (ide_drive_t *drive) { if (ide_use_dma(drive) && config_chipset_for_dma(drive)) return 0; config_it821x_chipset_for_pio(drive, 1); return -1; } /** * ata66_it821x - check for 80 pin cable * @hwif: interface to check * * Check for the presence of an ATA66 capable cable on the * interface. Problematic as it seems some cards don't have * the needed logic onboard. */ static unsigned int __devinit ata66_it821x(ide_hwif_t *hwif) { /* The reference driver also only does disk side */ return 1; } /** * it821x_fixup - post init callback * @hwif: interface * * This callback is run after the drives have been probed but * before anything gets attached. It allows drivers to do any * final tuning that is needed, or fixups to work around bugs. */ static void __devinit it821x_fixups(ide_hwif_t *hwif) { struct it821x_dev *itdev = ide_get_hwifdata(hwif); int i; if(!itdev->smart) { /* * If we are in pass through mode then not much * needs to be done, but we do bother to clear the * IRQ mask as we may well be in PIO (eg rev 0x10) * for now and we know unmasking is safe on this chipset. */ for (i = 0; i < 2; i++) { ide_drive_t *drive = &hwif->drives[i]; if(drive->present) drive->unmask = 1; } return; } /* * Perform fixups on smart mode. We need to "lose" some * capabilities the firmware lacks but does not filter, and * also patch up some capability bits that it forgets to set * in RAID mode. */ for(i = 0; i < 2; i++) { ide_drive_t *drive = &hwif->drives[i]; struct hd_driveid *id; u16 *idbits; if(!drive->present) continue; id = drive->id; idbits = (u16 *)drive->id; /* Check for RAID v native */ if(strstr(id->model, "Integrated Technology Express")) { /* In raid mode the ident block is slightly buggy We need to set the bits so that the IDE layer knows LBA28. LBA48 and DMA ar valid */ id->capability |= 3; /* LBA28, DMA */ id->command_set_2 |= 0x0400; /* LBA48 valid */ id->cfs_enable_2 |= 0x0400; /* LBA48 on */ /* Reporting logic */ printk(KERN_INFO "%s: IT8212 %sRAID %d volume", drive->name, idbits[147] ? "Bootable ":"", idbits[129]); if(idbits[129] != 1) printk("(%dK stripe)", idbits[146]); printk(".\n"); /* Now the core code will have wrongly decided no DMA so we need to fix this */ hwif->dma_off_quietly(drive); #ifdef CONFIG_IDEDMA_ONLYDISK if (drive->media == ide_disk) #endif ide_set_dma(drive); } else { /* Non RAID volume. Fixups to stop the core code doing unsupported things */ id->field_valid &= 1; id->queue_depth = 0; id->command_set_1 = 0; id->command_set_2 &= 0xC400; id->cfsse &= 0xC000; id->cfs_enable_1 = 0; id->cfs_enable_2 &= 0xC400; id->csf_default &= 0xC000; id->word127 = 0; id->dlf = 0; id->csfo = 0; id->cfa_power = 0; printk(KERN_INFO "%s: Performing identify fixups.\n", drive->name); } } } /** * init_hwif_it821x - set up hwif structs * @hwif: interface to set up * * We do the basic set up of the interface structure. The IT8212 * requires several custom handlers so we override the default * ide DMA handlers appropriately */ static void __devinit init_hwif_it821x(ide_hwif_t *hwif) { struct it821x_dev *idev = kzalloc(sizeof(struct it821x_dev), GFP_KERNEL); u8 conf; if(idev == NULL) { printk(KERN_ERR "it821x: out of memory, falling back to legacy behaviour.\n"); goto fallback; } ide_set_hwifdata(hwif, idev); hwif->atapi_dma = 1; pci_read_config_byte(hwif->pci_dev, 0x50, &conf); if(conf & 1) { idev->smart = 1; hwif->atapi_dma = 0; /* Long I/O's although allowed in LBA48 space cause the onboard firmware to enter the twighlight zone */ hwif->rqsize = 256; } /* Pull the current clocks from 0x50 also */ if (conf & (1 << (1 + hwif->channel))) idev->clock_mode = ATA_50; else idev->clock_mode = ATA_66; idev->want[0][1] = ATA_ANY; idev->want[1][1] = ATA_ANY; /* * Not in the docs but according to the reference driver * this is neccessary. */ pci_read_config_byte(hwif->pci_dev, 0x08, &conf); if(conf == 0x10) { idev->timing10 = 1; hwif->atapi_dma = 0; if(!idev->smart) printk(KERN_WARNING "it821x: Revision 0x10, workarounds activated.\n"); } hwif->speedproc = &it821x_tune_chipset; hwif->tuneproc = &it821x_tuneproc; /* MWDMA/PIO clock switching for pass through mode */ if(!idev->smart) { hwif->dma_start = &it821x_dma_start; hwif->ide_dma_end = &it821x_dma_end; } hwif->drives[0].autotune = 1; hwif->drives[1].autotune = 1; if (!hwif->dma_base) goto fallback; hwif->ultra_mask = 0x7f; hwif->mwdma_mask = 0x07; hwif->swdma_mask = 0x07; hwif->ide_dma_check = &it821x_config_drive_for_dma; if (!(hwif->udma_four)) hwif->udma_four = ata66_it821x(hwif); /* * The BIOS often doesn't set up DMA on this controller * so we always do it. */ hwif->autodma = 1; hwif->drives[0].autodma = hwif->autodma; hwif->drives[1].autodma = hwif->autodma; return; fallback: hwif->autodma = 0; return; } static void __devinit it8212_disable_raid(struct pci_dev *dev) { /* Reset local CPU, and set BIOS not ready */ pci_write_config_byte(dev, 0x5E, 0x01); /* Set to bypass mode, and reset PCI bus */ pci_write_config_byte(dev, 0x50, 0x00); pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_PARITY | PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); pci_write_config_word(dev, 0x40, 0xA0F3); pci_write_config_dword(dev,0x4C, 0x02040204); pci_write_config_byte(dev, 0x42, 0x36); pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x20); } static unsigned int __devinit init_chipset_it821x(struct pci_dev *dev, const char *name) { u8 conf; static char *mode[2] = { "pass through", "smart" }; /* Force the card into bypass mode if so requested */ if (it8212_noraid) { printk(KERN_INFO "it8212: forcing bypass mode.\n"); it8212_disable_raid(dev); } pci_read_config_byte(dev, 0x50, &conf); printk(KERN_INFO "it821x: controller in %s mode.\n", mode[conf & 1]); return 0; } #define DECLARE_ITE_DEV(name_str) \ { \ .name = name_str, \ .init_chipset = init_chipset_it821x, \ .init_hwif = init_hwif_it821x, \ .channels = 2, \ .autodma = AUTODMA, \ .bootable = ON_BOARD, \ .fixup = it821x_fixups \ } static ide_pci_device_t it821x_chipsets[] __devinitdata = { /* 0 */ DECLARE_ITE_DEV("IT8212"), }; /** * it821x_init_one - pci layer discovery entry * @dev: PCI device * @id: ident table entry * * Called by the PCI code when it finds an ITE821x controller. * We then use the IDE PCI generic helper to do most of the work. */ static int __devinit it821x_init_one(struct pci_dev *dev, const struct pci_device_id *id) { ide_setup_pci_device(dev, &it821x_chipsets[id->driver_data]); return 0; } static struct pci_device_id it821x_pci_tbl[] = { { PCI_VENDOR_ID_ITE, PCI_DEVICE_ID_ITE_8211, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, { PCI_VENDOR_ID_ITE, PCI_DEVICE_ID_ITE_8212, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, { 0, }, }; MODULE_DEVICE_TABLE(pci, it821x_pci_tbl); static struct pci_driver driver = { .name = "ITE821x IDE", .id_table = it821x_pci_tbl, .probe = it821x_init_one, }; static int __init it821x_ide_init(void) { return ide_pci_register_driver(&driver); } module_init(it821x_ide_init); module_param_named(noraid, it8212_noraid, int, S_IRUGO); MODULE_PARM_DESC(it8212_noraid, "Force card into bypass mode"); MODULE_AUTHOR("Alan Cox"); MODULE_DESCRIPTION("PCI driver module for the ITE 821x"); MODULE_LICENSE("GPL");