summaryrefslogtreecommitdiffstats
path: root/drivers/spi/spi-ep93xx.c
blob: 79fc3940245a461129e333b2d1e1ff107115faa0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
/*
 * Driver for Cirrus Logic EP93xx SPI controller.
 *
 * Copyright (C) 2010-2011 Mika Westerberg
 *
 * Explicit FIFO handling code was inspired by amba-pl022 driver.
 *
 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
 *
 * For more information about the SPI controller see documentation on Cirrus
 * Logic web site:
 *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/io.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/scatterlist.h>
#include <linux/gpio.h>
#include <linux/spi/spi.h>

#include <linux/platform_data/dma-ep93xx.h>
#include <linux/platform_data/spi-ep93xx.h>

#define SSPCR0			0x0000
#define SSPCR0_MODE_SHIFT	6
#define SSPCR0_SCR_SHIFT	8

#define SSPCR1			0x0004
#define SSPCR1_RIE		BIT(0)
#define SSPCR1_TIE		BIT(1)
#define SSPCR1_RORIE		BIT(2)
#define SSPCR1_LBM		BIT(3)
#define SSPCR1_SSE		BIT(4)
#define SSPCR1_MS		BIT(5)
#define SSPCR1_SOD		BIT(6)

#define SSPDR			0x0008

#define SSPSR			0x000c
#define SSPSR_TFE		BIT(0)
#define SSPSR_TNF		BIT(1)
#define SSPSR_RNE		BIT(2)
#define SSPSR_RFF		BIT(3)
#define SSPSR_BSY		BIT(4)
#define SSPCPSR			0x0010

#define SSPIIR			0x0014
#define SSPIIR_RIS		BIT(0)
#define SSPIIR_TIS		BIT(1)
#define SSPIIR_RORIS		BIT(2)
#define SSPICR			SSPIIR

/* timeout in milliseconds */
#define SPI_TIMEOUT		5
/* maximum depth of RX/TX FIFO */
#define SPI_FIFO_SIZE		8

/**
 * struct ep93xx_spi - EP93xx SPI controller structure
 * @clk: clock for the controller
 * @mmio: pointer to ioremap()'d registers
 * @sspdr_phys: physical address of the SSPDR register
 * @tx: current byte in transfer to transmit
 * @rx: current byte in transfer to receive
 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
 *              frame decreases this level and sending one frame increases it.
 * @dma_rx: RX DMA channel
 * @dma_tx: TX DMA channel
 * @dma_rx_data: RX parameters passed to the DMA engine
 * @dma_tx_data: TX parameters passed to the DMA engine
 * @rx_sgt: sg table for RX transfers
 * @tx_sgt: sg table for TX transfers
 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
 *            the client
 */
struct ep93xx_spi {
	struct clk			*clk;
	void __iomem			*mmio;
	unsigned long			sspdr_phys;
	size_t				tx;
	size_t				rx;
	size_t				fifo_level;
	struct dma_chan			*dma_rx;
	struct dma_chan			*dma_tx;
	struct ep93xx_dma_data		dma_rx_data;
	struct ep93xx_dma_data		dma_tx_data;
	struct sg_table			rx_sgt;
	struct sg_table			tx_sgt;
	void				*zeropage;
};

/* converts bits per word to CR0.DSS value */
#define bits_per_word_to_dss(bpw)	((bpw) - 1)

/**
 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
 * @master: SPI master
 * @rate: desired SPI output clock rate
 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
 * @div_scr: pointer to return the scr divider
 */
static int ep93xx_spi_calc_divisors(struct spi_master *master,
				    u32 rate, u8 *div_cpsr, u8 *div_scr)
{
	struct ep93xx_spi *espi = spi_master_get_devdata(master);
	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
	int cpsr, scr;

	/*
	 * Make sure that max value is between values supported by the
	 * controller.
	 */
	rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);

	/*
	 * Calculate divisors so that we can get speed according the
	 * following formula:
	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
	 *
	 * cpsr must be even number and starts from 2, scr can be any number
	 * between 0 and 255.
	 */
	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
		for (scr = 0; scr <= 255; scr++) {
			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
				*div_scr = (u8)scr;
				*div_cpsr = (u8)cpsr;
				return 0;
			}
		}
	}

	return -EINVAL;
}

static int ep93xx_spi_chip_setup(struct spi_master *master,
				 struct spi_device *spi,
				 struct spi_transfer *xfer)
{
	struct ep93xx_spi *espi = spi_master_get_devdata(master);
	u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
	u8 div_cpsr = 0;
	u8 div_scr = 0;
	u16 cr0;
	int err;

	err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
				       &div_cpsr, &div_scr);
	if (err)
		return err;

	cr0 = div_scr << SSPCR0_SCR_SHIFT;
	cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT;
	cr0 |= dss;

	dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
		spi->mode, div_cpsr, div_scr, dss);
	dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);

	writel(div_cpsr, espi->mmio + SSPCPSR);
	writel(cr0, espi->mmio + SSPCR0);

	return 0;
}

static void ep93xx_do_write(struct spi_master *master)
{
	struct ep93xx_spi *espi = spi_master_get_devdata(master);
	struct spi_transfer *xfer = master->cur_msg->state;
	u32 val = 0;

	if (xfer->bits_per_word > 8) {
		if (xfer->tx_buf)
			val = ((u16 *)xfer->tx_buf)[espi->tx];
		espi->tx += 2;
	} else {
		if (xfer->tx_buf)
			val = ((u8 *)xfer->tx_buf)[espi->tx];
		espi->tx += 1;
	}
	writel(val, espi->mmio + SSPDR);
}

static void ep93xx_do_read(struct spi_master *master)
{
	struct ep93xx_spi *espi = spi_master_get_devdata(master);
	struct spi_transfer *xfer = master->cur_msg->state;
	u32 val;

	val = readl(espi->mmio + SSPDR);
	if (xfer->bits_per_word > 8) {
		if (xfer->rx_buf)
			((u16 *)xfer->rx_buf)[espi->rx] = val;
		espi->rx += 2;
	} else {
		if (xfer->rx_buf)
			((u8 *)xfer->rx_buf)[espi->rx] = val;
		espi->rx += 1;
	}
}

/**
 * ep93xx_spi_read_write() - perform next RX/TX transfer
 * @espi: ep93xx SPI controller struct
 *
 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
 * called several times, the whole transfer will be completed. Returns
 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
 *
 * When this function is finished, RX FIFO should be empty and TX FIFO should be
 * full.
 */
static int ep93xx_spi_read_write(struct spi_master *master)
{
	struct ep93xx_spi *espi = spi_master_get_devdata(master);
	struct spi_transfer *xfer = master->cur_msg->state;

	/* read as long as RX FIFO has frames in it */
	while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
		ep93xx_do_read(master);
		espi->fifo_level--;
	}

	/* write as long as TX FIFO has room */
	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
		ep93xx_do_write(master);
		espi->fifo_level++;
	}

	if (espi->rx == xfer->len)
		return 0;

	return -EINPROGRESS;
}

static enum dma_transfer_direction
ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
{
	switch (dir) {
	case DMA_TO_DEVICE:
		return DMA_MEM_TO_DEV;
	case DMA_FROM_DEVICE:
		return DMA_DEV_TO_MEM;
	default:
		return DMA_TRANS_NONE;
	}
}

/**
 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
 * @master: SPI master
 * @dir: DMA transfer direction
 *
 * Function configures the DMA, maps the buffer and prepares the DMA
 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
 * in case of failure.
 */
static struct dma_async_tx_descriptor *
ep93xx_spi_dma_prepare(struct spi_master *master,
		       enum dma_data_direction dir)
{
	struct ep93xx_spi *espi = spi_master_get_devdata(master);
	struct spi_transfer *xfer = master->cur_msg->state;
	struct dma_async_tx_descriptor *txd;
	enum dma_slave_buswidth buswidth;
	struct dma_slave_config conf;
	struct scatterlist *sg;
	struct sg_table *sgt;
	struct dma_chan *chan;
	const void *buf, *pbuf;
	size_t len = xfer->len;
	int i, ret, nents;

	if (xfer->bits_per_word > 8)
		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
	else
		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;

	memset(&conf, 0, sizeof(conf));
	conf.direction = ep93xx_dma_data_to_trans_dir(dir);

	if (dir == DMA_FROM_DEVICE) {
		chan = espi->dma_rx;
		buf = xfer->rx_buf;
		sgt = &espi->rx_sgt;

		conf.src_addr = espi->sspdr_phys;
		conf.src_addr_width = buswidth;
	} else {
		chan = espi->dma_tx;
		buf = xfer->tx_buf;
		sgt = &espi->tx_sgt;

		conf.dst_addr = espi->sspdr_phys;
		conf.dst_addr_width = buswidth;
	}

	ret = dmaengine_slave_config(chan, &conf);
	if (ret)
		return ERR_PTR(ret);

	/*
	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
	 * because we are using @espi->zeropage to provide a zero RX buffer
	 * for the TX transfers and we have only allocated one page for that.
	 *
	 * For performance reasons we allocate a new sg_table only when
	 * needed. Otherwise we will re-use the current one. Eventually the
	 * last sg_table is released in ep93xx_spi_release_dma().
	 */

	nents = DIV_ROUND_UP(len, PAGE_SIZE);
	if (nents != sgt->nents) {
		sg_free_table(sgt);

		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
		if (ret)
			return ERR_PTR(ret);
	}

	pbuf = buf;
	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
		size_t bytes = min_t(size_t, len, PAGE_SIZE);

		if (buf) {
			sg_set_page(sg, virt_to_page(pbuf), bytes,
				    offset_in_page(pbuf));
		} else {
			sg_set_page(sg, virt_to_page(espi->zeropage),
				    bytes, 0);
		}

		pbuf += bytes;
		len -= bytes;
	}

	if (WARN_ON(len)) {
		dev_warn(&master->dev, "len = %zu expected 0!\n", len);
		return ERR_PTR(-EINVAL);
	}

	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
	if (!nents)
		return ERR_PTR(-ENOMEM);

	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
				      DMA_CTRL_ACK);
	if (!txd) {
		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
		return ERR_PTR(-ENOMEM);
	}
	return txd;
}

/**
 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
 * @master: SPI master
 * @dir: DMA transfer direction
 *
 * Function finishes with the DMA transfer. After this, the DMA buffer is
 * unmapped.
 */
static void ep93xx_spi_dma_finish(struct spi_master *master,
				  enum dma_data_direction dir)
{
	struct ep93xx_spi *espi = spi_master_get_devdata(master);
	struct dma_chan *chan;
	struct sg_table *sgt;

	if (dir == DMA_FROM_DEVICE) {
		chan = espi->dma_rx;
		sgt = &espi->rx_sgt;
	} else {
		chan = espi->dma_tx;
		sgt = &espi->tx_sgt;
	}

	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
}

static void ep93xx_spi_dma_callback(void *callback_param)
{
	struct spi_master *master = callback_param;

	ep93xx_spi_dma_finish(master, DMA_TO_DEVICE);
	ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);

	spi_finalize_current_transfer(master);
}

static int ep93xx_spi_dma_transfer(struct spi_master *master)
{
	struct ep93xx_spi *espi = spi_master_get_devdata(master);
	struct dma_async_tx_descriptor *rxd, *txd;

	rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE);
	if (IS_ERR(rxd)) {
		dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
		return PTR_ERR(rxd);
	}

	txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE);
	if (IS_ERR(txd)) {
		ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
		dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
		return PTR_ERR(txd);
	}

	/* We are ready when RX is done */
	rxd->callback = ep93xx_spi_dma_callback;
	rxd->callback_param = master;

	/* Now submit both descriptors and start DMA */
	dmaengine_submit(rxd);
	dmaengine_submit(txd);

	dma_async_issue_pending(espi->dma_rx);
	dma_async_issue_pending(espi->dma_tx);

	/* signal that we need to wait for completion */
	return 1;
}

static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
{
	struct spi_master *master = dev_id;
	struct ep93xx_spi *espi = spi_master_get_devdata(master);
	u32 val;

	/*
	 * If we got ROR (receive overrun) interrupt we know that something is
	 * wrong. Just abort the message.
	 */
	if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
		/* clear the overrun interrupt */
		writel(0, espi->mmio + SSPICR);
		dev_warn(&master->dev,
			 "receive overrun, aborting the message\n");
		master->cur_msg->status = -EIO;
	} else {
		/*
		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
		 * simply execute next data transfer.
		 */
		if (ep93xx_spi_read_write(master)) {
			/*
			 * In normal case, there still is some processing left
			 * for current transfer. Let's wait for the next
			 * interrupt then.
			 */
			return IRQ_HANDLED;
		}
	}

	/*
	 * Current transfer is finished, either with error or with success. In
	 * any case we disable interrupts and notify the worker to handle
	 * any post-processing of the message.
	 */
	val = readl(espi->mmio + SSPCR1);
	val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
	writel(val, espi->mmio + SSPCR1);

	spi_finalize_current_transfer(master);

	return IRQ_HANDLED;
}

static int ep93xx_spi_transfer_one(struct spi_master *master,
				   struct spi_device *spi,
				   struct spi_transfer *xfer)
{
	struct ep93xx_spi *espi = spi_master_get_devdata(master);
	u32 val;
	int ret;

	ret = ep93xx_spi_chip_setup(master, spi, xfer);
	if (ret) {
		dev_err(&master->dev, "failed to setup chip for transfer\n");
		return ret;
	}

	master->cur_msg->state = xfer;
	espi->rx = 0;
	espi->tx = 0;

	/*
	 * There is no point of setting up DMA for the transfers which will
	 * fit into the FIFO and can be transferred with a single interrupt.
	 * So in these cases we will be using PIO and don't bother for DMA.
	 */
	if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
		return ep93xx_spi_dma_transfer(master);

	/* Using PIO so prime the TX FIFO and enable interrupts */
	ep93xx_spi_read_write(master);

	val = readl(espi->mmio + SSPCR1);
	val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
	writel(val, espi->mmio + SSPCR1);

	/* signal that we need to wait for completion */
	return 1;
}

static int ep93xx_spi_prepare_message(struct spi_master *master,
				      struct spi_message *msg)
{
	struct ep93xx_spi *espi = spi_master_get_devdata(master);
	unsigned long timeout;

	/*
	 * Just to be sure: flush any data from RX FIFO.
	 */
	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
	while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
		if (time_after(jiffies, timeout)) {
			dev_warn(&master->dev,
				 "timeout while flushing RX FIFO\n");
			return -ETIMEDOUT;
		}
		readl(espi->mmio + SSPDR);
	}

	/*
	 * We explicitly handle FIFO level. This way we don't have to check TX
	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
	 */
	espi->fifo_level = 0;

	return 0;
}

static int ep93xx_spi_prepare_hardware(struct spi_master *master)
{
	struct ep93xx_spi *espi = spi_master_get_devdata(master);
	u32 val;
	int ret;

	ret = clk_enable(espi->clk);
	if (ret)
		return ret;

	val = readl(espi->mmio + SSPCR1);
	val |= SSPCR1_SSE;
	writel(val, espi->mmio + SSPCR1);

	return 0;
}

static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
{
	struct ep93xx_spi *espi = spi_master_get_devdata(master);
	u32 val;

	val = readl(espi->mmio + SSPCR1);
	val &= ~SSPCR1_SSE;
	writel(val, espi->mmio + SSPCR1);

	clk_disable(espi->clk);

	return 0;
}

static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
{
	if (ep93xx_dma_chan_is_m2p(chan))
		return false;

	chan->private = filter_param;
	return true;
}

static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
{
	dma_cap_mask_t mask;
	int ret;

	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
	if (!espi->zeropage)
		return -ENOMEM;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

	espi->dma_rx_data.port = EP93XX_DMA_SSP;
	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
	espi->dma_rx_data.name = "ep93xx-spi-rx";

	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
					   &espi->dma_rx_data);
	if (!espi->dma_rx) {
		ret = -ENODEV;
		goto fail_free_page;
	}

	espi->dma_tx_data.port = EP93XX_DMA_SSP;
	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
	espi->dma_tx_data.name = "ep93xx-spi-tx";

	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
					   &espi->dma_tx_data);
	if (!espi->dma_tx) {
		ret = -ENODEV;
		goto fail_release_rx;
	}

	return 0;

fail_release_rx:
	dma_release_channel(espi->dma_rx);
	espi->dma_rx = NULL;
fail_free_page:
	free_page((unsigned long)espi->zeropage);

	return ret;
}

static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
{
	if (espi->dma_rx) {
		dma_release_channel(espi->dma_rx);
		sg_free_table(&espi->rx_sgt);
	}
	if (espi->dma_tx) {
		dma_release_channel(espi->dma_tx);
		sg_free_table(&espi->tx_sgt);
	}

	if (espi->zeropage)
		free_page((unsigned long)espi->zeropage);
}

static int ep93xx_spi_probe(struct platform_device *pdev)
{
	struct spi_master *master;
	struct ep93xx_spi_info *info;
	struct ep93xx_spi *espi;
	struct resource *res;
	int irq;
	int error;
	int i;

	info = dev_get_platdata(&pdev->dev);
	if (!info) {
		dev_err(&pdev->dev, "missing platform data\n");
		return -EINVAL;
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "failed to get irq resources\n");
		return -EBUSY;
	}

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(&pdev->dev, "unable to get iomem resource\n");
		return -ENODEV;
	}

	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
	if (!master)
		return -ENOMEM;

	master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
	master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
	master->prepare_message = ep93xx_spi_prepare_message;
	master->transfer_one = ep93xx_spi_transfer_one;
	master->bus_num = pdev->id;
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);

	master->num_chipselect = info->num_chipselect;
	master->cs_gpios = devm_kcalloc(&master->dev,
					master->num_chipselect, sizeof(int),
					GFP_KERNEL);
	if (!master->cs_gpios) {
		error = -ENOMEM;
		goto fail_release_master;
	}

	for (i = 0; i < master->num_chipselect; i++) {
		master->cs_gpios[i] = info->chipselect[i];

		if (!gpio_is_valid(master->cs_gpios[i]))
			continue;

		error = devm_gpio_request_one(&pdev->dev, master->cs_gpios[i],
					      GPIOF_OUT_INIT_HIGH,
					      "ep93xx-spi");
		if (error) {
			dev_err(&pdev->dev, "could not request cs gpio %d\n",
				master->cs_gpios[i]);
			goto fail_release_master;
		}
	}

	platform_set_drvdata(pdev, master);

	espi = spi_master_get_devdata(master);

	espi->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(espi->clk)) {
		dev_err(&pdev->dev, "unable to get spi clock\n");
		error = PTR_ERR(espi->clk);
		goto fail_release_master;
	}

	/*
	 * Calculate maximum and minimum supported clock rates
	 * for the controller.
	 */
	master->max_speed_hz = clk_get_rate(espi->clk) / 2;
	master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);

	espi->sspdr_phys = res->start + SSPDR;

	espi->mmio = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(espi->mmio)) {
		error = PTR_ERR(espi->mmio);
		goto fail_release_master;
	}

	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
				0, "ep93xx-spi", master);
	if (error) {
		dev_err(&pdev->dev, "failed to request irq\n");
		goto fail_release_master;
	}

	if (info->use_dma && ep93xx_spi_setup_dma(espi))
		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");

	/* make sure that the hardware is disabled */
	writel(0, espi->mmio + SSPCR1);

	error = devm_spi_register_master(&pdev->dev, master);
	if (error) {
		dev_err(&pdev->dev, "failed to register SPI master\n");
		goto fail_free_dma;
	}

	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
		 (unsigned long)res->start, irq);

	return 0;

fail_free_dma:
	ep93xx_spi_release_dma(espi);
fail_release_master:
	spi_master_put(master);

	return error;
}

static int ep93xx_spi_remove(struct platform_device *pdev)
{
	struct spi_master *master = platform_get_drvdata(pdev);
	struct ep93xx_spi *espi = spi_master_get_devdata(master);

	ep93xx_spi_release_dma(espi);

	return 0;
}

static struct platform_driver ep93xx_spi_driver = {
	.driver		= {
		.name	= "ep93xx-spi",
	},
	.probe		= ep93xx_spi_probe,
	.remove		= ep93xx_spi_remove,
};
module_platform_driver(ep93xx_spi_driver);

MODULE_DESCRIPTION("EP93xx SPI Controller driver");
MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:ep93xx-spi");