summaryrefslogtreecommitdiffstats
path: root/drivers/staging/greybus/operation.c
blob: dc354252bef58a3e9477b54d39cdebf162ccb909 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
/*
 * Greybus operations
 *
 * Copyright 2014 Google Inc.
 *
 * Released under the GPLv2 only.
 */

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/workqueue.h>

#include "greybus.h"

/*
 * The top bit of the type in an operation message header indicates
 * whether the message is a request (bit clear) or response (bit set)
 */
#define GB_OPERATION_TYPE_RESPONSE	0x80

#define OPERATION_TIMEOUT_DEFAULT	1000	/* milliseconds */

/*
 * XXX This needs to be coordinated with host driver parameters
 */
#define GB_OPERATION_MESSAGE_SIZE_MAX	4096

static struct kmem_cache *gb_operation_cache;

/* Workqueue to handle Greybus operation completions. */
static struct workqueue_struct *gb_operation_recv_workqueue;

/*
 * All operation messages (both requests and responses) begin with
 * a common header that encodes the size of the data (header
 * included).  This header also contains a unique identifier, which
 * is used to keep track of in-flight operations.  Finally, the
 * header contains a operation type field, whose interpretation is
 * dependent on what type of device lies on the other end of the
 * connection.  Response messages are distinguished from request
 * messages by setting the high bit (0x80) in the operation type
 * value.
 *
 * The wire format for all numeric fields in the header is little
 * endian.  Any operation-specific data begins immediately after the
 * header, and is 64-bit aligned.
 */
struct gb_operation_msg_hdr {
	__le16	size;	/* Size in bytes of header + payload */
	__le16	id;	/* Operation unique id */
	__u8	type;	/* E.g GB_I2C_TYPE_* or GB_GPIO_TYPE_* */
	/* 3 bytes pad, must be zero (ignore when read) */
} __aligned(sizeof(u64));

/* XXX Could be per-host device, per-module, or even per-connection */
static DEFINE_SPINLOCK(gb_operations_lock);

static void gb_operation_insert(struct gb_operation *operation)
{
	struct gb_connection *connection = operation->connection;
	struct rb_root *root = &connection->pending;
	struct rb_node *node = &operation->node;
	struct rb_node **link = &root->rb_node;
	struct rb_node *above = NULL;
	struct gb_operation_msg_hdr *header;
	unsigned long timeout;
	bool start_timer;
	__le16 wire_id;

	/*
	 * Assign the operation's id, and store it in the header of
	 * both request and response message headers.
	 */
	operation->id = gb_connection_operation_id(connection);
	wire_id = cpu_to_le16(operation->id);
	header = operation->request->transfer_buffer;
	header->id = wire_id;

	/* OK, insert the operation into its connection's tree */
	spin_lock_irq(&gb_operations_lock);

	/*
	 * We impose a time limit for requests to complete.  If
	 * there are no requests pending there is no need for a
	 * timer.  So if this will be the only one in flight we'll
	 * need to start the timer.  Otherwise we just update the
	 * existing one to give this request a full timeout period
	 * to complete.
	 */
	start_timer = RB_EMPTY_ROOT(root);

	while (*link) {
		struct gb_operation *other;

		above = *link;
		other = rb_entry(above, struct gb_operation, node);
		header = other->request->transfer_buffer;
		if (other->id > operation->id)
			link = &above->rb_left;
		else if (other->id < operation->id)
			link = &above->rb_right;
	}
	rb_link_node(node, above, link);
	rb_insert_color(node, root);
	spin_unlock_irq(&gb_operations_lock);

	timeout = msecs_to_jiffies(OPERATION_TIMEOUT_DEFAULT);
	if (start_timer)
		schedule_delayed_work(&operation->timeout_work, timeout);
	else
		mod_delayed_work(system_wq, &operation->timeout_work, timeout);
}

static void gb_operation_remove(struct gb_operation *operation)
{
	struct gb_connection *connection = operation->connection;

	/* Shut down our timeout timer */
	cancel_delayed_work(&operation->timeout_work);

	/* Take us off of the list of pending operations */
	spin_lock_irq(&gb_operations_lock);
	rb_erase(&operation->node, &connection->pending);
	spin_unlock_irq(&gb_operations_lock);

}

static struct gb_operation *
gb_operation_find(struct gb_connection *connection, u16 id)
{
	struct gb_operation *operation = NULL;
	struct rb_node *node;
	bool found = false;

	spin_lock_irq(&gb_operations_lock);
	node = connection->pending.rb_node;
	while (node && !found) {
		operation = rb_entry(node, struct gb_operation, node);
		if (operation->id > id)
			node = node->rb_left;
		else if (operation->id < id)
			node = node->rb_right;
		else
			found = true;
	}
	spin_unlock_irq(&gb_operations_lock);

	return found ? operation : NULL;
}

/*
 * An operations's response message has arrived.  If no callback was
 * supplied it was submitted for asynchronous completion, so we notify
 * any waiters.  Otherwise we assume calling the completion is enough
 * and nobody else will be waiting.
 */
static void gb_operation_complete(struct gb_operation *operation)
{
	if (operation->callback)
		operation->callback(operation);
	else
		complete_all(&operation->completion);
}

/* Wait for a submitted operation to complete */
int gb_operation_wait(struct gb_operation *operation)
{
	int ret;

	ret = wait_for_completion_interruptible(&operation->completion);
	/* If interrupted, cancel the in-flight buffer */
	if (ret < 0)
		greybus_kill_gbuf(operation->request);
	return ret;

}

/*
 * This handler is used if no operation response messages are ever
 * expected for a given protocol.
 */
static void gb_operation_recv_none(struct gb_operation *operation)
{
	/* Nothing to do! */
}

typedef void (*gb_operation_recv_handler)(struct gb_operation *operation);
static gb_operation_recv_handler gb_operation_recv_handlers[] = {
	[GREYBUS_PROTOCOL_CONTROL]	= NULL,
	[GREYBUS_PROTOCOL_AP]		= NULL,
	[GREYBUS_PROTOCOL_GPIO]		= NULL,
	[GREYBUS_PROTOCOL_I2C]		= gb_operation_recv_none,
	[GREYBUS_PROTOCOL_UART]		= NULL,
	[GREYBUS_PROTOCOL_HID]		= NULL,
	[GREYBUS_PROTOCOL_BATTERY]	= gb_operation_recv_none,
	[GREYBUS_PROTOCOL_LED]		= NULL,
	[GREYBUS_PROTOCOL_VENDOR]	= NULL,
};

static void gb_operation_request_handle(struct gb_operation *operation)
{
	u8 protocol = operation->connection->protocol;

	/* Subtract one from array size to stay within u8 range */
	if (protocol <= (u8)(ARRAY_SIZE(gb_operation_recv_handlers) - 1)) {
		gb_operation_recv_handler handler;

		handler = gb_operation_recv_handlers[protocol];
		if (handler) {
			handler(operation);	/* Handle the request */
			return;
		}
	}

	gb_connection_err(operation->connection, "unrecognized protocol %u\n",
		(unsigned int)protocol);
	operation->result = GB_OP_PROTOCOL_BAD;
	gb_operation_complete(operation);
}

/*
 * Either this operation contains an incoming request, or its
 * response has arrived.  An incoming request will have a null
 * response buffer pointer (it is the responsibility of the request
 * handler to allocate and fill in the response buffer).
 */
static void gb_operation_recv_work(struct work_struct *recv_work)
{
	struct gb_operation *operation;
	bool incoming_request;

	operation = container_of(recv_work, struct gb_operation, recv_work);
	incoming_request = operation->response == NULL;
	if (incoming_request)
		gb_operation_request_handle(operation);
	gb_operation_complete(operation);

	/* We're finished with the buffer we read into */
	if (incoming_request)
		greybus_gbuf_finished(operation->request);
	else
		greybus_gbuf_finished(operation->response);
}

/*
 * Timeout call for the operation.
 *
 * If this fires, something went wrong, so mark the result as timed out, and
 * run the completion handler, which (hopefully) should clean up the operation
 * properly.
 */
static void operation_timeout(struct work_struct *work)
{
	struct gb_operation *operation;

	operation = container_of(work, struct gb_operation, timeout_work.work);
	printk("timeout!\n");

	operation->result = GB_OP_TIMEOUT;
	gb_operation_complete(operation);
}

/*
 * Buffer completion function.  We get notified whenever any buffer
 * completes.  For outbound messages, this tells us that the message
 * has been sent.  For inbound messages, it means the data has
 * landed in the buffer and is ready to be processed.
 *
 * Either way, we don't do anything.  We don't really care when an
 * outbound message has been sent, and for incoming messages we
 * we'll be done with everything we need to do before we mark it
 * finished.
 *
 * XXX We may want to record that a request is (or is no longer) in flight.
 */
static void gb_operation_gbuf_complete(struct gbuf *gbuf)
{
	if (gbuf->status) {
		struct gb_operation *operation = gbuf->context;
		struct gb_operation_msg_hdr *header;
		int id;
		int type;

		if (gbuf == operation->request)
			header = operation->request_payload;
		else if (gbuf == operation->response)
			header = operation->response_payload;
		else
			header = NULL;

		if (header) {
			id = le16_to_cpu(header->id);
			type = header->type;
		} else {
			id = -1;
			type = -1;
		}

		gb_connection_err(operation->connection,
			"operation %d type %d gbuf error %d",
			id, type, gbuf->status);
	}
	return;
}

/*
 * Allocate a buffer to be used for an operation request or response
 * message.  For outgoing messages, both types of message contain a
 * common header, which is filled in here.  Incoming requests or
 * responses also contain the same header, but there's no need to
 * initialize it here (it'll be overwritten by the incoming
 * message).
 */
static struct gbuf *gb_operation_gbuf_create(struct gb_operation *operation,
					     u8 type, size_t size,
					     bool data_out)
{
	struct gb_connection *connection = operation->connection;
	struct gb_operation_msg_hdr *header;
	struct gbuf *gbuf;
	gfp_t gfp_flags = data_out ? GFP_KERNEL : GFP_ATOMIC;

	size += sizeof(*header);
	gbuf = greybus_alloc_gbuf(connection, gb_operation_gbuf_complete,
					size, data_out, gfp_flags, operation);
	if (!gbuf)
		return NULL;

	/* Fill in the header structure */
	header = (struct gb_operation_msg_hdr *)gbuf->transfer_buffer;
	header->size = cpu_to_le16(size);
	header->id = 0;		/* Filled in when submitted */
	header->type = type;

	return gbuf;
}

/*
 * Create a Greybus operation to be sent over the given connection.
 * The request buffer will big enough for a payload of the given
 * size.  Outgoing requests must specify the size of the response
 * buffer size, which must be sufficient to hold all expected
 * response data.
 *
 * Incoming requests will supply a response size of 0, and in that
 * case no response buffer is allocated.  (A response always
 * includes a status byte, so 0 is not a valid size.)  Whatever
 * handles the operation request is responsible for allocating the
 * response buffer.
 *
 * Returns a pointer to the new operation or a null pointer if an
 * error occurs.
 */
struct gb_operation *gb_operation_create(struct gb_connection *connection,
					u8 type, size_t request_size,
					size_t response_size)
{
	struct gb_operation *operation;
	gfp_t gfp_flags = response_size ? GFP_KERNEL : GFP_ATOMIC;
	bool outgoing = response_size != 0;

	operation = kmem_cache_zalloc(gb_operation_cache, gfp_flags);
	if (!operation)
		return NULL;
	operation->connection = connection;

	operation->request = gb_operation_gbuf_create(operation, type,
							request_size,
							outgoing);
	if (!operation->request)
		goto err_cache;
	operation->request_payload = operation->request->transfer_buffer +
					sizeof(struct gb_operation_msg_hdr);
	/* We always use the full request buffer */
	operation->request->actual_length = request_size;

	if (outgoing) {
		type |= GB_OPERATION_TYPE_RESPONSE;
		operation->response = gb_operation_gbuf_create(operation,
						type, response_size,
						false);
		if (!operation->response)
			goto err_request;
		operation->response_payload =
				operation->response->transfer_buffer +
				sizeof(struct gb_operation_msg_hdr);
	}

	INIT_WORK(&operation->recv_work, gb_operation_recv_work);
	operation->callback = NULL;	/* set at submit time */
	init_completion(&operation->completion);
	INIT_DELAYED_WORK(&operation->timeout_work, operation_timeout);

	spin_lock_irq(&gb_operations_lock);
	list_add_tail(&operation->links, &connection->operations);
	spin_unlock_irq(&gb_operations_lock);

	return operation;

err_request:
	greybus_free_gbuf(operation->request);
err_cache:
	kmem_cache_free(gb_operation_cache, operation);

	return NULL;
}

/*
 * Destroy a previously created operation.
 */
void gb_operation_destroy(struct gb_operation *operation)
{
	if (WARN_ON(!operation))
		return;

	/* XXX Make sure it's not in flight */
	spin_lock_irq(&gb_operations_lock);
	list_del(&operation->links);
	spin_unlock_irq(&gb_operations_lock);

	greybus_free_gbuf(operation->response);
	greybus_free_gbuf(operation->request);

	kmem_cache_free(gb_operation_cache, operation);
}

/*
 * Send an operation request message.  The caller has filled in
 * any payload so the request message is ready to go.  If non-null,
 * the callback function supplied will be called when the response
 * message has arrived indicating the operation is complete.  A null
 * callback function is used for a synchronous request; return from
 * this function won't occur until the operation is complete (or an
 * interrupt occurs).
 */
int gb_operation_request_send(struct gb_operation *operation,
				gb_operation_callback callback)
{
	int ret;

	if (operation->connection->state != GB_CONNECTION_STATE_ENABLED)
		return -ENOTCONN;

	/*
	 * XXX
	 * I think the order of operations is going to be
	 * significant, and if so, we may need a mutex to surround
	 * setting the operation id and submitting the gbuf.
	 */
	operation->callback = callback;
	gb_operation_insert(operation);
	ret = greybus_submit_gbuf(operation->request, GFP_KERNEL);
	if (ret)
		return ret;
	if (!callback)
		ret = gb_operation_wait(operation);

	return ret;
}

/*
 * Send a response for an incoming operation request.
 */
int gb_operation_response_send(struct gb_operation *operation)
{
	/* XXX
	 * Caller needs to have set operation->response->actual_length
	 */
	gb_operation_remove(operation);
	gb_operation_destroy(operation);

	return 0;
}

/*
 * Handle data arriving on a connection.  This is called in
 * interrupt context, so just copy the incoming data into a buffer
 * and do remaining handling via a work queue.
 */
void gb_connection_operation_recv(struct gb_connection *connection,
				void *data, size_t size)
{
	struct gb_operation_msg_hdr *header;
	struct gb_operation *operation;
	struct gbuf *gbuf;
	u16 msg_size;

	if (connection->state != GB_CONNECTION_STATE_ENABLED)
		return;

	if (size > GB_OPERATION_MESSAGE_SIZE_MAX) {
		gb_connection_err(connection, "message too big");
		return;
	}

	header = data;
	msg_size = le16_to_cpu(header->size);
	if (header->type & GB_OPERATION_TYPE_RESPONSE) {
		u16 id = le16_to_cpu(header->id);

		operation = gb_operation_find(connection, id);
		if (!operation) {
			gb_connection_err(connection, "operation not found");
			return;
		}
		gb_operation_remove(operation);
		gbuf = operation->response;
		gbuf->status = GB_OP_SUCCESS;	/* If we got here we're good */
		if (size > gbuf->transfer_buffer_length) {
			gb_connection_err(connection, "recv buffer too small");
			return;
		}
	} else {
		WARN_ON(msg_size != size);
		operation = gb_operation_create(connection, header->type,
							msg_size, 0);
		if (!operation) {
			gb_connection_err(connection, "can't create operation");
			return;
		}
		gbuf = operation->request;
	}

	memcpy(gbuf->transfer_buffer, data, msg_size);
	gbuf->actual_length = msg_size;

	/* The rest will be handled in work queue context */
	queue_work(gb_operation_recv_workqueue, &operation->recv_work);
}

/*
 * Cancel an operation.
 */
void gb_operation_cancel(struct gb_operation *operation)
{
	operation->canceled = true;
	greybus_kill_gbuf(operation->request);
	if (operation->response)
		greybus_kill_gbuf(operation->response);
}

int gb_operation_init(void)
{
	gb_operation_cache = kmem_cache_create("gb_operation_cache",
				sizeof(struct gb_operation), 0, 0, NULL);
	if (!gb_operation_cache)
		return -ENOMEM;

	gb_operation_recv_workqueue = alloc_workqueue("greybus_recv", 0, 1);
	if (!gb_operation_recv_workqueue) {
		kmem_cache_destroy(gb_operation_cache);
		gb_operation_cache = NULL;
		return -ENOMEM;
	}

	return 0;
}

void gb_operation_exit(void)
{
	kmem_cache_destroy(gb_operation_cache);
	gb_operation_cache = NULL;
	destroy_workqueue(gb_operation_recv_workqueue);
	gb_operation_recv_workqueue = NULL;
}