summaryrefslogtreecommitdiffstats
path: root/lib/inflate.c
blob: d10255973a9fc8b79df675c684a6532da26694a8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
#define DEBG(x)
#define DEBG1(x)
/* inflate.c -- Not copyrighted 1992 by Mark Adler
   version c10p1, 10 January 1993 */

/* 
 * Adapted for booting Linux by Hannu Savolainen 1993
 * based on gzip-1.0.3 
 *
 * Nicolas Pitre <nico@fluxnic.net>, 1999/04/14 :
 *   Little mods for all variable to reside either into rodata or bss segments
 *   by marking constant variables with 'const' and initializing all the others
 *   at run-time only.  This allows for the kernel uncompressor to run
 *   directly from Flash or ROM memory on embedded systems.
 */

/*
   Inflate deflated (PKZIP's method 8 compressed) data.  The compression
   method searches for as much of the current string of bytes (up to a
   length of 258) in the previous 32 K bytes.  If it doesn't find any
   matches (of at least length 3), it codes the next byte.  Otherwise, it
   codes the length of the matched string and its distance backwards from
   the current position.  There is a single Huffman code that codes both
   single bytes (called "literals") and match lengths.  A second Huffman
   code codes the distance information, which follows a length code.  Each
   length or distance code actually represents a base value and a number
   of "extra" (sometimes zero) bits to get to add to the base value.  At
   the end of each deflated block is a special end-of-block (EOB) literal/
   length code.  The decoding process is basically: get a literal/length
   code; if EOB then done; if a literal, emit the decoded byte; if a
   length then get the distance and emit the referred-to bytes from the
   sliding window of previously emitted data.

   There are (currently) three kinds of inflate blocks: stored, fixed, and
   dynamic.  The compressor deals with some chunk of data at a time, and
   decides which method to use on a chunk-by-chunk basis.  A chunk might
   typically be 32 K or 64 K.  If the chunk is incompressible, then the
   "stored" method is used.  In this case, the bytes are simply stored as
   is, eight bits per byte, with none of the above coding.  The bytes are
   preceded by a count, since there is no longer an EOB code.

   If the data is compressible, then either the fixed or dynamic methods
   are used.  In the dynamic method, the compressed data is preceded by
   an encoding of the literal/length and distance Huffman codes that are
   to be used to decode this block.  The representation is itself Huffman
   coded, and so is preceded by a description of that code.  These code
   descriptions take up a little space, and so for small blocks, there is
   a predefined set of codes, called the fixed codes.  The fixed method is
   used if the block codes up smaller that way (usually for quite small
   chunks), otherwise the dynamic method is used.  In the latter case, the
   codes are customized to the probabilities in the current block, and so
   can code it much better than the pre-determined fixed codes.
 
   The Huffman codes themselves are decoded using a multi-level table
   lookup, in order to maximize the speed of decoding plus the speed of
   building the decoding tables.  See the comments below that precede the
   lbits and dbits tuning parameters.
 */


/*
   Notes beyond the 1.93a appnote.txt:

   1. Distance pointers never point before the beginning of the output
      stream.
   2. Distance pointers can point back across blocks, up to 32k away.
   3. There is an implied maximum of 7 bits for the bit length table and
      15 bits for the actual data.
   4. If only one code exists, then it is encoded using one bit.  (Zero
      would be more efficient, but perhaps a little confusing.)  If two
      codes exist, they are coded using one bit each (0 and 1).
   5. There is no way of sending zero distance codes--a dummy must be
      sent if there are none.  (History: a pre 2.0 version of PKZIP would
      store blocks with no distance codes, but this was discovered to be
      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
      zero distance codes, which is sent as one code of zero bits in
      length.
   6. There are up to 286 literal/length codes.  Code 256 represents the
      end-of-block.  Note however that the static length tree defines
      288 codes just to fill out the Huffman codes.  Codes 286 and 287
      cannot be used though, since there is no length base or extra bits
      defined for them.  Similarly, there are up to 30 distance codes.
      However, static trees define 32 codes (all 5 bits) to fill out the
      Huffman codes, but the last two had better not show up in the data.
   7. Unzip can check dynamic Huffman blocks for complete code sets.
      The exception is that a single code would not be complete (see #4).
   8. The five bits following the block type is really the number of
      literal codes sent minus 257.
   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
      (1+6+6).  Therefore, to output three times the length, you output
      three codes (1+1+1), whereas to output four times the same length,
      you only need two codes (1+3).  Hmm.
  10. In the tree reconstruction algorithm, Code = Code + Increment
      only if BitLength(i) is not zero.  (Pretty obvious.)
  11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
  12. Note: length code 284 can represent 227-258, but length code 285
      really is 258.  The last length deserves its own, short code
      since it gets used a lot in very redundant files.  The length
      258 is special since 258 - 3 (the min match length) is 255.
  13. The literal/length and distance code bit lengths are read as a
      single stream of lengths.  It is possible (and advantageous) for
      a repeat code (16, 17, or 18) to go across the boundary between
      the two sets of lengths.
 */
#include <linux/compiler.h>

#ifdef RCSID
static char rcsid[] = "#Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp #";
#endif

#ifndef STATIC

#if defined(STDC_HEADERS) || defined(HAVE_STDLIB_H)
#  include <sys/types.h>
#  include <stdlib.h>
#endif

#include "gzip.h"
#define STATIC
#endif /* !STATIC */

#ifndef INIT
#define INIT
#endif
	
#define slide window

/* Huffman code lookup table entry--this entry is four bytes for machines
   that have 16-bit pointers (e.g. PC's in the small or medium model).
   Valid extra bits are 0..13.  e == 15 is EOB (end of block), e == 16
   means that v is a literal, 16 < e < 32 means that v is a pointer to
   the next table, which codes e - 16 bits, and lastly e == 99 indicates
   an unused code.  If a code with e == 99 is looked up, this implies an
   error in the data. */
struct huft {
  uch e;                /* number of extra bits or operation */
  uch b;                /* number of bits in this code or subcode */
  union {
    ush n;              /* literal, length base, or distance base */
    struct huft *t;     /* pointer to next level of table */
  } v;
};


/* Function prototypes */
STATIC int INIT huft_build OF((unsigned *, unsigned, unsigned, 
		const ush *, const ush *, struct huft **, int *));
STATIC int INIT huft_free OF((struct huft *));
STATIC int INIT inflate_codes OF((struct huft *, struct huft *, int, int));
STATIC int INIT inflate_stored OF((void));
STATIC int INIT inflate_fixed OF((void));
STATIC int INIT inflate_dynamic OF((void));
STATIC int INIT inflate_block OF((int *));
STATIC int INIT inflate OF((void));


/* The inflate algorithm uses a sliding 32 K byte window on the uncompressed
   stream to find repeated byte strings.  This is implemented here as a
   circular buffer.  The index is updated simply by incrementing and then
   ANDing with 0x7fff (32K-1). */
/* It is left to other modules to supply the 32 K area.  It is assumed
   to be usable as if it were declared "uch slide[32768];" or as just
   "uch *slide;" and then malloc'ed in the latter case.  The definition
   must be in unzip.h, included above. */
/* unsigned wp;             current position in slide */
#define wp outcnt
#define flush_output(w) (wp=(w),flush_window())

/* Tables for deflate from PKZIP's appnote.txt. */
static const unsigned border[] = {    /* Order of the bit length code lengths */
        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
static const ush cplens[] = {         /* Copy lengths for literal codes 257..285 */
        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
        /* note: see note #13 above about the 258 in this list. */
static const ush cplext[] = {         /* Extra bits for literal codes 257..285 */
        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
static const ush cpdist[] = {         /* Copy offsets for distance codes 0..29 */
        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
        8193, 12289, 16385, 24577};
static const ush cpdext[] = {         /* Extra bits for distance codes */
        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
        12, 12, 13, 13};



/* Macros for inflate() bit peeking and grabbing.
   The usage is:
   
        NEEDBITS(j)
        x = b & mask_bits[j];
        DUMPBITS(j)

   where NEEDBITS makes sure that b has at least j bits in it, and
   DUMPBITS removes the bits from b.  The macros use the variable k
   for the number of bits in b.  Normally, b and k are register
   variables for speed, and are initialized at the beginning of a
   routine that uses these macros from a global bit buffer and count.

   If we assume that EOB will be the longest code, then we will never
   ask for bits with NEEDBITS that are beyond the end of the stream.
   So, NEEDBITS should not read any more bytes than are needed to
   meet the request.  Then no bytes need to be "returned" to the buffer
   at the end of the last block.

   However, this assumption is not true for fixed blocks--the EOB code
   is 7 bits, but the other literal/length codes can be 8 or 9 bits.
   (The EOB code is shorter than other codes because fixed blocks are
   generally short.  So, while a block always has an EOB, many other
   literal/length codes have a significantly lower probability of
   showing up at all.)  However, by making the first table have a
   lookup of seven bits, the EOB code will be found in that first
   lookup, and so will not require that too many bits be pulled from
   the stream.
 */

STATIC ulg bb;                         /* bit buffer */
STATIC unsigned bk;                    /* bits in bit buffer */

STATIC const ush mask_bits[] = {
    0x0000,
    0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
    0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};

#define NEXTBYTE()  ({ int v = get_byte(); if (v < 0) goto underrun; (uch)v; })
#define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
#define DUMPBITS(n) {b>>=(n);k-=(n);}

#ifndef NO_INFLATE_MALLOC
/* A trivial malloc implementation, adapted from
 *  malloc by Hannu Savolainen 1993 and Matthias Urlichs 1994
 */

static unsigned long malloc_ptr;
static int malloc_count;

static void *malloc(int size)
{
       void *p;

       if (size < 0)
		error("Malloc error");
       if (!malloc_ptr)
		malloc_ptr = free_mem_ptr;

       malloc_ptr = (malloc_ptr + 3) & ~3;     /* Align */

       p = (void *)malloc_ptr;
       malloc_ptr += size;

       if (free_mem_end_ptr && malloc_ptr >= free_mem_end_ptr)
		error("Out of memory");

       malloc_count++;
       return p;
}

static void free(void *where)
{
       malloc_count--;
       if (!malloc_count)
		malloc_ptr = free_mem_ptr;
}
#else
#define malloc(a) kmalloc(a, GFP_KERNEL)
#define free(a) kfree(a)
#endif

/*
   Huffman code decoding is performed using a multi-level table lookup.
   The fastest way to decode is to simply build a lookup table whose
   size is determined by the longest code.  However, the time it takes
   to build this table can also be a factor if the data being decoded
   is not very long.  The most common codes are necessarily the
   shortest codes, so those codes dominate the decoding time, and hence
   the speed.  The idea is you can have a shorter table that decodes the
   shorter, more probable codes, and then point to subsidiary tables for
   the longer codes.  The time it costs to decode the longer codes is
   then traded against the time it takes to make longer tables.

   This results of this trade are in the variables lbits and dbits
   below.  lbits is the number of bits the first level table for literal/
   length codes can decode in one step, and dbits is the same thing for
   the distance codes.  Subsequent tables are also less than or equal to
   those sizes.  These values may be adjusted either when all of the
   codes are shorter than that, in which case the longest code length in
   bits is used, or when the shortest code is *longer* than the requested
   table size, in which case the length of the shortest code in bits is
   used.

   There are two different values for the two tables, since they code a
   different number of possibilities each.  The literal/length table
   codes 286 possible values, or in a flat code, a little over eight
   bits.  The distance table codes 30 possible values, or a little less
   than five bits, flat.  The optimum values for speed end up being
   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
   The optimum values may differ though from machine to machine, and
   possibly even between compilers.  Your mileage may vary.
 */


STATIC const int lbits = 9;          /* bits in base literal/length lookup table */
STATIC const int dbits = 6;          /* bits in base distance lookup table */


/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
#define BMAX 16         /* maximum bit length of any code (16 for explode) */
#define N_MAX 288       /* maximum number of codes in any set */


STATIC unsigned hufts;         /* track memory usage */


STATIC int INIT huft_build(
	unsigned *b,            /* code lengths in bits (all assumed <= BMAX) */
	unsigned n,             /* number of codes (assumed <= N_MAX) */
	unsigned s,             /* number of simple-valued codes (0..s-1) */
	const ush *d,           /* list of base values for non-simple codes */
	const ush *e,           /* list of extra bits for non-simple codes */
	struct huft **t,        /* result: starting table */
	int *m                  /* maximum lookup bits, returns actual */
	)
/* Given a list of code lengths and a maximum table size, make a set of
   tables to decode that set of codes.  Return zero on success, one if
   the given code set is incomplete (the tables are still built in this
   case), two if the input is invalid (all zero length codes or an
   oversubscribed set of lengths), and three if not enough memory. */
{
  unsigned a;                   /* counter for codes of length k */
  unsigned f;                   /* i repeats in table every f entries */
  int g;                        /* maximum code length */
  int h;                        /* table level */
  register unsigned i;          /* counter, current code */
  register unsigned j;          /* counter */
  register int k;               /* number of bits in current code */
  int l;                        /* bits per table (returned in m) */
  register unsigned *p;         /* pointer into c[], b[], or v[] */
  register struct huft *q;      /* points to current table */
  struct huft r;                /* table entry for structure assignment */
  register int w;               /* bits before this table == (l * h) */
  unsigned *xp;                 /* pointer into x */
  int y;                        /* number of dummy codes added */
  unsigned z;                   /* number of entries in current table */
  struct {
    unsigned c[BMAX+1];           /* bit length count table */
    struct huft *u[BMAX];         /* table stack */
    unsigned v[N_MAX];            /* values in order of bit length */
    unsigned x[BMAX+1];           /* bit offsets, then code stack */
  } *stk;
  unsigned *c, *v, *x;
  struct huft **u;
  int ret;

DEBG("huft1 ");

  stk = malloc(sizeof(*stk));
  if (stk == NULL)
    return 3;			/* out of memory */

  c = stk->c;
  v = stk->v;
  x = stk->x;
  u = stk->u;

  /* Generate counts for each bit length */
  memzero(stk->c, sizeof(stk->c));
  p = b;  i = n;
  do {
    Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"), 
	    n-i, *p));
    c[*p]++;                    /* assume all entries <= BMAX */
    p++;                      /* Can't combine with above line (Solaris bug) */
  } while (--i);
  if (c[0] == n)                /* null input--all zero length codes */
  {
    *t = (struct huft *)NULL;
    *m = 0;
    ret = 2;
    goto out;
  }

DEBG("huft2 ");

  /* Find minimum and maximum length, bound *m by those */
  l = *m;
  for (j = 1; j <= BMAX; j++)
    if (c[j])
      break;
  k = j;                        /* minimum code length */
  if ((unsigned)l < j)
    l = j;
  for (i = BMAX; i; i--)
    if (c[i])
      break;
  g = i;                        /* maximum code length */
  if ((unsigned)l > i)
    l = i;
  *m = l;

DEBG("huft3 ");

  /* Adjust last length count to fill out codes, if needed */
  for (y = 1 << j; j < i; j++, y <<= 1)
    if ((y -= c[j]) < 0) {
      ret = 2;                 /* bad input: more codes than bits */
      goto out;
    }
  if ((y -= c[i]) < 0) {
    ret = 2;
    goto out;
  }
  c[i] += y;

DEBG("huft4 ");

  /* Generate starting offsets into the value table for each length */
  x[1] = j = 0;
  p = c + 1;  xp = x + 2;
  while (--i) {                 /* note that i == g from above */
    *xp++ = (j += *p++);
  }

DEBG("huft5 ");

  /* Make a table of values in order of bit lengths */
  p = b;  i = 0;
  do {
    if ((j = *p++) != 0)
      v[x[j]++] = i;
  } while (++i < n);
  n = x[g];                   /* set n to length of v */

DEBG("h6 ");

  /* Generate the Huffman codes and for each, make the table entries */
  x[0] = i = 0;                 /* first Huffman code is zero */
  p = v;                        /* grab values in bit order */
  h = -1;                       /* no tables yet--level -1 */
  w = -l;                       /* bits decoded == (l * h) */
  u[0] = (struct huft *)NULL;   /* just to keep compilers happy */
  q = (struct huft *)NULL;      /* ditto */
  z = 0;                        /* ditto */
DEBG("h6a ");

  /* go through the bit lengths (k already is bits in shortest code) */
  for (; k <= g; k++)
  {
DEBG("h6b ");
    a = c[k];
    while (a--)
    {
DEBG("h6b1 ");
      /* here i is the Huffman code of length k bits for value *p */
      /* make tables up to required level */
      while (k > w + l)
      {
DEBG1("1 ");
        h++;
        w += l;                 /* previous table always l bits */

        /* compute minimum size table less than or equal to l bits */
        z = (z = g - w) > (unsigned)l ? l : z;  /* upper limit on table size */
        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
        {                       /* too few codes for k-w bit table */
DEBG1("2 ");
          f -= a + 1;           /* deduct codes from patterns left */
          xp = c + k;
          if (j < z)
            while (++j < z)       /* try smaller tables up to z bits */
            {
              if ((f <<= 1) <= *++xp)
                break;            /* enough codes to use up j bits */
              f -= *xp;           /* else deduct codes from patterns */
            }
        }
DEBG1("3 ");
        z = 1 << j;             /* table entries for j-bit table */

        /* allocate and link in new table */
        if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
            (struct huft *)NULL)
        {
          if (h)
            huft_free(u[0]);
          ret = 3;             /* not enough memory */
	  goto out;
        }
DEBG1("4 ");
        hufts += z + 1;         /* track memory usage */
        *t = q + 1;             /* link to list for huft_free() */
        *(t = &(q->v.t)) = (struct huft *)NULL;
        u[h] = ++q;             /* table starts after link */

DEBG1("5 ");
        /* connect to last table, if there is one */
        if (h)
        {
          x[h] = i;             /* save pattern for backing up */
          r.b = (uch)l;         /* bits to dump before this table */
          r.e = (uch)(16 + j);  /* bits in this table */
          r.v.t = q;            /* pointer to this table */
          j = i >> (w - l);     /* (get around Turbo C bug) */
          u[h-1][j] = r;        /* connect to last table */
        }
DEBG1("6 ");
      }
DEBG("h6c ");

      /* set up table entry in r */
      r.b = (uch)(k - w);
      if (p >= v + n)
        r.e = 99;               /* out of values--invalid code */
      else if (*p < s)
      {
        r.e = (uch)(*p < 256 ? 16 : 15);    /* 256 is end-of-block code */
        r.v.n = (ush)(*p);             /* simple code is just the value */
	p++;                           /* one compiler does not like *p++ */
      }
      else
      {
        r.e = (uch)e[*p - s];   /* non-simple--look up in lists */
        r.v.n = d[*p++ - s];
      }
DEBG("h6d ");

      /* fill code-like entries with r */
      f = 1 << (k - w);
      for (j = i >> w; j < z; j += f)
        q[j] = r;

      /* backwards increment the k-bit code i */
      for (j = 1 << (k - 1); i & j; j >>= 1)
        i ^= j;
      i ^= j;

      /* backup over finished tables */
      while ((i & ((1 << w) - 1)) != x[h])
      {
        h--;                    /* don't need to update q */
        w -= l;
      }
DEBG("h6e ");
    }
DEBG("h6f ");
  }

DEBG("huft7 ");

  /* Return true (1) if we were given an incomplete table */
  ret = y != 0 && g != 1;

  out:
  free(stk);
  return ret;
}



STATIC int INIT huft_free(
	struct huft *t         /* table to free */
	)
/* Free the malloc'ed tables built by huft_build(), which makes a linked
   list of the tables it made, with the links in a dummy first entry of
   each table. */
{
  register struct huft *p, *q;


  /* Go through linked list, freeing from the malloced (t[-1]) address. */
  p = t;
  while (p != (struct huft *)NULL)
  {
    q = (--p)->v.t;
    free((char*)p);
    p = q;
  } 
  return 0;
}


STATIC int INIT inflate_codes(
	struct huft *tl,    /* literal/length decoder tables */
	struct huft *td,    /* distance decoder tables */
	int bl,             /* number of bits decoded by tl[] */
	int bd              /* number of bits decoded by td[] */
	)
/* inflate (decompress) the codes in a deflated (compressed) block.
   Return an error code or zero if it all goes ok. */
{
  register unsigned e;  /* table entry flag/number of extra bits */
  unsigned n, d;        /* length and index for copy */
  unsigned w;           /* current window position */
  struct huft *t;       /* pointer to table entry */
  unsigned ml, md;      /* masks for bl and bd bits */
  register ulg b;       /* bit buffer */
  register unsigned k;  /* number of bits in bit buffer */


  /* make local copies of globals */
  b = bb;                       /* initialize bit buffer */
  k = bk;
  w = wp;                       /* initialize window position */

  /* inflate the coded data */
  ml = mask_bits[bl];           /* precompute masks for speed */
  md = mask_bits[bd];
  for (;;)                      /* do until end of block */
  {
    NEEDBITS((unsigned)bl)
    if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
      do {
        if (e == 99)
          return 1;
        DUMPBITS(t->b)
        e -= 16;
        NEEDBITS(e)
      } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
    DUMPBITS(t->b)
    if (e == 16)                /* then it's a literal */
    {
      slide[w++] = (uch)t->v.n;
      Tracevv((stderr, "%c", slide[w-1]));
      if (w == WSIZE)
      {
        flush_output(w);
        w = 0;
      }
    }
    else                        /* it's an EOB or a length */
    {
      /* exit if end of block */
      if (e == 15)
        break;

      /* get length of block to copy */
      NEEDBITS(e)
      n = t->v.n + ((unsigned)b & mask_bits[e]);
      DUMPBITS(e);

      /* decode distance of block to copy */
      NEEDBITS((unsigned)bd)
      if ((e = (t = td + ((unsigned)b & md))->e) > 16)
        do {
          if (e == 99)
            return 1;
          DUMPBITS(t->b)
          e -= 16;
          NEEDBITS(e)
        } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
      DUMPBITS(t->b)
      NEEDBITS(e)
      d = w - t->v.n - ((unsigned)b & mask_bits[e]);
      DUMPBITS(e)
      Tracevv((stderr,"\\[%d,%d]", w-d, n));

      /* do the copy */
      do {
        n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
#if !defined(NOMEMCPY) && !defined(DEBUG)
        if (w - d >= e)         /* (this test assumes unsigned comparison) */
        {
          memcpy(slide + w, slide + d, e);
          w += e;
          d += e;
        }
        else                      /* do it slow to avoid memcpy() overlap */
#endif /* !NOMEMCPY */
          do {
            slide[w++] = slide[d++];
	    Tracevv((stderr, "%c", slide[w-1]));
          } while (--e);
        if (w == WSIZE)
        {
          flush_output(w);
          w = 0;
        }
      } while (n);
    }
  }


  /* restore the globals from the locals */
  wp = w;                       /* restore global window pointer */
  bb = b;                       /* restore global bit buffer */
  bk = k;

  /* done */
  return 0;

 underrun:
  return 4;			/* Input underrun */
}



STATIC int INIT inflate_stored(void)
/* "decompress" an inflated type 0 (stored) block. */
{
  unsigned n;           /* number of bytes in block */
  unsigned w;           /* current window position */
  register ulg b;       /* bit buffer */
  register unsigned k;  /* number of bits in bit buffer */

DEBG("<stor");

  /* make local copies of globals */
  b = bb;                       /* initialize bit buffer */
  k = bk;
  w = wp;                       /* initialize window position */


  /* go to byte boundary */
  n = k & 7;
  DUMPBITS(n);


  /* get the length and its complement */
  NEEDBITS(16)
  n = ((unsigned)b & 0xffff);
  DUMPBITS(16)
  NEEDBITS(16)
  if (n != (unsigned)((~b) & 0xffff))
    return 1;                   /* error in compressed data */
  DUMPBITS(16)


  /* read and output the compressed data */
  while (n--)
  {
    NEEDBITS(8)
    slide[w++] = (uch)b;
    if (w == WSIZE)
    {
      flush_output(w);
      w = 0;
    }
    DUMPBITS(8)
  }


  /* restore the globals from the locals */
  wp = w;                       /* restore global window pointer */
  bb = b;                       /* restore global bit buffer */
  bk = k;

  DEBG(">");
  return 0;

 underrun:
  return 4;			/* Input underrun */
}


/*
 * We use `noinline' here to prevent gcc-3.5 from using too much stack space
 */
STATIC int noinline INIT inflate_fixed(void)
/* decompress an inflated type 1 (fixed Huffman codes) block.  We should
   either replace this with a custom decoder, or at least precompute the
   Huffman tables. */
{
  int i;                /* temporary variable */
  struct huft *tl;      /* literal/length code table */
  struct huft *td;      /* distance code table */
  int bl;               /* lookup bits for tl */
  int bd;               /* lookup bits for td */
  unsigned *l;          /* length list for huft_build */

DEBG("<fix");

  l = malloc(sizeof(*l) * 288);
  if (l == NULL)
    return 3;			/* out of memory */

  /* set up literal table */
  for (i = 0; i < 144; i++)
    l[i] = 8;
  for (; i < 256; i++)
    l[i] = 9;
  for (; i < 280; i++)
    l[i] = 7;
  for (; i < 288; i++)          /* make a complete, but wrong code set */
    l[i] = 8;
  bl = 7;
  if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0) {
    free(l);
    return i;
  }

  /* set up distance table */
  for (i = 0; i < 30; i++)      /* make an incomplete code set */
    l[i] = 5;
  bd = 5;
  if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
  {
    huft_free(tl);
    free(l);

    DEBG(">");
    return i;
  }


  /* decompress until an end-of-block code */
  if (inflate_codes(tl, td, bl, bd)) {
    free(l);
    return 1;
  }

  /* free the decoding tables, return */
  free(l);
  huft_free(tl);
  huft_free(td);
  return 0;
}


/*
 * We use `noinline' here to prevent gcc-3.5 from using too much stack space
 */
STATIC int noinline INIT inflate_dynamic(void)
/* decompress an inflated type 2 (dynamic Huffman codes) block. */
{
  int i;                /* temporary variables */
  unsigned j;
  unsigned l;           /* last length */
  unsigned m;           /* mask for bit lengths table */
  unsigned n;           /* number of lengths to get */
  struct huft *tl;      /* literal/length code table */
  struct huft *td;      /* distance code table */
  int bl;               /* lookup bits for tl */
  int bd;               /* lookup bits for td */
  unsigned nb;          /* number of bit length codes */
  unsigned nl;          /* number of literal/length codes */
  unsigned nd;          /* number of distance codes */
  unsigned *ll;         /* literal/length and distance code lengths */
  register ulg b;       /* bit buffer */
  register unsigned k;  /* number of bits in bit buffer */
  int ret;

DEBG("<dyn");

#ifdef PKZIP_BUG_WORKAROUND
  ll = malloc(sizeof(*ll) * (288+32));  /* literal/length and distance code lengths */
#else
  ll = malloc(sizeof(*ll) * (286+30));  /* literal/length and distance code lengths */
#endif

  if (ll == NULL)
    return 1;

  /* make local bit buffer */
  b = bb;
  k = bk;


  /* read in table lengths */
  NEEDBITS(5)
  nl = 257 + ((unsigned)b & 0x1f);      /* number of literal/length codes */
  DUMPBITS(5)
  NEEDBITS(5)
  nd = 1 + ((unsigned)b & 0x1f);        /* number of distance codes */
  DUMPBITS(5)
  NEEDBITS(4)
  nb = 4 + ((unsigned)b & 0xf);         /* number of bit length codes */
  DUMPBITS(4)
#ifdef PKZIP_BUG_WORKAROUND
  if (nl > 288 || nd > 32)
#else
  if (nl > 286 || nd > 30)
#endif
  {
    ret = 1;             /* bad lengths */
    goto out;
  }

DEBG("dyn1 ");

  /* read in bit-length-code lengths */
  for (j = 0; j < nb; j++)
  {
    NEEDBITS(3)
    ll[border[j]] = (unsigned)b & 7;
    DUMPBITS(3)
  }
  for (; j < 19; j++)
    ll[border[j]] = 0;

DEBG("dyn2 ");

  /* build decoding table for trees--single level, 7 bit lookup */
  bl = 7;
  if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
  {
    if (i == 1)
      huft_free(tl);
    ret = i;                   /* incomplete code set */
    goto out;
  }

DEBG("dyn3 ");

  /* read in literal and distance code lengths */
  n = nl + nd;
  m = mask_bits[bl];
  i = l = 0;
  while ((unsigned)i < n)
  {
    NEEDBITS((unsigned)bl)
    j = (td = tl + ((unsigned)b & m))->b;
    DUMPBITS(j)
    j = td->v.n;
    if (j < 16)                 /* length of code in bits (0..15) */
      ll[i++] = l = j;          /* save last length in l */
    else if (j == 16)           /* repeat last length 3 to 6 times */
    {
      NEEDBITS(2)
      j = 3 + ((unsigned)b & 3);
      DUMPBITS(2)
      if ((unsigned)i + j > n) {
        ret = 1;
	goto out;
      }
      while (j--)
        ll[i++] = l;
    }
    else if (j == 17)           /* 3 to 10 zero length codes */
    {
      NEEDBITS(3)
      j = 3 + ((unsigned)b & 7);
      DUMPBITS(3)
      if ((unsigned)i + j > n) {
        ret = 1;
	goto out;
      }
      while (j--)
        ll[i++] = 0;
      l = 0;
    }
    else                        /* j == 18: 11 to 138 zero length codes */
    {
      NEEDBITS(7)
      j = 11 + ((unsigned)b & 0x7f);
      DUMPBITS(7)
      if ((unsigned)i + j > n) {
        ret = 1;
	goto out;
      }
      while (j--)
        ll[i++] = 0;
      l = 0;
    }
  }

DEBG("dyn4 ");

  /* free decoding table for trees */
  huft_free(tl);

DEBG("dyn5 ");

  /* restore the global bit buffer */
  bb = b;
  bk = k;

DEBG("dyn5a ");

  /* build the decoding tables for literal/length and distance codes */
  bl = lbits;
  if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
  {
DEBG("dyn5b ");
    if (i == 1) {
      error("incomplete literal tree");
      huft_free(tl);
    }
    ret = i;                   /* incomplete code set */
    goto out;
  }
DEBG("dyn5c ");
  bd = dbits;
  if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
  {
DEBG("dyn5d ");
    if (i == 1) {
      error("incomplete distance tree");
#ifdef PKZIP_BUG_WORKAROUND
      i = 0;
    }
#else
      huft_free(td);
    }
    huft_free(tl);
    ret = i;                   /* incomplete code set */
    goto out;
#endif
  }

DEBG("dyn6 ");

  /* decompress until an end-of-block code */
  if (inflate_codes(tl, td, bl, bd)) {
    ret = 1;
    goto out;
  }

DEBG("dyn7 ");

  /* free the decoding tables, return */
  huft_free(tl);
  huft_free(td);

  DEBG(">");
  ret = 0;
out:
  free(ll);
  return ret;

underrun:
  ret = 4;			/* Input underrun */
  goto out;
}



STATIC int INIT inflate_block(
	int *e                  /* last block flag */
	)
/* decompress an inflated block */
{
  unsigned t;           /* block type */
  register ulg b;       /* bit buffer */
  register unsigned k;  /* number of bits in bit buffer */

  DEBG("<blk");

  /* make local bit buffer */
  b = bb;
  k = bk;


  /* read in last block bit */
  NEEDBITS(1)
  *e = (int)b & 1;
  DUMPBITS(1)


  /* read in block type */
  NEEDBITS(2)
  t = (unsigned)b & 3;
  DUMPBITS(2)


  /* restore the global bit buffer */
  bb = b;
  bk = k;

  /* inflate that block type */
  if (t == 2)
    return inflate_dynamic();
  if (t == 0)
    return inflate_stored();
  if (t == 1)
    return inflate_fixed();

  DEBG(">");

  /* bad block type */
  return 2;

 underrun:
  return 4;			/* Input underrun */
}



STATIC int INIT inflate(void)
/* decompress an inflated entry */
{
  int e;                /* last block flag */
  int r;                /* result code */
  unsigned h;           /* maximum struct huft's malloc'ed */

  /* initialize window, bit buffer */
  wp = 0;
  bk = 0;
  bb = 0;


  /* decompress until the last block */
  h = 0;
  do {
    hufts = 0;
#ifdef ARCH_HAS_DECOMP_WDOG
    arch_decomp_wdog();
#endif
    r = inflate_block(&e);
    if (r)
	    return r;
    if (hufts > h)
      h = hufts;
  } while (!e);

  /* Undo too much lookahead. The next read will be byte aligned so we
   * can discard unused bits in the last meaningful byte.
   */
  while (bk >= 8) {
    bk -= 8;
    inptr--;
  }

  /* flush out slide */
  flush_output(wp);


  /* return success */
#ifdef DEBUG
  fprintf(stderr, "<%u> ", h);
#endif /* DEBUG */
  return 0;
}

/**********************************************************************
 *
 * The following are support routines for inflate.c
 *
 **********************************************************************/

static ulg crc_32_tab[256];
static ulg crc;		/* initialized in makecrc() so it'll reside in bss */
#define CRC_VALUE (crc ^ 0xffffffffUL)

/*
 * Code to compute the CRC-32 table. Borrowed from 
 * gzip-1.0.3/makecrc.c.
 */

static void INIT
makecrc(void)
{
/* Not copyrighted 1990 Mark Adler	*/

  unsigned long c;      /* crc shift register */
  unsigned long e;      /* polynomial exclusive-or pattern */
  int i;                /* counter for all possible eight bit values */
  int k;                /* byte being shifted into crc apparatus */

  /* terms of polynomial defining this crc (except x^32): */
  static const int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};

  /* Make exclusive-or pattern from polynomial */
  e = 0;
  for (i = 0; i < sizeof(p)/sizeof(int); i++)
    e |= 1L << (31 - p[i]);

  crc_32_tab[0] = 0;

  for (i = 1; i < 256; i++)
  {
    c = 0;
    for (k = i | 256; k != 1; k >>= 1)
    {
      c = c & 1 ? (c >> 1) ^ e : c >> 1;
      if (k & 1)
        c ^= e;
    }
    crc_32_tab[i] = c;
  }

  /* this is initialized here so this code could reside in ROM */
  crc = (ulg)0xffffffffUL; /* shift register contents */
}

/* gzip flag byte */
#define ASCII_FLAG   0x01 /* bit 0 set: file probably ASCII text */
#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
#define EXTRA_FIELD  0x04 /* bit 2 set: extra field present */
#define ORIG_NAME    0x08 /* bit 3 set: original file name present */
#define COMMENT      0x10 /* bit 4 set: file comment present */
#define ENCRYPTED    0x20 /* bit 5 set: file is encrypted */
#define RESERVED     0xC0 /* bit 6,7:   reserved */

/*
 * Do the uncompression!
 */
static int INIT gunzip(void)
{
    uch flags;
    unsigned char magic[2]; /* magic header */
    char method;
    ulg orig_crc = 0;       /* original crc */
    ulg orig_len = 0;       /* original uncompressed length */
    int res;

    magic[0] = NEXTBYTE();
    magic[1] = NEXTBYTE();
    method   = NEXTBYTE();

    if (magic[0] != 037 ||
	((magic[1] != 0213) && (magic[1] != 0236))) {
	    error("bad gzip magic numbers");
	    return -1;
    }

    /* We only support method #8, DEFLATED */
    if (method != 8)  {
	    error("internal error, invalid method");
	    return -1;
    }

    flags  = (uch)get_byte();
    if ((flags & ENCRYPTED) != 0) {
	    error("Input is encrypted");
	    return -1;
    }
    if ((flags & CONTINUATION) != 0) {
	    error("Multi part input");
	    return -1;
    }
    if ((flags & RESERVED) != 0) {
	    error("Input has invalid flags");
	    return -1;
    }
    NEXTBYTE();	/* Get timestamp */
    NEXTBYTE();
    NEXTBYTE();
    NEXTBYTE();

    (void)NEXTBYTE();  /* Ignore extra flags for the moment */
    (void)NEXTBYTE();  /* Ignore OS type for the moment */

    if ((flags & EXTRA_FIELD) != 0) {
	    unsigned len = (unsigned)NEXTBYTE();
	    len |= ((unsigned)NEXTBYTE())<<8;
	    while (len--) (void)NEXTBYTE();
    }

    /* Get original file name if it was truncated */
    if ((flags & ORIG_NAME) != 0) {
	    /* Discard the old name */
	    while (NEXTBYTE() != 0) /* null */ ;
    } 

    /* Discard file comment if any */
    if ((flags & COMMENT) != 0) {
	    while (NEXTBYTE() != 0) /* null */ ;
    }

    /* Decompress */
    if ((res = inflate())) {
	    switch (res) {
	    case 0:
		    break;
	    case 1:
		    error("invalid compressed format (err=1)");
		    break;
	    case 2:
		    error("invalid compressed format (err=2)");
		    break;
	    case 3:
		    error("out of memory");
		    break;
	    case 4:
		    error("out of input data");
		    break;
	    default:
		    error("invalid compressed format (other)");
	    }
	    return -1;
    }
	    
    /* Get the crc and original length */
    /* crc32  (see algorithm.doc)
     * uncompressed input size modulo 2^32
     */
    orig_crc = (ulg) NEXTBYTE();
    orig_crc |= (ulg) NEXTBYTE() << 8;
    orig_crc |= (ulg) NEXTBYTE() << 16;
    orig_crc |= (ulg) NEXTBYTE() << 24;
    
    orig_len = (ulg) NEXTBYTE();
    orig_len |= (ulg) NEXTBYTE() << 8;
    orig_len |= (ulg) NEXTBYTE() << 16;
    orig_len |= (ulg) NEXTBYTE() << 24;
    
    /* Validate decompression */
    if (orig_crc != CRC_VALUE) {
	    error("crc error");
	    return -1;
    }
    if (orig_len != bytes_out) {
	    error("length error");
	    return -1;
    }
    return 0;

 underrun:			/* NEXTBYTE() goto's here if needed */
    error("out of input data");
    return -1;
}