/*
* lscpu - CPU architecture information helper
*
* Copyright (C) 2008 Cai Qian <qcai@redhat.com>
* Copyright (C) 2008 Karel Zak <kzak@redhat.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <assert.h>
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/utsname.h>
#include <unistd.h>
#include <stdarg.h>
#include <sys/types.h>
#include <sys/stat.h>
#if (defined(__x86_64__) || defined(__i386__))
# if !defined( __SANITIZE_ADDRESS__)
# define INCLUDE_VMWARE_BDOOR
# else
# warning VMWARE detection disabled by __SANITIZE_ADDRESS__
# endif
#endif
#ifdef INCLUDE_VMWARE_BDOOR
# include <stdint.h>
# include <signal.h>
# include <strings.h>
# include <setjmp.h>
# ifdef HAVE_SYS_IO_H
# include <sys/io.h>
# endif
#endif
#if defined(HAVE_LIBRTAS)
#include <librtas.h>
#endif
#include <libsmartcols.h>
#include "cpuset.h"
#include "nls.h"
#include "xalloc.h"
#include "c.h"
#include "strutils.h"
#include "bitops.h"
#include "path.h"
#include "closestream.h"
#include "optutils.h"
#include "lscpu.h"
#define CACHE_MAX 100
/* /sys paths */
#define _PATH_SYS_SYSTEM "/sys/devices/system"
#define _PATH_SYS_HYP_FEATURES "/sys/hypervisor/properties/features"
#define _PATH_SYS_CPU _PATH_SYS_SYSTEM "/cpu"
#define _PATH_SYS_NODE _PATH_SYS_SYSTEM "/node"
#define _PATH_PROC_XEN "/proc/xen"
#define _PATH_PROC_XENCAP _PATH_PROC_XEN "/capabilities"
#define _PATH_PROC_CPUINFO "/proc/cpuinfo"
#define _PATH_PROC_PCIDEVS "/proc/bus/pci/devices"
#define _PATH_PROC_SYSINFO "/proc/sysinfo"
#define _PATH_PROC_STATUS "/proc/self/status"
#define _PATH_PROC_VZ "/proc/vz"
#define _PATH_PROC_BC "/proc/bc"
#define _PATH_PROC_DEVICETREE "/proc/device-tree"
#define _PATH_DEV_MEM "/dev/mem"
#define _PATH_PROC_OSRELEASE "/proc/sys/kernel/osrelease"
/* Xen Domain feature flag used for /sys/hypervisor/properties/features */
#define XENFEAT_supervisor_mode_kernel 3
#define XENFEAT_mmu_pt_update_preserve_ad 5
#define XENFEAT_hvm_callback_vector 8
#define XEN_FEATURES_PV_MASK (1U << XENFEAT_mmu_pt_update_preserve_ad)
#define XEN_FEATURES_PVH_MASK ( (1U << XENFEAT_supervisor_mode_kernel) \
| (1U << XENFEAT_hvm_callback_vector) )
/* virtualization types */
enum {
VIRT_NONE = 0,
VIRT_PARA,
VIRT_FULL,
VIRT_CONT
};
static const char *virt_types[] = {
[VIRT_NONE] = N_("none"),
[VIRT_PARA] = N_("para"),
[VIRT_FULL] = N_("full"),
[VIRT_CONT] = N_("container"),
};
static const char *hv_vendors[] = {
[HYPER_NONE] = NULL,
[HYPER_XEN] = "Xen",
[HYPER_KVM] = "KVM",
[HYPER_MSHV] = "Microsoft",
[HYPER_VMWARE] = "VMware",
[HYPER_IBM] = "IBM",
[HYPER_VSERVER] = "Linux-VServer",
[HYPER_UML] = "User-mode Linux",
[HYPER_INNOTEK] = "Innotek GmbH",
[HYPER_HITACHI] = "Hitachi",
[HYPER_PARALLELS] = "Parallels",
[HYPER_VBOX] = "Oracle",
[HYPER_OS400] = "OS/400",
[HYPER_PHYP] = "pHyp",
[HYPER_SPAR] = "Unisys s-Par",
[HYPER_WSL] = "Windows Subsystem for Linux"
};
static const int hv_vendor_pci[] = {
[HYPER_NONE] = 0x0000,
[HYPER_XEN] = 0x5853,
[HYPER_KVM] = 0x0000,
[HYPER_MSHV] = 0x1414,
[HYPER_VMWARE] = 0x15ad,
[HYPER_VBOX] = 0x80ee,
};
static const int hv_graphics_pci[] = {
[HYPER_NONE] = 0x0000,
[HYPER_XEN] = 0x0001,
[HYPER_KVM] = 0x0000,
[HYPER_MSHV] = 0x5353,
[HYPER_VMWARE] = 0x0710,
[HYPER_VBOX] = 0xbeef,
};
/* CPU modes */
enum {
MODE_32BIT = (1 << 1),
MODE_64BIT = (1 << 2)
};
/* cache(s) description */
struct cpu_cache {
char *name;
char *size;
int nsharedmaps;
cpu_set_t **sharedmaps;
};
/* dispatching modes */
enum {
DISP_HORIZONTAL = 0,
DISP_VERTICAL = 1
};
static const char *disp_modes[] = {
[DISP_HORIZONTAL] = N_("horizontal"),
[DISP_VERTICAL] = N_("vertical")
};
/* cpu polarization */
enum {
POLAR_UNKNOWN = 0,
POLAR_VLOW,
POLAR_VMEDIUM,
POLAR_VHIGH,
POLAR_HORIZONTAL
};
struct polarization_modes {
char *parsable;
char *readable;
};
static struct polarization_modes polar_modes[] = {
[POLAR_UNKNOWN] = {"U", "-"},
[POLAR_VLOW] = {"VL", "vert-low"},
[POLAR_VMEDIUM] = {"VM", "vert-medium"},
[POLAR_VHIGH] = {"VH", "vert-high"},
[POLAR_HORIZONTAL] = {"H", "horizontal"},
};
/* global description */
struct lscpu_desc {
char *arch;
char *vendor;
char *machinetype; /* s390 */
char *family;
char *model;
char *modelname;
char *revision; /* alternative for model (ppc) */
char *cpu; /* alternative for modelname (ppc, sparc) */
char *virtflag; /* virtualization flag (vmx, svm) */
char *hypervisor; /* hypervisor software */
int hyper; /* hypervisor vendor ID */
int virtype; /* VIRT_PARA|FULL|NONE ? */
char *mhz;
char *dynamic_mhz; /* dynamic mega hertz (s390) */
char *static_mhz; /* static mega hertz (s390) */
char **maxmhz; /* maximum mega hertz */
char **minmhz; /* minimum mega hertz */
char *stepping;
char *bogomips;
char *flags;
char *mtid; /* maximum thread id (s390) */
int dispatching; /* none, horizontal or vertical */
int mode; /* rm, lm or/and tm */
int ncpuspos; /* maximal possible CPUs */
int ncpus; /* number of present CPUs */
cpu_set_t *present; /* mask with present CPUs */
cpu_set_t *online; /* mask with online CPUs */
int nthreads; /* number of online threads */
int ncaches;
struct cpu_cache *caches;
int necaches; /* extra caches (s390) */
struct cpu_cache *ecaches;
/*
* All maps are sequentially indexed (0..ncpuspos), the array index
* does not have match with cpuX number as presented by kernel. You
* have to use real_cpu_num() to get the real cpuX number.
*
* For example, the possible system CPUs are: 1,3,5, it means that
* ncpuspos=3, so all arrays are in range 0..3.
*/
int *idx2cpunum; /* mapping index to CPU num */
int nnodes; /* number of NUMA modes */
int *idx2nodenum; /* Support for discontinuous nodes */
cpu_set_t **nodemaps; /* array with NUMA nodes */
/* drawers -- based on drawer_siblings (internal kernel map of cpuX's
* hardware threads within the same drawer */
int ndrawers; /* number of all online drawers */
cpu_set_t **drawermaps; /* unique drawer_siblings */
int *drawerids; /* physical drawer ids */
/* books -- based on book_siblings (internal kernel map of cpuX's
* hardware threads within the same book */
int nbooks; /* number of all online books */
cpu_set_t **bookmaps; /* unique book_siblings */
int *bookids; /* physical book ids */
/* sockets -- based on core_siblings (internal kernel map of cpuX's
* hardware threads within the same physical_package_id (socket)) */
int nsockets; /* number of all online sockets */
cpu_set_t **socketmaps; /* unique core_siblings */
int *socketids; /* physical socket ids */
/* cores -- based on thread_siblings (internal kernel map of cpuX's
* hardware threads within the same core as cpuX) */
int ncores; /* number of all online cores */
cpu_set_t **coremaps; /* unique thread_siblings */
int *coreids; /* physical core ids */
int *polarization; /* cpu polarization */
int *addresses; /* physical cpu addresses */
int *configured; /* cpu configured */
int physsockets; /* Physical sockets (modules) */
int physchips; /* Physical chips */
int physcoresperchip; /* Physical cores per chip */
};
enum {
OUTPUT_SUMMARY = 0, /* default */
OUTPUT_PARSABLE, /* -p */
OUTPUT_READABLE, /* -e */
};
enum {
SYSTEM_LIVE = 0, /* analyzing a live system */
SYSTEM_SNAPSHOT, /* analyzing a snapshot of a different system */
};
struct lscpu_modifier {
int mode; /* OUTPUT_* */
int system; /* SYSTEM_* */
unsigned int hex:1, /* print CPU masks rather than CPU lists */
compat:1, /* use backwardly compatible format */
online:1, /* print online CPUs */
offline:1, /* print offline CPUs */
json:1, /* JSON output format */
physical:1; /* use physical numbers */
};
static int maxcpus; /* size in bits of kernel cpu mask */
#define is_cpu_online(_d, _cpu) \
((_d) && (_d)->online ? \
CPU_ISSET_S((_cpu), CPU_ALLOC_SIZE(maxcpus), (_d)->online) : 0)
#define is_cpu_present(_d, _cpu) \
((_d) && (_d)->present ? \
CPU_ISSET_S((_cpu), CPU_ALLOC_SIZE(maxcpus), (_d)->present) : 0)
#define real_cpu_num(_d, _i) ((_d)->idx2cpunum[(_i)])
/*
* IDs
*/
enum {
COL_CPU,
COL_CORE,
COL_SOCKET,
COL_NODE,
COL_BOOK,
COL_DRAWER,
COL_CACHE,
COL_POLARIZATION,
COL_ADDRESS,
COL_CONFIGURED,
COL_ONLINE,
COL_MAXMHZ,
COL_MINMHZ,
};
/* column description
*/
struct lscpu_coldesc {
const char *name;
const char *help;
unsigned int is_abbr:1; /* name is abbreviation */
};
static struct lscpu_coldesc coldescs[] =
{
[COL_CPU] = { "CPU", N_("logical CPU number"), 1 },
[COL_CORE] = { "CORE", N_("logical core number") },
[COL_SOCKET] = { "SOCKET", N_("logical socket number") },
[COL_NODE] = { "NODE", N_("logical NUMA node number") },
[COL_BOOK] = { "BOOK", N_("logical book number") },
[COL_DRAWER] = { "DRAWER", N_("logical drawer number") },
[COL_CACHE] = { "CACHE", N_("shows how caches are shared between CPUs") },
[COL_POLARIZATION] = { "POLARIZATION", N_("CPU dispatching mode on virtual hardware") },
[COL_ADDRESS] = { "ADDRESS", N_("physical address of a CPU") },
[COL_CONFIGURED] = { "CONFIGURED", N_("shows if the hypervisor has allocated the CPU") },
[COL_ONLINE] = { "ONLINE", N_("shows if Linux currently makes use of the CPU") },
[COL_MAXMHZ] = { "MAXMHZ", N_("shows the maximum MHz of the CPU") },
[COL_MINMHZ] = { "MINMHZ", N_("shows the minimum MHz of the CPU") }
};
static int
column_name_to_id(const char *name, size_t namesz)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(coldescs); i++) {
const char *cn = coldescs[i].name;
if (!strncasecmp(name, cn, namesz) && !*(cn + namesz))
return i;
}
warnx(_("unknown column: %s"), name);
return -1;
}
/* Lookup a pattern and get the value from cpuinfo.
* Format is:
*
* "<pattern> : <key>"
*/
static int
lookup(char *line, char *pattern, char **value)
{
char *p, *v;
int len = strlen(pattern);
/* don't re-fill already found tags, first one wins */
if (!*line || *value)
return 0;
/* pattern */
if (strncmp(line, pattern, len))
return 0;
/* white spaces */
for (p = line + len; isspace(*p); p++);
/* separator */
if (*p != ':')
return 0;
/* white spaces */
for (++p; isspace(*p); p++);
/* value */
if (!*p)
return 0;
v = p;
/* end of value */
len = strlen(line) - 1;
for (p = line + len; isspace(*(p-1)); p--);
*p = '\0';
*value = xstrdup(v);
return 1;
}
/* Parse extra cache lines contained within /proc/cpuinfo but which are not
* part of the cache topology information within the sysfs filesystem.
* This is true for all shared caches on e.g. s390. When there are layers of
* hypervisors in between it is not knows which CPUs share which caches.
* Therefore information about shared caches is only available in
* /proc/cpuinfo.
* Format is:
* "cache<nr> : level=<lvl> type=<type> scope=<scope> size=<size> line_size=<lsz> associativity=<as>"
*/
static int
lookup_cache(char *line, struct lscpu_desc *desc)
{
struct cpu_cache *cache;
long long size;
char *p, type;
int level;
/* Make sure line starts with "cache<nr> :" */
if (strncmp(line, "cache", 5))
return 0;
for (p = line + 5; isdigit(*p); p++);
for (; isspace(*p); p++);
if (*p != ':')
return 0;
p = strstr(line, "scope=") + 6;
/* Skip private caches, also present in sysfs */
if (!p || strncmp(p, "Private", 7) == 0)
return 0;
p = strstr(line, "level=");
if (!p || sscanf(p, "level=%d", &level) != 1)
return 0;
p = strstr(line, "type=") + 5;
if (!p || !*p)
return 0;
type = 0;
if (strncmp(p, "Data", 4) == 0)
type = 'd';
if (strncmp(p, "Instruction", 11) == 0)
type = 'i';
p = strstr(line, "size=");
if (!p || sscanf(p, "size=%lld", &size) != 1)
return 0;
desc->necaches++;
desc->ecaches = xrealloc(desc->ecaches,
desc->necaches * sizeof(struct cpu_cache));
cache = &desc->ecaches[desc->necaches - 1];
memset(cache, 0 , sizeof(*cache));
if (type)
xasprintf(&cache->name, "L%d%c", level, type);
else
xasprintf(&cache->name, "L%d", level);
xasprintf(&cache->size, "%lldK", size);
return 1;
}
/* Don't init the mode for platforms where we are not able to
* detect that CPU supports 64-bit mode.
*/
static int
init_mode(struct lscpu_modifier *mod)
{
int m = 0;
if (mod->system == SYSTEM_SNAPSHOT)
/* reading info from any /{sys,proc} dump, don't mix it with
* information about our real CPU */
return 0;
#if defined(__alpha__) || defined(__ia64__)
m |= MODE_64BIT; /* 64bit platforms only */
#endif
/* platforms with 64bit flag in /proc/cpuinfo, define
* 32bit default here */
#if defined(__i386__) || defined(__x86_64__) || \
defined(__s390x__) || defined(__s390__) || defined(__sparc_v9__)
m |= MODE_32BIT;
#endif
return m;
}
#if defined(HAVE_LIBRTAS)
#define PROCESSOR_MODULE_INFO 43
static int strbe16toh(const char *buf, int offset)
{
return (buf[offset] << 8) + buf[offset+1];
}
static void read_physical_info_powerpc(struct lscpu_desc *desc)
{
char buf[BUFSIZ];
int rc, len, ntypes;
desc->physsockets = desc->physchips = desc->physcoresperchip = 0;
rc = rtas_get_sysparm(PROCESSOR_MODULE_INFO, sizeof(buf), buf);
if (rc < 0)
return;
len = strbe16toh(buf, 0);
if (len < 8)
return;
ntypes = strbe16toh(buf, 2);
assert(ntypes <= 1);
if (!ntypes)
return;
desc->physsockets = strbe16toh(buf, 4);
desc->physchips = strbe16toh(buf, 6);
desc->physcoresperchip = strbe16toh(buf, 8);
}
#else
static void read_physical_info_powerpc(
struct lscpu_desc *desc __attribute__((__unused__)))
{
}
#endif
static void
read_basicinfo(struct lscpu_desc *desc, struct lscpu_modifier *mod)
{
FILE *fp = path_fopen("r", 1, _PATH_PROC_CPUINFO);
char buf[BUFSIZ];
struct utsname utsbuf;
size_t setsize;
/* architecture */
if (uname(&utsbuf) == -1)
err(EXIT_FAILURE, _("error: uname failed"));
desc->arch = xstrdup(utsbuf.machine);
/* details */
while (fgets(buf, sizeof(buf), fp) != NULL) {
if (lookup(buf, "vendor", &desc->vendor)) ;
else if (lookup(buf, "vendor_id", &desc->vendor)) ;
else if (lookup(buf, "family", &desc->family)) ;
else if (lookup(buf, "cpu family", &desc->family)) ;
else if (lookup(buf, "model", &desc->model)) ;
else if (lookup(buf, "model name", &desc->modelname)) ;
else if (lookup(buf, "stepping", &desc->stepping)) ;
else if (lookup(buf, "cpu MHz", &desc->mhz)) ;
else if (lookup(buf, "cpu MHz dynamic", &desc->dynamic_mhz)) ; /* s390 */
else if (lookup(buf, "cpu MHz static", &desc->static_mhz)) ; /* s390 */
else if (lookup(buf, "flags", &desc->flags)) ; /* x86 */
else if (lookup(buf, "features", &desc->flags)) ; /* s390 */
else if (lookup(buf, "Features", &desc->flags)) ; /* aarch64 */
else if (lookup(buf, "type", &desc->flags)) ; /* sparc64 */
else if (lookup(buf, "bogomips", &desc->bogomips)) ;
else if (lookup(buf, "BogoMIPS", &desc->bogomips)) ; /* aarch64 */
else if (lookup(buf, "bogomips per cpu", &desc->bogomips)) ; /* s390 */
else if (lookup(buf, "cpu", &desc->cpu)) ;
else if (lookup(buf, "revision", &desc->revision)) ;
else if (lookup(buf, "CPU revision", &desc->revision)) ; /* aarch64 */
else if (lookup(buf, "max thread id", &desc->mtid)) ; /* s390 */
else if (lookup_cache(buf, desc)) ;
else
continue;
}
desc->mode = init_mode(mod);
if (desc->flags) {
snprintf(buf, sizeof(buf), " %s ", desc->flags);
if (strstr(buf, " svm "))
desc->virtflag = xstrdup("svm");
else if (strstr(buf, " vmx "))
desc->virtflag = xstrdup("vmx");
if (strstr(buf, " lm "))
desc->mode |= MODE_32BIT | MODE_64BIT; /* x86_64 */
if (strstr(buf, " zarch "))
desc->mode |= MODE_32BIT | MODE_64BIT; /* s390x */
if (strstr(buf, " sun4v ") || strstr(buf, " sun4u "))
desc->mode |= MODE_32BIT | MODE_64BIT; /* sparc64 */
}
if (desc->arch && mod->system != SYSTEM_SNAPSHOT) {
if (strcmp(desc->arch, "ppc64") == 0)
desc->mode |= MODE_32BIT | MODE_64BIT;
else if (strcmp(desc->arch, "ppc") == 0)
desc->mode |= MODE_32BIT;
}
fclose(fp);
if (path_exist(_PATH_SYS_CPU "/kernel_max"))
/* note that kernel_max is maximum index [NR_CPUS-1] */
maxcpus = path_read_s32(_PATH_SYS_CPU "/kernel_max") + 1;
else if (mod->system == SYSTEM_LIVE)
/* the root is '/' so we are working with data from the current kernel */
maxcpus = get_max_number_of_cpus();
if (maxcpus <= 0)
/* error or we are reading some /sys snapshot instead of the
* real /sys, let's use any crazy number... */
maxcpus = 2048;
setsize = CPU_ALLOC_SIZE(maxcpus);
if (path_exist(_PATH_SYS_CPU "/possible")) {
cpu_set_t *tmp = path_read_cpulist(maxcpus, _PATH_SYS_CPU "/possible");
int num, idx;
desc->ncpuspos = CPU_COUNT_S(setsize, tmp);
desc->idx2cpunum = xcalloc(desc->ncpuspos, sizeof(int));
for (num = 0, idx = 0; num < maxcpus; num++) {
if (CPU_ISSET(num, tmp))
desc->idx2cpunum[idx++] = num;
}
cpuset_free(tmp);
} else
err(EXIT_FAILURE, _("failed to determine number of CPUs: %s"),
_PATH_SYS_CPU "/possible");
/* get mask for present CPUs */
if (path_exist(_PATH_SYS_CPU "/present")) {
desc->present = path_read_cpulist(maxcpus, _PATH_SYS_CPU "/present");
desc->ncpus = CPU_COUNT_S(setsize, desc->present);
}
/* get mask for online CPUs */
if (path_exist(_PATH_SYS_CPU "/online")) {
desc->online = path_read_cpulist(maxcpus, _PATH_SYS_CPU "/online");
desc->nthreads = CPU_COUNT_S(setsize, desc->online);
}
/* get dispatching mode */
if (path_exist(_PATH_SYS_CPU "/dispatching"))
desc->dispatching = path_read_s32(_PATH_SYS_CPU "/dispatching");
else
desc->dispatching = -1;
if (mod->system == SYSTEM_LIVE)
read_physical_info_powerpc(desc);
if ((fp = path_fopen("r", 0, _PATH_PROC_SYSINFO))) {
while (fgets(buf, sizeof(buf), fp) != NULL && !desc->machinetype)
lookup(buf, "Type", &desc->machinetype);
fclose(fp);
}
}
static int
has_pci_device(unsigned int vendor, unsigned int device)
{
FILE *f;
unsigned int num, fn, ven, dev;
int res = 1;
f = path_fopen("r", 0, _PATH_PROC_PCIDEVS);
if (!f)
return 0;
/* for more details about bus/pci/devices format see
* drivers/pci/proc.c in linux kernel
*/
while(fscanf(f, "%02x%02x\t%04x%04x\t%*[^\n]",
&num, &fn, &ven, &dev) == 4) {
if (ven == vendor && dev == device)
goto found;
}
res = 0;
found:
fclose(f);
return res;
}
#if defined(__x86_64__) || defined(__i386__)
/*
* This CPUID leaf returns the information about the hypervisor.
* EAX : maximum input value for CPUID supported by the hypervisor.
* EBX, ECX, EDX : Hypervisor vendor ID signature. E.g. VMwareVMware.
*/
#define HYPERVISOR_INFO_LEAF 0x40000000
static inline void
cpuid(unsigned int op, unsigned int *eax, unsigned int *ebx,
unsigned int *ecx, unsigned int *edx)
{
__asm__(
#if defined(__PIC__) && defined(__i386__)
/* x86 PIC cannot clobber ebx -- gcc bitches */
"xchg %%ebx, %%esi;"
"cpuid;"
"xchg %%esi, %%ebx;"
: "=S" (*ebx),
#else
"cpuid;"
: "=b" (*ebx),
#endif
"=a" (*eax),
"=c" (*ecx),
"=d" (*edx)
: "1" (op), "c"(0));
}
static void
read_hypervisor_cpuid(struct lscpu_desc *desc)
{
unsigned int eax = 0, ebx = 0, ecx = 0, edx = 0;
char hyper_vendor_id[13];
memset(hyper_vendor_id, 0, sizeof(hyper_vendor_id));
cpuid(HYPERVISOR_INFO_LEAF, &eax, &ebx, &ecx, &edx);
memcpy(hyper_vendor_id + 0, &ebx, 4);
memcpy(hyper_vendor_id + 4, &ecx, 4);
memcpy(hyper_vendor_id + 8, &edx, 4);
hyper_vendor_id[12] = '\0';
if (!hyper_vendor_id[0])
return;
if (!strncmp("XenVMMXenVMM", hyper_vendor_id, 12))
desc->hyper = HYPER_XEN;
else if (!strncmp("KVMKVMKVM", hyper_vendor_id, 9))
desc->hyper = HYPER_KVM;
else if (!strncmp("Microsoft Hv", hyper_vendor_id, 12))
desc->hyper = HYPER_MSHV;
else if (!strncmp("VMwareVMware", hyper_vendor_id, 12))
desc->hyper = HYPER_VMWARE;
else if (!strncmp("UnisysSpar64", hyper_vendor_id, 12))
desc->hyper = HYPER_SPAR;
}
#else /* ! (__x86_64__ || __i386__) */
static void
read_hypervisor_cpuid(struct lscpu_desc *desc __attribute__((__unused__)))
{
}
#endif
static int is_compatible(const char *path, const char *str)
{
FILE *fd = path_fopen("r", 0, "%s", path);
if (fd) {
char buf[256];
size_t i, len;
memset(buf, 0, sizeof(buf));
len = fread(buf, 1, sizeof(buf) - 1, fd);
fclose(fd);
for (i = 0; i < len;) {
if (!strcmp(&buf[i], str))
return 1;
i += strlen(&buf[i]);
i++;
}
}
return 0;
}
static int
read_hypervisor_powerpc(struct lscpu_desc *desc)
{
assert(!desc->hyper);
/* IBM iSeries: legacy, para-virtualized on top of OS/400 */
if (path_exist("/proc/iSeries")) {
desc->hyper = HYPER_OS400;
desc->virtype = VIRT_PARA;
/* PowerNV (POWER Non-Virtualized, bare-metal) */
} else if (is_compatible(_PATH_PROC_DEVICETREE "/compatible", "ibm,powernv")) {
desc->hyper = HYPER_NONE;
desc->virtype = VIRT_NONE;
/* PowerVM (IBM's proprietary hypervisor, aka pHyp) */
} else if (path_exist(_PATH_PROC_DEVICETREE "/ibm,partition-name")
&& path_exist(_PATH_PROC_DEVICETREE "/hmc-managed?")
&& !path_exist(_PATH_PROC_DEVICETREE "/chosen/qemu,graphic-width")) {
FILE *fd;
desc->hyper = HYPER_PHYP;
desc->virtype = VIRT_PARA;
fd = path_fopen("r", 0, _PATH_PROC_DEVICETREE "/ibm,partition-name");
if (fd) {
char buf[256];
if (fscanf(fd, "%255s", buf) == 1 && !strcmp(buf, "full"))
desc->virtype = VIRT_NONE;
fclose(fd);
}
/* Qemu */
} else if (is_compatible(_PATH_PROC_DEVICETREE "/compatible", "qemu,pseries")) {
desc->hyper = HYPER_KVM;
desc->virtype = VIRT_PARA;
}
return desc->hyper;
}
#ifdef INCLUDE_VMWARE_BDOOR
#define VMWARE_BDOOR_MAGIC 0x564D5868
#define VMWARE_BDOOR_PORT 0x5658
#define VMWARE_BDOOR_CMD_GETVERSION 10
static UL_ASAN_BLACKLIST
void vmware_bdoor(uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
__asm__(
#if defined(__PIC__) && defined(__i386__)
/* x86 PIC cannot clobber ebx -- gcc bitches */
"xchg %%ebx, %%esi;"
"inl (%%dx), %%eax;"
"xchg %%esi, %%ebx;"
: "=S" (*ebx),
#else
"inl (%%dx), %%eax;"
: "=b" (*ebx),
#endif
"=a" (*eax),
"=c" (*ecx),
"=d" (*edx)
: "0" (VMWARE_BDOOR_MAGIC),
"1" (VMWARE_BDOOR_CMD_GETVERSION),
"2" (VMWARE_BDOOR_PORT),
"3" (0)
: "memory");
}
static jmp_buf segv_handler_env;
static void
segv_handler(__attribute__((__unused__)) int sig,
__attribute__((__unused__)) siginfo_t *info,
__attribute__((__unused__)) void *ignored)
{
siglongjmp(segv_handler_env, 1);
}
static int
is_vmware_platform(void)
{
uint32_t eax, ebx, ecx, edx;
struct sigaction act, oact;
/*
* FIXME: Not reliable for non-root users. Note it works as expected if
* vmware_bdoor() is not optimized for PIE, but then it fails to build
* on 32bit x86 systems. See lscpu git log for more details (commit
* 7845b91dbc7690064a2be6df690e4aaba728fb04). kzak [3-Nov-2016]
*/
if (getuid() != 0)
return 0;
/*
* The assembly routine for vmware detection works
* fine under vmware, even if ran as regular user. But
* on real HW or under other hypervisors, it segfaults (which is
* expected). So we temporarily install SIGSEGV handler to catch
* the signal. All this magic is needed because lscpu
* isn't supposed to require root privileges.
*/
if (sigsetjmp(segv_handler_env, 1))
return 0;
memset(&act, 0, sizeof(act));
act.sa_sigaction = segv_handler;
act.sa_flags = SA_SIGINFO;
if (sigaction(SIGSEGV, &act, &oact))
err(EXIT_FAILURE, _("cannot set signal handler"));
vmware_bdoor(&eax, &ebx, &ecx, &edx);
if (sigaction(SIGSEGV, &oact, NULL))
err(EXIT_FAILURE, _("cannot restore signal handler"));
return eax != (uint32_t)-1 && ebx == VMWARE_BDOOR_MAGIC;
}
#else /* ! INCLUDE_VMWARE_BDOOR */
static int
is_vmware_platform(void)
{
return 0;
}
#endif /* INCLUDE_VMWARE_BDOOR */
static void
read_hypervisor(struct lscpu_desc *desc, struct lscpu_modifier *mod)
{
FILE *fd;
/* We have to detect WSL first. is_vmware_platform() crashes on Windows 10. */
if ((fd = path_fopen("r", 0, _PATH_PROC_OSRELEASE))) {
char buf[256];
if (fgets(buf, sizeof(buf), fd) != NULL) {
if (strstr(buf, "Microsoft")) {
desc->hyper = HYPER_WSL;
desc->virtype = VIRT_CONT;
}
}
fclose(fd);
if (desc->virtype)
return;
}
if (mod->system != SYSTEM_SNAPSHOT) {
read_hypervisor_cpuid(desc);
if (!desc->hyper)
desc->hyper = read_hypervisor_dmi();
if (!desc->hyper && is_vmware_platform())
desc->hyper = HYPER_VMWARE;
}
if (desc->hyper) {
desc->virtype = VIRT_FULL;
if (desc->hyper == HYPER_XEN) {
uint32_t features;
fd = path_fopen("r", 0, _PATH_SYS_HYP_FEATURES);
if (fd && fscanf(fd, "%x", &features) == 1) {
/* Xen PV domain */
if (features & XEN_FEATURES_PV_MASK)
desc->virtype = VIRT_PARA;
/* Xen PVH domain */
else if ((features & XEN_FEATURES_PVH_MASK)
== XEN_FEATURES_PVH_MASK)
desc->virtype = VIRT_PARA;
fclose(fd);
} else {
err(EXIT_FAILURE, _("failed to read from: %s"),
_PATH_SYS_HYP_FEATURES);
}
}
} else if (read_hypervisor_powerpc(desc) > 0) {}
/* Xen para-virt or dom0 */
else if (path_exist(_PATH_PROC_XEN)) {
int dom0 = 0;
fd = path_fopen("r", 0, _PATH_PROC_XENCAP);
if (fd) {
char buf[256];
if (fscanf(fd, "%255s", buf) == 1 &&
!strcmp(buf, "control_d"))
dom0 = 1;
fclose(fd);
}
desc->virtype = dom0 ? VIRT_NONE : VIRT_PARA;
desc->hyper = HYPER_XEN;
/* Xen full-virt on non-x86_64 */
} else if (has_pci_device( hv_vendor_pci[HYPER_XEN], hv_graphics_pci[HYPER_XEN])) {
desc->hyper = HYPER_XEN;
desc->virtype = VIRT_FULL;
} else if (has_pci_device( hv_vendor_pci[HYPER_VMWARE], hv_graphics_pci[HYPER_VMWARE])) {
desc->hyper = HYPER_VMWARE;
desc->virtype = VIRT_FULL;
} else if (has_pci_device( hv_vendor_pci[HYPER_VBOX], hv_graphics_pci[HYPER_VBOX])) {
desc->hyper = HYPER_VBOX;
desc->virtype = VIRT_FULL;
/* IBM PR/SM */
} else if ((fd = path_fopen("r", 0, _PATH_PROC_SYSINFO))) {
char buf[BUFSIZ];
desc->hyper = HYPER_IBM;
desc->hypervisor = "PR/SM";
desc->virtype = VIRT_FULL;
while (fgets(buf, sizeof(buf), fd) != NULL) {
char *str;
if (!strstr(buf, "Control Program:"))
continue;
if (!strstr(buf, "KVM"))
desc->hyper = HYPER_IBM;
else
desc->hyper = HYPER_KVM;
str = strchr(buf, ':');
if (!str)
continue;
xasprintf(&str, "%s", str + 1);
/* remove leading, trailing and repeating whitespace */
while (*str == ' ')
str++;
desc->hypervisor = str;
str += strlen(str) - 1;
while ((*str == '\n') || (*str == ' '))
*(str--) = '\0';
while ((str = strstr(desc->hypervisor, " ")))
memmove(str, str + 1, strlen(str));
}
fclose(fd);
}
/* OpenVZ/Virtuozzo - /proc/vz dir should exist
* /proc/bc should not */
else if (path_exist(_PATH_PROC_VZ) && !path_exist(_PATH_PROC_BC)) {
desc->hyper = HYPER_PARALLELS;
desc->virtype = VIRT_CONT;
/* IBM */
} else if (desc->vendor &&
(strcmp(desc->vendor, "PowerVM Lx86") == 0 ||
strcmp(desc->vendor, "IBM/S390") == 0)) {
desc->hyper = HYPER_IBM;
desc->virtype = VIRT_FULL;
/* User-mode-linux */
} else if (desc->modelname && strstr(desc->modelname, "UML")) {
desc->hyper = HYPER_UML;
desc->virtype = VIRT_PARA;
/* Linux-VServer */
} else if ((fd = path_fopen("r", 0, _PATH_PROC_STATUS))) {
char buf[BUFSIZ];
char *val = NULL;
while (fgets(buf, sizeof(buf), fd) != NULL) {
if (lookup(buf, "VxID", &val))
break;
}
fclose(fd);
if (val) {
char *org = val;
while (isdigit(*val))
++val;
if (!*val) {
desc->hyper = HYPER_VSERVER;
desc->virtype = VIRT_CONT;
}
free(org);
}
}
}
/* add @set to the @ary, unnecessary set is deallocated. */
static int add_cpuset_to_array(cpu_set_t **ary, int *items, cpu_set_t *set)
{
int i;
size_t setsize = CPU_ALLOC_SIZE(maxcpus);
if (!ary)
return -1;
for (i = 0; i < *items; i++) {
if (CPU_EQUAL_S(setsize, set, ary[i]))
break;
}
if (i == *items) {
ary[*items] = set;
++*items;
return 0;
}
CPU_FREE(set);
return 1;
}
static void
read_topology(struct lscpu_desc *desc, int idx)
{
cpu_set_t *thread_siblings, *core_siblings;
cpu_set_t *book_siblings, *drawer_siblings;
int coreid, socketid, bookid, drawerid;
int i, num = real_cpu_num(desc, idx);
if (!path_exist(_PATH_SYS_CPU "/cpu%d/topology/thread_siblings", num))
return;
thread_siblings = path_read_cpuset(maxcpus, _PATH_SYS_CPU
"/cpu%d/topology/thread_siblings", num);
core_siblings = path_read_cpuset(maxcpus, _PATH_SYS_CPU
"/cpu%d/topology/core_siblings", num);
book_siblings = NULL;
if (path_exist(_PATH_SYS_CPU "/cpu%d/topology/book_siblings", num))
book_siblings = path_read_cpuset(maxcpus, _PATH_SYS_CPU
"/cpu%d/topology/book_siblings", num);
drawer_siblings = NULL;
if (path_exist(_PATH_SYS_CPU "/cpu%d/topology/drawer_siblings", num))
drawer_siblings = path_read_cpuset(maxcpus, _PATH_SYS_CPU
"/cpu%d/topology/drawer_siblings", num);
coreid = -1;
if (path_exist(_PATH_SYS_CPU "/cpu%d/topology/core_id", num))
coreid = path_read_s32(_PATH_SYS_CPU
"/cpu%d/topology/core_id", num);
socketid = -1;
if (path_exist(_PATH_SYS_CPU "/cpu%d/topology/physical_package_id", num))
socketid = path_read_s32(_PATH_SYS_CPU
"/cpu%d/topology/physical_package_id", num);
bookid = -1;
if (path_exist(_PATH_SYS_CPU "/cpu%d/topology/book_id", num))
bookid = path_read_s32(_PATH_SYS_CPU
"/cpu%d/topology/book_id", num);
drawerid = -1;
if (path_exist(_PATH_SYS_CPU "/cpu%d/topology/drawer_id", num))
drawerid = path_read_s32(_PATH_SYS_CPU
"/cpu%d/topology/drawer_id", num);
if (!desc->coremaps) {
int ndrawers, nbooks, nsockets, ncores, nthreads;
size_t setsize = CPU_ALLOC_SIZE(maxcpus);
/* threads within one core */
nthreads = CPU_COUNT_S(setsize, thread_siblings);
if (!nthreads)
nthreads = 1;
/* cores within one socket */
ncores = CPU_COUNT_S(setsize, core_siblings) / nthreads;
if (!ncores)
ncores = 1;
/* number of sockets within one book. Because of odd /
* non-present cpu maps and to keep calculation easy we make
* sure that nsockets and nbooks is at least 1.
*/
nsockets = desc->ncpus / nthreads / ncores;
if (!nsockets)
nsockets = 1;
/* number of books */
nbooks = desc->ncpus / nthreads / ncores / nsockets;
if (!nbooks)
nbooks = 1;
/* number of drawers */
ndrawers = desc->ncpus / nbooks / nthreads / ncores / nsockets;
if (!ndrawers)
ndrawers = 1;
/* all threads, see also read_basicinfo()
* -- fallback for kernels without
* /sys/devices/system/cpu/online.
*/
if (!desc->nthreads)
desc->nthreads = ndrawers * nbooks * nsockets * ncores * nthreads;
/* For each map we make sure that it can have up to ncpuspos
* entries. This is because we cannot reliably calculate the
* number of cores, sockets and books on all architectures.
* E.g. completely virtualized architectures like s390 may
* have multiple sockets of different sizes.
*/
desc->coremaps = xcalloc(desc->ncpuspos, sizeof(cpu_set_t *));
desc->socketmaps = xcalloc(desc->ncpuspos, sizeof(cpu_set_t *));
desc->coreids = xcalloc(desc->ncpuspos, sizeof(*desc->drawerids));
desc->socketids = xcalloc(desc->ncpuspos, sizeof(*desc->drawerids));
for (i = 0; i < desc->ncpuspos; i++)
desc->coreids[i] = desc->socketids[i] = -1;
if (book_siblings) {
desc->bookmaps = xcalloc(desc->ncpuspos, sizeof(cpu_set_t *));
desc->bookids = xcalloc(desc->ncpuspos, sizeof(*desc->drawerids));
for (i = 0; i < desc->ncpuspos; i++)
desc->bookids[i] = -1;
}
if (drawer_siblings) {
desc->drawermaps = xcalloc(desc->ncpuspos, sizeof(cpu_set_t *));
desc->drawerids = xcalloc(desc->ncpuspos, sizeof(*desc->drawerids));
for (i = 0; i < desc->ncpuspos; i++)
desc->drawerids[i] = -1;
}
}
add_cpuset_to_array(desc->socketmaps, &desc->nsockets, core_siblings);
desc->coreids[idx] = coreid;
add_cpuset_to_array(desc->coremaps, &desc->ncores, thread_siblings);
desc->socketids[idx] = socketid;
if (book_siblings) {
add_cpuset_to_array(desc->bookmaps, &desc->nbooks, book_siblings);
desc->bookids[idx] = bookid;
}
if (drawer_siblings) {
add_cpuset_to_array(desc->drawermaps, &desc->ndrawers, drawer_siblings);
desc->drawerids[idx] = drawerid;
}
}
static void
read_polarization(struct lscpu_desc *desc, int idx)
{
char mode[64];
int num = real_cpu_num(desc, idx);
if (desc->dispatching < 0)
return;
if (!path_exist(_PATH_SYS_CPU "/cpu%d/polarization", num))
return;
if (!desc->polarization)
desc->polarization = xcalloc(desc->ncpuspos, sizeof(int));
path_read_str(mode, sizeof(mode), _PATH_SYS_CPU "/cpu%d/polarization", num);
if (strncmp(mode, "vertical:low", sizeof(mode)) == 0)
desc->polarization[idx] = POLAR_VLOW;
else if (strncmp(mode, "vertical:medium", sizeof(mode)) == 0)
desc->polarization[idx] = POLAR_VMEDIUM;
else if (strncmp(mode, "vertical:high", sizeof(mode)) == 0)
desc->polarization[idx] = POLAR_VHIGH;
else if (strncmp(mode, "horizontal", sizeof(mode)) == 0)
desc->polarization[idx] = POLAR_HORIZONTAL;
else
desc->polarization[idx] = POLAR_UNKNOWN;
}
static void
read_address(struct lscpu_desc *desc, int idx)
{
int num = real_cpu_num(desc, idx);
if (!path_exist(_PATH_SYS_CPU "/cpu%d/address", num))
return;
if (!desc->addresses)
desc->addresses = xcalloc(desc->ncpuspos, sizeof(int));
desc->addresses[idx] = path_read_s32(_PATH_SYS_CPU "/cpu%d/address", num);
}
static void
read_configured(struct lscpu_desc *desc, int idx)
{
int num = real_cpu_num(desc, idx);
if (!path_exist(_PATH_SYS_CPU "/cpu%d/configure", num))
return;
if (!desc->configured)
desc->configured = xcalloc(desc->ncpuspos, sizeof(int));
desc->configured[idx] = path_read_s32(_PATH_SYS_CPU "/cpu%d/configure", num);
}
/* Read overall maximum frequency of cpu */
static char *
cpu_max_mhz(struct lscpu_desc *desc, char *buf, size_t bufsz)
{
int i;
float cpu_freq = atof(desc->maxmhz[0]);
if (desc->present) {
for (i = 1; i < desc->ncpuspos; i++) {
if (CPU_ISSET(real_cpu_num(desc, i), desc->present)
&& desc->maxmhz[i]) {
float freq = atof(desc->maxmhz[i]);
if (freq > cpu_freq)
cpu_freq = freq;
}
}
}
snprintf(buf, bufsz, "%.4f", cpu_freq);
return buf;
}
/* Read overall minimum frequency of cpu */
static char *
cpu_min_mhz(struct lscpu_desc *desc, char *buf, size_t bufsz)
{
int i;
float cpu_freq = atof(desc->minmhz[0]);
if (desc->present) {
for (i = 1; i < desc->ncpuspos; i++) {
if (CPU_ISSET(real_cpu_num(desc, i), desc->present)
&& desc->minmhz[i]) {
float freq = atof(desc->minmhz[i]);
if (freq < cpu_freq)
cpu_freq = freq;
}
}
}
snprintf(buf, bufsz, "%.4f", cpu_freq);
return buf;
}
static void
read_max_mhz(struct lscpu_desc *desc, int idx)
{
int num = real_cpu_num(desc, idx);
if (!path_exist(_PATH_SYS_CPU "/cpu%d/cpufreq/cpuinfo_max_freq", num))
return;
if (!desc->maxmhz)
desc->maxmhz = xcalloc(desc->ncpuspos, sizeof(char *));
xasprintf(&(desc->maxmhz[idx]), "%.4f",
(float)path_read_s32(_PATH_SYS_CPU
"/cpu%d/cpufreq/cpuinfo_max_freq", num) / 1000);
}
static void
read_min_mhz(struct lscpu_desc *desc, int idx)
{
int num = real_cpu_num(desc, idx);
if (!path_exist(_PATH_SYS_CPU "/cpu%d/cpufreq/cpuinfo_min_freq", num))
return;
if (!desc->minmhz)
desc->minmhz = xcalloc(desc->ncpuspos, sizeof(char *));
xasprintf(&(desc->minmhz[idx]), "%.4f",
(float)path_read_s32(_PATH_SYS_CPU
"/cpu%d/cpufreq/cpuinfo_min_freq", num) / 1000);
}
static int
cachecmp(const void *a, const void *b)
{
struct cpu_cache *c1 = (struct cpu_cache *) a;
struct cpu_cache *c2 = (struct cpu_cache *) b;
return strcmp(c2->name, c1->name);
}
static void
read_cache(struct lscpu_desc *desc, int idx)
{
char buf[256];
int i;
int num = real_cpu_num(desc, idx);
if (!desc->ncaches) {
while(path_exist(_PATH_SYS_CPU "/cpu%d/cache/index%d",
num, desc->ncaches))
desc->ncaches++;
if (!desc->ncaches)
return;
desc->caches = xcalloc(desc->ncaches, sizeof(*desc->caches));
}
for (i = 0; i < desc->ncaches; i++) {
struct cpu_cache *ca = &desc->caches[i];
cpu_set_t *map;
if (!path_exist(_PATH_SYS_CPU "/cpu%d/cache/index%d",
num, i))
continue;
if (!ca->name) {
int type, level;
/* cache type */
path_read_str(buf, sizeof(buf),
_PATH_SYS_CPU "/cpu%d/cache/index%d/type",
num, i);
if (!strcmp(buf, "Data"))
type = 'd';
else if (!strcmp(buf, "Instruction"))
type = 'i';
else
type = 0;
/* cache level */
level = path_read_s32(_PATH_SYS_CPU "/cpu%d/cache/index%d/level",
num, i);
if (type)
snprintf(buf, sizeof(buf), "L%d%c", level, type);
else
snprintf(buf, sizeof(buf), "L%d", level);
ca->name = xstrdup(buf);
/* cache size */
if (path_exist(_PATH_SYS_CPU "/cpu%d/cache/index%d/size",num, i)) {
path_read_str(buf, sizeof(buf),
_PATH_SYS_CPU "/cpu%d/cache/index%d/size", num, i);
ca->size = xstrdup(buf);
} else {
ca->size = xstrdup("unknown size");
}
}
/* information about how CPUs share different caches */
map = path_read_cpuset(maxcpus,
_PATH_SYS_CPU "/cpu%d/cache/index%d/shared_cpu_map",
num, i);
if (!ca->sharedmaps)
ca->sharedmaps = xcalloc(desc->ncpuspos, sizeof(cpu_set_t *));
add_cpuset_to_array(ca->sharedmaps, &ca->nsharedmaps, map);
}
}
static inline int is_node_dirent(struct dirent *d)
{
return
d &&
#ifdef _DIRENT_HAVE_D_TYPE
(d->d_type == DT_DIR || d->d_type == DT_UNKNOWN) &&
#endif
strncmp(d->d_name, "node", 4) == 0 &&
isdigit_string(d->d_name + 4);
}
static int
nodecmp(const void *ap, const void *bp)
{
int *a = (int *) ap, *b = (int *) bp;
return *a - *b;
}
static void
read_nodes(struct lscpu_desc *desc)
{
int i = 0;
DIR *dir;
struct dirent *d;
const char *path;
desc->nnodes = 0;
/* number of NUMA node */
if (!(path = path_get(_PATH_SYS_NODE)))
return;
if (!(dir = opendir(path)))
return;
while ((d = readdir(dir))) {
if (is_node_dirent(d))
desc->nnodes++;
}
if (!desc->nnodes) {
closedir(dir);
return;
}
desc->nodemaps = xcalloc(desc->nnodes, sizeof(cpu_set_t *));
desc->idx2nodenum = xmalloc(desc->nnodes * sizeof(int));
rewinddir(dir);
while ((d = readdir(dir)) && i < desc->nnodes) {
if (is_node_dirent(d))
desc->idx2nodenum[i++] = strtol_or_err(((d->d_name) + 4),
_("Failed to extract the node number"));
}
closedir(dir);
qsort(desc->idx2nodenum, desc->nnodes, sizeof(int), nodecmp);
/* information about how nodes share different CPUs */
for (i = 0; i < desc->nnodes; i++)
desc->nodemaps[i] = path_read_cpuset(maxcpus,
_PATH_SYS_NODE "/node%d/cpumap",
desc->idx2nodenum[i]);
}
static char *
get_cell_data(struct lscpu_desc *desc, int idx, int col,
struct lscpu_modifier *mod,
char *buf, size_t bufsz)
{
size_t setsize = CPU_ALLOC_SIZE(maxcpus);
size_t i;
int cpu = real_cpu_num(desc, idx);
*buf = '\0';
switch (col) {
case COL_CPU:
snprintf(buf, bufsz, "%d", cpu);
break;
case COL_CORE:
if (mod->physical) {
if (desc->coreids[idx] == -1)
snprintf(buf, bufsz, "-");
else
snprintf(buf, bufsz, "%d", desc->coreids[idx]);
} else {
if (cpuset_ary_isset(cpu, desc->coremaps,
desc->ncores, setsize, &i) == 0)
snprintf(buf, bufsz, "%zu", i);
}
break;
case COL_SOCKET:
if (mod->physical) {
if (desc->socketids[idx] == -1)
snprintf(buf, bufsz, "-");
else
snprintf(buf, bufsz, "%d", desc->socketids[idx]);
} else {
if (cpuset_ary_isset(cpu, desc->socketmaps,
desc->nsockets, setsize, &i) == 0)
snprintf(buf, bufsz, "%zu", i);
}
break;
case COL_NODE:
if (cpuset_ary_isset(cpu, desc->nodemaps,
desc->nnodes, setsize, &i) == 0)
snprintf(buf, bufsz, "%d", desc->idx2nodenum[i]);
break;
case COL_DRAWER:
if (mod->physical) {
if (desc->drawerids[idx] == -1)
snprintf(buf, bufsz, "-");
else
snprintf(buf, bufsz, "%d", desc->drawerids[idx]);
} else {
if (cpuset_ary_isset(cpu, desc->drawermaps,
desc->ndrawers, setsize, &i) == 0)
snprintf(buf, bufsz, "%zu", i);
}
break;
case COL_BOOK:
if (mod->physical) {
if (desc->bookids[idx] == -1)
snprintf(buf, bufsz, "-");
else
snprintf(buf, bufsz, "%d", desc->bookids[idx]);
} else {
if (cpuset_ary_isset(cpu, desc->bookmaps,
desc->nbooks, setsize, &i) == 0)
snprintf(buf, bufsz, "%zu", i);
}
break;
case COL_CACHE:
{
char *p = buf;
size_t sz = bufsz;
int j;
for (j = desc->ncaches - 1; j >= 0; j--) {
struct cpu_cache *ca = &desc->caches[j];
if (cpuset_ary_isset(cpu, ca->sharedmaps,
ca->nsharedmaps, setsize, &i) == 0) {
int x = snprintf(p, sz, "%zu", i);
if (x < 0 || (size_t) x >= sz)
return NULL;
p += x;
sz -= x;
}
if (j != 0) {
if (sz < 2)
return NULL;
*p++ = mod->compat ? ',' : ':';
*p = '\0';
sz--;
}
}
break;
}
case COL_POLARIZATION:
if (desc->polarization) {
int x = desc->polarization[idx];
snprintf(buf, bufsz, "%s",
mod->mode == OUTPUT_PARSABLE ?
polar_modes[x].parsable :
polar_modes[x].readable);
}
break;
case COL_ADDRESS:
if (desc->addresses)
snprintf(buf, bufsz, "%d", desc->addresses[idx]);
break;
case COL_CONFIGURED:
if (!desc->configured)
break;
if (mod->mode == OUTPUT_PARSABLE)
snprintf(buf, bufsz, "%s",
desc->configured[idx] ? _("Y") : _("N"));
else
snprintf(buf, bufsz, "%s",
desc->configured[idx] ? _("yes") : _("no"));
break;
case COL_ONLINE:
if (!desc->online)
break;
if (mod->mode == OUTPUT_PARSABLE)
snprintf(buf, bufsz, "%s",
is_cpu_online(desc, cpu) ? _("Y") : _("N"));
else
snprintf(buf, bufsz, "%s",
is_cpu_online(desc, cpu) ? _("yes") : _("no"));
break;
case COL_MAXMHZ:
if (desc->maxmhz && desc->maxmhz[idx])
xstrncpy(buf, desc->maxmhz[idx], bufsz);
break;
case COL_MINMHZ:
if (desc->minmhz && desc->minmhz[idx])
xstrncpy(buf, desc->minmhz[idx], bufsz);
break;
}
return buf;
}
static char *
get_cell_header(struct lscpu_desc *desc, int col,
struct lscpu_modifier *mod,
char *buf, size_t bufsz)
{
*buf = '\0';
if (col == COL_CACHE) {
char *p = buf;
size_t sz = bufsz;
int i;
for (i = desc->ncaches - 1; i >= 0; i--) {
int x = snprintf(p, sz, "%s", desc->caches[i].name);
if (x < 0 || (size_t) x >= sz)
return NULL;
sz -= x;
p += x;
if (i > 0) {
if (sz < 2)
return NULL;
*p++ = mod->compat ? ',' : ':';
*p = '\0';
sz--;
}
}
if (desc->ncaches)
return buf;
}
snprintf(buf, bufsz, "%s", coldescs[col].name);
return buf;
}
/*
* [-p] backend, we support two parsable formats:
*
* 1) "compatible" -- this format is compatible with the original lscpu(1)
* output and it contains fixed set of the columns. The CACHE columns are at
* the end of the line and the CACHE is not printed if the number of the caches
* is zero. The CACHE columns are separated by two commas, for example:
*
* $ lscpu --parse
* # CPU,Core,Socket,Node,,L1d,L1i,L2
* 0,0,0,0,,0,0,0
* 1,1,0,0,,1,1,0
*
* 2) "user defined output" -- this format prints always all columns without
* special prefix for CACHE column. If there are not CACHEs then the column is
* empty and the header "Cache" is printed rather than a real name of the cache.
* The CACHE columns are separated by ':'.
*
* $ lscpu --parse=CPU,CORE,SOCKET,NODE,CACHE
* # CPU,Core,Socket,Node,L1d:L1i:L2
* 0,0,0,0,0:0:0
* 1,1,0,0,1:1:0
*/
static void
print_parsable(struct lscpu_desc *desc, int cols[], int ncols,
struct lscpu_modifier *mod)
{
char buf[BUFSIZ], *data;
int i;
/*
* Header
*/
printf(_(
"# The following is the parsable format, which can be fed to other\n"
"# programs. Each different item in every column has an unique ID\n"
"# starting from zero.\n"));
fputs("# ", stdout);
for (i = 0; i < ncols; i++) {
int col = cols[i];
if (col == COL_CACHE) {
if (mod->compat && !desc->ncaches)
continue;
if (mod->compat && i != 0)
putchar(',');
}
if (i > 0)
putchar(',');
data = get_cell_header(desc, col, mod, buf, sizeof(buf));
if (data && * data && col != COL_CACHE &&
!coldescs[col].is_abbr) {
/*
* For normal column names use mixed case (e.g. "Socket")
*/
char *p = data + 1;
while (p && *p != '\0') {
*p = tolower((unsigned int) *p);
p++;
}
}
fputs(data && *data ? data : "", stdout);
}
putchar('\n');
/*
* Data
*/
for (i = 0; i < desc->ncpuspos; i++) {
int c;
int cpu = real_cpu_num(desc, i);
if (!mod->offline && desc->online && !is_cpu_online(desc, cpu))
continue;
if (!mod->online && desc->online && is_cpu_online(desc, cpu))
continue;
if (desc->present && !is_cpu_present(desc, cpu))
continue;
for (c = 0; c < ncols; c++) {
if (mod->compat && cols[c] == COL_CACHE) {
if (!desc->ncaches)
continue;
if (c > 0)
putchar(',');
}
if (c > 0)
putchar(',');
data = get_cell_data(desc, i, cols[c], mod,
buf, sizeof(buf));
fputs(data && *data ? data : "", stdout);
}
putchar('\n');
}
}
/*
* [-e] backend
*/
static void
print_readable(struct lscpu_desc *desc, int cols[], int ncols,
struct lscpu_modifier *mod)
{
int i;
char buf[BUFSIZ];
const char *data;
struct libscols_table *table;
scols_init_debug(0);
table = scols_new_table();
if (!table)
err(EXIT_FAILURE, _("failed to allocate output table"));
if (mod->json) {
scols_table_enable_json(table, 1);
scols_table_set_name(table, "cpus");
}
for (i = 0; i < ncols; i++) {
data = get_cell_header(desc, cols[i], mod, buf, sizeof(buf));
if (!scols_table_new_column(table, data, 0, 0))
err(EXIT_FAILURE, _("failed to allocate output column"));
}
for (i = 0; i < desc->ncpuspos; i++) {
int c;
struct libscols_line *line;
int cpu = real_cpu_num(desc, i);
if (!mod->offline && desc->online && !is_cpu_online(desc, cpu))
continue;
if (!mod->online && desc->online && is_cpu_online(desc, cpu))
continue;
if (desc->present && !is_cpu_present(desc, cpu))
continue;
line = scols_table_new_line(table, NULL);
if (!line)
err(EXIT_FAILURE, _("failed to allocate output line"));
for (c = 0; c < ncols; c++) {
data = get_cell_data(desc, i, cols[c], mod,
buf, sizeof(buf));
if (!data || !*data)
data = "-";
if (scols_line_set_data(line, c, data))
err(EXIT_FAILURE, _("failed to add output data"));
}
}
scols_print_table(table);
scols_unref_table(table);
}
static void __attribute__ ((__format__(printf, 3, 4)))
add_summary_sprint(struct libscols_table *tb,
const char *txt,
const char *fmt,
...)
{
struct libscols_line *ln = scols_table_new_line(tb, NULL);
char *data;
va_list args;
if (!ln)
err(EXIT_FAILURE, _("failed to allocate output line"));
/* description column */
scols_line_set_data(ln, 0, txt);
/* data column */
va_start(args, fmt);
xvasprintf(&data, fmt, args);
va_end(args);
if (data && scols_line_refer_data(ln, 1, data))
err(EXIT_FAILURE, _("failed to add output data"));
}
#define add_summary_n(tb, txt, num) add_summary_sprint(tb, txt, "%d", num)
#define add_summary_s(tb, txt, str) add_summary_sprint(tb, txt, "%s", str)
static void
print_cpuset(struct libscols_table *tb,
const char *key, cpu_set_t *set, int hex)
{
size_t setsize = CPU_ALLOC_SIZE(maxcpus);
size_t setbuflen = 7 * maxcpus;
char setbuf[setbuflen], *p;
if (hex) {
p = cpumask_create(setbuf, setbuflen, set, setsize);
add_summary_s(tb, key, p);
} else {
p = cpulist_create(setbuf, setbuflen, set, setsize);
add_summary_s(tb, key, p);
}
}
/*
* default output
*/
static void
print_summary(struct lscpu_desc *desc, struct lscpu_modifier *mod)
{
char buf[BUFSIZ];
int i = 0;
size_t setsize = CPU_ALLOC_SIZE(maxcpus);
struct libscols_table *tb;
scols_init_debug(0);
tb = scols_new_table();
if (!tb)
err(EXIT_FAILURE, _("failed to allocate output table"));
scols_table_enable_noheadings(tb, 1);
if (mod->json) {
scols_table_enable_json(tb, 1);
scols_table_set_name(tb, "lscpu");
}
if (scols_table_new_column(tb, "field", 0, 0) == NULL ||
scols_table_new_column(tb, "data", 0, SCOLS_FL_NOEXTREMES) == NULL)
err(EXIT_FAILURE, _("failed to initialize output column"));
add_summary_s(tb, _("Architecture:"), desc->arch);
if (desc->mode) {
char *p = buf;
if (desc->mode & MODE_32BIT) {
strcpy(p, "32-bit, ");
p += 8;
}
if (desc->mode & MODE_64BIT) {
strcpy(p, "64-bit, ");
p += 8;
}
*(p - 2) = '\0';
add_summary_s(tb, _("CPU op-mode(s):"), buf);
}
#if !defined(WORDS_BIGENDIAN)
add_summary_s(tb, _("Byte Order:"), "Little Endian");
#else
add_summary_s(tb, _("Byte Order:"), "Big Endian");
#endif
add_summary_n(tb, _("CPU(s):"), desc->ncpus);
if (desc->online)
print_cpuset(tb, mod->hex ? _("On-line CPU(s) mask:") :
_("On-line CPU(s) list:"),
desc->online, mod->hex);
if (desc->online && CPU_COUNT_S(setsize, desc->online) != desc->ncpus) {
cpu_set_t *set;
/* Linux kernel provides cpuset of off-line CPUs that contains
* all configured CPUs (see /sys/devices/system/cpu/offline),
* but want to print real (present in system) off-line CPUs only.
*/
set = cpuset_alloc(maxcpus, NULL, NULL);
if (!set)
err(EXIT_FAILURE, _("failed to callocate cpu set"));
CPU_ZERO_S(setsize, set);
for (i = 0; i < desc->ncpuspos; i++) {
int cpu = real_cpu_num(desc, i);
if (!is_cpu_online(desc, cpu) && is_cpu_present(desc, cpu))
CPU_SET_S(cpu, setsize, set);
}
print_cpuset(tb, mod->hex ? _("Off-line CPU(s) mask:") :
_("Off-line CPU(s) list:"),
set, mod->hex);
cpuset_free(set);
}
if (desc->nsockets) {
int threads_per_core, cores_per_socket, sockets_per_book;
int books_per_drawer, drawers;
FILE *fd;
threads_per_core = cores_per_socket = sockets_per_book = 0;
books_per_drawer = drawers = 0;
/* s390 detects its cpu topology via /proc/sysinfo, if present.
* Using simply the cpu topology masks in sysfs will not give
* usable results since everything is virtualized. E.g.
* virtual core 0 may have only 1 cpu, but virtual core 2 may
* five cpus.
* If the cpu topology is not exported (e.g. 2nd level guest)
* fall back to old calculation scheme.
*/
if ((fd = path_fopen("r", 0, _PATH_PROC_SYSINFO))) {
int t0, t1;
while (fd && fgets(buf, sizeof(buf), fd) != NULL) {
if (sscanf(buf, "CPU Topology SW:%d%d%d%d%d%d",
&t0, &t1, &drawers, &books_per_drawer,
&sockets_per_book,
&cores_per_socket) == 6)
break;
}
if (fd)
fclose(fd);
}
if (desc->mtid)
threads_per_core = atoi(desc->mtid) + 1;
add_summary_n(tb, _("Thread(s) per core:"),
threads_per_core ?: desc->nthreads / desc->ncores);
add_summary_n(tb, _("Core(s) per socket:"),
cores_per_socket ?: desc->ncores / desc->nsockets);
if (desc->nbooks) {
add_summary_n(tb, _("Socket(s) per book:"),
sockets_per_book ?: desc->nsockets / desc->nbooks);
if (desc->ndrawers) {
add_summary_n(tb, _("Book(s) per drawer:"),
books_per_drawer ?: desc->nbooks / desc->ndrawers);
add_summary_n(tb, _("Drawer(s):"), drawers ?: desc->ndrawers);
} else {
add_summary_n(tb, _("Book(s):"), books_per_drawer ?: desc->nbooks);
}
} else {
add_summary_n(tb, _("Socket(s):"), sockets_per_book ?: desc->nsockets);
}
}
if (desc->nnodes)
add_summary_n(tb, _("NUMA node(s):"), desc->nnodes);
if (desc->vendor)
add_summary_s(tb, _("Vendor ID:"), desc->vendor);
if (desc->machinetype)
add_summary_s(tb, _("Machine type:"), desc->machinetype);
if (desc->family)
add_summary_s(tb, _("CPU family:"), desc->family);
if (desc->model || desc->revision)
add_summary_s(tb, _("Model:"), desc->revision ? desc->revision : desc->model);
if (desc->modelname || desc->cpu)
add_summary_s(tb, _("Model name:"), desc->cpu ? desc->cpu : desc->modelname);
if (desc->stepping)
add_summary_s(tb, _("Stepping:"), desc->stepping);
if (desc->mhz)
add_summary_s(tb, _("CPU MHz:"), desc->mhz);
if (desc->dynamic_mhz)
add_summary_s(tb, _("CPU dynamic MHz:"), desc->dynamic_mhz);
if (desc->static_mhz)
add_summary_s(tb, _("CPU static MHz:"), desc->static_mhz);
if (desc->maxmhz)
add_summary_s(tb, _("CPU max MHz:"), cpu_max_mhz(desc, buf, sizeof(buf)));
if (desc->minmhz)
add_summary_s(tb, _("CPU min MHz:"), cpu_min_mhz(desc, buf, sizeof(buf)));
if (desc->bogomips)
add_summary_s(tb, _("BogoMIPS:"), desc->bogomips);
if (desc->virtflag) {
if (!strcmp(desc->virtflag, "svm"))
add_summary_s(tb, _("Virtualization:"), "AMD-V");
else if (!strcmp(desc->virtflag, "vmx"))
add_summary_s(tb, _("Virtualization:"), "VT-x");
}
if (desc->hypervisor)
add_summary_s(tb, _("Hypervisor:"), desc->hypervisor);
if (desc->hyper) {
add_summary_s(tb, _("Hypervisor vendor:"), hv_vendors[desc->hyper]);
add_summary_s(tb, _("Virtualization type:"), _(virt_types[desc->virtype]));
}
if (desc->dispatching >= 0)
add_summary_s(tb, _("Dispatching mode:"), _(disp_modes[desc->dispatching]));
if (desc->ncaches) {
for (i = desc->ncaches - 1; i >= 0; i--) {
snprintf(buf, sizeof(buf),
_("%s cache:"), desc->caches[i].name);
add_summary_s(tb, buf, desc->caches[i].size);
}
}
if (desc->necaches) {
for (i = desc->necaches - 1; i >= 0; i--) {
snprintf(buf, sizeof(buf),
_("%s cache:"), desc->ecaches[i].name);
add_summary_s(tb, buf, desc->ecaches[i].size);
}
}
for (i = 0; i < desc->nnodes; i++) {
snprintf(buf, sizeof(buf), _("NUMA node%d CPU(s):"), desc->idx2nodenum[i]);
print_cpuset(tb, buf, desc->nodemaps[i], mod->hex);
}
if (desc->physsockets) {
add_summary_n(tb, _("Physical sockets:"), desc->physsockets);
add_summary_n(tb, _("Physical chips:"), desc->physchips);
add_summary_n(tb, _("Physical cores/chip:"), desc->physcoresperchip);
}
if (desc->flags)
add_summary_s(tb, _("Flags:"), desc->flags);
scols_print_table(tb);
scols_unref_table(tb);
}
static void __attribute__((__noreturn__)) usage(void)
{
FILE *out = stdout;
size_t i;
fputs(USAGE_HEADER, out);
fprintf(out, _(" %s [options]\n"), program_invocation_short_name);
fputs(USAGE_SEPARATOR, out);
fputs(_("Display information about the CPU architecture.\n"), out);
fputs(USAGE_OPTIONS, out);
fputs(_(" -a, --all print both online and offline CPUs (default for -e)\n"), out);
fputs(_(" -b, --online print online CPUs only (default for -p)\n"), out);
fputs(_(" -c, --offline print offline CPUs only\n"), out);
fputs(_(" -J, --json use JSON for default or extended format\n"), out);
fputs(_(" -e, --extended[=<list>] print out an extended readable format\n"), out);
fputs(_(" -p, --parse[=<list>] print out a parsable format\n"), out);
fputs(_(" -s, --sysroot <dir> use specified directory as system root\n"), out);
fputs(_(" -x, --hex print hexadecimal masks rather than lists of CPUs\n"), out);
fputs(_(" -y, --physical print physical instead of logical IDs\n"), out);
fputs(USAGE_SEPARATOR, out);
printf(USAGE_HELP_OPTIONS(25));
fputs(USAGE_COLUMNS, out);
for (i = 0; i < ARRAY_SIZE(coldescs); i++)
fprintf(out, " %13s %s\n", coldescs[i].name, _(coldescs[i].help));
printf(USAGE_MAN_TAIL("lscpu(1)"));
exit(EXIT_SUCCESS);
}
int main(int argc, char *argv[])
{
struct lscpu_modifier _mod = { .mode = OUTPUT_SUMMARY }, *mod = &_mod;
struct lscpu_desc _desc = { .flags = NULL }, *desc = &_desc;
int c, i;
int columns[ARRAY_SIZE(coldescs)], ncolumns = 0;
int cpu_modifier_specified = 0;
static const struct option longopts[] = {
{ "all", no_argument, NULL, 'a' },
{ "online", no_argument, NULL, 'b' },
{ "offline", no_argument, NULL, 'c' },
{ "help", no_argument, NULL, 'h' },
{ "extended", optional_argument, NULL, 'e' },
{ "json", no_argument, NULL, 'J' },
{ "parse", optional_argument, NULL, 'p' },
{ "sysroot", required_argument, NULL, 's' },
{ "physical", no_argument, NULL, 'y' },
{ "hex", no_argument, NULL, 'x' },
{ "version", no_argument, NULL, 'V' },
{ NULL, 0, NULL, 0 }
};
static const ul_excl_t excl[] = { /* rows and cols in ASCII order */
{ 'a','b','c' },
{ 'e','p' },
{ 0 }
};
int excl_st[ARRAY_SIZE(excl)] = UL_EXCL_STATUS_INIT;
setlocale(LC_ALL, "");
bindtextdomain(PACKAGE, LOCALEDIR);
textdomain(PACKAGE);
atexit(close_stdout);
while ((c = getopt_long(argc, argv, "abce::hJp::s:xyV", longopts, NULL)) != -1) {
err_exclusive_options(c, longopts, excl, excl_st);
switch (c) {
case 'a':
mod->online = mod->offline = 1;
cpu_modifier_specified = 1;
break;
case 'b':
mod->online = 1;
cpu_modifier_specified = 1;
break;
case 'c':
mod->offline = 1;
cpu_modifier_specified = 1;
break;
case 'h':
usage();
case 'J':
mod->json = 1;
break;
case 'p':
case 'e':
if (optarg) {
if (*optarg == '=')
optarg++;
ncolumns = string_to_idarray(optarg,
columns, ARRAY_SIZE(columns),
column_name_to_id);
if (ncolumns < 0)
return EXIT_FAILURE;
}
mod->mode = c == 'p' ? OUTPUT_PARSABLE : OUTPUT_READABLE;
break;
case 's':
if(path_set_prefix(optarg))
err(EXIT_FAILURE, _("invalid argument to %s"), "--sysroot");
mod->system = SYSTEM_SNAPSHOT;
break;
case 'x':
mod->hex = 1;
break;
case 'y':
mod->physical = 1;
break;
case 'V':
printf(UTIL_LINUX_VERSION);
return EXIT_SUCCESS;
default:
errtryhelp(EXIT_FAILURE);
}
}
if (cpu_modifier_specified && mod->mode == OUTPUT_SUMMARY) {
fprintf(stderr,
_("%s: options --all, --online and --offline may only "
"be used with options --extended or --parse.\n"),
program_invocation_short_name);
return EXIT_FAILURE;
}
if (argc != optind) {
warnx(_("bad usage"));
errtryhelp(EXIT_FAILURE);
}
/* set default cpu display mode if none was specified */
if (!mod->online && !mod->offline) {
mod->online = 1;
mod->offline = mod->mode == OUTPUT_READABLE ? 1 : 0;
}
read_basicinfo(desc, mod);
for (i = 0; i < desc->ncpuspos; i++) {
/* only consider present CPUs */
if (desc->present &&
!CPU_ISSET(real_cpu_num(desc, i), desc->present))
continue;
read_topology(desc, i);
read_cache(desc, i);
read_polarization(desc, i);
read_address(desc, i);
read_configured(desc, i);
read_max_mhz(desc, i);
read_min_mhz(desc, i);
}
if (desc->caches)
qsort(desc->caches, desc->ncaches,
sizeof(struct cpu_cache), cachecmp);
if (desc->ecaches)
qsort(desc->ecaches, desc->necaches,
sizeof(struct cpu_cache), cachecmp);
read_nodes(desc);
read_hypervisor(desc, mod);
switch(mod->mode) {
case OUTPUT_SUMMARY:
print_summary(desc, mod);
break;
case OUTPUT_PARSABLE:
if (!ncolumns) {
columns[ncolumns++] = COL_CPU;
columns[ncolumns++] = COL_CORE;
columns[ncolumns++] = COL_SOCKET;
columns[ncolumns++] = COL_NODE;
columns[ncolumns++] = COL_CACHE;
mod->compat = 1;
}
print_parsable(desc, columns, ncolumns, mod);
break;
case OUTPUT_READABLE:
if (!ncolumns) {
/* No list was given. Just print whatever is there. */
columns[ncolumns++] = COL_CPU;
if (desc->nodemaps)
columns[ncolumns++] = COL_NODE;
if (desc->drawermaps)
columns[ncolumns++] = COL_DRAWER;
if (desc->bookmaps)
columns[ncolumns++] = COL_BOOK;
if (desc->socketmaps)
columns[ncolumns++] = COL_SOCKET;
if (desc->coremaps)
columns[ncolumns++] = COL_CORE;
if (desc->caches)
columns[ncolumns++] = COL_CACHE;
if (desc->online)
columns[ncolumns++] = COL_ONLINE;
if (desc->configured)
columns[ncolumns++] = COL_CONFIGURED;
if (desc->polarization)
columns[ncolumns++] = COL_POLARIZATION;
if (desc->addresses)
columns[ncolumns++] = COL_ADDRESS;
if (desc->maxmhz)
columns[ncolumns++] = COL_MAXMHZ;
if (desc->minmhz)
columns[ncolumns++] = COL_MINMHZ;
}
print_readable(desc, columns, ncolumns, mod);
break;
}
return EXIT_SUCCESS;
}