summaryrefslogtreecommitdiffstats
path: root/sys-utils/hwclock.c
blob: a9d3887cab9a013b100a6b280758114534b3719c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
/*
 * hwclock.c
 *
 * clock.c was written by Charles Hedrick, hedrick@cs.rutgers.edu, Apr 1992
 * Modified for clock adjustments - Rob Hooft <hooft@chem.ruu.nl>, Nov 1992
 * Improvements by Harald Koenig <koenig@nova.tat.physik.uni-tuebingen.de>
 * and Alan Modra <alan@spri.levels.unisa.edu.au>.
 *
 * Major rewrite by Bryan Henderson <bryanh@giraffe-data.com>, 96.09.19.
 * The new program is called hwclock. New features:
 *
 *	- You can set the hardware clock without also modifying the system
 *	  clock.
 *	- You can read and set the clock with finer than 1 second precision.
 *	- When you set the clock, hwclock automatically refigures the drift
 *	  rate, based on how far off the clock was before you set it.
 *
 * Reshuffled things, added sparc code, and re-added alpha stuff
 * by David Mosberger <davidm@azstarnet.com>
 * and Jay Estabrook <jestabro@amt.tay1.dec.com>
 * and Martin Ostermann <ost@coments.rwth-aachen.de>, aeb@cwi.nl, 990212.
 *
 * Fix for Award 2094 bug, Dave Coffin (dcoffin@shore.net) 11/12/98
 * Change of local time handling, Stefan Ring <e9725446@stud3.tuwien.ac.at>
 * Change of adjtime handling, James P. Rutledge <ao112@rgfn.epcc.edu>.
 *
 * Distributed under GPL
 */
/*
 * Explanation of `adjusting' (Rob Hooft):
 *
 * The problem with my machine is that its CMOS clock is 10 seconds
 * per day slow. With this version of clock.c, and my '/etc/rc.local'
 * reading '/etc/clock -au' instead of '/etc/clock -u -s', this error
 * is automatically corrected at every boot.
 *
 * To do this job, the program reads and writes the file '/etc/adjtime'
 * to determine the correction, and to save its data. In this file are
 * three numbers:
 *
 *	1) the correction in seconds per day. (So if your clock runs 5
 *	   seconds per day fast, the first number should read -5.0)
 *	2) the number of seconds since 1/1/1970 the last time the program
 *	   was used
 *	3) the remaining part of a second which was leftover after the last
 *	   adjustment
 *
 * Installation and use of this program:
 *
 *	a) create a file '/etc/adjtime' containing as the first and only
 *	   line: '0.0 0 0.0'
 *	b) run 'clock -au' or 'clock -a', depending on whether your cmos is
 *	   in universal or local time. This updates the second number.
 *	c) set your system time using the 'date' command.
 *	d) update your cmos time using 'clock -wu' or 'clock -w'
 *	e) replace the first number in /etc/adjtime by your correction.
 *	f) put the command 'clock -au' or 'clock -a' in your '/etc/rc.local'
 */

#include <errno.h>
#include <getopt.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sysexits.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>

#define OPTUTILS_EXIT_CODE EX_USAGE
#define XALLOC_EXIT_CODE EX_OSERR

#include "c.h"
#include "closestream.h"
#include "nls.h"
#include "optutils.h"
#include "pathnames.h"
#include "strutils.h"
#include "hwclock.h"
#include "timeutils.h"
#include "env.h"
#include "xalloc.h"

#ifdef HAVE_LIBAUDIT
#include <libaudit.h>
static int hwaudit_fd = -1;
#endif

/* The struct that holds our hardware access routines */
static struct clock_ops *ur;

/* Maximal clock adjustment in seconds per day.
   (adjtime() glibc call has 2145 seconds limit on i386, so it is good enough for us as well,
   43219 is a maximal safe value preventing exact_adjustment overflow.) */
#define MAX_DRIFT 2145.0

struct adjtime {
	/*
	 * This is information we keep in the adjtime file that tells us how
	 * to do drift corrections. Elements are all straight from the
	 * adjtime file, so see documentation of that file for details.
	 * Exception is <dirty>, which is an indication that what's in this
	 * structure is not what's in the disk file (because it has been
	 * updated since read from the disk file).
	 */
	bool dirty;
	/* line 1 */
	double drift_factor;
	time_t last_adj_time;
	double not_adjusted;
	/* line 2 */
	time_t last_calib_time;
	/*
	 * The most recent time that we set the clock from an external
	 * authority (as opposed to just doing a drift adjustment)
	 */
	/* line 3 */
	enum a_local_utc { UTC = 0, LOCAL, UNKNOWN } local_utc;
	/*
	 * To which time zone, local or UTC, we most recently set the
	 * hardware clock.
	 */
};

/*
 * time_t to timeval conversion.
 */
static struct timeval t2tv(time_t timet)
{
	struct timeval rettimeval;

	rettimeval.tv_sec = timet;
	rettimeval.tv_usec = 0;
	return rettimeval;
}

/*
 * The difference in seconds between two times in "timeval" format.
 */
double time_diff(struct timeval subtrahend, struct timeval subtractor)
{
	return (subtrahend.tv_sec - subtractor.tv_sec)
	    + (subtrahend.tv_usec - subtractor.tv_usec) / 1E6;
}

/*
 * The time, in "timeval" format, which is <increment> seconds after the
 * time <addend>. Of course, <increment> may be negative.
 */
static struct timeval time_inc(struct timeval addend, double increment)
{
	struct timeval newtime;

	newtime.tv_sec = addend.tv_sec + (int)increment;
	newtime.tv_usec = addend.tv_usec + (increment - (int)increment) * 1E6;

	/*
	 * Now adjust it so that the microsecond value is between 0 and 1
	 * million.
	 */
	if (newtime.tv_usec < 0) {
		newtime.tv_usec += 1E6;
		newtime.tv_sec -= 1;
	} else if (newtime.tv_usec >= 1E6) {
		newtime.tv_usec -= 1E6;
		newtime.tv_sec += 1;
	}
	return newtime;
}

static bool
hw_clock_is_utc(const struct hwclock_control *ctl,
		const struct adjtime adjtime)
{
	bool ret;

	if (ctl->utc)
		ret = TRUE;	/* --utc explicitly given on command line */
	else if (ctl->local_opt)
		ret = FALSE;	/* --localtime explicitly given */
	else
		/* get info from adjtime file - default is UTC */
		ret = (adjtime.local_utc != LOCAL);
	if (ctl->debug)
		printf(_("Assuming hardware clock is kept in %s time.\n"),
		       ret ? _("UTC") : _("local"));
	return ret;
}

/*
 * Read the adjustment parameters out of the /etc/adjtime file.
 *
 * Return them as the adjtime structure <*adjtime_p>. If there is no
 * /etc/adjtime file, return defaults. If values are missing from the file,
 * return defaults for them.
 *
 * return value 0 if all OK, !=0 otherwise.
 */
static int read_adjtime(const struct hwclock_control *ctl,
			struct adjtime *adjtime_p)
{
	FILE *adjfile;
	char line1[81];		/* String: first line of adjtime file */
	char line2[81];		/* String: second line of adjtime file */
	char line3[81];		/* String: third line of adjtime file */

	if (access(ctl->adj_file_name, R_OK) != 0)
		return 0;

	adjfile = fopen(ctl->adj_file_name, "r");	/* open file for reading */
	if (adjfile == NULL) {
		warn(_("cannot open %s"), ctl->adj_file_name);
		return EX_OSFILE;
	}

	if (!fgets(line1, sizeof(line1), adjfile))
		line1[0] = '\0';	/* In case fgets fails */
	if (!fgets(line2, sizeof(line2), adjfile))
		line2[0] = '\0';	/* In case fgets fails */
	if (!fgets(line3, sizeof(line3), adjfile))
		line3[0] = '\0';	/* In case fgets fails */

	fclose(adjfile);

	sscanf(line1, "%lf %ld %lf",
	       &adjtime_p->drift_factor,
	       &adjtime_p->last_adj_time,
	       &adjtime_p->not_adjusted);

	sscanf(line2, "%ld", &adjtime_p->last_calib_time);

	if (!strcmp(line3, "UTC\n")) {
		adjtime_p->local_utc = UTC;
	} else if (!strcmp(line3, "LOCAL\n")) {
		adjtime_p->local_utc = LOCAL;
	} else {
		adjtime_p->local_utc = UNKNOWN;
		if (line3[0]) {
			warnx(_("Warning: unrecognized third line in adjtime file\n"
				"(Expected: `UTC' or `LOCAL' or nothing.)"));
		}
	}

	if (ctl->debug) {
		printf(_
		       ("Last drift adjustment done at %ld seconds after 1969\n"),
		       (long)adjtime_p->last_adj_time);
		printf(_("Last calibration done at %ld seconds after 1969\n"),
		       (long)adjtime_p->last_calib_time);
		printf(_("Hardware clock is on %s time\n"),
		       (adjtime_p->local_utc ==
			LOCAL) ? _("local") : (adjtime_p->local_utc ==
					       UTC) ? _("UTC") : _("unknown"));
	}

	return 0;
}

/*
 * Wait until the falling edge of the Hardware Clock's update flag so that
 * any time that is read from the clock immediately after we return will be
 * exact.
 *
 * The clock only has 1 second precision, so it gives the exact time only
 * once per second, right on the falling edge of the update flag.
 *
 * We wait (up to one second) either blocked waiting for an rtc device or in
 * a CPU spin loop. The former is probably not very accurate.
 *
 * Return 0 if it worked, nonzero if it didn't.
 */
static int synchronize_to_clock_tick(const struct hwclock_control *ctl)
{
	int rc;

	if (ctl->debug)
		printf(_("Waiting for clock tick...\n"));

	rc = ur->synchronize_to_clock_tick(ctl);

	if (ctl->debug) {
		if (rc)
			printf(_("...synchronization failed\n"));
		else
			printf(_("...got clock tick\n"));
	}

	return rc;
}

/*
 * Convert a time in broken down format (hours, minutes, etc.) into standard
 * unix time (seconds into epoch). Return it as *systime_p.
 *
 * The broken down time is argument <tm>. This broken down time is either
 * in local time zone or UTC, depending on value of logical argument
 * "universal". True means it is in UTC.
 *
 * If the argument contains values that do not constitute a valid time, and
 * mktime() recognizes this, return *valid_p == false and *systime_p
 * undefined. However, mktime() sometimes goes ahead and computes a
 * fictional time "as if" the input values were valid, e.g. if they indicate
 * the 31st day of April, mktime() may compute the time of May 1. In such a
 * case, we return the same fictional value mktime() does as *systime_p and
 * return *valid_p == true.
 */
static void
mktime_tz(const struct hwclock_control *ctl, struct tm tm,
	  bool *valid_p, time_t *systime_p)
{
	if (ctl->universal)
		*systime_p = timegm(&tm);
	else
		*systime_p = mktime(&tm);
	if (*systime_p == -1) {
		/*
		 * This apparently (not specified in mktime() documentation)
		 * means the 'tm' structure does not contain valid values
		 * (however, not containing valid values does _not_ imply
		 * mktime() returns -1).
		 */
		*valid_p = FALSE;
		if (ctl->debug)
			printf(_("Invalid values in hardware clock: "
				 "%4d/%.2d/%.2d %.2d:%.2d:%.2d\n"),
			       tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
			       tm.tm_hour, tm.tm_min, tm.tm_sec);
	} else {
		*valid_p = TRUE;
		if (ctl->debug)
			printf(_
			       ("Hw clock time : %4d/%.2d/%.2d %.2d:%.2d:%.2d = "
				"%ld seconds since 1969\n"), tm.tm_year + 1900,
			       tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min,
			       tm.tm_sec, (long)*systime_p);
	}
}

/*
 * Read the hardware clock and return the current time via <tm> argument.
 *
 * Use the method indicated by <method> argument to access the hardware
 * clock.
 */
static int
read_hardware_clock(const struct hwclock_control *ctl,
		    bool * valid_p, time_t *systime_p)
{
	struct tm tm;
	int err;

	err = ur->read_hardware_clock(ctl, &tm);
	if (err)
		return err;

	if (ctl->debug)
		printf(_
		       ("Time read from Hardware Clock: %4d/%.2d/%.2d %02d:%02d:%02d\n"),
		       tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour,
		       tm.tm_min, tm.tm_sec);
	mktime_tz(ctl, tm, valid_p, systime_p);

	return 0;
}

/*
 * Set the Hardware Clock to the time <newtime>, in local time zone or UTC,
 * according to <universal>.
 */
static void
set_hardware_clock(const struct hwclock_control *ctl, const time_t newtime)
{
	struct tm new_broken_time;
	/*
	 * Time to which we will set Hardware Clock, in broken down format,
	 * in the time zone of caller's choice
	 */

	if (ctl->universal)
		new_broken_time = *gmtime(&newtime);
	else
		new_broken_time = *localtime(&newtime);

	if (ctl->debug)
		printf(_("Setting Hardware Clock to %.2d:%.2d:%.2d "
			 "= %ld seconds since 1969\n"),
		       new_broken_time.tm_hour, new_broken_time.tm_min,
		       new_broken_time.tm_sec, (long)newtime);

	if (ctl->testing)
		printf(_("Test mode: clock was not changed\n"));
	else
		ur->set_hardware_clock(ctl, &new_broken_time);
}

/*
 * Set the Hardware Clock to the time "sethwtime", in local time zone or
 * UTC, according to "universal".
 *
 * Wait for a fraction of a second so that "sethwtime" is the value of the
 * Hardware Clock as of system time "refsystime", which is in the past. For
 * example, if "sethwtime" is 14:03:05 and "refsystime" is 12:10:04.5 and
 * the current system time is 12:10:06.0: Wait .5 seconds (to make exactly 2
 * seconds since "refsystime") and then set the Hardware Clock to 14:03:07,
 * thus getting a precise and retroactive setting of the clock.
 *
 * (Don't be confused by the fact that the system clock and the Hardware
 * Clock differ by two hours in the above example. That's just to remind you
 * that there are two independent time scales here).
 *
 * This function ought to be able to accept set times as fractional times.
 * Idea for future enhancement.
 */
static void
set_hardware_clock_exact(const struct hwclock_control *ctl,
			 const time_t sethwtime,
			 const struct timeval refsystime)
{
	/*
	 * The Hardware Clock can only be set to any integer time plus one
	 * half second.	 The integer time is required because there is no
	 * interface to set or get a fractional second.	 The additional half
	 * second is because the Hardware Clock updates to the following
	 * second precisely 500 ms (not 1 second!) after you release the
	 * divider reset (after setting the new time) - see description of
	 * DV2, DV1, DV0 in Register A in the MC146818A data sheet (and note
	 * that although that document doesn't say so, real-world code seems
	 * to expect that the SET bit in Register B functions the same way).
	 * That means that, e.g., when you set the clock to 1:02:03, it
	 * effectively really sets it to 1:02:03.5, because it will update to
	 * 1:02:04 only half a second later.  Our caller passes the desired
	 * integer Hardware Clock time in sethwtime, and the corresponding
	 * system time (which may have a fractional part, and which may or may
	 * not be the same!) in refsystime.  In an ideal situation, we would
	 * then apply sethwtime to the Hardware Clock at refsystime+500ms, so
	 * that when the Hardware Clock ticks forward to sethwtime+1s half a
	 * second later at refsystime+1000ms, everything is in sync.  So we
	 * spin, waiting for gettimeofday() to return a time at or after that
	 * time (refsystime+500ms) up to a tolerance value, initially 1ms.  If
	 * we miss that time due to being preempted for some other process,
	 * then we increase the margin a little bit (initially 1ms, doubling
	 * each time), add 1 second (or more, if needed to get a time that is
	 * in the future) to both the time for which we are waiting and the
	 * time that we will apply to the Hardware Clock, and start waiting
	 * again.
	 * 
	 * For example, the caller requests that we set the Hardware Clock to
	 * 1:02:03, with reference time (current system time) = 6:07:08.250.
	 * We want the Hardware Clock to update to 1:02:04 at 6:07:09.250 on
	 * the system clock, and the first such update will occur 0.500
	 * seconds after we write to the Hardware Clock, so we spin until the
	 * system clock reads 6:07:08.750.  If we get there, great, but let's
	 * imagine the system is so heavily loaded that our process is
	 * preempted and by the time we get to run again, the system clock
	 * reads 6:07:11.990.  We now want to wait until the next xx:xx:xx.750
	 * time, which is 6:07:12.750 (4.5 seconds after the reference time),
	 * at which point we will set the Hardware Clock to 1:02:07 (4 seconds
	 * after the originally requested time).  If we do that successfully,
	 * then at 6:07:13.250 (5 seconds after the reference time), the
	 * Hardware Clock will update to 1:02:08 (5 seconds after the
	 * originally requested time), and all is well thereafter.
	 */

	time_t newhwtime = sethwtime;
	double target_time_tolerance_secs = 0.001;  /* initial value */
	double tolerance_incr_secs = 0.001;	    /* initial value */
	const double RTC_SET_DELAY_SECS = 0.5;	    /* 500 ms */
	const struct timeval RTC_SET_DELAY_TV = { 0, RTC_SET_DELAY_SECS * 1E6 };

	struct timeval targetsystime;
	struct timeval nowsystime;
	struct timeval prevsystime = refsystime;
	double deltavstarget;

	timeradd(&refsystime, &RTC_SET_DELAY_TV, &targetsystime);

	while (1) {
		double ticksize;

		/* FOR TESTING ONLY: inject random delays of up to 1000ms */
		if (ctl->debug >= 10) {
			int usec = random() % 1000000;
			printf(_("sleeping ~%d usec\n"), usec);
			xusleep(usec);
		}

		gettimeofday(&nowsystime, NULL);
		deltavstarget = time_diff(nowsystime, targetsystime);
		ticksize = time_diff(nowsystime, prevsystime);
		prevsystime = nowsystime;

		if (ticksize < 0) {
			if (ctl->debug)
				printf(_("time jumped backward %.6f seconds "
					 "to %ld.%06ld - retargeting\n"),
				       ticksize, nowsystime.tv_sec,
				       nowsystime.tv_usec);
			/* The retarget is handled at the end of the loop. */
		} else if (deltavstarget < 0) {
			/* deltavstarget < 0 if current time < target time */
			if (ctl->debug >= 2)
				printf(_("%ld.%06ld < %ld.%06ld (%.6f)\n"),
				       nowsystime.tv_sec,
				       nowsystime.tv_usec,
				       targetsystime.tv_sec,
				       targetsystime.tv_usec,
				       deltavstarget);
			continue;  /* not there yet - keep spinning */
		} else if (deltavstarget <= target_time_tolerance_secs) {
			/* Close enough to the target time; done waiting. */
			break;
		} else /* (deltavstarget > target_time_tolerance_secs) */ {
			/*
			 * We missed our window.  Increase the tolerance and
			 * aim for the next opportunity.
			 */
			if (ctl->debug)
				printf(_("missed it - %ld.%06ld is too far "
					 "past %ld.%06ld (%.6f > %.6f)\n"),
				       nowsystime.tv_sec,
				       nowsystime.tv_usec,
				       targetsystime.tv_sec,
				       targetsystime.tv_usec,
				       deltavstarget,
				       target_time_tolerance_secs);
			target_time_tolerance_secs += tolerance_incr_secs;
			tolerance_incr_secs *= 2;
		}

		/*
		 * Aim for the same offset (tv_usec) within the second in
		 * either the current second (if that offset hasn't arrived
		 * yet), or the next second.
		 */
		if (nowsystime.tv_usec < targetsystime.tv_usec)
			targetsystime.tv_sec = nowsystime.tv_sec;
		else
			targetsystime.tv_sec = nowsystime.tv_sec + 1;
	}

	newhwtime = sethwtime
		    + (int)(time_diff(nowsystime, refsystime)
			    - RTC_SET_DELAY_SECS /* don't count this */
			    + 0.5 /* for rounding */);
	if (ctl->debug)
		printf(_("%ld.%06ld is close enough to %ld.%06ld (%.6f < %.6f)\n"
			 "Set RTC to %ld (%ld + %d; refsystime = %ld.%06ld)\n"),
		       nowsystime.tv_sec, nowsystime.tv_usec,
		       targetsystime.tv_sec, targetsystime.tv_usec,
		       deltavstarget, target_time_tolerance_secs,
		       newhwtime, sethwtime,
		       (int)(newhwtime - sethwtime),
		       refsystime.tv_sec, refsystime.tv_usec);

	set_hardware_clock(ctl, newhwtime);
}

/*
 * Put the time "hwctime" on standard output in display format. Except if
 * hclock_valid == false, just tell standard output that we don't know what
 * time it is.
 */
static void
display_time(const bool hclock_valid, struct timeval hwctime)
{
	if (!hclock_valid)
		warnx(_
		      ("The Hardware Clock registers contain values that are "
		       "either invalid (e.g. 50th day of month) or beyond the range "
		       "we can handle (e.g. Year 2095)."));
	else {
		char buf[ISO_8601_BUFSIZ];

		strtimeval_iso(&hwctime, ISO_8601_DATE|ISO_8601_TIME|ISO_8601_DOTUSEC|
					 ISO_8601_TIMEZONE|ISO_8601_SPACE,
					 buf, sizeof(buf));
		printf("%s\n", buf);
	}
}

/*
 * Set the System Clock to time 'newtime'.
 *
 * Also set the kernel time zone value to the value indicated by the TZ
 * environment variable and/or /usr/lib/zoneinfo/, interpreted as tzset()
 * would interpret them.
 *
 * If this is the first call of settimeofday since boot, then this also sets
 * the kernel variable persistent_clock_is_local so that NTP 11 minute mode
 * will update the Hardware Clock with the proper timescale. If the Hardware
 * Clock's timescale configuration is changed then a reboot is required for
 * persistent_clock_is_local to be updated.
 *
 * EXCEPT: if hclock_valid is false, just issue an error message saying
 * there is no valid time in the Hardware Clock to which to set the system
 * time.
 *
 * If 'testing' is true, don't actually update anything -- just say we would
 * have.
 */
static int
set_system_clock(const struct hwclock_control *ctl, const bool hclock_valid,
		 const struct timeval newtime)
{
	int retcode;

	if (!hclock_valid) {
		warnx(_
		      ("The Hardware Clock does not contain a valid time, so "
		       "we cannot set the System Time from it."));
		retcode = 1;
	} else {
		const struct timeval *tv_null = NULL;
		struct tm *broken;
		int minuteswest;
		int rc = 0;

		broken = localtime(&newtime.tv_sec);
#ifdef HAVE_TM_GMTOFF
		minuteswest = -broken->tm_gmtoff / 60;	/* GNU extension */
#else
		minuteswest = timezone / 60;
		if (broken->tm_isdst)
			minuteswest -= 60;
#endif

		if (ctl->debug) {
			printf(_("Calling settimeofday:\n"));
			printf(_("\ttv.tv_sec = %ld, tv.tv_usec = %ld\n"),
			       newtime.tv_sec, newtime.tv_usec);
			printf(_("\ttz.tz_minuteswest = %d\n"), minuteswest);
		}
		if (ctl->testing) {
			printf(_
			       ("Test mode: clock was not changed\n"));
			retcode = 0;
		} else {
			const struct timezone tz = { minuteswest, 0 };

			/* Set kernel persistent_clock_is_local so that 11 minute
			 * mode does not clobber the Hardware Clock with UTC. This
			 * is only available on first call of settimeofday after boot.
			 */
			if (!ctl->universal)
				rc = settimeofday(tv_null, &tz);
			if (!rc)
				rc = settimeofday(&newtime, &tz);
			if (rc) {
				if (errno == EPERM) {
					warnx(_
					      ("Must be superuser to set system clock."));
					retcode = EX_NOPERM;
				} else {
					warn(_("settimeofday() failed"));
					retcode = 1;
				}
			} else
				retcode = 0;
		}
	}
	return retcode;
}

/*
 * Reset the System Clock from local time to UTC, based on its current value
 * and the timezone unless universal is TRUE.
 *
 * Also set the kernel time zone value to the value indicated by the TZ
 * environment variable and/or /usr/lib/zoneinfo/, interpreted as tzset()
 * would interpret them.
 *
 * If 'testing' is true, don't actually update anything -- just say we would
 * have.
 */
static int set_system_clock_timezone(const struct hwclock_control *ctl)
{
	int retcode;
	struct timeval tv;
	struct tm *broken;
	int minuteswest;

	gettimeofday(&tv, NULL);
	if (ctl->debug) {
		struct tm broken_time;
		char ctime_now[200];

		broken_time = *gmtime(&tv.tv_sec);
		strftime(ctime_now, sizeof(ctime_now), "%Y/%m/%d %H:%M:%S",
			 &broken_time);
		printf(_("Current system time: %ld = %s\n"), tv.tv_sec,
		       ctime_now);
	}

	broken = localtime(&tv.tv_sec);
#ifdef HAVE_TM_GMTOFF
	minuteswest = -broken->tm_gmtoff / 60;	/* GNU extension */
#else
	minuteswest = timezone / 60;
	if (broken->tm_isdst)
		minuteswest -= 60;
#endif

	if (ctl->debug) {
		struct tm broken_time;
		char ctime_now[200];

		gettimeofday(&tv, NULL);
		if (!ctl->universal)
			tv.tv_sec += minuteswest * 60;

		broken_time = *gmtime(&tv.tv_sec);
		strftime(ctime_now, sizeof(ctime_now), "%Y/%m/%d %H:%M:%S",
			 &broken_time);

		printf(_("Calling settimeofday:\n"));
		printf(_("\tUTC: %s\n"), ctime_now);
		printf(_("\ttv.tv_sec = %ld, tv.tv_usec = %ld\n"),
		       tv.tv_sec, tv.tv_usec);
		printf(_("\ttz.tz_minuteswest = %d\n"), minuteswest);
	}
	if (ctl->testing) {
		printf(_
		       ("Test mode: clock was not changed\n"));
		retcode = 0;
	} else {
		const struct timezone tz_utc = { 0, 0 };
		const struct timezone tz = { minuteswest, 0 };
		const struct timeval *tv_null = NULL;
		int rc = 0;

		/* The first call to settimeofday after boot will assume the systemtime
		 * is in localtime, and adjust it according to the given timezone to
		 * compensate. If the systemtime is in fact in UTC, then this is wrong
		 * so we first do a dummy call to make sure the time is not shifted.
		 */
		if (ctl->universal)
			rc = settimeofday(tv_null, &tz_utc);

		/* Now we set the real timezone. Due to the above dummy call, this will
		 * only warp the systemtime if the RTC is not in UTC. */
		if (!rc)
			rc = settimeofday(tv_null, &tz);

		if (rc) {
			if (errno == EPERM) {
				warnx(_
				      ("Must be superuser to set system clock."));
				retcode = EX_NOPERM;
			} else {
				warn(_("settimeofday() failed"));
				retcode = 1;
			}
		} else
			retcode = 0;
	}
	return retcode;
}

/*
 * Refresh the last calibrated and last adjusted timestamps in <*adjtime_p>
 * to facilitate future drift calculations based on this set point.
 *
 * With the --update-drift option:
 * Update the drift factor in <*adjtime_p> based on the fact that the
 * Hardware Clock was just calibrated to <nowtime> and before that was
 * set to the <hclocktime> time scale.
 *
 * EXCEPT: if <hclock_valid> is false, assume Hardware Clock was not set
 * before to anything meaningful and regular adjustments have not been done,
 * so don't adjust the drift factor.
 */
static void
adjust_drift_factor(const struct hwclock_control *ctl,
		    struct adjtime *adjtime_p,
		    const struct timeval nowtime,
		    const bool hclock_valid,
		    const struct timeval hclocktime)
{
	if (!ctl->update) {
		if (ctl->debug)
			printf(_("Not adjusting drift factor because the "
				 "--update-drift option was not used.\n"));
	} else if (!hclock_valid) {
		if (ctl->debug)
			printf(_("Not adjusting drift factor because the "
				 "Hardware Clock previously contained "
				 "garbage.\n"));
	} else if (adjtime_p->last_calib_time == 0) {
		if (ctl->debug)
			printf(_("Not adjusting drift factor because last "
				 "calibration time is zero,\n"
				 "so history is bad and calibration startover "
				 "is necessary.\n"));
	} else if ((hclocktime.tv_sec - adjtime_p->last_calib_time) < 4 * 60 * 60) {
		if (ctl->debug)
			printf(_("Not adjusting drift factor because it has "
				 "been less than four hours since the last "
				 "calibration.\n"));
	} else {
		/*
		 * At adjustment time we drift correct the hardware clock
		 * according to the contents of the adjtime file and refresh
		 * its last adjusted timestamp.
		 *
		 * At calibration time we set the Hardware Clock and refresh
		 * both timestamps in <*adjtime_p>.
		 *
		 * Here, with the --update-drift option, we also update the
		 * drift factor in <*adjtime_p>.
		 *
		 * Let us do computation in doubles. (Floats almost suffice,
		 * but 195 days + 1 second equals 195 days in floats.)
		 */
		const double sec_per_day = 24.0 * 60.0 * 60.0;
		double factor_adjust;
		double drift_factor;
		struct timeval last_calib;

		last_calib = t2tv(adjtime_p->last_calib_time);
		/*
		 * Correction to apply to the current drift factor.
		 *
		 * Simplified: uncorrected_drift / days_since_calibration.
		 *
		 * hclocktime is fully corrected with the current drift factor.
		 * Its difference from nowtime is the missed drift correction.
		 */
		factor_adjust = time_diff(nowtime, hclocktime) /
				(time_diff(nowtime, last_calib) / sec_per_day);

		drift_factor = adjtime_p->drift_factor + factor_adjust;
		if (fabs(drift_factor) > MAX_DRIFT) {
			if (ctl->debug)
				printf(_("Clock drift factor was calculated as "
					 "%f seconds/day.\n"
					 "It is far too much. Resetting to zero.\n"),
				       drift_factor);
			drift_factor = 0;
		} else {
			if (ctl->debug)
				printf(_("Clock drifted %f seconds in the past "
					 "%f seconds\nin spite of a drift factor of "
					 "%f seconds/day.\n"
					 "Adjusting drift factor by %f seconds/day\n"),
				       time_diff(nowtime, hclocktime),
				       time_diff(nowtime, last_calib),
				       adjtime_p->drift_factor, factor_adjust);
		}

		adjtime_p->drift_factor = drift_factor;
	}
	adjtime_p->last_calib_time = nowtime.tv_sec;

	adjtime_p->last_adj_time = nowtime.tv_sec;

	adjtime_p->not_adjusted = 0;

	adjtime_p->dirty = TRUE;
}

/*
 * Calculate the drift correction currently needed for the
 * Hardware Clock based on the last time it was adjusted,
 * and the current drift factor, as stored in the adjtime file.
 *
 * The total drift adjustment needed is stored at tdrift_p.
 *
 */
static void
calculate_adjustment(const struct hwclock_control *ctl,
		     const double factor,
		     const time_t last_time,
		     const double not_adjusted,
		     const time_t systime, struct timeval *tdrift_p)
{
	double exact_adjustment;

	exact_adjustment =
	    ((double)(systime - last_time)) * factor / (24 * 60 * 60)
	    + not_adjusted;
	tdrift_p->tv_sec = (time_t) floor(exact_adjustment);
	tdrift_p->tv_usec = (exact_adjustment -
				 (double)tdrift_p->tv_sec) * 1E6;
	if (ctl->debug) {
		printf(P_("Time since last adjustment is %ld second\n",
			"Time since last adjustment is %ld seconds\n",
		       (systime - last_time)),
		       (systime - last_time));
		printf(_("Calculated Hardware Clock drift is %ld.%06ld seconds\n"),
		       tdrift_p->tv_sec, tdrift_p->tv_usec);
	}
}

/*
 * Write the contents of the <adjtime> structure to its disk file.
 *
 * But if the contents are clean (unchanged since read from disk), don't
 * bother.
 */
static void save_adjtime(const struct hwclock_control *ctl,
			 const struct adjtime *adjtime)
{
	char *content;		/* Stuff to write to disk file */
	FILE *fp;
	int err = 0;

	if (!adjtime->dirty)
		return;

	xasprintf(&content, "%f %ld %f\n%ld\n%s\n",
		  adjtime->drift_factor,
		  adjtime->last_adj_time,
		  adjtime->not_adjusted,
		  adjtime->last_calib_time,
		  (adjtime->local_utc == LOCAL) ? "LOCAL" : "UTC");

	if (ctl->testing) {
		if (ctl->debug){
			printf(_("Test mode: %s was not updated with:\n%s"),
			       ctl->adj_file_name, content);
		}
		free(content);
		return;
	}

	fp = fopen(ctl->adj_file_name, "w");
	if (fp == NULL) {
		warn(_("Could not open file with the clock adjustment parameters "
		       "in it (%s) for writing"), ctl->adj_file_name);
		err = 1;
	} else if (fputs(content, fp) < 0 || close_stream(fp) != 0) {
		warn(_("Could not update file with the clock adjustment "
		       "parameters (%s) in it"), ctl->adj_file_name);
		err = 1;
	}
	free(content);
	if (err)
		warnx(_("Drift adjustment parameters not updated."));
}

/*
 * Do the adjustment requested, by 1) setting the Hardware Clock (if
 * necessary), and 2) updating the last-adjusted time in the adjtime
 * structure.
 *
 * Do not update anything if the Hardware Clock does not currently present a
 * valid time.
 *
 * <hclock_valid> means the Hardware Clock contains a valid time.
 *
 * <hclocktime> is the drift corrected time read from the Hardware Clock.
 *
 * <read_time> was the system time when the <hclocktime> was read, which due
 * to computational delay could be a short time ago. It is used to define a
 * trigger point for setting the Hardware Clock. The fractional part of the
 * Hardware clock set time is subtracted from read_time to 'refer back', or
 * delay, the trigger point.  Fractional parts must be accounted for in this
 * way, because the Hardware Clock can only be set to a whole second.
 *
 * <universal>: the Hardware Clock is kept in UTC.
 *
 * <testing>:  We are running in test mode (no updating of clock).
 *
 */
static void
do_adjustment(const struct hwclock_control *ctl, struct adjtime *adjtime_p,
	      const bool hclock_valid, const struct timeval hclocktime,
	      const struct timeval read_time)
{
	if (!hclock_valid) {
		warnx(_("The Hardware Clock does not contain a valid time, "
			"so we cannot adjust it."));
		adjtime_p->last_calib_time = 0;	/* calibration startover is required */
		adjtime_p->last_adj_time = 0;
		adjtime_p->not_adjusted = 0;
		adjtime_p->dirty = TRUE;
	} else if (adjtime_p->last_adj_time == 0) {
		if (ctl->debug)
			printf(_("Not setting clock because last adjustment time is zero, "
				 "so history is bad.\n"));
	} else if (fabs(adjtime_p->drift_factor) > MAX_DRIFT) {
		if (ctl->debug)
			printf(_("Not setting clock because drift factor %f is far too high.\n"),
				adjtime_p->drift_factor);
	} else {
		set_hardware_clock_exact(ctl, hclocktime.tv_sec,
					 time_inc(read_time,
						  -(hclocktime.tv_usec / 1E6)));
		adjtime_p->last_adj_time = hclocktime.tv_sec;
		adjtime_p->not_adjusted = 0;
		adjtime_p->dirty = TRUE;
	}
}

static void determine_clock_access_method(const struct hwclock_control *ctl)
{
	ur = NULL;

	if (ctl->directisa)
		ur = probe_for_cmos_clock();
#ifdef __linux__
	if (!ur)
		ur = probe_for_rtc_clock(ctl);
#endif
	if (ur) {
		if (ctl->debug)
			puts(ur->interface_name);

	} else {
		if (ctl->debug)
			printf(_("No usable clock interface found.\n"));
		warnx(_("Cannot access the Hardware Clock via "
			"any known method."));
		if (!ctl->debug)
			warnx(_("Use the --debug option to see the "
				"details of our search for an access "
				"method."));
		hwclock_exit(ctl, EX_SOFTWARE);
	}
}

/*
 * Do all the normal work of hwclock - read, set clock, etc.
 *
 * Issue output to stdout and error message to stderr where appropriate.
 *
 * Return rc == 0 if everything went OK, rc != 0 if not.
 */
static int
manipulate_clock(const struct hwclock_control *ctl, const time_t set_time,
		 const struct timeval startup_time, struct adjtime *adjtime)
{
	/* The time at which we read the Hardware Clock */
	struct timeval read_time;
	/*
	 * The Hardware Clock gives us a valid time, or at
	 * least something close enough to fool mktime().
	 */
	bool hclock_valid = FALSE;
	/*
	 * Tick synchronized time read from the Hardware Clock and
	 * then drift correct for all operations except --show.
	 */
	struct timeval hclocktime = { 0, 0 };
	/* Total Hardware Clock drift correction needed. */
	struct timeval tdrift;
	/* local return code */
	int rc = 0;

	if (!ctl->systz && !ctl->predict && ur->get_permissions())
		return EX_NOPERM;

	if ((ctl->set || ctl->systohc || ctl->adjust) &&
	    (adjtime->local_utc == UTC) != ctl->universal) {
		adjtime->local_utc = ctl->universal ? UTC : LOCAL;
		adjtime->dirty = TRUE;
	}

	if (ctl->show || ctl->get || ctl->adjust || ctl->hctosys
	    || (!ctl->noadjfile && !ctl->systz && !ctl->predict)) {
		/* data from HW-clock are required */
		rc = synchronize_to_clock_tick(ctl);

		/*
		 * We don't error out if the user is attempting to set the
		 * RTC and synchronization timeout happens - the RTC could
		 * be functioning but contain invalid time data so we still
		 * want to allow a user to set the RTC time.
		 */
		if (rc == RTC_BUSYWAIT_FAILED && !ctl->set && !ctl->systohc)
			return EX_IOERR;
		gettimeofday(&read_time, NULL);

		/*
		 * If we can't synchronize to a clock tick,
		 * we likely can't read from the RTC so
		 * don't bother reading it again.
		 */
		if (!rc) {
			rc = read_hardware_clock(ctl, &hclock_valid,
						 &hclocktime.tv_sec);
			if (rc && !ctl->set && !ctl->systohc)
				return EX_IOERR;
		}
	}
	/*
	 * Calculate Hardware Clock drift for --predict with the user
	 * supplied --date option time, and with the time read from the
	 * Hardware Clock for all other operations.  Apply drift correction
	 * to the Hardware Clock time for everything except --show and
	 * --predict.  For --predict negate the drift correction, because we
	 * want to 'predict' a future Hardware Clock time that includes drift.
	 */
	hclocktime = ctl->predict ? t2tv(set_time) : hclocktime;
	calculate_adjustment(ctl, adjtime->drift_factor,
			     adjtime->last_adj_time,
			     adjtime->not_adjusted,
			     hclocktime.tv_sec, &tdrift);
	if (!ctl->show && !ctl->predict)
		hclocktime = time_inc(tdrift, hclocktime.tv_sec);
	if (ctl->show || ctl->get) {
		display_time(hclock_valid,
			     time_inc(hclocktime, -time_diff
				      (read_time, startup_time)));
	} else if (ctl->set) {
		set_hardware_clock_exact(ctl, set_time, startup_time);
		if (!ctl->noadjfile)
			adjust_drift_factor(ctl, adjtime,
					    time_inc(t2tv(set_time), time_diff
						     (read_time, startup_time)),
					    hclock_valid, hclocktime);
	} else if (ctl->adjust) {
		if (tdrift.tv_sec > 0 || tdrift.tv_sec < -1)
			do_adjustment(ctl, adjtime, hclock_valid,
				      hclocktime, read_time);
		else
			printf(_("Needed adjustment is less than one second, "
				 "so not setting clock.\n"));
	} else if (ctl->systohc) {
		struct timeval nowtime, reftime;
		/*
		 * We can only set_hardware_clock_exact to a
		 * whole seconds time, so we set it with
		 * reference to the most recent whole
		 * seconds time.
		 */
		gettimeofday(&nowtime, NULL);
		reftime.tv_sec = nowtime.tv_sec;
		reftime.tv_usec = 0;
		set_hardware_clock_exact(ctl, (time_t) reftime.tv_sec, reftime);
		if (!ctl->noadjfile)
			adjust_drift_factor(ctl, adjtime, nowtime,
					    hclock_valid, hclocktime);
	} else if (ctl->hctosys) {
		rc = set_system_clock(ctl, hclock_valid, hclocktime);
		if (rc) {
			printf(_("Unable to set system clock.\n"));
			return rc;
		}
	} else if (ctl->systz) {
		rc = set_system_clock_timezone(ctl);
		if (rc) {
			printf(_("Unable to set system clock.\n"));
			return rc;
		}
	} else if (ctl->predict) {
		hclocktime = time_inc(hclocktime, (double)
				      -(tdrift.tv_sec + tdrift.tv_usec / 1E6));
		if (ctl->debug) {
			printf(_
			       ("At %ld seconds after 1969, RTC is predicted to read %ld seconds after 1969.\n"),
			       set_time, hclocktime.tv_sec);
		}
		display_time(TRUE, hclocktime);
	}
	if (!ctl->noadjfile)
		save_adjtime(ctl, adjtime);
	return 0;
}

/**
 * Get or set the kernel RTC driver's epoch on Alpha machines.
 * ISA machines are hard coded for 1900.
 */
#if defined(__linux__) && defined(__alpha__)
static void
manipulate_epoch(const struct hwclock_control *ctl)
{
	if (ctl->getepoch) {
		unsigned long epoch;

		if (get_epoch_rtc(ctl, &epoch))
			warnx(_
			      ("Unable to get the epoch value from the kernel."));
		else
			printf(_("Kernel is assuming an epoch value of %lu\n"),
			       epoch);
	} else if (ctl->setepoch) {
		if (ctl->epoch_option == 0)
			warnx(_
			      ("To set the epoch value, you must use the 'epoch' "
			       "option to tell to what value to set it."));
		else if (ctl->testing)
			printf(_
			       ("Not setting the epoch to %lu - testing only.\n"),
			       ctl->epoch_option);
		else if (set_epoch_rtc(ctl))
			printf(_
			       ("Unable to set the epoch value in the kernel.\n"));
	}
}
#endif		/* __linux__ __alpha__ */

static void out_version(void)
{
	printf(UTIL_LINUX_VERSION);
}

static void __attribute__((__noreturn__))
usage(const struct hwclock_control *ctl)
{
	FILE *out = stdout;
	fputs(USAGE_HEADER, out);
	fputs(_(" hwclock [function] [option...]\n"), out);

	fputs(USAGE_SEPARATOR, out);
	fputs(_("Query or set the RTC (Real Time Clock / Hardware Clock)\n"), out);

	fputs(USAGE_FUNCTIONS, out);
	fputs(_(" -r, --show           display the RTC time\n"), out);
	fputs(_("     --get            display drift corrected RTC time\n"), out);
	fputs(_("     --set            set the RTC according to --date\n"), out);
	fputs(_(" -s, --hctosys        set the system time from the RTC\n"), out);
	fputs(_(" -w, --systohc        set the RTC from the system time\n"), out);
	fputs(_("     --systz          send timescale configurations to the kernel\n"), out);
	fputs(_("     --adjust         adjust the RTC to account for systematic drift\n"), out);
#if defined(__linux__) && defined(__alpha__)
	fputs(_("     --getepoch       display the RTC epoch\n"), out);
	fputs(_("     --setepoch       set the RTC epoch according to --epoch\n"), out);
#endif
	fputs(_("     --predict        predict the drifted RTC time according to --date\n"), out);
	fputs(USAGE_OPTIONS, out);
	fputs(_(" -u, --utc            inform hwclock the RTC timescale is UTC\n"), out);
	fputs(_(" -l, --localtime      inform hwclock the RTC timescale is Local\n"), out);
#ifdef __linux__
	printf(_(
		" -f, --rtc <file>     use an alternate file to %1$s\n"), _PATH_RTC_DEV);
#endif
	printf(_(
		"     --directisa      use the ISA bus instead of %1$s access\n"), _PATH_RTC_DEV);
	fputs(_("     --date <time>    date/time input for --set and --predict\n"), out);
#if defined(__linux__) && defined(__alpha__)
	fputs(_("     --epoch <year>   epoch input for --setepoch\n"), out);
#endif
	fputs(_("     --update-drift   update the RTC drift factor\n"), out);
	fprintf(out, _(
		"     --noadjfile      do not use %1$s\n"
		"     --adjfile <file> use an alternate file to %1$s\n"), _PATH_ADJTIME);
	fputs(_("     --test           dry run; use -D to view what would have happened\n"), out);
	fputs(_(" -D, --debug          use debug mode\n"), out);
	fputs(USAGE_SEPARATOR, out);
	printf(USAGE_HELP_OPTIONS(22));
	printf(USAGE_MAN_TAIL("hwclock(8)"));
	hwclock_exit(ctl, EXIT_SUCCESS);
}

/*
 * Returns:
 *  EX_USAGE: bad invocation
 *  EX_NOPERM: no permission
 *  EX_OSFILE: cannot open /dev/rtc or /etc/adjtime
 *  EX_IOERR: ioctl error getting or setting the time
 *  0: OK (or not)
 *  1: failure
 */
int main(int argc, char **argv)
{
	struct hwclock_control ctl = { .show = 1 }; /* default op is show */
	struct timeval startup_time;
	struct adjtime adjtime = { 0 };
	struct timespec when = { 0 };
	/*
	 * The time we started up, in seconds into the epoch, including
	 * fractions.
	 */
	time_t set_time = 0;	/* Time to which user said to set Hardware Clock */
	int rc, c;

	/* Long only options. */
	enum {
		OPT_ADJFILE = CHAR_MAX + 1,
		OPT_DATE,
		OPT_DIRECTISA,
		OPT_EPOCH,
		OPT_GET,
		OPT_GETEPOCH,
		OPT_NOADJFILE,
		OPT_PREDICT,
		OPT_SET,
		OPT_SETEPOCH,
		OPT_SYSTZ,
		OPT_TEST,
		OPT_UPDATE
	};

	static const struct option longopts[] = {
		{ "adjust",       no_argument,       NULL, 'a'            },
		{ "help",         no_argument,       NULL, 'h'            },
		{ "localtime",    no_argument,       NULL, 'l'            },
		{ "show",         no_argument,       NULL, 'r'            },
		{ "hctosys",      no_argument,       NULL, 's'            },
		{ "utc",          no_argument,       NULL, 'u'            },
		{ "version",      no_argument,       NULL, 'v'            },
		{ "systohc",      no_argument,       NULL, 'w'            },
		{ "debug",        no_argument,       NULL, 'D'            },
		{ "set",          no_argument,       NULL, OPT_SET        },
#if defined(__linux__) && defined(__alpha__)
		{ "getepoch",     no_argument,       NULL, OPT_GETEPOCH   },
		{ "setepoch",     no_argument,       NULL, OPT_SETEPOCH   },
		{ "epoch",        required_argument, NULL, OPT_EPOCH      },
#endif
		{ "noadjfile",    no_argument,       NULL, OPT_NOADJFILE  },
		{ "directisa",    no_argument,       NULL, OPT_DIRECTISA  },
		{ "test",         no_argument,       NULL, OPT_TEST       },
		{ "date",         required_argument, NULL, OPT_DATE       },
#ifdef __linux__
		{ "rtc",          required_argument, NULL, 'f'            },
#endif
		{ "adjfile",      required_argument, NULL, OPT_ADJFILE    },
		{ "systz",        no_argument,       NULL, OPT_SYSTZ      },
		{ "predict",      no_argument,       NULL, OPT_PREDICT    },
		{ "get",          no_argument,       NULL, OPT_GET        },
		{ "update-drift", no_argument,       NULL, OPT_UPDATE     },
		{ NULL, 0, NULL, 0 }
	};

	static const ul_excl_t excl[] = {	/* rows and cols in ASCII order */
		{ 'a','r','s','w',
		  OPT_GET, OPT_GETEPOCH, OPT_PREDICT,
		  OPT_SET, OPT_SETEPOCH, OPT_SYSTZ },
		{ 'l', 'u' },
		{ OPT_ADJFILE, OPT_NOADJFILE },
		{ OPT_NOADJFILE, OPT_UPDATE },
		{ 0 }
	};
	int excl_st[ARRAY_SIZE(excl)] = UL_EXCL_STATUS_INIT;

	strutils_set_exitcode(EX_USAGE);

	/* Remember what time we were invoked */
	gettimeofday(&startup_time, NULL);

#ifdef HAVE_LIBAUDIT
	hwaudit_fd = audit_open();
	if (hwaudit_fd < 0 && !(errno == EINVAL || errno == EPROTONOSUPPORT ||
				errno == EAFNOSUPPORT)) {
		/*
		 * You get these error codes only when the kernel doesn't
		 * have audit compiled in.
		 */
		warnx(_("Unable to connect to audit system"));
		return EX_NOPERM;
	}
#endif
	setlocale(LC_ALL, "");
#ifdef LC_NUMERIC
	/*
	 * We need LC_CTYPE and LC_TIME and LC_MESSAGES, but must avoid
	 * LC_NUMERIC since it gives problems when we write to /etc/adjtime.
	 *  - gqueri@mail.dotcom.fr
	 */
	setlocale(LC_NUMERIC, "C");
#endif
	bindtextdomain(PACKAGE, LOCALEDIR);
	textdomain(PACKAGE);
	atexit(close_stdout);

	while ((c = getopt_long(argc, argv,
				"hvVDalrsuwf:", longopts, NULL)) != -1) {

		err_exclusive_options(c, longopts, excl, excl_st);

		switch (c) {
		case 'D':
			ctl.debug++;
			break;
		case 'a':
			ctl.adjust = 1;
			ctl.show = 0;
			ctl.hwaudit_on = 1;
			break;
		case 'l':
			ctl.local_opt = 1;	/* --localtime */
			break;
		case 'r':
			ctl.show = 1;
			break;
		case 's':
			ctl.hctosys = 1;
			ctl.show = 0;
			ctl.hwaudit_on = 1;
			break;
		case 'u':
			ctl.utc = 1;
			break;
		case 'w':
			ctl.systohc = 1;
			ctl.show = 0;
			ctl.hwaudit_on = 1;
			break;
		case OPT_SET:
			ctl.set = 1;
			ctl.show = 0;
			ctl.hwaudit_on = 1;
			break;
#if defined(__linux__) && defined(__alpha__)
		case OPT_GETEPOCH:
			ctl.getepoch = 1;
			ctl.show = 0;
			break;
		case OPT_SETEPOCH:
			ctl.setepoch = 1;
			ctl.show = 0;
			ctl.hwaudit_on = 1;
			break;
		case OPT_EPOCH:
			ctl.epoch_option =	/* --epoch */
			    strtoul_or_err(optarg, _("invalid epoch argument"));
			break;
#endif
		case OPT_NOADJFILE:
			ctl.noadjfile = 1;
			break;
		case OPT_DIRECTISA:
			ctl.directisa = 1;
			break;
		case OPT_TEST:
			ctl.testing = 1;	/* --test */
			break;
		case OPT_DATE:
			ctl.date_opt = optarg;	/* --date */
			break;
		case OPT_ADJFILE:
			ctl.adj_file_name = optarg;	/* --adjfile */
			break;
		case OPT_SYSTZ:
			ctl.systz = 1;		/* --systz */
			ctl.show = 0;
			ctl.hwaudit_on = 1;
			break;
		case OPT_PREDICT:
			ctl.predict = 1;	/* --predict */
			ctl.show = 0;
			break;
		case OPT_GET:
			ctl.get = 1;		/* --get */
			ctl.show = 0;
			break;
		case OPT_UPDATE:
			ctl.update = 1;		/* --update-drift */
			break;
#ifdef __linux__
		case 'f':
			ctl.rtc_dev_name = optarg;	/* --rtc */
			break;
#endif
		case 'v':			/* --version */
		case 'V':
			out_version();
			return 0;
		case 'h':			/* --help */
			usage(&ctl);
		default:
			errtryhelp(EXIT_FAILURE);
		}
	}

	if (argc > optind) {
		warnx(_("%d too many arguments given"), argc);
		errtryhelp(EXIT_FAILURE);
	}

	if (!ctl.adj_file_name)
		ctl.adj_file_name = _PATH_ADJTIME;

	if (ctl.update && !ctl.set && !ctl.systohc) {
		warnx(_("--update-drift requires --set or --systohc"));
		hwclock_exit(&ctl, EX_USAGE);
	}

	if (ctl.noadjfile && !ctl.utc && !ctl.local_opt) {
		warnx(_("With --noadjfile, you must specify "
			"either --utc or --localtime"));
		hwclock_exit(&ctl, EX_USAGE);
	}

	if (ctl.set || ctl.predict) {
		if (!ctl.date_opt){
		warnx(_("--date is required for --set or --predict"));
		hwclock_exit(&ctl, EX_USAGE);
		}
		if (parse_date(&when, ctl.date_opt, NULL))
			set_time = when.tv_sec;
		else {
			warnx(_("invalid date '%s'"), ctl.date_opt);
			hwclock_exit(&ctl, EX_USAGE);
		}
	}

#if defined(__linux__) && defined(__alpha__)
	if (ctl.getepoch || ctl.setepoch) {
		manipulate_epoch(&ctl);
		hwclock_exit(&ctl, EX_OK);
	}
#endif

	if (ctl.debug)
		out_version();

	if (!ctl.systz && !ctl.predict)
		determine_clock_access_method(&ctl);

	if (!ctl.noadjfile && !(ctl.systz && (ctl.utc || ctl.local_opt))) {
		if ((rc = read_adjtime(&ctl, &adjtime)) != 0)
			hwclock_exit(&ctl, rc);
	} else
		/* Avoid writing adjtime file if we don't have to. */
		adjtime.dirty = FALSE;
	ctl.universal = hw_clock_is_utc(&ctl, adjtime);
	rc = manipulate_clock(&ctl, set_time, startup_time, &adjtime);
	hwclock_exit(&ctl, rc);
	return rc;		/* Not reached */
}

void
hwclock_exit(const struct hwclock_control *ctl
#ifndef HAVE_LIBAUDIT
	     __attribute__((__unused__))
#endif
	     , int status)
{
#ifdef HAVE_LIBAUDIT
	if (ctl->hwaudit_on && !ctl->testing) {
		audit_log_user_message(hwaudit_fd, AUDIT_USYS_CONFIG,
				       "op=change-system-time", NULL, NULL, NULL,
				       status ? 0 : 1);
		close(hwaudit_fd);
	}
#endif
	exit(status);
}

/*
 * History of this program:
 *
 * 98.08.12 BJH Version 2.4
 *
 * Don't use century byte from Hardware Clock. Add comments telling why.
 *
 * 98.06.20 BJH Version 2.3.
 *
 * Make --hctosys set the kernel timezone from TZ environment variable
 * and/or /usr/lib/zoneinfo. From Klaus Ripke (klaus@ripke.com).
 *
 * 98.03.05 BJH. Version 2.2.
 *
 * Add --getepoch and --setepoch.
 *
 * Fix some word length things so it works on Alpha.
 *
 * Make it work when /dev/rtc doesn't have the interrupt functions. In this
 * case, busywait for the top of a second instead of blocking and waiting
 * for the update complete interrupt.
 *
 * Fix a bunch of bugs too numerous to mention.
 *
 * 97.06.01: BJH. Version 2.1. Read and write the century byte (Byte 50) of
 * the ISA Hardware Clock when using direct ISA I/O. Problem discovered by
 * job (jei@iclnl.icl.nl).
 *
 * Use the rtc clock access method in preference to the KDGHWCLK method.
 * Problem discovered by Andreas Schwab <schwab@LS5.informatik.uni-dortmund.de>.
 *
 * November 1996: Version 2.0.1. Modifications by Nicolai Langfeldt
 * (janl@math.uio.no) to make it compile on linux 1.2 machines as well as
 * more recent versions of the kernel. Introduced the NO_CLOCK access method
 * and wrote feature test code to detect absence of rtc headers.
 *
 ***************************************************************************
 * Maintenance notes
 *
 * To compile this, you must use GNU compiler optimization (-O option) in
 * order to make the "extern inline" functions from asm/io.h (inb(), etc.)
 * compile. If you don't optimize, which means the compiler will generate no
 * inline functions, the references to these functions in this program will
 * be compiled as external references. Since you probably won't be linking
 * with any functions by these names, you will have unresolved external
 * references when you link.
 *
 * Here's some info on how we must deal with the time that elapses while
 * this program runs: There are two major delays as we run:
 *
 *	1) Waiting up to 1 second for a transition of the Hardware Clock so
 *	   we are synchronized to the Hardware Clock.
 *	2) Running the "date" program to interpret the value of our --date
 *	   option.
 *
 * Reading the /etc/adjtime file is the next biggest source of delay and
 * uncertainty.
 *
 * The user wants to know what time it was at the moment he invoked us, not
 * some arbitrary time later. And in setting the clock, he is giving us the
 * time at the moment we are invoked, so if we set the clock some time
 * later, we have to add some time to that.
 *
 * So we check the system time as soon as we start up, then run "date" and
 * do file I/O if necessary, then wait to synchronize with a Hardware Clock
 * edge, then check the system time again to see how much time we spent. We
 * immediately read the clock then and (if appropriate) report that time,
 * and additionally, the delay we measured.
 *
 * If we're setting the clock to a time given by the user, we wait some more
 * so that the total delay is an integral number of seconds, then set the
 * Hardware Clock to the time the user requested plus that integral number
 * of seconds. N.B. The Hardware Clock can only be set in integral seconds.
 *
 * If we're setting the clock to the system clock value, we wait for the
 * system clock to reach the top of a second, and then set the Hardware
 * Clock to the system clock's value.
 *
 * Here's an interesting point about setting the Hardware Clock:  On my
 * machine, when you set it, it sets to that precise time. But one can
 * imagine another clock whose update oscillator marches on a steady one
 * second period, so updating the clock between any two oscillator ticks is
 * the same as updating it right at the earlier tick. To avoid any
 * complications that might cause, we set the clock as soon as possible
 * after an oscillator tick.
 *
 * About synchronizing to the Hardware Clock when reading the time: The
 * precision of the Hardware Clock counters themselves is one second. You
 * can't read the counters and find out that is 12:01:02.5. But if you
 * consider the location in time of the counter's ticks as part of its
 * value, then its precision is as infinite as time is continuous! What I'm
 * saying is this: To find out the _exact_ time in the hardware clock, we
 * wait until the next clock tick (the next time the second counter changes)
 * and measure how long we had to wait. We then read the value of the clock
 * counters and subtract the wait time and we know precisely what time it
 * was when we set out to query the time.
 *
 * hwclock uses this method, and considers the Hardware Clock to have
 * infinite precision.
 */