diff options
Diffstat (limited to 'contrib/syslinux-4.02/com32/libutil/sha256crypt.c')
-rw-r--r-- | contrib/syslinux-4.02/com32/libutil/sha256crypt.c | 680 |
1 files changed, 680 insertions, 0 deletions
diff --git a/contrib/syslinux-4.02/com32/libutil/sha256crypt.c b/contrib/syslinux-4.02/com32/libutil/sha256crypt.c new file mode 100644 index 0000000..adc7b09 --- /dev/null +++ b/contrib/syslinux-4.02/com32/libutil/sha256crypt.c @@ -0,0 +1,680 @@ +/* SHA256-based Unix crypt implementation. + Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. */ + +#include <alloca.h> +#include <endian.h> +#include <errno.h> +#include <limits.h> +#include <stdint.h> +#include <stdbool.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <minmax.h> +#include <sys/types.h> + +#include "xcrypt.h" + +#define MIN(x,y) min(x,y) +#define MAX(x,y) max(x,y) + +/* Structure to save state of computation between the single steps. */ +struct sha256_ctx { + uint32_t H[8]; + + uint32_t total[2]; + uint32_t buflen; + char buffer[128]; /* NB: always correctly aligned for uint32_t. */ +}; + +#if __BYTE_ORDER == __LITTLE_ENDIAN +# define SWAP(n) \ + (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) +#else +# define SWAP(n) (n) +#endif + +/* This array contains the bytes used to pad the buffer to the next + 64-byte boundary. (FIPS 180-2:5.1.1) */ +static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; + +/* Constants for SHA256 from FIPS 180-2:4.2.2. */ +static const uint32_t K[64] = { + 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, + 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, + 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, + 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, + 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, + 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, + 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, + 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, + 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, + 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, + 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, + 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, + 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, + 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, + 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, + 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 +}; + +/* Process LEN bytes of BUFFER, accumulating context into CTX. + It is assumed that LEN % 64 == 0. */ +static void +sha256_process_block(const void *buffer, size_t len, struct sha256_ctx *ctx) +{ + unsigned int t; + const uint32_t *words = buffer; + size_t nwords = len / sizeof(uint32_t); + uint32_t a = ctx->H[0]; + uint32_t b = ctx->H[1]; + uint32_t c = ctx->H[2]; + uint32_t d = ctx->H[3]; + uint32_t e = ctx->H[4]; + uint32_t f = ctx->H[5]; + uint32_t g = ctx->H[6]; + uint32_t h = ctx->H[7]; + + /* First increment the byte count. FIPS 180-2 specifies the possible + length of the file up to 2^64 bits. Here we only compute the + number of bytes. Do a double word increment. */ + ctx->total[0] += len; + if (ctx->total[0] < len) + ++ctx->total[1]; + + /* Process all bytes in the buffer with 64 bytes in each round of + the loop. */ + while (nwords > 0) { + uint32_t W[64]; + uint32_t a_save = a; + uint32_t b_save = b; + uint32_t c_save = c; + uint32_t d_save = d; + uint32_t e_save = e; + uint32_t f_save = f; + uint32_t g_save = g; + uint32_t h_save = h; + + /* Operators defined in FIPS 180-2:4.1.2. */ +#define Ch(x, y, z) ((x & y) ^ (~x & z)) +#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) +#define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22)) +#define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25)) +#define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3)) +#define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10)) + + /* It is unfortunate that C does not provide an operator for + cyclic rotation. Hope the C compiler is smart enough. */ +#define CYCLIC(w, s) ((w >> s) | (w << (32 - s))) + + /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */ + for (t = 0; t < 16; ++t) { + W[t] = SWAP(*words); + ++words; + } + for (t = 16; t < 64; ++t) + W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16]; + + /* The actual computation according to FIPS 180-2:6.2.2 step 3. */ + for (t = 0; t < 64; ++t) { + uint32_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t]; + uint32_t T2 = S0(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + } + + /* Add the starting values of the context according to FIPS 180-2:6.2.2 + step 4. */ + a += a_save; + b += b_save; + c += c_save; + d += d_save; + e += e_save; + f += f_save; + g += g_save; + h += h_save; + + /* Prepare for the next round. */ + nwords -= 16; + } + + /* Put checksum in context given as argument. */ + ctx->H[0] = a; + ctx->H[1] = b; + ctx->H[2] = c; + ctx->H[3] = d; + ctx->H[4] = e; + ctx->H[5] = f; + ctx->H[6] = g; + ctx->H[7] = h; +} + +/* Initialize structure containing state of computation. + (FIPS 180-2:5.3.2) */ +static void sha256_init_ctx(struct sha256_ctx *ctx) +{ + ctx->H[0] = 0x6a09e667; + ctx->H[1] = 0xbb67ae85; + ctx->H[2] = 0x3c6ef372; + ctx->H[3] = 0xa54ff53a; + ctx->H[4] = 0x510e527f; + ctx->H[5] = 0x9b05688c; + ctx->H[6] = 0x1f83d9ab; + ctx->H[7] = 0x5be0cd19; + + ctx->total[0] = ctx->total[1] = 0; + ctx->buflen = 0; +} + +/* Process the remaining bytes in the internal buffer and the usual + prolog according to the standard and write the result to RESBUF. + + IMPORTANT: On some systems it is required that RESBUF is correctly + aligned for a 32 bits value. */ +static void *sha256_finish_ctx(struct sha256_ctx *ctx, void *resbuf) +{ + unsigned int i; + /* Take yet unprocessed bytes into account. */ + uint32_t bytes = ctx->buflen; + size_t pad; + + /* Now count remaining bytes. */ + ctx->total[0] += bytes; + if (ctx->total[0] < bytes) + ++ctx->total[1]; + + pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes; + memcpy(&ctx->buffer[bytes], fillbuf, pad); + + /* Put the 64-bit file length in *bits* at the end of the buffer. */ + *(uint32_t *) & ctx->buffer[bytes + pad + 4] = SWAP(ctx->total[0] << 3); + *(uint32_t *) & ctx->buffer[bytes + pad] = SWAP((ctx->total[1] << 3) | + (ctx->total[0] >> 29)); + + /* Process last bytes. */ + sha256_process_block(ctx->buffer, bytes + pad + 8, ctx); + + /* Put result from CTX in first 32 bytes following RESBUF. */ + for (i = 0; i < 8; ++i) + ((uint32_t *) resbuf)[i] = SWAP(ctx->H[i]); + + return resbuf; +} + +static void +sha256_process_bytes(const void *buffer, size_t len, struct sha256_ctx *ctx) +{ + /* When we already have some bits in our internal buffer concatenate + both inputs first. */ + if (ctx->buflen != 0) { + size_t left_over = ctx->buflen; + size_t add = 128 - left_over > len ? len : 128 - left_over; + + memcpy(&ctx->buffer[left_over], buffer, add); + ctx->buflen += add; + + if (ctx->buflen > 64) { + sha256_process_block(ctx->buffer, ctx->buflen & ~63, ctx); + + ctx->buflen &= 63; + /* The regions in the following copy operation cannot overlap. */ + memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~63], + ctx->buflen); + } + + buffer = (const char *)buffer + add; + len -= add; + } + + /* Process available complete blocks. */ + if (len >= 64) { +/* To check alignment gcc has an appropriate operator. Other + compilers don't. */ +#if __GNUC__ >= 2 +# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0) +#else +# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0) +#endif + if (UNALIGNED_P(buffer)) + while (len > 64) { + sha256_process_block(memcpy(ctx->buffer, buffer, 64), 64, ctx); + buffer = (const char *)buffer + 64; + len -= 64; + } else { + sha256_process_block(buffer, len & ~63, ctx); + buffer = (const char *)buffer + (len & ~63); + len &= 63; + } + } + + /* Move remaining bytes into internal buffer. */ + if (len > 0) { + size_t left_over = ctx->buflen; + + memcpy(&ctx->buffer[left_over], buffer, len); + left_over += len; + if (left_over >= 64) { + sha256_process_block(ctx->buffer, 64, ctx); + left_over -= 64; + memcpy(ctx->buffer, &ctx->buffer[64], left_over); + } + ctx->buflen = left_over; + } +} + +/* Define our magic string to mark salt for SHA256 "encryption" + replacement. */ +static const char sha256_salt_prefix[] = "$5$"; + +/* Prefix for optional rounds specification. */ +static const char sha256_rounds_prefix[] = "rounds="; + +/* Maximum salt string length. */ +#define SALT_LEN_MAX 16U +/* Default number of rounds if not explicitly specified. */ +#define ROUNDS_DEFAULT 5000UL +/* Minimum number of rounds. */ +#define ROUNDS_MIN 1000UL +/* Maximum number of rounds. */ +#define ROUNDS_MAX 999999999UL + +/* Table with characters for base64 transformation. */ +static const char b64t[64] = + "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; + +static char *sha256_crypt_r(const char *key, const char *salt, char *buffer, + int buflen) +{ + unsigned char alt_result[32] + __attribute__ ((__aligned__(__alignof__(uint32_t)))); + unsigned char temp_result[32] + __attribute__ ((__aligned__(__alignof__(uint32_t)))); + struct sha256_ctx ctx; + struct sha256_ctx alt_ctx; + size_t salt_len; + size_t key_len; + size_t cnt; + char *cp; + char *copied_key = NULL; + char *copied_salt = NULL; + char *p_bytes; + char *s_bytes; + /* Default number of rounds. */ + size_t rounds = ROUNDS_DEFAULT; + bool rounds_custom = false; + + /* Find beginning of salt string. The prefix should normally always + be present. Just in case it is not. */ + if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0) + /* Skip salt prefix. */ + salt += sizeof(sha256_salt_prefix) - 1; + + if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1) + == 0) { + const char *num = salt + sizeof(sha256_rounds_prefix) - 1; + char *endp; + unsigned long int srounds = strtoul(num, &endp, 10); + if (*endp == '$') { + salt = endp + 1; + rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); + rounds_custom = true; + } + } + + salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); + key_len = strlen(key); + + if ((key - (char *)0) % __alignof__(uint32_t) != 0) { + char *tmp = (char *)alloca(key_len + __alignof__(uint32_t)); + key = copied_key = memcpy(tmp + __alignof__(uint32_t) + - (tmp - (char *)0) % __alignof__(uint32_t), + key, key_len); + } + + if ((salt - (char *)0) % __alignof__(uint32_t) != 0) { + char *tmp = (char *)alloca(salt_len + __alignof__(uint32_t)); + salt = copied_salt = memcpy(tmp + __alignof__(uint32_t) + - (tmp - (char *)0) % __alignof__(uint32_t), + salt, salt_len); + } + + /* Prepare for the real work. */ + sha256_init_ctx(&ctx); + + /* Add the key string. */ + sha256_process_bytes(key, key_len, &ctx); + + /* The last part is the salt string. This must be at most 8 + characters and it ends at the first `$' character (for + compatibility with existing implementations). */ + sha256_process_bytes(salt, salt_len, &ctx); + + /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The + final result will be added to the first context. */ + sha256_init_ctx(&alt_ctx); + + /* Add key. */ + sha256_process_bytes(key, key_len, &alt_ctx); + + /* Add salt. */ + sha256_process_bytes(salt, salt_len, &alt_ctx); + + /* Add key again. */ + sha256_process_bytes(key, key_len, &alt_ctx); + + /* Now get result of this (32 bytes) and add it to the other + context. */ + sha256_finish_ctx(&alt_ctx, alt_result); + + /* Add for any character in the key one byte of the alternate sum. */ + for (cnt = key_len; cnt > 32; cnt -= 32) + sha256_process_bytes(alt_result, 32, &ctx); + sha256_process_bytes(alt_result, cnt, &ctx); + + /* Take the binary representation of the length of the key and for every + 1 add the alternate sum, for every 0 the key. */ + for (cnt = key_len; cnt; cnt >>= 1) + if ((cnt & 1) != 0) + sha256_process_bytes(alt_result, 32, &ctx); + else + sha256_process_bytes(key, key_len, &ctx); + + /* Create intermediate result. */ + sha256_finish_ctx(&ctx, alt_result); + + /* Start computation of P byte sequence. */ + sha256_init_ctx(&alt_ctx); + + /* For every character in the password add the entire password. */ + for (cnt = 0; cnt < key_len; ++cnt) + sha256_process_bytes(key, key_len, &alt_ctx); + + /* Finish the digest. */ + sha256_finish_ctx(&alt_ctx, temp_result); + + /* Create byte sequence P. */ + cp = p_bytes = alloca(key_len); + for (cnt = key_len; cnt >= 32; cnt -= 32) + cp = mempcpy(cp, temp_result, 32); + memcpy(cp, temp_result, cnt); + + /* Start computation of S byte sequence. */ + sha256_init_ctx(&alt_ctx); + + /* For every character in the password add the entire password. */ + for (cnt = 0; cnt < (size_t)16 + alt_result[0]; ++cnt) + sha256_process_bytes(salt, salt_len, &alt_ctx); + + /* Finish the digest. */ + sha256_finish_ctx(&alt_ctx, temp_result); + + /* Create byte sequence S. */ + cp = s_bytes = alloca(salt_len); + for (cnt = salt_len; cnt >= 32; cnt -= 32) + cp = mempcpy(cp, temp_result, 32); + memcpy(cp, temp_result, cnt); + + /* Repeatedly run the collected hash value through SHA256 to burn + CPU cycles. */ + for (cnt = 0; cnt < rounds; ++cnt) { + /* New context. */ + sha256_init_ctx(&ctx); + + /* Add key or last result. */ + if ((cnt & 1) != 0) + sha256_process_bytes(p_bytes, key_len, &ctx); + else + sha256_process_bytes(alt_result, 32, &ctx); + + /* Add salt for numbers not divisible by 3. */ + if (cnt % 3 != 0) + sha256_process_bytes(s_bytes, salt_len, &ctx); + + /* Add key for numbers not divisible by 7. */ + if (cnt % 7 != 0) + sha256_process_bytes(p_bytes, key_len, &ctx); + + /* Add key or last result. */ + if ((cnt & 1) != 0) + sha256_process_bytes(alt_result, 32, &ctx); + else + sha256_process_bytes(p_bytes, key_len, &ctx); + + /* Create intermediate result. */ + sha256_finish_ctx(&ctx, alt_result); + } + + /* Now we can construct the result string. It consists of three + parts. */ + cp = stpncpy(buffer, sha256_salt_prefix, MAX(0, buflen)); + buflen -= sizeof(sha256_salt_prefix) - 1; + + if (rounds_custom) { + int n = snprintf(cp, MAX(0, buflen), "%s%zu$", + sha256_rounds_prefix, rounds); + cp += n; + buflen -= n; + } + + cp = stpncpy(cp, salt, MIN((size_t) MAX(0, buflen), salt_len)); + buflen -= MIN((size_t) MAX(0, buflen), salt_len); + + if (buflen > 0) { + *cp++ = '$'; + --buflen; + } +#define b64_from_24bit(B2, B1, B0, N) \ + do { \ + unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \ + int n = (N); \ + while (n-- > 0 && buflen > 0) \ + { \ + *cp++ = b64t[w & 0x3f]; \ + --buflen; \ + w >>= 6; \ + } \ + } while (0) + + b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4); + b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4); + b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4); + b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4); + b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4); + b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4); + b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4); + b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4); + b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4); + b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4); + b64_from_24bit(0, alt_result[31], alt_result[30], 3); + if (buflen <= 0) { + errno = ERANGE; + buffer = NULL; + } else + *cp = '\0'; /* Terminate the string. */ + + /* Clear the buffer for the intermediate result so that people + attaching to processes or reading core dumps cannot get any + information. We do it in this way to clear correct_words[] + inside the SHA256 implementation as well. */ + sha256_init_ctx(&ctx); + sha256_finish_ctx(&ctx, alt_result); + memset(temp_result, '\0', sizeof(temp_result)); + memset(p_bytes, '\0', key_len); + memset(s_bytes, '\0', salt_len); + memset(&ctx, '\0', sizeof(ctx)); + memset(&alt_ctx, '\0', sizeof(alt_ctx)); + if (copied_key != NULL) + memset(copied_key, '\0', key_len); + if (copied_salt != NULL) + memset(copied_salt, '\0', salt_len); + + return buffer; +} + +/* This entry point is equivalent to the `crypt' function in Unix + libcs. */ +char *sha256_crypt(const char *key, const char *salt) +{ + /* We don't want to have an arbitrary limit in the size of the + password. We can compute an upper bound for the size of the + result in advance and so we can prepare the buffer we pass to + `sha256_crypt_r'. */ + static char *buffer; + static int buflen; + int needed = (sizeof(sha256_salt_prefix) - 1 + + sizeof(sha256_rounds_prefix) + 9 + 1 + + strlen(salt) + 1 + 43 + 1); + + if (buflen < needed) { + char *new_buffer = (char *)realloc(buffer, needed); + if (new_buffer == NULL) + return NULL; + + buffer = new_buffer; + buflen = needed; + } + + return sha256_crypt_r(key, salt, buffer, buflen); +} + +#ifdef TEST +static const struct { + const char *input; + const char result[32]; +} tests[] = { + /* Test vectors from FIPS 180-2: appendix B.1. */ + { + "abc", + "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23" + "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad"}, + /* Test vectors from FIPS 180-2: appendix B.2. */ + { + "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", + "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" + "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"}, + /* Test vectors from the NESSIE project. */ + { + "", "\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24" + "\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55"}, + { + "a", "\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d" + "\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb"}, + { + "message digest", + "\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad" + "\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50"}, + { + "abcdefghijklmnopqrstuvwxyz", + "\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52" + "\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73"}, + { + "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", + "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" + "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"}, + { + "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", + "\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80" + "\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0"}, + { + "123456789012345678901234567890123456789012345678901234567890" + "12345678901234567890", + "\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e" + "\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e"} +}; + +#define ntests (sizeof (tests) / sizeof (tests[0])) + +static const struct { + const char *salt; + const char *input; + const char *expected; +} tests2[] = { + { + "$5$saltstring", "Hello world!", + "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5"}, { + "$5$rounds=10000$saltstringsaltstring", "Hello world!", + "$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2." + "opqey6IcA"}, { + "$5$rounds=5000$toolongsaltstring", "This is just a test", + "$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8" + "mGRcvxa5"}, { + "$5$rounds=1400$anotherlongsaltstring", + "a very much longer text to encrypt. This one even stretches over more" + "than one line.", + "$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12" + "oP84Bnq1"}, { + "$5$rounds=77777$short", + "we have a short salt string but not a short password", + "$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/"}, + { + "$5$rounds=123456$asaltof16chars..", "a short string", + "$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/" + "cZKmF/wJvD"}, { +"$5$rounds=10$roundstoolow", "the minimum number is still observed", + "$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97" + "2bIC"},}; +#define ntests2 (sizeof (tests2) / sizeof (tests2[0])) + +int main(void) +{ + struct sha256_ctx ctx; + char sum[32]; + int result = 0; + int cnt; + + for (cnt = 0; cnt < (int)ntests; ++cnt) { + sha256_init_ctx(&ctx); + sha256_process_bytes(tests[cnt].input, strlen(tests[cnt].input), &ctx); + sha256_finish_ctx(&ctx, sum); + if (memcmp(tests[cnt].result, sum, 32) != 0) { + printf("test %d run %d failed\n", cnt, 1); + result = 1; + } + + sha256_init_ctx(&ctx); + for (int i = 0; tests[cnt].input[i] != '\0'; ++i) + sha256_process_bytes(&tests[cnt].input[i], 1, &ctx); + sha256_finish_ctx(&ctx, sum); + if (memcmp(tests[cnt].result, sum, 32) != 0) { + printf("test %d run %d failed\n", cnt, 2); + result = 1; + } + } + + /* Test vector from FIPS 180-2: appendix B.3. */ + char buf[1000]; + memset(buf, 'a', sizeof(buf)); + sha256_init_ctx(&ctx); + for (int i = 0; i < 1000; ++i) + sha256_process_bytes(buf, sizeof(buf), &ctx); + sha256_finish_ctx(&ctx, sum); + static const char expected[32] = + "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67" + "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0"; + if (memcmp(expected, sum, 32) != 0) { + printf("test %d failed\n", cnt); + result = 1; + } + + for (cnt = 0; cnt < ntests2; ++cnt) { + char *cp = sha256_crypt(tests2[cnt].input, tests2[cnt].salt); + + if (strcmp(cp, tests2[cnt].expected) != 0) { + printf("test %d: expected \"%s\", got \"%s\"\n", + cnt, tests2[cnt].expected, cp); + result = 1; + } + } + + if (result == 0) + puts("all tests OK"); + + return result; +} +#endif |