/*
* i386 helpers (without register variable usage)
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include <signal.h>
#include "cpu.h"
#include "exec-all.h"
#include "qemu-common.h"
#include "kvm.h"
//#define DEBUG_MMU
/* feature flags taken from "Intel Processor Identification and the CPUID
* Instruction" and AMD's "CPUID Specification". In cases of disagreement
* about feature names, the Linux name is used. */
static const char *feature_name[] = {
"fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
"cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
"pat", "pse36", "pn" /* Intel psn */, "clflush" /* Intel clfsh */, NULL, "ds" /* Intel dts */, "acpi", "mmx",
"fxsr", "sse", "sse2", "ss", "ht" /* Intel htt */, "tm", "ia64", "pbe",
};
static const char *ext_feature_name[] = {
"pni" /* Intel,AMD sse3 */, NULL, NULL, "monitor", "ds_cpl", "vmx", NULL /* Linux smx */, "est",
"tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
NULL, NULL, "dca", NULL, NULL, NULL, NULL, "popcnt",
NULL, NULL, NULL, NULL, NULL, NULL, NULL, "hypervisor",
};
static const char *ext2_feature_name[] = {
"fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
"cx8" /* AMD CMPXCHG8B */, "apic", NULL, "syscall", "mtrr", "pge", "mca", "cmov",
"pat", "pse36", NULL, NULL /* Linux mp */, "nx" /* Intel xd */, NULL, "mmxext", "mmx",
"fxsr", "fxsr_opt" /* AMD ffxsr */, "pdpe1gb" /* AMD Page1GB */, "rdtscp", NULL, "lm" /* Intel 64 */, "3dnowext", "3dnow",
};
static const char *ext3_feature_name[] = {
"lahf_lm" /* AMD LahfSahf */, "cmp_legacy", "svm", "extapic" /* AMD ExtApicSpace */, "cr8legacy" /* AMD AltMovCr8 */, "abm", "sse4a", "misalignsse",
"3dnowprefetch", "osvw", NULL /* Linux ibs */, NULL, "skinit", "wdt", NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
};
static void add_flagname_to_bitmaps(const char *flagname, uint32_t *features,
uint32_t *ext_features,
uint32_t *ext2_features,
uint32_t *ext3_features)
{
int i;
int found = 0;
for ( i = 0 ; i < 32 ; i++ )
if (feature_name[i] && !strcmp (flagname, feature_name[i])) {
*features |= 1 << i;
found = 1;
}
for ( i = 0 ; i < 32 ; i++ )
if (ext_feature_name[i] && !strcmp (flagname, ext_feature_name[i])) {
*ext_features |= 1 << i;
found = 1;
}
for ( i = 0 ; i < 32 ; i++ )
if (ext2_feature_name[i] && !strcmp (flagname, ext2_feature_name[i])) {
*ext2_features |= 1 << i;
found = 1;
}
for ( i = 0 ; i < 32 ; i++ )
if (ext3_feature_name[i] && !strcmp (flagname, ext3_feature_name[i])) {
*ext3_features |= 1 << i;
found = 1;
}
if (!found) {
fprintf(stderr, "CPU feature %s not found\n", flagname);
}
}
typedef struct x86_def_t {
const char *name;
uint32_t level;
uint32_t vendor1, vendor2, vendor3;
int family;
int model;
int stepping;
uint32_t features, ext_features, ext2_features, ext3_features;
uint32_t xlevel;
char model_id[48];
int vendor_override;
} x86_def_t;
#define I486_FEATURES (CPUID_FP87 | CPUID_VME | CPUID_PSE)
#define PENTIUM_FEATURES (I486_FEATURES | CPUID_DE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_MMX)
#define PENTIUM2_FEATURES (PENTIUM_FEATURES | CPUID_PAE | CPUID_SEP | \
CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
CPUID_PSE36 | CPUID_FXSR)
#define PENTIUM3_FEATURES (PENTIUM2_FEATURES | CPUID_SSE)
#define PPRO_FEATURES (CPUID_FP87 | CPUID_DE | CPUID_PSE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_PGE | CPUID_CMOV | \
CPUID_PAT | CPUID_FXSR | CPUID_MMX | CPUID_SSE | CPUID_SSE2 | \
CPUID_PAE | CPUID_SEP | CPUID_APIC)
static x86_def_t x86_defs[] = {
#ifdef TARGET_X86_64
{
.name = "qemu64",
.level = 4,
.vendor1 = CPUID_VENDOR_AMD_1,
.vendor2 = CPUID_VENDOR_AMD_2,
.vendor3 = CPUID_VENDOR_AMD_3,
.family = 6,
.model = 2,
.stepping = 3,
.features = PPRO_FEATURES |
/* these features are needed for Win64 and aren't fully implemented */
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
/* this feature is needed for Solaris and isn't fully implemented */
CPUID_PSE36,
.ext_features = CPUID_EXT_SSE3,
.ext2_features = (PPRO_FEATURES & 0x0183F3FF) |
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.ext3_features = CPUID_EXT3_SVM,
.xlevel = 0x8000000A,
.model_id = "QEMU Virtual CPU version " QEMU_VERSION,
},
{
.name = "phenom",
.level = 5,
.vendor1 = CPUID_VENDOR_AMD_1,
.vendor2 = CPUID_VENDOR_AMD_2,
.vendor3 = CPUID_VENDOR_AMD_3,
.family = 16,
.model = 2,
.stepping = 3,
/* Missing: CPUID_VME, CPUID_HT */
.features = PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
/* Missing: CPUID_EXT_CX16, CPUID_EXT_POPCNT */
.ext_features = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR,
/* Missing: CPUID_EXT2_PDPE1GB, CPUID_EXT2_RDTSCP */
.ext2_features = (PPRO_FEATURES & 0x0183F3FF) |
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX |
CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_MMXEXT |
CPUID_EXT2_FFXSR,
/* Missing: CPUID_EXT3_LAHF_LM, CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
CPUID_EXT3_CR8LEG, CPUID_EXT3_ABM, CPUID_EXT3_SSE4A,
CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
CPUID_EXT3_OSVW, CPUID_EXT3_IBS */
.ext3_features = CPUID_EXT3_SVM,
.xlevel = 0x8000001A,
.model_id = "AMD Phenom(tm) 9550 Quad-Core Processor"
},
{
.name = "core2duo",
.level = 10,
.family = 6,
.model = 15,
.stepping = 11,
/* The original CPU also implements these features:
CPUID_VME, CPUID_DTS, CPUID_ACPI, CPUID_SS, CPUID_HT,
CPUID_TM, CPUID_PBE */
.features = PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
/* The original CPU also implements these ext features:
CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_VMX, CPUID_EXT_EST,
CPUID_EXT_TM2, CPUID_EXT_CX16, CPUID_EXT_XTPR, CPUID_EXT_PDCM */
.ext_features = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3,
.ext2_features = CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
/* Missing: .ext3_features = CPUID_EXT3_LAHF_LM */
.xlevel = 0x80000008,
.model_id = "Intel(R) Core(TM)2 Duo CPU T7700 @ 2.40GHz",
},
{
.name = "kvm64",
.level = 5,
.vendor1 = CPUID_VENDOR_INTEL_1,
.vendor2 = CPUID_VENDOR_INTEL_2,
.vendor3 = CPUID_VENDOR_INTEL_3,
.family = 15,
.model = 6,
.stepping = 1,
/* Missing: CPUID_VME, CPUID_HT */
.features = PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
/* Missing: CPUID_EXT_POPCNT, CPUID_EXT_MONITOR */
.ext_features = CPUID_EXT_SSE3 | CPUID_EXT_CX16,
/* Missing: CPUID_EXT2_PDPE1GB, CPUID_EXT2_RDTSCP */
.ext2_features = (PPRO_FEATURES & 0x0183F3FF) |
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
/* Missing: CPUID_EXT3_LAHF_LM, CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
CPUID_EXT3_CR8LEG, CPUID_EXT3_ABM, CPUID_EXT3_SSE4A,
CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
CPUID_EXT3_OSVW, CPUID_EXT3_IBS, CPUID_EXT3_SVM */
.ext3_features = 0,
.xlevel = 0x80000008,
.model_id = "Common KVM processor"
},
#endif
{
.name = "qemu32",
.level = 4,
.family = 6,
.model = 3,
.stepping = 3,
.features = PPRO_FEATURES,
.ext_features = CPUID_EXT_SSE3,
.xlevel = 0,
.model_id = "QEMU Virtual CPU version " QEMU_VERSION,
},
{
.name = "coreduo",
.level = 10,
.family = 6,
.model = 14,
.stepping = 8,
/* The original CPU also implements these features:
CPUID_DTS, CPUID_ACPI, CPUID_SS, CPUID_HT,
CPUID_TM, CPUID_PBE */
.features = PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA,
/* The original CPU also implements these ext features:
CPUID_EXT_VMX, CPUID_EXT_EST, CPUID_EXT_TM2, CPUID_EXT_XTPR,
CPUID_EXT_PDCM */
.ext_features = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR,
.ext2_features = CPUID_EXT2_NX,
.xlevel = 0x80000008,
.model_id = "Genuine Intel(R) CPU T2600 @ 2.16GHz",
},
{
.name = "486",
.level = 0,
.family = 4,
.model = 0,
.stepping = 0,
.features = I486_FEATURES,
.xlevel = 0,
},
{
.name = "pentium",
.level = 1,
.family = 5,
.model = 4,
.stepping = 3,
.features = PENTIUM_FEATURES,
.xlevel = 0,
},
{
.name = "pentium2",
.level = 2,
.family = 6,
.model = 5,
.stepping = 2,
.features = PENTIUM2_FEATURES,
.xlevel = 0,
},
{
.name = "pentium3",
.level = 2,
.family = 6,
.model = 7,
.stepping = 3,
.features = PENTIUM3_FEATURES,
.xlevel = 0,
},
{
.name = "athlon",
.level = 2,
.vendor1 = CPUID_VENDOR_AMD_1,
.vendor2 = CPUID_VENDOR_AMD_2,
.vendor3 = CPUID_VENDOR_AMD_3,
.family = 6,
.model = 2,
.stepping = 3,
.features = PPRO_FEATURES | CPUID_PSE36 | CPUID_VME | CPUID_MTRR | CPUID_MCA,
.ext2_features = (PPRO_FEATURES & 0x0183F3FF) | CPUID_EXT2_MMXEXT | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT,
.xlevel = 0x80000008,
/* XXX: put another string ? */
.model_id = "QEMU Virtual CPU version " QEMU_VERSION,
},
{
.name = "n270",
/* original is on level 10 */
.level = 5,
.family = 6,
.model = 28,
.stepping = 2,
.features = PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_VME,
/* Missing: CPUID_DTS | CPUID_ACPI | CPUID_SS |
* CPUID_HT | CPUID_TM | CPUID_PBE */
/* Some CPUs got no CPUID_SEP */
.ext_features = CPUID_EXT_MONITOR |
CPUID_EXT_SSE3 /* PNI */ | CPUID_EXT_SSSE3,
/* Missing: CPUID_EXT_DSCPL | CPUID_EXT_EST |
* CPUID_EXT_TM2 | CPUID_EXT_XTPR */
.ext2_features = (PPRO_FEATURES & 0x0183F3FF) | CPUID_EXT2_NX,
/* Missing: .ext3_features = CPUID_EXT3_LAHF_LM */
.xlevel = 0x8000000A,
.model_id = "Intel(R) Atom(TM) CPU N270 @ 1.60GHz",
},
};
static void host_cpuid(uint32_t function, uint32_t count, uint32_t *eax,
uint32_t *ebx, uint32_t *ecx, uint32_t *edx);
static int cpu_x86_fill_model_id(char *str)
{
uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0;
int i;
for (i = 0; i < 3; i++) {
host_cpuid(0x80000002 + i, 0, &eax, &ebx, &ecx, &edx);
memcpy(str + i * 16 + 0, &eax, 4);
memcpy(str + i * 16 + 4, &ebx, 4);
memcpy(str + i * 16 + 8, &ecx, 4);
memcpy(str + i * 16 + 12, &edx, 4);
}
return 0;
}
static int cpu_x86_fill_host(x86_def_t *x86_cpu_def)
{
uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0;
x86_cpu_def->name = "host";
host_cpuid(0x0, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_def->level = eax;
x86_cpu_def->vendor1 = ebx;
x86_cpu_def->vendor2 = edx;
x86_cpu_def->vendor3 = ecx;
host_cpuid(0x1, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_def->family = ((eax >> 8) & 0x0F) + ((eax >> 20) & 0xFF);
x86_cpu_def->model = ((eax >> 4) & 0x0F) | ((eax & 0xF0000) >> 12);
x86_cpu_def->stepping = eax & 0x0F;
x86_cpu_def->ext_features = ecx;
x86_cpu_def->features = edx;
host_cpuid(0x80000000, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_def->xlevel = eax;
host_cpuid(0x80000001, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_def->ext2_features = edx;
x86_cpu_def->ext3_features = ecx;
cpu_x86_fill_model_id(x86_cpu_def->model_id);
x86_cpu_def->vendor_override = 0;
return 0;
}
static int cpu_x86_find_by_name(x86_def_t *x86_cpu_def, const char *cpu_model)
{
unsigned int i;
x86_def_t *def;
char *s = strdup(cpu_model);
char *featurestr, *name = strtok(s, ",");
uint32_t plus_features = 0, plus_ext_features = 0, plus_ext2_features = 0, plus_ext3_features = 0;
uint32_t minus_features = 0, minus_ext_features = 0, minus_ext2_features = 0, minus_ext3_features = 0;
uint32_t numvalue;
def = NULL;
for (i = 0; i < ARRAY_SIZE(x86_defs); i++) {
if (strcmp(name, x86_defs[i].name) == 0) {
def = &x86_defs[i];
break;
}
}
if (kvm_enabled() && strcmp(name, "host") == 0) {
cpu_x86_fill_host(x86_cpu_def);
} else if (!def) {
goto error;
} else {
memcpy(x86_cpu_def, def, sizeof(*def));
}
add_flagname_to_bitmaps("hypervisor", &plus_features,
&plus_ext_features, &plus_ext2_features, &plus_ext3_features);
featurestr = strtok(NULL, ",");
while (featurestr) {
char *val;
if (featurestr[0] == '+') {
add_flagname_to_bitmaps(featurestr + 1, &plus_features, &plus_ext_features, &plus_ext2_features, &plus_ext3_features);
} else if (featurestr[0] == '-') {
add_flagname_to_bitmaps(featurestr + 1, &minus_features, &minus_ext_features, &minus_ext2_features, &minus_ext3_features);
} else if ((val = strchr(featurestr, '='))) {
*val = 0; val++;
if (!strcmp(featurestr, "family")) {
char *err;
numvalue = strtoul(val, &err, 0);
if (!*val || *err) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
x86_cpu_def->family = numvalue;
} else if (!strcmp(featurestr, "model")) {
char *err;
numvalue = strtoul(val, &err, 0);
if (!*val || *err || numvalue > 0xff) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
x86_cpu_def->model = numvalue;
} else if (!strcmp(featurestr, "stepping")) {
char *err;
numvalue = strtoul(val, &err, 0);
if (!*val || *err || numvalue > 0xf) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
x86_cpu_def->stepping = numvalue ;
} else if (!strcmp(featurestr, "level")) {
char *err;
numvalue = strtoul(val, &err, 0);
if (!*val || *err) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
x86_cpu_def->level = numvalue;
} else if (!strcmp(featurestr, "xlevel")) {
char *err;
numvalue = strtoul(val, &err, 0);
if (!*val || *err) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
if (numvalue < 0x80000000) {
numvalue += 0x80000000;
}
x86_cpu_def->xlevel = numvalue;
} else if (!strcmp(featurestr, "vendor")) {
if (strlen(val) != 12) {
fprintf(stderr, "vendor string must be 12 chars long\n");
goto error;
}
x86_cpu_def->vendor1 = 0;
x86_cpu_def->vendor2 = 0;
x86_cpu_def->vendor3 = 0;
for(i = 0; i < 4; i++) {
x86_cpu_def->vendor1 |= ((uint8_t)val[i ]) << (8 * i);
x86_cpu_def->vendor2 |= ((uint8_t)val[i + 4]) << (8 * i);
x86_cpu_def->vendor3 |= ((uint8_t)val[i + 8]) << (8 * i);
}
x86_cpu_def->vendor_override = 1;
} else if (!strcmp(featurestr, "model_id")) {
pstrcpy(x86_cpu_def->model_id, sizeof(x86_cpu_def->model_id),
val);
} else {
fprintf(stderr, "unrecognized feature %s\n", featurestr);
goto error;
}
} else {
fprintf(stderr, "feature string `%s' not in format (+feature|-feature|feature=xyz)\n", featurestr);
goto error;
}
featurestr = strtok(NULL, ",");
}
x86_cpu_def->features |= plus_features;
x86_cpu_def->ext_features |= plus_ext_features;
x86_cpu_def->ext2_features |= plus_ext2_features;
x86_cpu_def->ext3_features |= plus_ext3_features;
x86_cpu_def->features &= ~minus_features;
x86_cpu_def->ext_features &= ~minus_ext_features;
x86_cpu_def->ext2_features &= ~minus_ext2_features;
x86_cpu_def->ext3_features &= ~minus_ext3_features;
free(s);
return 0;
error:
free(s);
return -1;
}
void x86_cpu_list (FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(x86_defs); i++)
(*cpu_fprintf)(f, "x86 %16s\n", x86_defs[i].name);
}
static int cpu_x86_register (CPUX86State *env, const char *cpu_model)
{
x86_def_t def1, *def = &def1;
if (cpu_x86_find_by_name(def, cpu_model) < 0)
return -1;
if (def->vendor1) {
env->cpuid_vendor1 = def->vendor1;
env->cpuid_vendor2 = def->vendor2;
env->cpuid_vendor3 = def->vendor3;
} else {
env->cpuid_vendor1 = CPUID_VENDOR_INTEL_1;
env->cpuid_vendor2 = CPUID_VENDOR_INTEL_2;
env->cpuid_vendor3 = CPUID_VENDOR_INTEL_3;
}
env->cpuid_vendor_override = def->vendor_override;
env->cpuid_level = def->level;
if (def->family > 0x0f)
env->cpuid_version = 0xf00 | ((def->family - 0x0f) << 20);
else
env->cpuid_version = def->family << 8;
env->cpuid_version |= ((def->model & 0xf) << 4) | ((def->model >> 4) << 16);
env->cpuid_version |= def->stepping;
env->cpuid_features = def->features;
env->pat = 0x0007040600070406ULL;
env->cpuid_ext_features = def->ext_features;
env->cpuid_ext2_features = def->ext2_features;
env->cpuid_xlevel = def->xlevel;
env->cpuid_ext3_features = def->ext3_features;
{
const char *model_id = def->model_id;
int c, len, i;
if (!model_id)
model_id = "";
len = strlen(model_id);
for(i = 0; i < 48; i++) {
if (i >= len)
c = '\0';
else
c = (uint8_t)model_id[i];
env->cpuid_model[i >> 2] |= c << (8 * (i & 3));
}
}
return 0;
}
/* NOTE: must be called outside the CPU execute loop */
void cpu_reset(CPUX86State *env)
{
int i;
if (qemu_loglevel_mask(CPU_LOG_RESET)) {
qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
}
memset(env, 0, offsetof(CPUX86State, breakpoints));
tlb_flush(env, 1);
env->old_exception = -1;
/* init to reset state */
#ifdef CONFIG_SOFTMMU
env->hflags |= HF_SOFTMMU_MASK;
#endif
env->hflags2 |= HF2_GIF_MASK;
cpu_x86_update_cr0(env, 0x60000010);
env->a20_mask = ~0x0;
env->smbase = 0x30000;
env->idt.limit = 0xffff;
env->gdt.limit = 0xffff;
env->ldt.limit = 0xffff;
env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT);
env->tr.limit = 0xffff;
env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT);
cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK |
DESC_R_MASK | DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
env->eip = 0xfff0;
env->regs[R_EDX] = env->cpuid_version;
env->eflags = 0x2;
/* FPU init */
for(i = 0;i < 8; i++)
env->fptags[i] = 1;
env->fpuc = 0x37f;
env->mxcsr = 0x1f80;
memset(env->dr, 0, sizeof(env->dr));
env->dr[6] = DR6_FIXED_1;
env->dr[7] = DR7_FIXED_1;
cpu_breakpoint_remove_all(env, BP_CPU);
cpu_watchpoint_remove_all(env, BP_CPU);
}
void cpu_x86_close(CPUX86State *env)
{
qemu_free(env);
}
/***********************************************************/
/* x86 debug */
static const char *cc_op_str[] = {
"DYNAMIC",
"EFLAGS",
"MULB",
"MULW",
"MULL",
"MULQ",
"ADDB",
"ADDW",
"ADDL",
"ADDQ",
"ADCB",
"ADCW",
"ADCL",
"ADCQ",
"SUBB",
"SUBW",
"SUBL",
"SUBQ",
"SBBB",
"SBBW",
"SBBL",
"SBBQ",
"LOGICB",
"LOGICW",
"LOGICL",
"LOGICQ",
"INCB",
"INCW",
"INCL",
"INCQ",
"DECB",
"DECW",
"DECL",
"DECQ",
"SHLB",
"SHLW",
"SHLL",
"SHLQ",
"SARB",
"SARW",
"SARL",
"SARQ",
};
static void
cpu_x86_dump_seg_cache(CPUState *env, FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
const char *name, struct SegmentCache *sc)
{
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
cpu_fprintf(f, "%-3s=%04x %016" PRIx64 " %08x %08x", name,
sc->selector, sc->base, sc->limit, sc->flags);
} else
#endif
{
cpu_fprintf(f, "%-3s=%04x %08x %08x %08x", name, sc->selector,
(uint32_t)sc->base, sc->limit, sc->flags);
}
if (!(env->hflags & HF_PE_MASK) || !(sc->flags & DESC_P_MASK))
goto done;
cpu_fprintf(f, " DPL=%d ", (sc->flags & DESC_DPL_MASK) >> DESC_DPL_SHIFT);
if (sc->flags & DESC_S_MASK) {
if (sc->flags & DESC_CS_MASK) {
cpu_fprintf(f, (sc->flags & DESC_L_MASK) ? "CS64" :
((sc->flags & DESC_B_MASK) ? "CS32" : "CS16"));
cpu_fprintf(f, " [%c%c", (sc->flags & DESC_C_MASK) ? 'C' : '-',
(sc->flags & DESC_R_MASK) ? 'R' : '-');
} else {
cpu_fprintf(f, (sc->flags & DESC_B_MASK) ? "DS " : "DS16");
cpu_fprintf(f, " [%c%c", (sc->flags & DESC_E_MASK) ? 'E' : '-',
(sc->flags & DESC_W_MASK) ? 'W' : '-');
}
cpu_fprintf(f, "%c]", (sc->flags & DESC_A_MASK) ? 'A' : '-');
} else {
static const char *sys_type_name[2][16] = {
{ /* 32 bit mode */
"Reserved", "TSS16-avl", "LDT", "TSS16-busy",
"CallGate16", "TaskGate", "IntGate16", "TrapGate16",
"Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
"CallGate32", "Reserved", "IntGate32", "TrapGate32"
},
{ /* 64 bit mode */
"<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
"Reserved", "Reserved", "Reserved", "Reserved",
"TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
"Reserved", "IntGate64", "TrapGate64"
}
};
cpu_fprintf(f, sys_type_name[(env->hflags & HF_LMA_MASK) ? 1 : 0]
[(sc->flags & DESC_TYPE_MASK)
>> DESC_TYPE_SHIFT]);
}
done:
cpu_fprintf(f, "\n");
}
void cpu_dump_state(CPUState *env, FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
int flags)
{
int eflags, i, nb;
char cc_op_name[32];
static const char *seg_name[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
if (kvm_enabled())
cpu_synchronize_state(env);
eflags = env->eflags;
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
cpu_fprintf(f,
"RAX=%016" PRIx64 " RBX=%016" PRIx64 " RCX=%016" PRIx64 " RDX=%016" PRIx64 "\n"
"RSI=%016" PRIx64 " RDI=%016" PRIx64 " RBP=%016" PRIx64 " RSP=%016" PRIx64 "\n"
"R8 =%016" PRIx64 " R9 =%016" PRIx64 " R10=%016" PRIx64 " R11=%016" PRIx64 "\n"
"R12=%016" PRIx64 " R13=%016" PRIx64 " R14=%016" PRIx64 " R15=%016" PRIx64 "\n"
"RIP=%016" PRIx64 " RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
env->regs[R_EAX],
env->regs[R_EBX],
env->regs[R_ECX],
env->regs[R_EDX],
env->regs[R_ESI],
env->regs[R_EDI],
env->regs[R_EBP],
env->regs[R_ESP],
env->regs[8],
env->regs[9],
env->regs[10],
env->regs[11],
env->regs[12],
env->regs[13],
env->regs[14],
env->regs[15],
env->eip, eflags,
eflags & DF_MASK ? 'D' : '-',
eflags & CC_O ? 'O' : '-',
eflags & CC_S ? 'S' : '-',
eflags & CC_Z ? 'Z' : '-',
eflags & CC_A ? 'A' : '-',
eflags & CC_P ? 'P' : '-',
eflags & CC_C ? 'C' : '-',
env->hflags & HF_CPL_MASK,
(env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
(int)(env->a20_mask >> 20) & 1,
(env->hflags >> HF_SMM_SHIFT) & 1,
env->halted);
} else
#endif
{
cpu_fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
"ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
"EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
(uint32_t)env->regs[R_EAX],
(uint32_t)env->regs[R_EBX],
(uint32_t)env->regs[R_ECX],
(uint32_t)env->regs[R_EDX],
(uint32_t)env->regs[R_ESI],
(uint32_t)env->regs[R_EDI],
(uint32_t)env->regs[R_EBP],
(uint32_t)env->regs[R_ESP],
(uint32_t)env->eip, eflags,
eflags & DF_MASK ? 'D' : '-',
eflags & CC_O ? 'O' : '-',
eflags & CC_S ? 'S' : '-',
eflags & CC_Z ? 'Z' : '-',
eflags & CC_A ? 'A' : '-',
eflags & CC_P ? 'P' : '-',
eflags & CC_C ? 'C' : '-',
env->hflags & HF_CPL_MASK,
(env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
(int)(env->a20_mask >> 20) & 1,
(env->hflags >> HF_SMM_SHIFT) & 1,
env->halted);
}
for(i = 0; i < 6; i++) {
cpu_x86_dump_seg_cache(env, f, cpu_fprintf, seg_name[i],
&env->segs[i]);
}
cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "LDT", &env->ldt);
cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "TR", &env->tr);
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
cpu_fprintf(f, "GDT= %016" PRIx64 " %08x\n",
env->gdt.base, env->gdt.limit);
cpu_fprintf(f, "IDT= %016" PRIx64 " %08x\n",
env->idt.base, env->idt.limit);
cpu_fprintf(f, "CR0=%08x CR2=%016" PRIx64 " CR3=%016" PRIx64 " CR4=%08x\n",
(uint32_t)env->cr[0],
env->cr[2],
env->cr[3],
(uint32_t)env->cr[4]);
for(i = 0; i < 4; i++)
cpu_fprintf(f, "DR%d=%016" PRIx64 " ", i, env->dr[i]);
cpu_fprintf(f, "\nDR6=%016" PRIx64 " DR7=%016" PRIx64 "\n",
env->dr[6], env->dr[7]);
} else
#endif
{
cpu_fprintf(f, "GDT= %08x %08x\n",
(uint32_t)env->gdt.base, env->gdt.limit);
cpu_fprintf(f, "IDT= %08x %08x\n",
(uint32_t)env->idt.base, env->idt.limit);
cpu_fprintf(f, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
(uint32_t)env->cr[0],
(uint32_t)env->cr[2],
(uint32_t)env->cr[3],
(uint32_t)env->cr[4]);
for(i = 0; i < 4; i++)
cpu_fprintf(f, "DR%d=%08x ", i, env->dr[i]);
cpu_fprintf(f, "\nDR6=%08x DR7=%08x\n", env->dr[6], env->dr[7]);
}
if (flags & X86_DUMP_CCOP) {
if ((unsigned)env->cc_op < CC_OP_NB)
snprintf(cc_op_name, sizeof(cc_op_name), "%s", cc_op_str[env->cc_op]);
else
snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op);
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
cpu_fprintf(f, "CCS=%016" PRIx64 " CCD=%016" PRIx64 " CCO=%-8s\n",
env->cc_src, env->cc_dst,
cc_op_name);
} else
#endif
{
cpu_fprintf(f, "CCS=%08x CCD=%08x CCO=%-8s\n",
(uint32_t)env->cc_src, (uint32_t)env->cc_dst,
cc_op_name);
}
}
if (flags & X86_DUMP_FPU) {
int fptag;
fptag = 0;
for(i = 0; i < 8; i++) {
fptag |= ((!env->fptags[i]) << i);
}
cpu_fprintf(f, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
env->fpuc,
(env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11,
env->fpstt,
fptag,
env->mxcsr);
for(i=0;i<8;i++) {
#if defined(USE_X86LDOUBLE)
union {
long double d;
struct {
uint64_t lower;
uint16_t upper;
} l;
} tmp;
tmp.d = env->fpregs[i].d;
cpu_fprintf(f, "FPR%d=%016" PRIx64 " %04x",
i, tmp.l.lower, tmp.l.upper);
#else
cpu_fprintf(f, "FPR%d=%016" PRIx64,
i, env->fpregs[i].mmx.q);
#endif
if ((i & 1) == 1)
cpu_fprintf(f, "\n");
else
cpu_fprintf(f, " ");
}
if (env->hflags & HF_CS64_MASK)
nb = 16;
else
nb = 8;
for(i=0;i<nb;i++) {
cpu_fprintf(f, "XMM%02d=%08x%08x%08x%08x",
i,
env->xmm_regs[i].XMM_L(3),
env->xmm_regs[i].XMM_L(2),
env->xmm_regs[i].XMM_L(1),
env->xmm_regs[i].XMM_L(0));
if ((i & 1) == 1)
cpu_fprintf(f, "\n");
else
cpu_fprintf(f, " ");
}
}
}
/***********************************************************/
/* x86 mmu */
/* XXX: add PGE support */
void cpu_x86_set_a20(CPUX86State *env, int a20_state)
{
a20_state = (a20_state != 0);
if (a20_state != ((env->a20_mask >> 20) & 1)) {
#if defined(DEBUG_MMU)
printf("A20 update: a20=%d\n", a20_state);
#endif
/* if the cpu is currently executing code, we must unlink it and
all the potentially executing TB */
cpu_interrupt(env, CPU_INTERRUPT_EXITTB);
/* when a20 is changed, all the MMU mappings are invalid, so
we must flush everything */
tlb_flush(env, 1);
env->a20_mask = (~0x100000) | (a20_state << 20);
}
}
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
{
int pe_state;
#if defined(DEBUG_MMU)
printf("CR0 update: CR0=0x%08x\n", new_cr0);
#endif
if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
(env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
tlb_flush(env, 1);
}
#ifdef TARGET_X86_64
if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
(env->efer & MSR_EFER_LME)) {
/* enter in long mode */
/* XXX: generate an exception */
if (!(env->cr[4] & CR4_PAE_MASK))
return;
env->efer |= MSR_EFER_LMA;
env->hflags |= HF_LMA_MASK;
} else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
(env->efer & MSR_EFER_LMA)) {
/* exit long mode */
env->efer &= ~MSR_EFER_LMA;
env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
env->eip &= 0xffffffff;
}
#endif
env->cr[0] = new_cr0 | CR0_ET_MASK;
/* update PE flag in hidden flags */
pe_state = (env->cr[0] & CR0_PE_MASK);
env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
/* ensure that ADDSEG is always set in real mode */
env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
/* update FPU flags */
env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
}
/* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
the PDPT */
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
{
env->cr[3] = new_cr3;
if (env->cr[0] & CR0_PG_MASK) {
#if defined(DEBUG_MMU)
printf("CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
#endif
tlb_flush(env, 0);
}
}
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
{
#if defined(DEBUG_MMU)
printf("CR4 update: CR4=%08x\n", (uint32_t)env->cr[4]);
#endif
if ((new_cr4 & (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK)) !=
(env->cr[4] & (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK))) {
tlb_flush(env, 1);
}
/* SSE handling */
if (!(env->cpuid_features & CPUID_SSE))
new_cr4 &= ~CR4_OSFXSR_MASK;
if (new_cr4 & CR4_OSFXSR_MASK)
env->hflags |= HF_OSFXSR_MASK;
else
env->hflags &= ~HF_OSFXSR_MASK;
env->cr[4] = new_cr4;
}
#if defined(CONFIG_USER_ONLY)
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
int is_write, int mmu_idx, int is_softmmu)
{
/* user mode only emulation */
is_write &= 1;
env->cr[2] = addr;
env->error_code = (is_write << PG_ERROR_W_BIT);
env->error_code |= PG_ERROR_U_MASK;
env->exception_index = EXCP0E_PAGE;
return 1;
}
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
{
return addr;
}
#else
/* XXX: This value should match the one returned by CPUID
* and in exec.c */
# if defined(TARGET_X86_64)
# define PHYS_ADDR_MASK 0xfffffff000LL
# else
# define PHYS_ADDR_MASK 0xffffff000LL
# endif
/* return value:
-1 = cannot handle fault
0 = nothing more to do
1 = generate PF fault
2 = soft MMU activation required for this block
*/
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
int is_write1, int mmu_idx, int is_softmmu)
{
uint64_t ptep, pte;
target_ulong pde_addr, pte_addr;
int error_code, is_dirty, prot, page_size, ret, is_write, is_user;
target_phys_addr_t paddr;
uint32_t page_offset;
target_ulong vaddr, virt_addr;
is_user = mmu_idx == MMU_USER_IDX;
#if defined(DEBUG_MMU)
printf("MMU fault: addr=" TARGET_FMT_lx " w=%d u=%d eip=" TARGET_FMT_lx "\n",
addr, is_write1, is_user, env->eip);
#endif
is_write = is_write1 & 1;
if (!(env->cr[0] & CR0_PG_MASK)) {
pte = addr;
virt_addr = addr & TARGET_PAGE_MASK;
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
page_size = 4096;
goto do_mapping;
}
if (env->cr[4] & CR4_PAE_MASK) {
uint64_t pde, pdpe;
target_ulong pdpe_addr;
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
uint64_t pml4e_addr, pml4e;
int32_t sext;
/* test virtual address sign extension */
sext = (int64_t)addr >> 47;
if (sext != 0 && sext != -1) {
env->error_code = 0;
env->exception_index = EXCP0D_GPF;
return 1;
}
pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) &
env->a20_mask;
pml4e = ldq_phys(pml4e_addr);
if (!(pml4e & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (!(env->efer & MSR_EFER_NXE) && (pml4e & PG_NX_MASK)) {
error_code = PG_ERROR_RSVD_MASK;
goto do_fault;
}
if (!(pml4e & PG_ACCESSED_MASK)) {
pml4e |= PG_ACCESSED_MASK;
stl_phys_notdirty(pml4e_addr, pml4e);
}
ptep = pml4e ^ PG_NX_MASK;
pdpe_addr = ((pml4e & PHYS_ADDR_MASK) + (((addr >> 30) & 0x1ff) << 3)) &
env->a20_mask;
pdpe = ldq_phys(pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (!(env->efer & MSR_EFER_NXE) && (pdpe & PG_NX_MASK)) {
error_code = PG_ERROR_RSVD_MASK;
goto do_fault;
}
ptep &= pdpe ^ PG_NX_MASK;
if (!(pdpe & PG_ACCESSED_MASK)) {
pdpe |= PG_ACCESSED_MASK;
stl_phys_notdirty(pdpe_addr, pdpe);
}
} else
#endif
{
/* XXX: load them when cr3 is loaded ? */
pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
env->a20_mask;
pdpe = ldq_phys(pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
}
pde_addr = ((pdpe & PHYS_ADDR_MASK) + (((addr >> 21) & 0x1ff) << 3)) &
env->a20_mask;
pde = ldq_phys(pde_addr);
if (!(pde & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (!(env->efer & MSR_EFER_NXE) && (pde & PG_NX_MASK)) {
error_code = PG_ERROR_RSVD_MASK;
goto do_fault;
}
ptep &= pde ^ PG_NX_MASK;
if (pde & PG_PSE_MASK) {
/* 2 MB page */
page_size = 2048 * 1024;
ptep ^= PG_NX_MASK;
if ((ptep & PG_NX_MASK) && is_write1 == 2)
goto do_fault_protect;
if (is_user) {
if (!(ptep & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) &&
is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pde & PG_DIRTY_MASK);
if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
pde |= PG_ACCESSED_MASK;
if (is_dirty)
pde |= PG_DIRTY_MASK;
stl_phys_notdirty(pde_addr, pde);
}
/* align to page_size */
pte = pde & ((PHYS_ADDR_MASK & ~(page_size - 1)) | 0xfff);
virt_addr = addr & ~(page_size - 1);
} else {
/* 4 KB page */
if (!(pde & PG_ACCESSED_MASK)) {
pde |= PG_ACCESSED_MASK;
stl_phys_notdirty(pde_addr, pde);
}
pte_addr = ((pde & PHYS_ADDR_MASK) + (((addr >> 12) & 0x1ff) << 3)) &
env->a20_mask;
pte = ldq_phys(pte_addr);
if (!(pte & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (!(env->efer & MSR_EFER_NXE) && (pte & PG_NX_MASK)) {
error_code = PG_ERROR_RSVD_MASK;
goto do_fault;
}
/* combine pde and pte nx, user and rw protections */
ptep &= pte ^ PG_NX_MASK;
ptep ^= PG_NX_MASK;
if ((ptep & PG_NX_MASK) && is_write1 == 2)
goto do_fault_protect;
if (is_user) {
if (!(ptep & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) &&
is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pte & PG_DIRTY_MASK);
if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
pte |= PG_ACCESSED_MASK;
if (is_dirty)
pte |= PG_DIRTY_MASK;
stl_phys_notdirty(pte_addr, pte);
}
page_size = 4096;
virt_addr = addr & ~0xfff;
pte = pte & (PHYS_ADDR_MASK | 0xfff);
}
} else {
uint32_t pde;
/* page directory entry */
pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) &
env->a20_mask;
pde = ldl_phys(pde_addr);
if (!(pde & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
/* if PSE bit is set, then we use a 4MB page */
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
page_size = 4096 * 1024;
if (is_user) {
if (!(pde & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(pde & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) &&
is_write && !(pde & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pde & PG_DIRTY_MASK);
if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
pde |= PG_ACCESSED_MASK;
if (is_dirty)
pde |= PG_DIRTY_MASK;
stl_phys_notdirty(pde_addr, pde);
}
pte = pde & ~( (page_size - 1) & ~0xfff); /* align to page_size */
ptep = pte;
virt_addr = addr & ~(page_size - 1);
} else {
if (!(pde & PG_ACCESSED_MASK)) {
pde |= PG_ACCESSED_MASK;
stl_phys_notdirty(pde_addr, pde);
}
/* page directory entry */
pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) &
env->a20_mask;
pte = ldl_phys(pte_addr);
if (!(pte & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
/* combine pde and pte user and rw protections */
ptep = pte & pde;
if (is_user) {
if (!(ptep & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) &&
is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pte & PG_DIRTY_MASK);
if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
pte |= PG_ACCESSED_MASK;
if (is_dirty)
pte |= PG_DIRTY_MASK;
stl_phys_notdirty(pte_addr, pte);
}
page_size = 4096;
virt_addr = addr & ~0xfff;
}
}
/* the page can be put in the TLB */
prot = PAGE_READ;
if (!(ptep & PG_NX_MASK))
prot |= PAGE_EXEC;
if (pte & PG_DIRTY_MASK) {
/* only set write access if already dirty... otherwise wait
for dirty access */
if (is_user) {
if (ptep & PG_RW_MASK)
prot |= PAGE_WRITE;
} else {
if (!(env->cr[0] & CR0_WP_MASK) ||
(ptep & PG_RW_MASK))
prot |= PAGE_WRITE;
}
}
do_mapping:
pte = pte & env->a20_mask;
/* Even if 4MB pages, we map only one 4KB page in the cache to
avoid filling it too fast */
page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
paddr = (pte & TARGET_PAGE_MASK) + page_offset;
vaddr = virt_addr + page_offset;
ret = tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu);
return ret;
do_fault_protect:
error_code = PG_ERROR_P_MASK;
do_fault:
error_code |= (is_write << PG_ERROR_W_BIT);
if (is_user)
error_code |= PG_ERROR_U_MASK;
if (is_write1 == 2 &&
(env->efer & MSR_EFER_NXE) &&
(env->cr[4] & CR4_PAE_MASK))
error_code |= PG_ERROR_I_D_MASK;
if (env->intercept_exceptions & (1 << EXCP0E_PAGE)) {
/* cr2 is not modified in case of exceptions */
stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
addr);
} else {
env->cr[2] = addr;
}
env->error_code = error_code;
env->exception_index = EXCP0E_PAGE;
return 1;
}
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
{
target_ulong pde_addr, pte_addr;
uint64_t pte;
target_phys_addr_t paddr;
uint32_t page_offset;
int page_size;
if (env->cr[4] & CR4_PAE_MASK) {
target_ulong pdpe_addr;
uint64_t pde, pdpe;
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
uint64_t pml4e_addr, pml4e;
int32_t sext;
/* test virtual address sign extension */
sext = (int64_t)addr >> 47;
if (sext != 0 && sext != -1)
return -1;
pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) &
env->a20_mask;
pml4e = ldq_phys(pml4e_addr);
if (!(pml4e & PG_PRESENT_MASK))
return -1;
pdpe_addr = ((pml4e & ~0xfff) + (((addr >> 30) & 0x1ff) << 3)) &
env->a20_mask;
pdpe = ldq_phys(pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK))
return -1;
} else
#endif
{
pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
env->a20_mask;
pdpe = ldq_phys(pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK))
return -1;
}
pde_addr = ((pdpe & ~0xfff) + (((addr >> 21) & 0x1ff) << 3)) &
env->a20_mask;
pde = ldq_phys(pde_addr);
if (!(pde & PG_PRESENT_MASK)) {
return -1;
}
if (pde & PG_PSE_MASK) {
/* 2 MB page */
page_size = 2048 * 1024;
pte = pde & ~( (page_size - 1) & ~0xfff); /* align to page_size */
} else {
/* 4 KB page */
pte_addr = ((pde & ~0xfff) + (((addr >> 12) & 0x1ff) << 3)) &
env->a20_mask;
page_size = 4096;
pte = ldq_phys(pte_addr);
}
if (!(pte & PG_PRESENT_MASK))
return -1;
} else {
uint32_t pde;
if (!(env->cr[0] & CR0_PG_MASK)) {
pte = addr;
page_size = 4096;
} else {
/* page directory entry */
pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & env->a20_mask;
pde = ldl_phys(pde_addr);
if (!(pde & PG_PRESENT_MASK))
return -1;
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
pte = pde & ~0x003ff000; /* align to 4MB */
page_size = 4096 * 1024;
} else {
/* page directory entry */
pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & env->a20_mask;
pte = ldl_phys(pte_addr);
if (!(pte & PG_PRESENT_MASK))
return -1;
page_size = 4096;
}
}
pte = pte & env->a20_mask;
}
page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
paddr = (pte & TARGET_PAGE_MASK) + page_offset;
return paddr;
}
void hw_breakpoint_insert(CPUState *env, int index)
{
int type, err = 0;
switch (hw_breakpoint_type(env->dr[7], index)) {
case 0:
if (hw_breakpoint_enabled(env->dr[7], index))
err = cpu_breakpoint_insert(env, env->dr[index], BP_CPU,
&env->cpu_breakpoint[index]);
break;
case 1:
type = BP_CPU | BP_MEM_WRITE;
goto insert_wp;
case 2:
/* No support for I/O watchpoints yet */
break;
case 3:
type = BP_CPU | BP_MEM_ACCESS;
insert_wp:
err = cpu_watchpoint_insert(env, env->dr[index],
hw_breakpoint_len(env->dr[7], index),
type, &env->cpu_watchpoint[index]);
break;
}
if (err)
env->cpu_breakpoint[index] = NULL;
}
void hw_breakpoint_remove(CPUState *env, int index)
{
if (!env->cpu_breakpoint[index])
return;
switch (hw_breakpoint_type(env->dr[7], index)) {
case 0:
if (hw_breakpoint_enabled(env->dr[7], index))
cpu_breakpoint_remove_by_ref(env, env->cpu_breakpoint[index]);
break;
case 1:
case 3:
cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[index]);
break;
case 2:
/* No support for I/O watchpoints yet */
break;
}
}
int check_hw_breakpoints(CPUState *env, int force_dr6_update)
{
target_ulong dr6;
int reg, type;
int hit_enabled = 0;
dr6 = env->dr[6] & ~0xf;
for (reg = 0; reg < 4; reg++) {
type = hw_breakpoint_type(env->dr[7], reg);
if ((type == 0 && env->dr[reg] == env->eip) ||
((type & 1) && env->cpu_watchpoint[reg] &&
(env->cpu_watchpoint[reg]->flags & BP_WATCHPOINT_HIT))) {
dr6 |= 1 << reg;
if (hw_breakpoint_enabled(env->dr[7], reg))
hit_enabled = 1;
}
}
if (hit_enabled || force_dr6_update)
env->dr[6] = dr6;
return hit_enabled;
}
static CPUDebugExcpHandler *prev_debug_excp_handler;
void raise_exception(int exception_index);
static void breakpoint_handler(CPUState *env)
{
CPUBreakpoint *bp;
if (env->watchpoint_hit) {
if (env->watchpoint_hit->flags & BP_CPU) {
env->watchpoint_hit = NULL;
if (check_hw_breakpoints(env, 0))
raise_exception(EXCP01_DB);
else
cpu_resume_from_signal(env, NULL);
}
} else {
TAILQ_FOREACH(bp, &env->breakpoints, entry)
if (bp->pc == env->eip) {
if (bp->flags & BP_CPU) {
check_hw_breakpoints(env, 1);
raise_exception(EXCP01_DB);
}
break;
}
}
if (prev_debug_excp_handler)
prev_debug_excp_handler(env);
}
/* This should come from sysemu.h - if we could include it here... */
void qemu_system_reset_request(void);
void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
uint64_t mcg_status, uint64_t addr, uint64_t misc)
{
uint64_t mcg_cap = cenv->mcg_cap;
unsigned bank_num = mcg_cap & 0xff;
uint64_t *banks = cenv->mce_banks;
if (bank >= bank_num || !(status & MCI_STATUS_VAL))
return;
/*
* if MSR_MCG_CTL is not all 1s, the uncorrected error
* reporting is disabled
*/
if ((status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
cenv->mcg_ctl != ~(uint64_t)0)
return;
banks += 4 * bank;
/*
* if MSR_MCi_CTL is not all 1s, the uncorrected error
* reporting is disabled for the bank
*/
if ((status & MCI_STATUS_UC) && banks[0] != ~(uint64_t)0)
return;
if (status & MCI_STATUS_UC) {
if ((cenv->mcg_status & MCG_STATUS_MCIP) ||
!(cenv->cr[4] & CR4_MCE_MASK)) {
fprintf(stderr, "injects mce exception while previous "
"one is in progress!\n");
qemu_log_mask(CPU_LOG_RESET, "Triple fault\n");
qemu_system_reset_request();
return;
}
if (banks[1] & MCI_STATUS_VAL)
status |= MCI_STATUS_OVER;
banks[2] = addr;
banks[3] = misc;
cenv->mcg_status = mcg_status;
banks[1] = status;
cpu_interrupt(cenv, CPU_INTERRUPT_MCE);
} else if (!(banks[1] & MCI_STATUS_VAL)
|| !(banks[1] & MCI_STATUS_UC)) {
if (banks[1] & MCI_STATUS_VAL)
status |= MCI_STATUS_OVER;
banks[2] = addr;
banks[3] = misc;
banks[1] = status;
} else
banks[1] |= MCI_STATUS_OVER;
}
#endif /* !CONFIG_USER_ONLY */
static void mce_init(CPUX86State *cenv)
{
unsigned int bank, bank_num;
if (((cenv->cpuid_version >> 8)&0xf) >= 6
&& (cenv->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)) {
cenv->mcg_cap = MCE_CAP_DEF | MCE_BANKS_DEF;
cenv->mcg_ctl = ~(uint64_t)0;
bank_num = cenv->mcg_cap & 0xff;
cenv->mce_banks = qemu_mallocz(bank_num * sizeof(uint64_t) * 4);
for (bank = 0; bank < bank_num; bank++)
cenv->mce_banks[bank*4] = ~(uint64_t)0;
}
}
static void host_cpuid(uint32_t function, uint32_t count,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
#if defined(CONFIG_KVM)
uint32_t vec[4];
#ifdef __x86_64__
asm volatile("cpuid"
: "=a"(vec[0]), "=b"(vec[1]),
"=c"(vec[2]), "=d"(vec[3])
: "0"(function), "c"(count) : "cc");
#else
asm volatile("pusha \n\t"
"cpuid \n\t"
"mov %%eax, 0(%2) \n\t"
"mov %%ebx, 4(%2) \n\t"
"mov %%ecx, 8(%2) \n\t"
"mov %%edx, 12(%2) \n\t"
"popa"
: : "a"(function), "c"(count), "S"(vec)
: "memory", "cc");
#endif
if (eax)
*eax = vec[0];
if (ebx)
*ebx = vec[1];
if (ecx)
*ecx = vec[2];
if (edx)
*edx = vec[3];
#endif
}
void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
/* test if maximum index reached */
if (index & 0x80000000) {
if (index > env->cpuid_xlevel)
index = env->cpuid_level;
} else {
if (index > env->cpuid_level)
index = env->cpuid_level;
}
switch(index) {
case 0:
*eax = env->cpuid_level;
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
/* sysenter isn't supported on compatibility mode on AMD. and syscall
* isn't supported in compatibility mode on Intel. so advertise the
* actuall cpu, and say goodbye to migration between different vendors
* is you use compatibility mode. */
if (kvm_enabled() && !env->cpuid_vendor_override)
host_cpuid(0, 0, NULL, ebx, ecx, edx);
break;
case 1:
*eax = env->cpuid_version;
*ebx = (env->cpuid_apic_id << 24) | 8 << 8; /* CLFLUSH size in quad words, Linux wants it. */
*ecx = env->cpuid_ext_features;
*edx = env->cpuid_features;
if (env->nr_cores * env->nr_threads > 1) {
*ebx |= (env->nr_cores * env->nr_threads) << 16;
*edx |= 1 << 28; /* HTT bit */
}
break;
case 2:
/* cache info: needed for Pentium Pro compatibility */
*eax = 1;
*ebx = 0;
*ecx = 0;
*edx = 0x2c307d;
break;
case 4:
/* cache info: needed for Core compatibility */
if (env->nr_cores > 1) {
*eax = (env->nr_cores - 1) << 26;
} else {
*eax = 0;
}
switch (count) {
case 0: /* L1 dcache info */
*eax |= 0x0000121;
*ebx = 0x1c0003f;
*ecx = 0x000003f;
*edx = 0x0000001;
break;
case 1: /* L1 icache info */
*eax |= 0x0000122;
*ebx = 0x1c0003f;
*ecx = 0x000003f;
*edx = 0x0000001;
break;
case 2: /* L2 cache info */
*eax |= 0x0000143;
if (env->nr_threads > 1) {
*eax |= (env->nr_threads - 1) << 14;
}
*ebx = 0x3c0003f;
*ecx = 0x0000fff;
*edx = 0x0000001;
break;
default: /* end of info */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
break;
case 5:
/* mwait info: needed for Core compatibility */
*eax = 0; /* Smallest monitor-line size in bytes */
*ebx = 0; /* Largest monitor-line size in bytes */
*ecx = CPUID_MWAIT_EMX | CPUID_MWAIT_IBE;
*edx = 0;
break;
case 6:
/* Thermal and Power Leaf */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 9:
/* Direct Cache Access Information Leaf */
*eax = 0; /* Bits 0-31 in DCA_CAP MSR */
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0xA:
/* Architectural Performance Monitoring Leaf */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0x80000000:
*eax = env->cpuid_xlevel;
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
break;
case 0x80000001:
*eax = env->cpuid_version;
*ebx = 0;
*ecx = env->cpuid_ext3_features;
*edx = env->cpuid_ext2_features;
if (env->nr_cores * env->nr_threads > 1 &&
env->cpuid_vendor1 == CPUID_VENDOR_AMD_1 &&
env->cpuid_vendor2 == CPUID_VENDOR_AMD_2 &&
env->cpuid_vendor3 == CPUID_VENDOR_AMD_3) {
*ecx |= 1 << 1; /* CmpLegacy bit */
}
if (kvm_enabled()) {
/* Nested SVM not yet supported in KVM */
*ecx &= ~CPUID_EXT3_SVM;
} else {
/* AMD 3DNow! is not supported in QEMU */
*edx &= ~(CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT);
}
break;
case 0x80000002:
case 0x80000003:
case 0x80000004:
*eax = env->cpuid_model[(index - 0x80000002) * 4 + 0];
*ebx = env->cpuid_model[(index - 0x80000002) * 4 + 1];
*ecx = env->cpuid_model[(index - 0x80000002) * 4 + 2];
*edx = env->cpuid_model[(index - 0x80000002) * 4 + 3];
break;
case 0x80000005:
/* cache info (L1 cache) */
*eax = 0x01ff01ff;
*ebx = 0x01ff01ff;
*ecx = 0x40020140;
*edx = 0x40020140;
break;
case 0x80000006:
/* cache info (L2 cache) */
*eax = 0;
*ebx = 0x42004200;
*ecx = 0x02008140;
*edx = 0;
break;
case 0x80000008:
/* virtual & phys address size in low 2 bytes. */
/* XXX: This value must match the one used in the MMU code. */
if (env->cpuid_ext2_features & CPUID_EXT2_LM) {
/* 64 bit processor */
/* XXX: The physical address space is limited to 42 bits in exec.c. */
*eax = 0x00003028; /* 48 bits virtual, 40 bits physical */
} else {
if (env->cpuid_features & CPUID_PSE36)
*eax = 0x00000024; /* 36 bits physical */
else
*eax = 0x00000020; /* 32 bits physical */
}
*ebx = 0;
*ecx = 0;
*edx = 0;
if (env->nr_cores * env->nr_threads > 1) {
*ecx |= (env->nr_cores * env->nr_threads) - 1;
}
break;
case 0x8000000A:
*eax = 0x00000001; /* SVM Revision */
*ebx = 0x00000010; /* nr of ASIDs */
*ecx = 0;
*edx = 0; /* optional features */
break;
default:
/* reserved values: zero */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
}
int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
target_ulong *base, unsigned int *limit,
unsigned int *flags)
{
SegmentCache *dt;
target_ulong ptr;
uint32_t e1, e2;
int index;
if (selector & 0x4)
dt = &env->ldt;
else
dt = &env->gdt;
index = selector & ~7;
ptr = dt->base + index;
if ((index + 7) > dt->limit
|| cpu_memory_rw_debug(env, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
|| cpu_memory_rw_debug(env, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
return 0;
*base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
*limit = (e1 & 0xffff) | (e2 & 0x000f0000);
if (e2 & DESC_G_MASK)
*limit = (*limit << 12) | 0xfff;
*flags = e2;
return 1;
}
CPUX86State *cpu_x86_init(const char *cpu_model)
{
CPUX86State *env;
static int inited;
env = qemu_mallocz(sizeof(CPUX86State));
cpu_exec_init(env);
env->cpu_model_str = cpu_model;
/* init various static tables */
if (!inited) {
inited = 1;
optimize_flags_init();
#ifndef CONFIG_USER_ONLY
prev_debug_excp_handler =
cpu_set_debug_excp_handler(breakpoint_handler);
#endif
}
if (cpu_x86_register(env, cpu_model) < 0) {
cpu_x86_close(env);
return NULL;
}
mce_init(env);
cpu_reset(env);
qemu_init_vcpu(env);
return env;
}
#if !defined(CONFIG_USER_ONLY)
void do_cpu_init(CPUState *env)
{
int sipi = env->interrupt_request & CPU_INTERRUPT_SIPI;
cpu_reset(env);
env->interrupt_request = sipi;
apic_init_reset(env);
}
void do_cpu_sipi(CPUState *env)
{
apic_sipi(env);
}
#else
void do_cpu_init(CPUState *env)
{
}
void do_cpu_sipi(CPUState *env)
{
}
#endif