/*
* PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
*
* Copyright (c) 2003-2007 Jocelyn Mayer
* Copyright (c) 2013 David Gibson, IBM Corporation
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "qemu/error-report.h"
#include "sysemu/kvm.h"
#include "qemu/error-report.h"
#include "kvm_ppc.h"
#include "mmu-hash64.h"
#include "exec/log.h"
//#define DEBUG_SLB
#ifdef DEBUG_SLB
# define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
#else
# define LOG_SLB(...) do { } while (0)
#endif
/*
* Used to indicate that a CPU has its hash page table (HPT) managed
* within the host kernel
*/
#define MMU_HASH64_KVM_MANAGED_HPT ((void *)-1)
/*
* SLB handling
*/
static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
{
CPUPPCState *env = &cpu->env;
uint64_t esid_256M, esid_1T;
int n;
LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
for (n = 0; n < env->slb_nr; n++) {
ppc_slb_t *slb = &env->slb[n];
LOG_SLB("%s: slot %d %016" PRIx64 " %016"
PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
/* We check for 1T matches on all MMUs here - if the MMU
* doesn't have 1T segment support, we will have prevented 1T
* entries from being inserted in the slbmte code. */
if (((slb->esid == esid_256M) &&
((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
|| ((slb->esid == esid_1T) &&
((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
return slb;
}
}
return NULL;
}
void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
int i;
uint64_t slbe, slbv;
cpu_synchronize_state(CPU(cpu));
cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
for (i = 0; i < env->slb_nr; i++) {
slbe = env->slb[i].esid;
slbv = env->slb[i].vsid;
if (slbe == 0 && slbv == 0) {
continue;
}
cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
i, slbe, slbv);
}
}
void helper_slbia(CPUPPCState *env)
{
int n;
/* XXX: Warning: slbia never invalidates the first segment */
for (n = 1; n < env->slb_nr; n++) {
ppc_slb_t *slb = &env->slb[n];
if (slb->esid & SLB_ESID_V) {
slb->esid &= ~SLB_ESID_V;
/* XXX: given the fact that segment size is 256 MB or 1TB,
* and we still don't have a tlb_flush_mask(env, n, mask)
* in QEMU, we just invalidate all TLBs
*/
env->tlb_need_flush = 1;
}
}
}
void helper_slbie(CPUPPCState *env, target_ulong addr)
{
PowerPCCPU *cpu = ppc_env_get_cpu(env);
ppc_slb_t *slb;
slb = slb_lookup(cpu, addr);
if (!slb) {
return;
}
if (slb->esid & SLB_ESID_V) {
slb->esid &= ~SLB_ESID_V;
/* XXX: given the fact that segment size is 256 MB or 1TB,
* and we still don't have a tlb_flush_mask(env, n, mask)
* in QEMU, we just invalidate all TLBs
*/
env->tlb_need_flush = 1;
}
}
int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
target_ulong esid, target_ulong vsid)
{
CPUPPCState *env = &cpu->env;
ppc_slb_t *slb = &env->slb[slot];
const struct ppc_one_seg_page_size *sps = NULL;
int i;
if (slot >= env->slb_nr) {
return -1; /* Bad slot number */
}
if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
return -1; /* Reserved bits set */
}
if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
return -1; /* Bad segment size */
}
if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
return -1; /* 1T segment on MMU that doesn't support it */
}
for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
if (!sps1->page_shift) {
break;
}
if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
sps = sps1;
break;
}
}
if (!sps) {
error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
" esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
slot, esid, vsid);
return -1;
}
slb->esid = esid;
slb->vsid = vsid;
slb->sps = sps;
LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
" %016" PRIx64 "\n", __func__, slot, esid, vsid,
slb->esid, slb->vsid);
return 0;
}
static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
target_ulong *rt)
{
CPUPPCState *env = &cpu->env;
int slot = rb & 0xfff;
ppc_slb_t *slb = &env->slb[slot];
if (slot >= env->slb_nr) {
return -1;
}
*rt = slb->esid;
return 0;
}
static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
target_ulong *rt)
{
CPUPPCState *env = &cpu->env;
int slot = rb & 0xfff;
ppc_slb_t *slb = &env->slb[slot];
if (slot >= env->slb_nr) {
return -1;
}
*rt = slb->vsid;
return 0;
}
void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
{
PowerPCCPU *cpu = ppc_env_get_cpu(env);
if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_INVAL);
}
}
target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
{
PowerPCCPU *cpu = ppc_env_get_cpu(env);
target_ulong rt = 0;
if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_INVAL);
}
return rt;
}
target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
{
PowerPCCPU *cpu = ppc_env_get_cpu(env);
target_ulong rt = 0;
if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_INVAL);
}
return rt;
}
/*
* 64-bit hash table MMU handling
*/
void ppc_hash64_set_sdr1(PowerPCCPU *cpu, target_ulong value,
Error **errp)
{
CPUPPCState *env = &cpu->env;
target_ulong htabsize = value & SDR_64_HTABSIZE;
env->spr[SPR_SDR1] = value;
if (htabsize > 28) {
error_setg(errp,
"Invalid HTABSIZE 0x" TARGET_FMT_lx" stored in SDR1",
htabsize);
htabsize = 28;
}
env->htab_mask = (1ULL << (htabsize + 18 - 7)) - 1;
env->htab_base = value & SDR_64_HTABORG;
}
void ppc_hash64_set_external_hpt(PowerPCCPU *cpu, void *hpt, int shift,
Error **errp)
{
CPUPPCState *env = &cpu->env;
Error *local_err = NULL;
if (hpt) {
env->external_htab = hpt;
} else {
env->external_htab = MMU_HASH64_KVM_MANAGED_HPT;
}
ppc_hash64_set_sdr1(cpu, (target_ulong)(uintptr_t)hpt | (shift - 18),
&local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* Not strictly necessary, but makes it clearer that an external
* htab is in use when debugging */
env->htab_base = -1;
if (kvm_enabled()) {
if (kvmppc_put_books_sregs(cpu) < 0) {
error_setg(errp, "Unable to update SDR1 in KVM");
}
}
}
static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
ppc_slb_t *slb, ppc_hash_pte64_t pte)
{
CPUPPCState *env = &cpu->env;
unsigned pp, key;
/* Some pp bit combinations have undefined behaviour, so default
* to no access in those cases */
int prot = 0;
key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
: (slb->vsid & SLB_VSID_KS));
pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
if (key == 0) {
switch (pp) {
case 0x0:
case 0x1:
case 0x2:
prot = PAGE_READ | PAGE_WRITE;
break;
case 0x3:
case 0x6:
prot = PAGE_READ;
break;
}
} else {
switch (pp) {
case 0x0:
case 0x6:
prot = 0;
break;
case 0x1:
case 0x3:
prot = PAGE_READ;
break;
case 0x2:
prot = PAGE_READ | PAGE_WRITE;
break;
}
}
/* No execute if either noexec or guarded bits set */
if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
|| (slb->vsid & SLB_VSID_N)) {
prot |= PAGE_EXEC;
}
return prot;
}
static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
{
CPUPPCState *env = &cpu->env;
int key, amrbits;
int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
/* Only recent MMUs implement Virtual Page Class Key Protection */
if (!(env->mmu_model & POWERPC_MMU_AMR)) {
return prot;
}
key = HPTE64_R_KEY(pte.pte1);
amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
/* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
/* env->spr[SPR_AMR]); */
/*
* A store is permitted if the AMR bit is 0. Remove write
* protection if it is set.
*/
if (amrbits & 0x2) {
prot &= ~PAGE_WRITE;
}
/*
* A load is permitted if the AMR bit is 0. Remove read
* protection if it is set.
*/
if (amrbits & 0x1) {
prot &= ~PAGE_READ;
}
return prot;
}
uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index)
{
uint64_t token = 0;
hwaddr pte_offset;
pte_offset = pte_index * HASH_PTE_SIZE_64;
if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
/*
* HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
*/
token = kvmppc_hash64_read_pteg(cpu, pte_index);
} else if (cpu->env.external_htab) {
/*
* HTAB is controlled by QEMU. Just point to the internally
* accessible PTEG.
*/
token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset;
} else if (cpu->env.htab_base) {
token = cpu->env.htab_base + pte_offset;
}
return token;
}
void ppc_hash64_stop_access(PowerPCCPU *cpu, uint64_t token)
{
if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
kvmppc_hash64_free_pteg(token);
}
}
static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
bool secondary, target_ulong ptem,
ppc_hash_pte64_t *pte)
{
CPUPPCState *env = &cpu->env;
int i;
uint64_t token;
target_ulong pte0, pte1;
target_ulong pte_index;
pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP;
token = ppc_hash64_start_access(cpu, pte_index);
if (!token) {
return -1;
}
for (i = 0; i < HPTES_PER_GROUP; i++) {
pte0 = ppc_hash64_load_hpte0(cpu, token, i);
pte1 = ppc_hash64_load_hpte1(cpu, token, i);
if ((pte0 & HPTE64_V_VALID)
&& (secondary == !!(pte0 & HPTE64_V_SECONDARY))
&& HPTE64_V_COMPARE(pte0, ptem)) {
pte->pte0 = pte0;
pte->pte1 = pte1;
ppc_hash64_stop_access(cpu, token);
return (pte_index + i) * HASH_PTE_SIZE_64;
}
}
ppc_hash64_stop_access(cpu, token);
/*
* We didn't find a valid entry.
*/
return -1;
}
static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
ppc_slb_t *slb, target_ulong eaddr,
ppc_hash_pte64_t *pte)
{
CPUPPCState *env = &cpu->env;
hwaddr pte_offset;
hwaddr hash;
uint64_t vsid, epnmask, epn, ptem;
/* The SLB store path should prevent any bad page size encodings
* getting in there, so: */
assert(slb->sps);
epnmask = ~((1ULL << slb->sps->page_shift) - 1);
if (slb->vsid & SLB_VSID_B) {
/* 1TB segment */
vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
hash = vsid ^ (vsid << 25) ^ (epn >> slb->sps->page_shift);
} else {
/* 256M segment */
vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
hash = vsid ^ (epn >> slb->sps->page_shift);
}
ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
/* Page address translation */
qemu_log_mask(CPU_LOG_MMU,
"htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
" hash " TARGET_FMT_plx "\n",
env->htab_base, env->htab_mask, hash);
/* Primary PTEG lookup */
qemu_log_mask(CPU_LOG_MMU,
"0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
" vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
" hash=" TARGET_FMT_plx "\n",
env->htab_base, env->htab_mask, vsid, ptem, hash);
pte_offset = ppc_hash64_pteg_search(cpu, hash, 0, ptem, pte);
if (pte_offset == -1) {
/* Secondary PTEG lookup */
qemu_log_mask(CPU_LOG_MMU,
"1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
" vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
" hash=" TARGET_FMT_plx "\n", env->htab_base,
env->htab_mask, vsid, ptem, ~hash);
pte_offset = ppc_hash64_pteg_search(cpu, ~hash, 1, ptem, pte);
}
return pte_offset;
}
static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
uint64_t pte0, uint64_t pte1)
{
int i;
if (!(pte0 & HPTE64_V_LARGE)) {
if (sps->page_shift != 12) {
/* 4kiB page in a non 4kiB segment */
return 0;
}
/* Normal 4kiB page */
return 12;
}
for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
const struct ppc_one_page_size *ps = &sps->enc[i];
uint64_t mask;
if (!ps->page_shift) {
break;
}
if (ps->page_shift == 12) {
/* L bit is set so this can't be a 4kiB page */
continue;
}
mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
if ((pte1 & mask) == (ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
return ps->page_shift;
}
}
return 0; /* Bad page size encoding */
}
unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
uint64_t pte0, uint64_t pte1,
unsigned *seg_page_shift)
{
CPUPPCState *env = &cpu->env;
int i;
if (!(pte0 & HPTE64_V_LARGE)) {
*seg_page_shift = 12;
return 12;
}
/*
* The encodings in env->sps need to be carefully chosen so that
* this gives an unambiguous result.
*/
for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
unsigned shift;
if (!sps->page_shift) {
break;
}
shift = hpte_page_shift(sps, pte0, pte1);
if (shift) {
*seg_page_shift = sps->page_shift;
return shift;
}
}
*seg_page_shift = 0;
return 0;
}
int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
int rwx, int mmu_idx)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
ppc_slb_t *slb;
unsigned apshift;
hwaddr pte_offset;
ppc_hash_pte64_t pte;
int pp_prot, amr_prot, prot;
uint64_t new_pte1;
const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
hwaddr raddr;
assert((rwx == 0) || (rwx == 1) || (rwx == 2));
/* 1. Handle real mode accesses */
if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
/* Translation is off */
/* In real mode the top 4 effective address bits are ignored */
raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
TARGET_PAGE_SIZE);
return 0;
}
/* 2. Translation is on, so look up the SLB */
slb = slb_lookup(cpu, eaddr);
if (!slb) {
if (rwx == 2) {
cs->exception_index = POWERPC_EXCP_ISEG;
env->error_code = 0;
} else {
cs->exception_index = POWERPC_EXCP_DSEG;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
}
return 1;
}
/* 3. Check for segment level no-execute violation */
if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x10000000;
return 1;
}
/* 4. Locate the PTE in the hash table */
pte_offset = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte);
if (pte_offset == -1) {
if (rwx == 2) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x40000000;
} else {
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (rwx == 1) {
env->spr[SPR_DSISR] = 0x42000000;
} else {
env->spr[SPR_DSISR] = 0x40000000;
}
}
return 1;
}
qemu_log_mask(CPU_LOG_MMU,
"found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
/* Validate page size encoding */
apshift = hpte_page_shift(slb->sps, pte.pte0, pte.pte1);
if (!apshift) {
error_report("Bad page size encoding in HPTE 0x%"PRIx64" - 0x%"PRIx64
" @ 0x%"HWADDR_PRIx, pte.pte0, pte.pte1, pte_offset);
/* Not entirely sure what the right action here, but machine
* check seems reasonable */
cs->exception_index = POWERPC_EXCP_MCHECK;
env->error_code = 0;
return 1;
}
/* 5. Check access permissions */
pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
amr_prot = ppc_hash64_amr_prot(cpu, pte);
prot = pp_prot & amr_prot;
if ((need_prot[rwx] & ~prot) != 0) {
/* Access right violation */
qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
if (rwx == 2) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x08000000;
} else {
target_ulong dsisr = 0;
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (need_prot[rwx] & ~pp_prot) {
dsisr |= 0x08000000;
}
if (rwx == 1) {
dsisr |= 0x02000000;
}
if (need_prot[rwx] & ~amr_prot) {
dsisr |= 0x00200000;
}
env->spr[SPR_DSISR] = dsisr;
}
return 1;
}
qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
/* 6. Update PTE referenced and changed bits if necessary */
new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
if (rwx == 1) {
new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
} else {
/* Treat the page as read-only for now, so that a later write
* will pass through this function again to set the C bit */
prot &= ~PAGE_WRITE;
}
if (new_pte1 != pte.pte1) {
ppc_hash64_store_hpte(cpu, pte_offset / HASH_PTE_SIZE_64,
pte.pte0, new_pte1);
}
/* 7. Determine the real address from the PTE */
raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
prot, mmu_idx, 1ULL << apshift);
return 0;
}
hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
{
CPUPPCState *env = &cpu->env;
ppc_slb_t *slb;
hwaddr pte_offset;
ppc_hash_pte64_t pte;
unsigned apshift;
if (msr_dr == 0) {
/* In real mode the top 4 effective address bits are ignored */
return addr & 0x0FFFFFFFFFFFFFFFULL;
}
slb = slb_lookup(cpu, addr);
if (!slb) {
return -1;
}
pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte);
if (pte_offset == -1) {
return -1;
}
apshift = hpte_page_shift(slb->sps, pte.pte0, pte.pte1);
if (!apshift) {
return -1;
}
return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
& TARGET_PAGE_MASK;
}
void ppc_hash64_store_hpte(PowerPCCPU *cpu,
target_ulong pte_index,
target_ulong pte0, target_ulong pte1)
{
CPUPPCState *env = &cpu->env;
if (env->external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
kvmppc_hash64_write_pte(env, pte_index, pte0, pte1);
return;
}
pte_index *= HASH_PTE_SIZE_64;
if (env->external_htab) {
stq_p(env->external_htab + pte_index, pte0);
stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
} else {
stq_phys(CPU(cpu)->as, env->htab_base + pte_index, pte0);
stq_phys(CPU(cpu)->as,
env->htab_base + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
}
}
void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu,
target_ulong pte_index,
target_ulong pte0, target_ulong pte1)
{
/*
* XXX: given the fact that there are too many segments to
* invalidate, and we still don't have a tlb_flush_mask(env, n,
* mask) in QEMU, we just invalidate all TLBs
*/
tlb_flush(CPU(cpu), 1);
}