summaryrefslogtreecommitdiffstats
path: root/disas
diff options
context:
space:
mode:
authorThomas Huth2022-06-03 18:42:49 +0200
committerThomas Huth2022-07-05 10:15:49 +0200
commit2116650254117a873ab316038803cef657ae2820 (patch)
tree131f687eb9b5b8b4f586b40eb5ed9bc2a31c2e41 /disas
parenttests: use consistent bandwidth/downtime limits in migration tests (diff)
downloadqemu-2116650254117a873ab316038803cef657ae2820.tar.gz
qemu-2116650254117a873ab316038803cef657ae2820.tar.xz
qemu-2116650254117a873ab316038803cef657ae2820.zip
disas: Remove libvixl disassembler
The disassembly via capstone should be superiour to our old vixl sources nowadays, so let's finally cut this old disassembler out of the QEMU source tree. Message-Id: <20220603164249.112459-1-thuth@redhat.com> Tested-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Thomas Huth <thuth@redhat.com>
Diffstat (limited to 'disas')
-rw-r--r--disas/arm-a64.cc101
-rw-r--r--disas/libvixl/LICENCE30
-rw-r--r--disas/libvixl/README11
-rw-r--r--disas/libvixl/meson.build7
-rw-r--r--disas/libvixl/vixl/a64/assembler-a64.h4624
-rw-r--r--disas/libvixl/vixl/a64/constants-a64.h2116
-rw-r--r--disas/libvixl/vixl/a64/cpu-a64.h83
-rw-r--r--disas/libvixl/vixl/a64/decoder-a64.cc877
-rw-r--r--disas/libvixl/vixl/a64/decoder-a64.h275
-rw-r--r--disas/libvixl/vixl/a64/disasm-a64.cc3495
-rw-r--r--disas/libvixl/vixl/a64/disasm-a64.h177
-rw-r--r--disas/libvixl/vixl/a64/instructions-a64.cc622
-rw-r--r--disas/libvixl/vixl/a64/instructions-a64.h757
-rw-r--r--disas/libvixl/vixl/code-buffer.h113
-rw-r--r--disas/libvixl/vixl/compiler-intrinsics.cc144
-rw-r--r--disas/libvixl/vixl/compiler-intrinsics.h155
-rw-r--r--disas/libvixl/vixl/globals.h155
-rw-r--r--disas/libvixl/vixl/invalset.h775
-rw-r--r--disas/libvixl/vixl/platform.h39
-rw-r--r--disas/libvixl/vixl/utils.cc142
-rw-r--r--disas/libvixl/vixl/utils.h286
-rw-r--r--disas/meson.build5
22 files changed, 0 insertions, 14989 deletions
diff --git a/disas/arm-a64.cc b/disas/arm-a64.cc
deleted file mode 100644
index a1402a2e07..0000000000
--- a/disas/arm-a64.cc
+++ /dev/null
@@ -1,101 +0,0 @@
-/*
- * ARM A64 disassembly output wrapper to libvixl
- * Copyright (c) 2013 Linaro Limited
- * Written by Claudio Fontana
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
-#include "qemu/osdep.h"
-#include "disas/dis-asm.h"
-
-#include "vixl/a64/disasm-a64.h"
-
-using namespace vixl;
-
-static Decoder *vixl_decoder = NULL;
-static Disassembler *vixl_disasm = NULL;
-
-/* We don't use libvixl's PrintDisassembler because its output
- * is a little unhelpful (trailing newlines, for example).
- * Instead we use our own very similar variant so we have
- * control over the format.
- */
-class QEMUDisassembler : public Disassembler {
-public:
- QEMUDisassembler() : printf_(NULL), stream_(NULL) { }
- ~QEMUDisassembler() { }
-
- void SetStream(FILE *stream) {
- stream_ = stream;
- }
-
- void SetPrintf(fprintf_function printf_fn) {
- printf_ = printf_fn;
- }
-
-protected:
- virtual void ProcessOutput(const Instruction *instr) {
- printf_(stream_, "%08" PRIx32 " %s",
- instr->InstructionBits(), GetOutput());
- }
-
-private:
- fprintf_function printf_;
- FILE *stream_;
-};
-
-static int vixl_is_initialized(void)
-{
- return vixl_decoder != NULL;
-}
-
-static void vixl_init() {
- vixl_decoder = new Decoder();
- vixl_disasm = new QEMUDisassembler();
- vixl_decoder->AppendVisitor(vixl_disasm);
-}
-
-#define INSN_SIZE 4
-
-/* Disassemble ARM A64 instruction. This is our only entry
- * point from QEMU's C code.
- */
-int print_insn_arm_a64(uint64_t addr, disassemble_info *info)
-{
- uint8_t bytes[INSN_SIZE];
- uint32_t instrval;
- const Instruction *instr;
- int status;
-
- status = info->read_memory_func(addr, bytes, INSN_SIZE, info);
- if (status != 0) {
- info->memory_error_func(status, addr, info);
- return -1;
- }
-
- if (!vixl_is_initialized()) {
- vixl_init();
- }
-
- ((QEMUDisassembler *)vixl_disasm)->SetPrintf(info->fprintf_func);
- ((QEMUDisassembler *)vixl_disasm)->SetStream(info->stream);
-
- instrval = bytes[0] | bytes[1] << 8 | bytes[2] << 16 | bytes[3] << 24;
- instr = reinterpret_cast<const Instruction *>(&instrval);
- vixl_disasm->MapCodeAddress(addr, instr);
- vixl_decoder->Decode(instr);
-
- return INSN_SIZE;
-}
diff --git a/disas/libvixl/LICENCE b/disas/libvixl/LICENCE
deleted file mode 100644
index b7e160a3f5..0000000000
--- a/disas/libvixl/LICENCE
+++ /dev/null
@@ -1,30 +0,0 @@
-LICENCE
-=======
-
-The software in this repository is covered by the following licence.
-
-// Copyright 2013, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/disas/libvixl/README b/disas/libvixl/README
deleted file mode 100644
index 932a41adf7..0000000000
--- a/disas/libvixl/README
+++ /dev/null
@@ -1,11 +0,0 @@
-
-The code in this directory is a subset of libvixl:
- https://github.com/armvixl/vixl
-(specifically, it is the set of files needed for disassembly only,
-taken from libvixl 1.12).
-Bugfixes should preferably be sent upstream initially.
-
-The disassembler does not currently support the entire A64 instruction
-set. Notably:
- * Limited support for system instructions.
- * A few miscellaneous integer and floating point instructions are missing.
diff --git a/disas/libvixl/meson.build b/disas/libvixl/meson.build
deleted file mode 100644
index 5e2eb33e8e..0000000000
--- a/disas/libvixl/meson.build
+++ /dev/null
@@ -1,7 +0,0 @@
-libvixl_ss.add(files(
- 'vixl/a64/decoder-a64.cc',
- 'vixl/a64/disasm-a64.cc',
- 'vixl/a64/instructions-a64.cc',
- 'vixl/compiler-intrinsics.cc',
- 'vixl/utils.cc',
-))
diff --git a/disas/libvixl/vixl/a64/assembler-a64.h b/disas/libvixl/vixl/a64/assembler-a64.h
deleted file mode 100644
index fda5ccc6c7..0000000000
--- a/disas/libvixl/vixl/a64/assembler-a64.h
+++ /dev/null
@@ -1,4624 +0,0 @@
-// Copyright 2015, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef VIXL_A64_ASSEMBLER_A64_H_
-#define VIXL_A64_ASSEMBLER_A64_H_
-
-
-#include "vixl/globals.h"
-#include "vixl/invalset.h"
-#include "vixl/utils.h"
-#include "vixl/code-buffer.h"
-#include "vixl/a64/instructions-a64.h"
-
-namespace vixl {
-
-typedef uint64_t RegList;
-static const int kRegListSizeInBits = sizeof(RegList) * 8;
-
-
-// Registers.
-
-// Some CPURegister methods can return Register or VRegister types, so we need
-// to declare them in advance.
-class Register;
-class VRegister;
-
-class CPURegister {
- public:
- enum RegisterType {
- // The kInvalid value is used to detect uninitialized static instances,
- // which are always zero-initialized before any constructors are called.
- kInvalid = 0,
- kRegister,
- kVRegister,
- kFPRegister = kVRegister,
- kNoRegister
- };
-
- CPURegister() : code_(0), size_(0), type_(kNoRegister) {
- VIXL_ASSERT(!IsValid());
- VIXL_ASSERT(IsNone());
- }
-
- CPURegister(unsigned code, unsigned size, RegisterType type)
- : code_(code), size_(size), type_(type) {
- VIXL_ASSERT(IsValidOrNone());
- }
-
- unsigned code() const {
- VIXL_ASSERT(IsValid());
- return code_;
- }
-
- RegisterType type() const {
- VIXL_ASSERT(IsValidOrNone());
- return type_;
- }
-
- RegList Bit() const {
- VIXL_ASSERT(code_ < (sizeof(RegList) * 8));
- return IsValid() ? (static_cast<RegList>(1) << code_) : 0;
- }
-
- unsigned size() const {
- VIXL_ASSERT(IsValid());
- return size_;
- }
-
- int SizeInBytes() const {
- VIXL_ASSERT(IsValid());
- VIXL_ASSERT(size() % 8 == 0);
- return size_ / 8;
- }
-
- int SizeInBits() const {
- VIXL_ASSERT(IsValid());
- return size_;
- }
-
- bool Is8Bits() const {
- VIXL_ASSERT(IsValid());
- return size_ == 8;
- }
-
- bool Is16Bits() const {
- VIXL_ASSERT(IsValid());
- return size_ == 16;
- }
-
- bool Is32Bits() const {
- VIXL_ASSERT(IsValid());
- return size_ == 32;
- }
-
- bool Is64Bits() const {
- VIXL_ASSERT(IsValid());
- return size_ == 64;
- }
-
- bool Is128Bits() const {
- VIXL_ASSERT(IsValid());
- return size_ == 128;
- }
-
- bool IsValid() const {
- if (IsValidRegister() || IsValidVRegister()) {
- VIXL_ASSERT(!IsNone());
- return true;
- } else {
- // This assert is hit when the register has not been properly initialized.
- // One cause for this can be an initialisation order fiasco. See
- // https://isocpp.org/wiki/faq/ctors#static-init-order for some details.
- VIXL_ASSERT(IsNone());
- return false;
- }
- }
-
- bool IsValidRegister() const {
- return IsRegister() &&
- ((size_ == kWRegSize) || (size_ == kXRegSize)) &&
- ((code_ < kNumberOfRegisters) || (code_ == kSPRegInternalCode));
- }
-
- bool IsValidVRegister() const {
- return IsVRegister() &&
- ((size_ == kBRegSize) || (size_ == kHRegSize) ||
- (size_ == kSRegSize) || (size_ == kDRegSize) ||
- (size_ == kQRegSize)) &&
- (code_ < kNumberOfVRegisters);
- }
-
- bool IsValidFPRegister() const {
- return IsFPRegister() && (code_ < kNumberOfVRegisters);
- }
-
- bool IsNone() const {
- // kNoRegister types should always have size 0 and code 0.
- VIXL_ASSERT((type_ != kNoRegister) || (code_ == 0));
- VIXL_ASSERT((type_ != kNoRegister) || (size_ == 0));
-
- return type_ == kNoRegister;
- }
-
- bool Aliases(const CPURegister& other) const {
- VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
- return (code_ == other.code_) && (type_ == other.type_);
- }
-
- bool Is(const CPURegister& other) const {
- VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
- return Aliases(other) && (size_ == other.size_);
- }
-
- bool IsZero() const {
- VIXL_ASSERT(IsValid());
- return IsRegister() && (code_ == kZeroRegCode);
- }
-
- bool IsSP() const {
- VIXL_ASSERT(IsValid());
- return IsRegister() && (code_ == kSPRegInternalCode);
- }
-
- bool IsRegister() const {
- return type_ == kRegister;
- }
-
- bool IsVRegister() const {
- return type_ == kVRegister;
- }
-
- bool IsFPRegister() const {
- return IsS() || IsD();
- }
-
- bool IsW() const { return IsValidRegister() && Is32Bits(); }
- bool IsX() const { return IsValidRegister() && Is64Bits(); }
-
- // These assertions ensure that the size and type of the register are as
- // described. They do not consider the number of lanes that make up a vector.
- // So, for example, Is8B() implies IsD(), and Is1D() implies IsD, but IsD()
- // does not imply Is1D() or Is8B().
- // Check the number of lanes, ie. the format of the vector, using methods such
- // as Is8B(), Is1D(), etc. in the VRegister class.
- bool IsV() const { return IsVRegister(); }
- bool IsB() const { return IsV() && Is8Bits(); }
- bool IsH() const { return IsV() && Is16Bits(); }
- bool IsS() const { return IsV() && Is32Bits(); }
- bool IsD() const { return IsV() && Is64Bits(); }
- bool IsQ() const { return IsV() && Is128Bits(); }
-
- const Register& W() const;
- const Register& X() const;
- const VRegister& V() const;
- const VRegister& B() const;
- const VRegister& H() const;
- const VRegister& S() const;
- const VRegister& D() const;
- const VRegister& Q() const;
-
- bool IsSameSizeAndType(const CPURegister& other) const {
- return (size_ == other.size_) && (type_ == other.type_);
- }
-
- protected:
- unsigned code_;
- unsigned size_;
- RegisterType type_;
-
- private:
- bool IsValidOrNone() const {
- return IsValid() || IsNone();
- }
-};
-
-
-class Register : public CPURegister {
- public:
- Register() : CPURegister() {}
- explicit Register(const CPURegister& other)
- : CPURegister(other.code(), other.size(), other.type()) {
- VIXL_ASSERT(IsValidRegister());
- }
- Register(unsigned code, unsigned size)
- : CPURegister(code, size, kRegister) {}
-
- bool IsValid() const {
- VIXL_ASSERT(IsRegister() || IsNone());
- return IsValidRegister();
- }
-
- static const Register& WRegFromCode(unsigned code);
- static const Register& XRegFromCode(unsigned code);
-
- private:
- static const Register wregisters[];
- static const Register xregisters[];
-};
-
-
-class VRegister : public CPURegister {
- public:
- VRegister() : CPURegister(), lanes_(1) {}
- explicit VRegister(const CPURegister& other)
- : CPURegister(other.code(), other.size(), other.type()), lanes_(1) {
- VIXL_ASSERT(IsValidVRegister());
- VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
- }
- VRegister(unsigned code, unsigned size, unsigned lanes = 1)
- : CPURegister(code, size, kVRegister), lanes_(lanes) {
- VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
- }
- VRegister(unsigned code, VectorFormat format)
- : CPURegister(code, RegisterSizeInBitsFromFormat(format), kVRegister),
- lanes_(IsVectorFormat(format) ? LaneCountFromFormat(format) : 1) {
- VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
- }
-
- bool IsValid() const {
- VIXL_ASSERT(IsVRegister() || IsNone());
- return IsValidVRegister();
- }
-
- static const VRegister& BRegFromCode(unsigned code);
- static const VRegister& HRegFromCode(unsigned code);
- static const VRegister& SRegFromCode(unsigned code);
- static const VRegister& DRegFromCode(unsigned code);
- static const VRegister& QRegFromCode(unsigned code);
- static const VRegister& VRegFromCode(unsigned code);
-
- VRegister V8B() const { return VRegister(code_, kDRegSize, 8); }
- VRegister V16B() const { return VRegister(code_, kQRegSize, 16); }
- VRegister V4H() const { return VRegister(code_, kDRegSize, 4); }
- VRegister V8H() const { return VRegister(code_, kQRegSize, 8); }
- VRegister V2S() const { return VRegister(code_, kDRegSize, 2); }
- VRegister V4S() const { return VRegister(code_, kQRegSize, 4); }
- VRegister V2D() const { return VRegister(code_, kQRegSize, 2); }
- VRegister V1D() const { return VRegister(code_, kDRegSize, 1); }
-
- bool Is8B() const { return (Is64Bits() && (lanes_ == 8)); }
- bool Is16B() const { return (Is128Bits() && (lanes_ == 16)); }
- bool Is4H() const { return (Is64Bits() && (lanes_ == 4)); }
- bool Is8H() const { return (Is128Bits() && (lanes_ == 8)); }
- bool Is2S() const { return (Is64Bits() && (lanes_ == 2)); }
- bool Is4S() const { return (Is128Bits() && (lanes_ == 4)); }
- bool Is1D() const { return (Is64Bits() && (lanes_ == 1)); }
- bool Is2D() const { return (Is128Bits() && (lanes_ == 2)); }
-
- // For consistency, we assert the number of lanes of these scalar registers,
- // even though there are no vectors of equivalent total size with which they
- // could alias.
- bool Is1B() const {
- VIXL_ASSERT(!(Is8Bits() && IsVector()));
- return Is8Bits();
- }
- bool Is1H() const {
- VIXL_ASSERT(!(Is16Bits() && IsVector()));
- return Is16Bits();
- }
- bool Is1S() const {
- VIXL_ASSERT(!(Is32Bits() && IsVector()));
- return Is32Bits();
- }
-
- bool IsLaneSizeB() const { return LaneSizeInBits() == kBRegSize; }
- bool IsLaneSizeH() const { return LaneSizeInBits() == kHRegSize; }
- bool IsLaneSizeS() const { return LaneSizeInBits() == kSRegSize; }
- bool IsLaneSizeD() const { return LaneSizeInBits() == kDRegSize; }
-
- int lanes() const {
- return lanes_;
- }
-
- bool IsScalar() const {
- return lanes_ == 1;
- }
-
- bool IsVector() const {
- return lanes_ > 1;
- }
-
- bool IsSameFormat(const VRegister& other) const {
- return (size_ == other.size_) && (lanes_ == other.lanes_);
- }
-
- unsigned LaneSizeInBytes() const {
- return SizeInBytes() / lanes_;
- }
-
- unsigned LaneSizeInBits() const {
- return LaneSizeInBytes() * 8;
- }
-
- private:
- static const VRegister bregisters[];
- static const VRegister hregisters[];
- static const VRegister sregisters[];
- static const VRegister dregisters[];
- static const VRegister qregisters[];
- static const VRegister vregisters[];
- int lanes_;
-};
-
-
-// Backward compatibility for FPRegisters.
-typedef VRegister FPRegister;
-
-// No*Reg is used to indicate an unused argument, or an error case. Note that
-// these all compare equal (using the Is() method). The Register and VRegister
-// variants are provided for convenience.
-const Register NoReg;
-const VRegister NoVReg;
-const FPRegister NoFPReg; // For backward compatibility.
-const CPURegister NoCPUReg;
-
-
-#define DEFINE_REGISTERS(N) \
-const Register w##N(N, kWRegSize); \
-const Register x##N(N, kXRegSize);
-REGISTER_CODE_LIST(DEFINE_REGISTERS)
-#undef DEFINE_REGISTERS
-const Register wsp(kSPRegInternalCode, kWRegSize);
-const Register sp(kSPRegInternalCode, kXRegSize);
-
-
-#define DEFINE_VREGISTERS(N) \
-const VRegister b##N(N, kBRegSize); \
-const VRegister h##N(N, kHRegSize); \
-const VRegister s##N(N, kSRegSize); \
-const VRegister d##N(N, kDRegSize); \
-const VRegister q##N(N, kQRegSize); \
-const VRegister v##N(N, kQRegSize);
-REGISTER_CODE_LIST(DEFINE_VREGISTERS)
-#undef DEFINE_VREGISTERS
-
-
-// Registers aliases.
-const Register ip0 = x16;
-const Register ip1 = x17;
-const Register lr = x30;
-const Register xzr = x31;
-const Register wzr = w31;
-
-
-// AreAliased returns true if any of the named registers overlap. Arguments
-// set to NoReg are ignored. The system stack pointer may be specified.
-bool AreAliased(const CPURegister& reg1,
- const CPURegister& reg2,
- const CPURegister& reg3 = NoReg,
- const CPURegister& reg4 = NoReg,
- const CPURegister& reg5 = NoReg,
- const CPURegister& reg6 = NoReg,
- const CPURegister& reg7 = NoReg,
- const CPURegister& reg8 = NoReg);
-
-
-// AreSameSizeAndType returns true if all of the specified registers have the
-// same size, and are of the same type. The system stack pointer may be
-// specified. Arguments set to NoReg are ignored, as are any subsequent
-// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
-bool AreSameSizeAndType(const CPURegister& reg1,
- const CPURegister& reg2,
- const CPURegister& reg3 = NoCPUReg,
- const CPURegister& reg4 = NoCPUReg,
- const CPURegister& reg5 = NoCPUReg,
- const CPURegister& reg6 = NoCPUReg,
- const CPURegister& reg7 = NoCPUReg,
- const CPURegister& reg8 = NoCPUReg);
-
-
-// AreSameFormat returns true if all of the specified VRegisters have the same
-// vector format. Arguments set to NoReg are ignored, as are any subsequent
-// arguments. At least one argument (reg1) must be valid (not NoVReg).
-bool AreSameFormat(const VRegister& reg1,
- const VRegister& reg2,
- const VRegister& reg3 = NoVReg,
- const VRegister& reg4 = NoVReg);
-
-
-// AreConsecutive returns true if all of the specified VRegisters are
-// consecutive in the register file. Arguments set to NoReg are ignored, as are
-// any subsequent arguments. At least one argument (reg1) must be valid
-// (not NoVReg).
-bool AreConsecutive(const VRegister& reg1,
- const VRegister& reg2,
- const VRegister& reg3 = NoVReg,
- const VRegister& reg4 = NoVReg);
-
-
-// Lists of registers.
-class CPURegList {
- public:
- explicit CPURegList(CPURegister reg1,
- CPURegister reg2 = NoCPUReg,
- CPURegister reg3 = NoCPUReg,
- CPURegister reg4 = NoCPUReg)
- : list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
- size_(reg1.size()), type_(reg1.type()) {
- VIXL_ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
- VIXL_ASSERT(IsValid());
- }
-
- CPURegList(CPURegister::RegisterType type, unsigned size, RegList list)
- : list_(list), size_(size), type_(type) {
- VIXL_ASSERT(IsValid());
- }
-
- CPURegList(CPURegister::RegisterType type, unsigned size,
- unsigned first_reg, unsigned last_reg)
- : size_(size), type_(type) {
- VIXL_ASSERT(((type == CPURegister::kRegister) &&
- (last_reg < kNumberOfRegisters)) ||
- ((type == CPURegister::kVRegister) &&
- (last_reg < kNumberOfVRegisters)));
- VIXL_ASSERT(last_reg >= first_reg);
- list_ = (UINT64_C(1) << (last_reg + 1)) - 1;
- list_ &= ~((UINT64_C(1) << first_reg) - 1);
- VIXL_ASSERT(IsValid());
- }
-
- CPURegister::RegisterType type() const {
- VIXL_ASSERT(IsValid());
- return type_;
- }
-
- // Combine another CPURegList into this one. Registers that already exist in
- // this list are left unchanged. The type and size of the registers in the
- // 'other' list must match those in this list.
- void Combine(const CPURegList& other) {
- VIXL_ASSERT(IsValid());
- VIXL_ASSERT(other.type() == type_);
- VIXL_ASSERT(other.RegisterSizeInBits() == size_);
- list_ |= other.list();
- }
-
- // Remove every register in the other CPURegList from this one. Registers that
- // do not exist in this list are ignored. The type and size of the registers
- // in the 'other' list must match those in this list.
- void Remove(const CPURegList& other) {
- VIXL_ASSERT(IsValid());
- VIXL_ASSERT(other.type() == type_);
- VIXL_ASSERT(other.RegisterSizeInBits() == size_);
- list_ &= ~other.list();
- }
-
- // Variants of Combine and Remove which take a single register.
- void Combine(const CPURegister& other) {
- VIXL_ASSERT(other.type() == type_);
- VIXL_ASSERT(other.size() == size_);
- Combine(other.code());
- }
-
- void Remove(const CPURegister& other) {
- VIXL_ASSERT(other.type() == type_);
- VIXL_ASSERT(other.size() == size_);
- Remove(other.code());
- }
-
- // Variants of Combine and Remove which take a single register by its code;
- // the type and size of the register is inferred from this list.
- void Combine(int code) {
- VIXL_ASSERT(IsValid());
- VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
- list_ |= (UINT64_C(1) << code);
- }
-
- void Remove(int code) {
- VIXL_ASSERT(IsValid());
- VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
- list_ &= ~(UINT64_C(1) << code);
- }
-
- static CPURegList Union(const CPURegList& list_1, const CPURegList& list_2) {
- VIXL_ASSERT(list_1.type_ == list_2.type_);
- VIXL_ASSERT(list_1.size_ == list_2.size_);
- return CPURegList(list_1.type_, list_1.size_, list_1.list_ | list_2.list_);
- }
- static CPURegList Union(const CPURegList& list_1,
- const CPURegList& list_2,
- const CPURegList& list_3);
- static CPURegList Union(const CPURegList& list_1,
- const CPURegList& list_2,
- const CPURegList& list_3,
- const CPURegList& list_4);
-
- static CPURegList Intersection(const CPURegList& list_1,
- const CPURegList& list_2) {
- VIXL_ASSERT(list_1.type_ == list_2.type_);
- VIXL_ASSERT(list_1.size_ == list_2.size_);
- return CPURegList(list_1.type_, list_1.size_, list_1.list_ & list_2.list_);
- }
- static CPURegList Intersection(const CPURegList& list_1,
- const CPURegList& list_2,
- const CPURegList& list_3);
- static CPURegList Intersection(const CPURegList& list_1,
- const CPURegList& list_2,
- const CPURegList& list_3,
- const CPURegList& list_4);
-
- bool Overlaps(const CPURegList& other) const {
- return (type_ == other.type_) && ((list_ & other.list_) != 0);
- }
-
- RegList list() const {
- VIXL_ASSERT(IsValid());
- return list_;
- }
-
- void set_list(RegList new_list) {
- VIXL_ASSERT(IsValid());
- list_ = new_list;
- }
-
- // Remove all callee-saved registers from the list. This can be useful when
- // preparing registers for an AAPCS64 function call, for example.
- void RemoveCalleeSaved();
-
- CPURegister PopLowestIndex();
- CPURegister PopHighestIndex();
-
- // AAPCS64 callee-saved registers.
- static CPURegList GetCalleeSaved(unsigned size = kXRegSize);
- static CPURegList GetCalleeSavedV(unsigned size = kDRegSize);
-
- // AAPCS64 caller-saved registers. Note that this includes lr.
- // TODO(all): Determine how we handle d8-d15 being callee-saved, but the top
- // 64-bits being caller-saved.
- static CPURegList GetCallerSaved(unsigned size = kXRegSize);
- static CPURegList GetCallerSavedV(unsigned size = kDRegSize);
-
- bool IsEmpty() const {
- VIXL_ASSERT(IsValid());
- return list_ == 0;
- }
-
- bool IncludesAliasOf(const CPURegister& other) const {
- VIXL_ASSERT(IsValid());
- return (type_ == other.type()) && ((other.Bit() & list_) != 0);
- }
-
- bool IncludesAliasOf(int code) const {
- VIXL_ASSERT(IsValid());
- return ((code & list_) != 0);
- }
-
- int Count() const {
- VIXL_ASSERT(IsValid());
- return CountSetBits(list_);
- }
-
- unsigned RegisterSizeInBits() const {
- VIXL_ASSERT(IsValid());
- return size_;
- }
-
- unsigned RegisterSizeInBytes() const {
- int size_in_bits = RegisterSizeInBits();
- VIXL_ASSERT((size_in_bits % 8) == 0);
- return size_in_bits / 8;
- }
-
- unsigned TotalSizeInBytes() const {
- VIXL_ASSERT(IsValid());
- return RegisterSizeInBytes() * Count();
- }
-
- private:
- RegList list_;
- unsigned size_;
- CPURegister::RegisterType type_;
-
- bool IsValid() const;
-};
-
-
-// AAPCS64 callee-saved registers.
-extern const CPURegList kCalleeSaved;
-extern const CPURegList kCalleeSavedV;
-
-
-// AAPCS64 caller-saved registers. Note that this includes lr.
-extern const CPURegList kCallerSaved;
-extern const CPURegList kCallerSavedV;
-
-
-// Operand.
-class Operand {
- public:
- // #<immediate>
- // where <immediate> is int64_t.
- // This is allowed to be an implicit constructor because Operand is
- // a wrapper class that doesn't normally perform any type conversion.
- Operand(int64_t immediate = 0); // NOLINT(runtime/explicit)
-
- // rm, {<shift> #<shift_amount>}
- // where <shift> is one of {LSL, LSR, ASR, ROR}.
- // <shift_amount> is uint6_t.
- // This is allowed to be an implicit constructor because Operand is
- // a wrapper class that doesn't normally perform any type conversion.
- Operand(Register reg,
- Shift shift = LSL,
- unsigned shift_amount = 0); // NOLINT(runtime/explicit)
-
- // rm, {<extend> {#<shift_amount>}}
- // where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}.
- // <shift_amount> is uint2_t.
- explicit Operand(Register reg, Extend extend, unsigned shift_amount = 0);
-
- bool IsImmediate() const;
- bool IsShiftedRegister() const;
- bool IsExtendedRegister() const;
- bool IsZero() const;
-
- // This returns an LSL shift (<= 4) operand as an equivalent extend operand,
- // which helps in the encoding of instructions that use the stack pointer.
- Operand ToExtendedRegister() const;
-
- int64_t immediate() const {
- VIXL_ASSERT(IsImmediate());
- return immediate_;
- }
-
- Register reg() const {
- VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
- return reg_;
- }
-
- Shift shift() const {
- VIXL_ASSERT(IsShiftedRegister());
- return shift_;
- }
-
- Extend extend() const {
- VIXL_ASSERT(IsExtendedRegister());
- return extend_;
- }
-
- unsigned shift_amount() const {
- VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
- return shift_amount_;
- }
-
- private:
- int64_t immediate_;
- Register reg_;
- Shift shift_;
- Extend extend_;
- unsigned shift_amount_;
-};
-
-
-// MemOperand represents the addressing mode of a load or store instruction.
-class MemOperand {
- public:
- explicit MemOperand(Register base,
- int64_t offset = 0,
- AddrMode addrmode = Offset);
- MemOperand(Register base,
- Register regoffset,
- Shift shift = LSL,
- unsigned shift_amount = 0);
- MemOperand(Register base,
- Register regoffset,
- Extend extend,
- unsigned shift_amount = 0);
- MemOperand(Register base,
- const Operand& offset,
- AddrMode addrmode = Offset);
-
- const Register& base() const { return base_; }
- const Register& regoffset() const { return regoffset_; }
- int64_t offset() const { return offset_; }
- AddrMode addrmode() const { return addrmode_; }
- Shift shift() const { return shift_; }
- Extend extend() const { return extend_; }
- unsigned shift_amount() const { return shift_amount_; }
- bool IsImmediateOffset() const;
- bool IsRegisterOffset() const;
- bool IsPreIndex() const;
- bool IsPostIndex() const;
-
- void AddOffset(int64_t offset);
-
- private:
- Register base_;
- Register regoffset_;
- int64_t offset_;
- AddrMode addrmode_;
- Shift shift_;
- Extend extend_;
- unsigned shift_amount_;
-};
-
-
-class LabelTestHelper; // Forward declaration.
-
-
-class Label {
- public:
- Label() : location_(kLocationUnbound) {}
- ~Label() {
- // If the label has been linked to, it needs to be bound to a target.
- VIXL_ASSERT(!IsLinked() || IsBound());
- }
-
- bool IsBound() const { return location_ >= 0; }
- bool IsLinked() const { return !links_.empty(); }
-
- ptrdiff_t location() const { return location_; }
-
- static const int kNPreallocatedLinks = 4;
- static const ptrdiff_t kInvalidLinkKey = PTRDIFF_MAX;
- static const size_t kReclaimFrom = 512;
- static const size_t kReclaimFactor = 2;
-
- typedef InvalSet<ptrdiff_t,
- kNPreallocatedLinks,
- ptrdiff_t,
- kInvalidLinkKey,
- kReclaimFrom,
- kReclaimFactor> LinksSetBase;
- typedef InvalSetIterator<LinksSetBase> LabelLinksIteratorBase;
-
- private:
- class LinksSet : public LinksSetBase {
- public:
- LinksSet() : LinksSetBase() {}
- };
-
- // Allows iterating over the links of a label. The behaviour is undefined if
- // the list of links is modified in any way while iterating.
- class LabelLinksIterator : public LabelLinksIteratorBase {
- public:
- explicit LabelLinksIterator(Label* label)
- : LabelLinksIteratorBase(&label->links_) {}
- };
-
- void Bind(ptrdiff_t location) {
- // Labels can only be bound once.
- VIXL_ASSERT(!IsBound());
- location_ = location;
- }
-
- void AddLink(ptrdiff_t instruction) {
- // If a label is bound, the assembler already has the information it needs
- // to write the instruction, so there is no need to add it to links_.
- VIXL_ASSERT(!IsBound());
- links_.insert(instruction);
- }
-
- void DeleteLink(ptrdiff_t instruction) {
- links_.erase(instruction);
- }
-
- void ClearAllLinks() {
- links_.clear();
- }
-
- // TODO: The comment below considers average case complexity for our
- // usual use-cases. The elements of interest are:
- // - Branches to a label are emitted in order: branch instructions to a label
- // are generated at an offset in the code generation buffer greater than any
- // other branch to that same label already generated. As an example, this can
- // be broken when an instruction is patched to become a branch. Note that the
- // code will still work, but the complexity considerations below may locally
- // not apply any more.
- // - Veneers are generated in order: for multiple branches of the same type
- // branching to the same unbound label going out of range, veneers are
- // generated in growing order of the branch instruction offset from the start
- // of the buffer.
- //
- // When creating a veneer for a branch going out of range, the link for this
- // branch needs to be removed from this `links_`. Since all branches are
- // tracked in one underlying InvalSet, the complexity for this deletion is the
- // same as for finding the element, ie. O(n), where n is the number of links
- // in the set.
- // This could be reduced to O(1) by using the same trick as used when tracking
- // branch information for veneers: split the container to use one set per type
- // of branch. With that setup, when a veneer is created and the link needs to
- // be deleted, if the two points above hold, it must be the minimum element of
- // the set for its type of branch, and that minimum element will be accessible
- // in O(1).
-
- // The offsets of the instructions that have linked to this label.
- LinksSet links_;
- // The label location.
- ptrdiff_t location_;
-
- static const ptrdiff_t kLocationUnbound = -1;
-
- // It is not safe to copy labels, so disable the copy constructor and operator
- // by declaring them private (without an implementation).
- Label(const Label&);
- void operator=(const Label&);
-
- // The Assembler class is responsible for binding and linking labels, since
- // the stored offsets need to be consistent with the Assembler's buffer.
- friend class Assembler;
- // The MacroAssembler and VeneerPool handle resolution of branches to distant
- // targets.
- friend class MacroAssembler;
- friend class VeneerPool;
-};
-
-
-// Required InvalSet template specialisations.
-#define INVAL_SET_TEMPLATE_PARAMETERS \
- ptrdiff_t, \
- Label::kNPreallocatedLinks, \
- ptrdiff_t, \
- Label::kInvalidLinkKey, \
- Label::kReclaimFrom, \
- Label::kReclaimFactor
-template<>
-inline ptrdiff_t InvalSet<INVAL_SET_TEMPLATE_PARAMETERS>::Key(
- const ptrdiff_t& element) {
- return element;
-}
-template<>
-inline void InvalSet<INVAL_SET_TEMPLATE_PARAMETERS>::SetKey(
- ptrdiff_t* element, ptrdiff_t key) {
- *element = key;
-}
-#undef INVAL_SET_TEMPLATE_PARAMETERS
-
-
-class Assembler;
-class LiteralPool;
-
-// A literal is a 32-bit or 64-bit piece of data stored in the instruction
-// stream and loaded through a pc relative load. The same literal can be
-// referred to by multiple instructions but a literal can only reside at one
-// place in memory. A literal can be used by a load before or after being
-// placed in memory.
-//
-// Internally an offset of 0 is associated with a literal which has been
-// neither used nor placed. Then two possibilities arise:
-// 1) the label is placed, the offset (stored as offset + 1) is used to
-// resolve any subsequent load using the label.
-// 2) the label is not placed and offset is the offset of the last load using
-// the literal (stored as -offset -1). If multiple loads refer to this
-// literal then the last load holds the offset of the preceding load and
-// all loads form a chain. Once the offset is placed all the loads in the
-// chain are resolved and future loads fall back to possibility 1.
-class RawLiteral {
- public:
- enum DeletionPolicy {
- kDeletedOnPlacementByPool,
- kDeletedOnPoolDestruction,
- kManuallyDeleted
- };
-
- RawLiteral(size_t size,
- LiteralPool* literal_pool,
- DeletionPolicy deletion_policy = kManuallyDeleted);
-
- // The literal pool only sees and deletes `RawLiteral*` pointers, but they are
- // actually pointing to `Literal<T>` objects.
- virtual ~RawLiteral() {}
-
- size_t size() {
- VIXL_STATIC_ASSERT(kDRegSizeInBytes == kXRegSizeInBytes);
- VIXL_STATIC_ASSERT(kSRegSizeInBytes == kWRegSizeInBytes);
- VIXL_ASSERT((size_ == kXRegSizeInBytes) ||
- (size_ == kWRegSizeInBytes) ||
- (size_ == kQRegSizeInBytes));
- return size_;
- }
- uint64_t raw_value128_low64() {
- VIXL_ASSERT(size_ == kQRegSizeInBytes);
- return low64_;
- }
- uint64_t raw_value128_high64() {
- VIXL_ASSERT(size_ == kQRegSizeInBytes);
- return high64_;
- }
- uint64_t raw_value64() {
- VIXL_ASSERT(size_ == kXRegSizeInBytes);
- VIXL_ASSERT(high64_ == 0);
- return low64_;
- }
- uint32_t raw_value32() {
- VIXL_ASSERT(size_ == kWRegSizeInBytes);
- VIXL_ASSERT(high64_ == 0);
- VIXL_ASSERT(is_uint32(low64_) || is_int32(low64_));
- return static_cast<uint32_t>(low64_);
- }
- bool IsUsed() { return offset_ < 0; }
- bool IsPlaced() { return offset_ > 0; }
-
- LiteralPool* GetLiteralPool() const {
- return literal_pool_;
- }
-
- ptrdiff_t offset() {
- VIXL_ASSERT(IsPlaced());
- return offset_ - 1;
- }
-
- protected:
- void set_offset(ptrdiff_t offset) {
- VIXL_ASSERT(offset >= 0);
- VIXL_ASSERT(IsWordAligned(offset));
- VIXL_ASSERT(!IsPlaced());
- offset_ = offset + 1;
- }
- ptrdiff_t last_use() {
- VIXL_ASSERT(IsUsed());
- return -offset_ - 1;
- }
- void set_last_use(ptrdiff_t offset) {
- VIXL_ASSERT(offset >= 0);
- VIXL_ASSERT(IsWordAligned(offset));
- VIXL_ASSERT(!IsPlaced());
- offset_ = -offset - 1;
- }
-
- size_t size_;
- ptrdiff_t offset_;
- uint64_t low64_;
- uint64_t high64_;
-
- private:
- LiteralPool* literal_pool_;
- DeletionPolicy deletion_policy_;
-
- friend class Assembler;
- friend class LiteralPool;
-};
-
-
-template <typename T>
-class Literal : public RawLiteral {
- public:
- explicit Literal(T value,
- LiteralPool* literal_pool = NULL,
- RawLiteral::DeletionPolicy ownership = kManuallyDeleted)
- : RawLiteral(sizeof(value), literal_pool, ownership) {
- VIXL_STATIC_ASSERT(sizeof(value) <= kXRegSizeInBytes);
- UpdateValue(value);
- }
-
- Literal(T high64, T low64,
- LiteralPool* literal_pool = NULL,
- RawLiteral::DeletionPolicy ownership = kManuallyDeleted)
- : RawLiteral(kQRegSizeInBytes, literal_pool, ownership) {
- VIXL_STATIC_ASSERT(sizeof(low64) == (kQRegSizeInBytes / 2));
- UpdateValue(high64, low64);
- }
-
- virtual ~Literal() {}
-
- // Update the value of this literal, if necessary by rewriting the value in
- // the pool.
- // If the literal has already been placed in a literal pool, the address of
- // the start of the code buffer must be provided, as the literal only knows it
- // offset from there. This also allows patching the value after the code has
- // been moved in memory.
- void UpdateValue(T new_value, uint8_t* code_buffer = NULL) {
- VIXL_ASSERT(sizeof(new_value) == size_);
- memcpy(&low64_, &new_value, sizeof(new_value));
- if (IsPlaced()) {
- VIXL_ASSERT(code_buffer != NULL);
- RewriteValueInCode(code_buffer);
- }
- }
-
- void UpdateValue(T high64, T low64, uint8_t* code_buffer = NULL) {
- VIXL_ASSERT(sizeof(low64) == size_ / 2);
- memcpy(&low64_, &low64, sizeof(low64));
- memcpy(&high64_, &high64, sizeof(high64));
- if (IsPlaced()) {
- VIXL_ASSERT(code_buffer != NULL);
- RewriteValueInCode(code_buffer);
- }
- }
-
- void UpdateValue(T new_value, const Assembler* assembler);
- void UpdateValue(T high64, T low64, const Assembler* assembler);
-
- private:
- void RewriteValueInCode(uint8_t* code_buffer) {
- VIXL_ASSERT(IsPlaced());
- VIXL_STATIC_ASSERT(sizeof(T) <= kXRegSizeInBytes);
- switch (size()) {
- case kSRegSizeInBytes:
- *reinterpret_cast<uint32_t*>(code_buffer + offset()) = raw_value32();
- break;
- case kDRegSizeInBytes:
- *reinterpret_cast<uint64_t*>(code_buffer + offset()) = raw_value64();
- break;
- default:
- VIXL_ASSERT(size() == kQRegSizeInBytes);
- uint64_t* base_address =
- reinterpret_cast<uint64_t*>(code_buffer + offset());
- *base_address = raw_value128_low64();
- *(base_address + 1) = raw_value128_high64();
- }
- }
-};
-
-
-// Control whether or not position-independent code should be emitted.
-enum PositionIndependentCodeOption {
- // All code generated will be position-independent; all branches and
- // references to labels generated with the Label class will use PC-relative
- // addressing.
- PositionIndependentCode,
-
- // Allow VIXL to generate code that refers to absolute addresses. With this
- // option, it will not be possible to copy the code buffer and run it from a
- // different address; code must be generated in its final location.
- PositionDependentCode,
-
- // Allow VIXL to assume that the bottom 12 bits of the address will be
- // constant, but that the top 48 bits may change. This allows `adrp` to
- // function in systems which copy code between pages, but otherwise maintain
- // 4KB page alignment.
- PageOffsetDependentCode
-};
-
-
-// Control how scaled- and unscaled-offset loads and stores are generated.
-enum LoadStoreScalingOption {
- // Prefer scaled-immediate-offset instructions, but emit unscaled-offset,
- // register-offset, pre-index or post-index instructions if necessary.
- PreferScaledOffset,
-
- // Prefer unscaled-immediate-offset instructions, but emit scaled-offset,
- // register-offset, pre-index or post-index instructions if necessary.
- PreferUnscaledOffset,
-
- // Require scaled-immediate-offset instructions.
- RequireScaledOffset,
-
- // Require unscaled-immediate-offset instructions.
- RequireUnscaledOffset
-};
-
-
-// Assembler.
-class Assembler {
- public:
- Assembler(size_t capacity,
- PositionIndependentCodeOption pic = PositionIndependentCode);
- Assembler(byte* buffer, size_t capacity,
- PositionIndependentCodeOption pic = PositionIndependentCode);
-
- // The destructor asserts that one of the following is true:
- // * The Assembler object has not been used.
- // * Nothing has been emitted since the last Reset() call.
- // * Nothing has been emitted since the last FinalizeCode() call.
- ~Assembler();
-
- // System functions.
-
- // Start generating code from the beginning of the buffer, discarding any code
- // and data that has already been emitted into the buffer.
- void Reset();
-
- // Finalize a code buffer of generated instructions. This function must be
- // called before executing or copying code from the buffer.
- void FinalizeCode();
-
- // Label.
- // Bind a label to the current PC.
- void bind(Label* label);
-
- // Bind a label to a specified offset from the start of the buffer.
- void BindToOffset(Label* label, ptrdiff_t offset);
-
- // Place a literal at the current PC.
- void place(RawLiteral* literal);
-
- ptrdiff_t CursorOffset() const {
- return buffer_->CursorOffset();
- }
-
- ptrdiff_t BufferEndOffset() const {
- return static_cast<ptrdiff_t>(buffer_->capacity());
- }
-
- // Return the address of an offset in the buffer.
- template <typename T>
- T GetOffsetAddress(ptrdiff_t offset) const {
- VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
- return buffer_->GetOffsetAddress<T>(offset);
- }
-
- // Return the address of a bound label.
- template <typename T>
- T GetLabelAddress(const Label * label) const {
- VIXL_ASSERT(label->IsBound());
- VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
- return GetOffsetAddress<T>(label->location());
- }
-
- // Return the address of the cursor.
- template <typename T>
- T GetCursorAddress() const {
- VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
- return GetOffsetAddress<T>(CursorOffset());
- }
-
- // Return the address of the start of the buffer.
- template <typename T>
- T GetStartAddress() const {
- VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
- return GetOffsetAddress<T>(0);
- }
-
- Instruction* InstructionAt(ptrdiff_t instruction_offset) {
- return GetOffsetAddress<Instruction*>(instruction_offset);
- }
-
- ptrdiff_t InstructionOffset(Instruction* instruction) {
- VIXL_STATIC_ASSERT(sizeof(*instruction) == 1);
- ptrdiff_t offset = instruction - GetStartAddress<Instruction*>();
- VIXL_ASSERT((0 <= offset) &&
- (offset < static_cast<ptrdiff_t>(BufferCapacity())));
- return offset;
- }
-
- // Instruction set functions.
-
- // Branch / Jump instructions.
- // Branch to register.
- void br(const Register& xn);
-
- // Branch with link to register.
- void blr(const Register& xn);
-
- // Branch to register with return hint.
- void ret(const Register& xn = lr);
-
- // Unconditional branch to label.
- void b(Label* label);
-
- // Conditional branch to label.
- void b(Label* label, Condition cond);
-
- // Unconditional branch to PC offset.
- void b(int imm26);
-
- // Conditional branch to PC offset.
- void b(int imm19, Condition cond);
-
- // Branch with link to label.
- void bl(Label* label);
-
- // Branch with link to PC offset.
- void bl(int imm26);
-
- // Compare and branch to label if zero.
- void cbz(const Register& rt, Label* label);
-
- // Compare and branch to PC offset if zero.
- void cbz(const Register& rt, int imm19);
-
- // Compare and branch to label if not zero.
- void cbnz(const Register& rt, Label* label);
-
- // Compare and branch to PC offset if not zero.
- void cbnz(const Register& rt, int imm19);
-
- // Table lookup from one register.
- void tbl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Table lookup from two registers.
- void tbl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vn2,
- const VRegister& vm);
-
- // Table lookup from three registers.
- void tbl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vn2,
- const VRegister& vn3,
- const VRegister& vm);
-
- // Table lookup from four registers.
- void tbl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vn2,
- const VRegister& vn3,
- const VRegister& vn4,
- const VRegister& vm);
-
- // Table lookup extension from one register.
- void tbx(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Table lookup extension from two registers.
- void tbx(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vn2,
- const VRegister& vm);
-
- // Table lookup extension from three registers.
- void tbx(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vn2,
- const VRegister& vn3,
- const VRegister& vm);
-
- // Table lookup extension from four registers.
- void tbx(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vn2,
- const VRegister& vn3,
- const VRegister& vn4,
- const VRegister& vm);
-
- // Test bit and branch to label if zero.
- void tbz(const Register& rt, unsigned bit_pos, Label* label);
-
- // Test bit and branch to PC offset if zero.
- void tbz(const Register& rt, unsigned bit_pos, int imm14);
-
- // Test bit and branch to label if not zero.
- void tbnz(const Register& rt, unsigned bit_pos, Label* label);
-
- // Test bit and branch to PC offset if not zero.
- void tbnz(const Register& rt, unsigned bit_pos, int imm14);
-
- // Address calculation instructions.
- // Calculate a PC-relative address. Unlike for branches the offset in adr is
- // unscaled (i.e. the result can be unaligned).
-
- // Calculate the address of a label.
- void adr(const Register& rd, Label* label);
-
- // Calculate the address of a PC offset.
- void adr(const Register& rd, int imm21);
-
- // Calculate the page address of a label.
- void adrp(const Register& rd, Label* label);
-
- // Calculate the page address of a PC offset.
- void adrp(const Register& rd, int imm21);
-
- // Data Processing instructions.
- // Add.
- void add(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Add and update status flags.
- void adds(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Compare negative.
- void cmn(const Register& rn, const Operand& operand);
-
- // Subtract.
- void sub(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Subtract and update status flags.
- void subs(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Compare.
- void cmp(const Register& rn, const Operand& operand);
-
- // Negate.
- void neg(const Register& rd,
- const Operand& operand);
-
- // Negate and update status flags.
- void negs(const Register& rd,
- const Operand& operand);
-
- // Add with carry bit.
- void adc(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Add with carry bit and update status flags.
- void adcs(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Subtract with carry bit.
- void sbc(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Subtract with carry bit and update status flags.
- void sbcs(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Negate with carry bit.
- void ngc(const Register& rd,
- const Operand& operand);
-
- // Negate with carry bit and update status flags.
- void ngcs(const Register& rd,
- const Operand& operand);
-
- // Logical instructions.
- // Bitwise and (A & B).
- void and_(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Bitwise and (A & B) and update status flags.
- void ands(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Bit test and set flags.
- void tst(const Register& rn, const Operand& operand);
-
- // Bit clear (A & ~B).
- void bic(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Bit clear (A & ~B) and update status flags.
- void bics(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Bitwise or (A | B).
- void orr(const Register& rd, const Register& rn, const Operand& operand);
-
- // Bitwise nor (A | ~B).
- void orn(const Register& rd, const Register& rn, const Operand& operand);
-
- // Bitwise eor/xor (A ^ B).
- void eor(const Register& rd, const Register& rn, const Operand& operand);
-
- // Bitwise enor/xnor (A ^ ~B).
- void eon(const Register& rd, const Register& rn, const Operand& operand);
-
- // Logical shift left by variable.
- void lslv(const Register& rd, const Register& rn, const Register& rm);
-
- // Logical shift right by variable.
- void lsrv(const Register& rd, const Register& rn, const Register& rm);
-
- // Arithmetic shift right by variable.
- void asrv(const Register& rd, const Register& rn, const Register& rm);
-
- // Rotate right by variable.
- void rorv(const Register& rd, const Register& rn, const Register& rm);
-
- // Bitfield instructions.
- // Bitfield move.
- void bfm(const Register& rd,
- const Register& rn,
- unsigned immr,
- unsigned imms);
-
- // Signed bitfield move.
- void sbfm(const Register& rd,
- const Register& rn,
- unsigned immr,
- unsigned imms);
-
- // Unsigned bitfield move.
- void ubfm(const Register& rd,
- const Register& rn,
- unsigned immr,
- unsigned imms);
-
- // Bfm aliases.
- // Bitfield insert.
- void bfi(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width) {
- VIXL_ASSERT(width >= 1);
- VIXL_ASSERT(lsb + width <= rn.size());
- bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
- }
-
- // Bitfield extract and insert low.
- void bfxil(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width) {
- VIXL_ASSERT(width >= 1);
- VIXL_ASSERT(lsb + width <= rn.size());
- bfm(rd, rn, lsb, lsb + width - 1);
- }
-
- // Sbfm aliases.
- // Arithmetic shift right.
- void asr(const Register& rd, const Register& rn, unsigned shift) {
- VIXL_ASSERT(shift < rd.size());
- sbfm(rd, rn, shift, rd.size() - 1);
- }
-
- // Signed bitfield insert with zero at right.
- void sbfiz(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width) {
- VIXL_ASSERT(width >= 1);
- VIXL_ASSERT(lsb + width <= rn.size());
- sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
- }
-
- // Signed bitfield extract.
- void sbfx(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width) {
- VIXL_ASSERT(width >= 1);
- VIXL_ASSERT(lsb + width <= rn.size());
- sbfm(rd, rn, lsb, lsb + width - 1);
- }
-
- // Signed extend byte.
- void sxtb(const Register& rd, const Register& rn) {
- sbfm(rd, rn, 0, 7);
- }
-
- // Signed extend halfword.
- void sxth(const Register& rd, const Register& rn) {
- sbfm(rd, rn, 0, 15);
- }
-
- // Signed extend word.
- void sxtw(const Register& rd, const Register& rn) {
- sbfm(rd, rn, 0, 31);
- }
-
- // Ubfm aliases.
- // Logical shift left.
- void lsl(const Register& rd, const Register& rn, unsigned shift) {
- unsigned reg_size = rd.size();
- VIXL_ASSERT(shift < reg_size);
- ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
- }
-
- // Logical shift right.
- void lsr(const Register& rd, const Register& rn, unsigned shift) {
- VIXL_ASSERT(shift < rd.size());
- ubfm(rd, rn, shift, rd.size() - 1);
- }
-
- // Unsigned bitfield insert with zero at right.
- void ubfiz(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width) {
- VIXL_ASSERT(width >= 1);
- VIXL_ASSERT(lsb + width <= rn.size());
- ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
- }
-
- // Unsigned bitfield extract.
- void ubfx(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width) {
- VIXL_ASSERT(width >= 1);
- VIXL_ASSERT(lsb + width <= rn.size());
- ubfm(rd, rn, lsb, lsb + width - 1);
- }
-
- // Unsigned extend byte.
- void uxtb(const Register& rd, const Register& rn) {
- ubfm(rd, rn, 0, 7);
- }
-
- // Unsigned extend halfword.
- void uxth(const Register& rd, const Register& rn) {
- ubfm(rd, rn, 0, 15);
- }
-
- // Unsigned extend word.
- void uxtw(const Register& rd, const Register& rn) {
- ubfm(rd, rn, 0, 31);
- }
-
- // Extract.
- void extr(const Register& rd,
- const Register& rn,
- const Register& rm,
- unsigned lsb);
-
- // Conditional select: rd = cond ? rn : rm.
- void csel(const Register& rd,
- const Register& rn,
- const Register& rm,
- Condition cond);
-
- // Conditional select increment: rd = cond ? rn : rm + 1.
- void csinc(const Register& rd,
- const Register& rn,
- const Register& rm,
- Condition cond);
-
- // Conditional select inversion: rd = cond ? rn : ~rm.
- void csinv(const Register& rd,
- const Register& rn,
- const Register& rm,
- Condition cond);
-
- // Conditional select negation: rd = cond ? rn : -rm.
- void csneg(const Register& rd,
- const Register& rn,
- const Register& rm,
- Condition cond);
-
- // Conditional set: rd = cond ? 1 : 0.
- void cset(const Register& rd, Condition cond);
-
- // Conditional set mask: rd = cond ? -1 : 0.
- void csetm(const Register& rd, Condition cond);
-
- // Conditional increment: rd = cond ? rn + 1 : rn.
- void cinc(const Register& rd, const Register& rn, Condition cond);
-
- // Conditional invert: rd = cond ? ~rn : rn.
- void cinv(const Register& rd, const Register& rn, Condition cond);
-
- // Conditional negate: rd = cond ? -rn : rn.
- void cneg(const Register& rd, const Register& rn, Condition cond);
-
- // Rotate right.
- void ror(const Register& rd, const Register& rs, unsigned shift) {
- extr(rd, rs, rs, shift);
- }
-
- // Conditional comparison.
- // Conditional compare negative.
- void ccmn(const Register& rn,
- const Operand& operand,
- StatusFlags nzcv,
- Condition cond);
-
- // Conditional compare.
- void ccmp(const Register& rn,
- const Operand& operand,
- StatusFlags nzcv,
- Condition cond);
-
- // CRC-32 checksum from byte.
- void crc32b(const Register& rd,
- const Register& rn,
- const Register& rm);
-
- // CRC-32 checksum from half-word.
- void crc32h(const Register& rd,
- const Register& rn,
- const Register& rm);
-
- // CRC-32 checksum from word.
- void crc32w(const Register& rd,
- const Register& rn,
- const Register& rm);
-
- // CRC-32 checksum from double word.
- void crc32x(const Register& rd,
- const Register& rn,
- const Register& rm);
-
- // CRC-32 C checksum from byte.
- void crc32cb(const Register& rd,
- const Register& rn,
- const Register& rm);
-
- // CRC-32 C checksum from half-word.
- void crc32ch(const Register& rd,
- const Register& rn,
- const Register& rm);
-
- // CRC-32 C checksum from word.
- void crc32cw(const Register& rd,
- const Register& rn,
- const Register& rm);
-
- // CRC-32C checksum from double word.
- void crc32cx(const Register& rd,
- const Register& rn,
- const Register& rm);
-
- // Multiply.
- void mul(const Register& rd, const Register& rn, const Register& rm);
-
- // Negated multiply.
- void mneg(const Register& rd, const Register& rn, const Register& rm);
-
- // Signed long multiply: 32 x 32 -> 64-bit.
- void smull(const Register& rd, const Register& rn, const Register& rm);
-
- // Signed multiply high: 64 x 64 -> 64-bit <127:64>.
- void smulh(const Register& xd, const Register& xn, const Register& xm);
-
- // Multiply and accumulate.
- void madd(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
-
- // Multiply and subtract.
- void msub(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
-
- // Signed long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
- void smaddl(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
-
- // Unsigned long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
- void umaddl(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
-
- // Unsigned long multiply: 32 x 32 -> 64-bit.
- void umull(const Register& rd,
- const Register& rn,
- const Register& rm) {
- umaddl(rd, rn, rm, xzr);
- }
-
- // Unsigned multiply high: 64 x 64 -> 64-bit <127:64>.
- void umulh(const Register& xd,
- const Register& xn,
- const Register& xm);
-
- // Signed long multiply and subtract: 64 - (32 x 32) -> 64-bit.
- void smsubl(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
-
- // Unsigned long multiply and subtract: 64 - (32 x 32) -> 64-bit.
- void umsubl(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
-
- // Signed integer divide.
- void sdiv(const Register& rd, const Register& rn, const Register& rm);
-
- // Unsigned integer divide.
- void udiv(const Register& rd, const Register& rn, const Register& rm);
-
- // Bit reverse.
- void rbit(const Register& rd, const Register& rn);
-
- // Reverse bytes in 16-bit half words.
- void rev16(const Register& rd, const Register& rn);
-
- // Reverse bytes in 32-bit words.
- void rev32(const Register& rd, const Register& rn);
-
- // Reverse bytes.
- void rev(const Register& rd, const Register& rn);
-
- // Count leading zeroes.
- void clz(const Register& rd, const Register& rn);
-
- // Count leading sign bits.
- void cls(const Register& rd, const Register& rn);
-
- // Memory instructions.
- // Load integer or FP register.
- void ldr(const CPURegister& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Store integer or FP register.
- void str(const CPURegister& rt, const MemOperand& dst,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Load word with sign extension.
- void ldrsw(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Load byte.
- void ldrb(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Store byte.
- void strb(const Register& rt, const MemOperand& dst,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Load byte with sign extension.
- void ldrsb(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Load half-word.
- void ldrh(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Store half-word.
- void strh(const Register& rt, const MemOperand& dst,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Load half-word with sign extension.
- void ldrsh(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Load integer or FP register (with unscaled offset).
- void ldur(const CPURegister& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Store integer or FP register (with unscaled offset).
- void stur(const CPURegister& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Load word with sign extension.
- void ldursw(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Load byte (with unscaled offset).
- void ldurb(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Store byte (with unscaled offset).
- void sturb(const Register& rt, const MemOperand& dst,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Load byte with sign extension (and unscaled offset).
- void ldursb(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Load half-word (with unscaled offset).
- void ldurh(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Store half-word (with unscaled offset).
- void sturh(const Register& rt, const MemOperand& dst,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Load half-word with sign extension (and unscaled offset).
- void ldursh(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Load integer or FP register pair.
- void ldp(const CPURegister& rt, const CPURegister& rt2,
- const MemOperand& src);
-
- // Store integer or FP register pair.
- void stp(const CPURegister& rt, const CPURegister& rt2,
- const MemOperand& dst);
-
- // Load word pair with sign extension.
- void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);
-
- // Load integer or FP register pair, non-temporal.
- void ldnp(const CPURegister& rt, const CPURegister& rt2,
- const MemOperand& src);
-
- // Store integer or FP register pair, non-temporal.
- void stnp(const CPURegister& rt, const CPURegister& rt2,
- const MemOperand& dst);
-
- // Load integer or FP register from literal pool.
- void ldr(const CPURegister& rt, RawLiteral* literal);
-
- // Load word with sign extension from literal pool.
- void ldrsw(const Register& rt, RawLiteral* literal);
-
- // Load integer or FP register from pc + imm19 << 2.
- void ldr(const CPURegister& rt, int imm19);
-
- // Load word with sign extension from pc + imm19 << 2.
- void ldrsw(const Register& rt, int imm19);
-
- // Store exclusive byte.
- void stxrb(const Register& rs, const Register& rt, const MemOperand& dst);
-
- // Store exclusive half-word.
- void stxrh(const Register& rs, const Register& rt, const MemOperand& dst);
-
- // Store exclusive register.
- void stxr(const Register& rs, const Register& rt, const MemOperand& dst);
-
- // Load exclusive byte.
- void ldxrb(const Register& rt, const MemOperand& src);
-
- // Load exclusive half-word.
- void ldxrh(const Register& rt, const MemOperand& src);
-
- // Load exclusive register.
- void ldxr(const Register& rt, const MemOperand& src);
-
- // Store exclusive register pair.
- void stxp(const Register& rs,
- const Register& rt,
- const Register& rt2,
- const MemOperand& dst);
-
- // Load exclusive register pair.
- void ldxp(const Register& rt, const Register& rt2, const MemOperand& src);
-
- // Store-release exclusive byte.
- void stlxrb(const Register& rs, const Register& rt, const MemOperand& dst);
-
- // Store-release exclusive half-word.
- void stlxrh(const Register& rs, const Register& rt, const MemOperand& dst);
-
- // Store-release exclusive register.
- void stlxr(const Register& rs, const Register& rt, const MemOperand& dst);
-
- // Load-acquire exclusive byte.
- void ldaxrb(const Register& rt, const MemOperand& src);
-
- // Load-acquire exclusive half-word.
- void ldaxrh(const Register& rt, const MemOperand& src);
-
- // Load-acquire exclusive register.
- void ldaxr(const Register& rt, const MemOperand& src);
-
- // Store-release exclusive register pair.
- void stlxp(const Register& rs,
- const Register& rt,
- const Register& rt2,
- const MemOperand& dst);
-
- // Load-acquire exclusive register pair.
- void ldaxp(const Register& rt, const Register& rt2, const MemOperand& src);
-
- // Store-release byte.
- void stlrb(const Register& rt, const MemOperand& dst);
-
- // Store-release half-word.
- void stlrh(const Register& rt, const MemOperand& dst);
-
- // Store-release register.
- void stlr(const Register& rt, const MemOperand& dst);
-
- // Load-acquire byte.
- void ldarb(const Register& rt, const MemOperand& src);
-
- // Load-acquire half-word.
- void ldarh(const Register& rt, const MemOperand& src);
-
- // Load-acquire register.
- void ldar(const Register& rt, const MemOperand& src);
-
- // Prefetch memory.
- void prfm(PrefetchOperation op, const MemOperand& addr,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Prefetch memory (with unscaled offset).
- void prfum(PrefetchOperation op, const MemOperand& addr,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Prefetch memory in the literal pool.
- void prfm(PrefetchOperation op, RawLiteral* literal);
-
- // Prefetch from pc + imm19 << 2.
- void prfm(PrefetchOperation op, int imm19);
-
- // Move instructions. The default shift of -1 indicates that the move
- // instruction will calculate an appropriate 16-bit immediate and left shift
- // that is equal to the 64-bit immediate argument. If an explicit left shift
- // is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
- //
- // For movk, an explicit shift can be used to indicate which half word should
- // be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
- // half word with zero, whereas movk(x0, 0, 48) will overwrite the
- // most-significant.
-
- // Move immediate and keep.
- void movk(const Register& rd, uint64_t imm, int shift = -1) {
- MoveWide(rd, imm, shift, MOVK);
- }
-
- // Move inverted immediate.
- void movn(const Register& rd, uint64_t imm, int shift = -1) {
- MoveWide(rd, imm, shift, MOVN);
- }
-
- // Move immediate.
- void movz(const Register& rd, uint64_t imm, int shift = -1) {
- MoveWide(rd, imm, shift, MOVZ);
- }
-
- // Misc instructions.
- // Monitor debug-mode breakpoint.
- void brk(int code);
-
- // Halting debug-mode breakpoint.
- void hlt(int code);
-
- // Generate exception targeting EL1.
- void svc(int code);
-
- // Move register to register.
- void mov(const Register& rd, const Register& rn);
-
- // Move inverted operand to register.
- void mvn(const Register& rd, const Operand& operand);
-
- // System instructions.
- // Move to register from system register.
- void mrs(const Register& rt, SystemRegister sysreg);
-
- // Move from register to system register.
- void msr(SystemRegister sysreg, const Register& rt);
-
- // System instruction.
- void sys(int op1, int crn, int crm, int op2, const Register& rt = xzr);
-
- // System instruction with pre-encoded op (op1:crn:crm:op2).
- void sys(int op, const Register& rt = xzr);
-
- // System data cache operation.
- void dc(DataCacheOp op, const Register& rt);
-
- // System instruction cache operation.
- void ic(InstructionCacheOp op, const Register& rt);
-
- // System hint.
- void hint(SystemHint code);
-
- // Clear exclusive monitor.
- void clrex(int imm4 = 0xf);
-
- // Data memory barrier.
- void dmb(BarrierDomain domain, BarrierType type);
-
- // Data synchronization barrier.
- void dsb(BarrierDomain domain, BarrierType type);
-
- // Instruction synchronization barrier.
- void isb();
-
- // Alias for system instructions.
- // No-op.
- void nop() {
- hint(NOP);
- }
-
- // FP and NEON instructions.
- // Move double precision immediate to FP register.
- void fmov(const VRegister& vd, double imm);
-
- // Move single precision immediate to FP register.
- void fmov(const VRegister& vd, float imm);
-
- // Move FP register to register.
- void fmov(const Register& rd, const VRegister& fn);
-
- // Move register to FP register.
- void fmov(const VRegister& vd, const Register& rn);
-
- // Move FP register to FP register.
- void fmov(const VRegister& vd, const VRegister& fn);
-
- // Move 64-bit register to top half of 128-bit FP register.
- void fmov(const VRegister& vd, int index, const Register& rn);
-
- // Move top half of 128-bit FP register to 64-bit register.
- void fmov(const Register& rd, const VRegister& vn, int index);
-
- // FP add.
- void fadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);
-
- // FP subtract.
- void fsub(const VRegister& vd, const VRegister& vn, const VRegister& vm);
-
- // FP multiply.
- void fmul(const VRegister& vd, const VRegister& vn, const VRegister& vm);
-
- // FP fused multiply-add.
- void fmadd(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- const VRegister& va);
-
- // FP fused multiply-subtract.
- void fmsub(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- const VRegister& va);
-
- // FP fused multiply-add and negate.
- void fnmadd(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- const VRegister& va);
-
- // FP fused multiply-subtract and negate.
- void fnmsub(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- const VRegister& va);
-
- // FP multiply-negate scalar.
- void fnmul(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // FP reciprocal exponent scalar.
- void frecpx(const VRegister& vd,
- const VRegister& vn);
-
- // FP divide.
- void fdiv(const VRegister& vd, const VRegister& fn, const VRegister& vm);
-
- // FP maximum.
- void fmax(const VRegister& vd, const VRegister& fn, const VRegister& vm);
-
- // FP minimum.
- void fmin(const VRegister& vd, const VRegister& fn, const VRegister& vm);
-
- // FP maximum number.
- void fmaxnm(const VRegister& vd, const VRegister& fn, const VRegister& vm);
-
- // FP minimum number.
- void fminnm(const VRegister& vd, const VRegister& fn, const VRegister& vm);
-
- // FP absolute.
- void fabs(const VRegister& vd, const VRegister& vn);
-
- // FP negate.
- void fneg(const VRegister& vd, const VRegister& vn);
-
- // FP square root.
- void fsqrt(const VRegister& vd, const VRegister& vn);
-
- // FP round to integer, nearest with ties to away.
- void frinta(const VRegister& vd, const VRegister& vn);
-
- // FP round to integer, implicit rounding.
- void frinti(const VRegister& vd, const VRegister& vn);
-
- // FP round to integer, toward minus infinity.
- void frintm(const VRegister& vd, const VRegister& vn);
-
- // FP round to integer, nearest with ties to even.
- void frintn(const VRegister& vd, const VRegister& vn);
-
- // FP round to integer, toward plus infinity.
- void frintp(const VRegister& vd, const VRegister& vn);
-
- // FP round to integer, exact, implicit rounding.
- void frintx(const VRegister& vd, const VRegister& vn);
-
- // FP round to integer, towards zero.
- void frintz(const VRegister& vd, const VRegister& vn);
-
- void FPCompareMacro(const VRegister& vn,
- double value,
- FPTrapFlags trap);
-
- void FPCompareMacro(const VRegister& vn,
- const VRegister& vm,
- FPTrapFlags trap);
-
- // FP compare registers.
- void fcmp(const VRegister& vn, const VRegister& vm);
-
- // FP compare immediate.
- void fcmp(const VRegister& vn, double value);
-
- void FPCCompareMacro(const VRegister& vn,
- const VRegister& vm,
- StatusFlags nzcv,
- Condition cond,
- FPTrapFlags trap);
-
- // FP conditional compare.
- void fccmp(const VRegister& vn,
- const VRegister& vm,
- StatusFlags nzcv,
- Condition cond);
-
- // FP signaling compare registers.
- void fcmpe(const VRegister& vn, const VRegister& vm);
-
- // FP signaling compare immediate.
- void fcmpe(const VRegister& vn, double value);
-
- // FP conditional signaling compare.
- void fccmpe(const VRegister& vn,
- const VRegister& vm,
- StatusFlags nzcv,
- Condition cond);
-
- // FP conditional select.
- void fcsel(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- Condition cond);
-
- // Common FP Convert functions.
- void NEONFPConvertToInt(const Register& rd,
- const VRegister& vn,
- Instr op);
- void NEONFPConvertToInt(const VRegister& vd,
- const VRegister& vn,
- Instr op);
-
- // FP convert between precisions.
- void fcvt(const VRegister& vd, const VRegister& vn);
-
- // FP convert to higher precision.
- void fcvtl(const VRegister& vd, const VRegister& vn);
-
- // FP convert to higher precision (second part).
- void fcvtl2(const VRegister& vd, const VRegister& vn);
-
- // FP convert to lower precision.
- void fcvtn(const VRegister& vd, const VRegister& vn);
-
- // FP convert to lower prevision (second part).
- void fcvtn2(const VRegister& vd, const VRegister& vn);
-
- // FP convert to lower precision, rounding to odd.
- void fcvtxn(const VRegister& vd, const VRegister& vn);
-
- // FP convert to lower precision, rounding to odd (second part).
- void fcvtxn2(const VRegister& vd, const VRegister& vn);
-
- // FP convert to signed integer, nearest with ties to away.
- void fcvtas(const Register& rd, const VRegister& vn);
-
- // FP convert to unsigned integer, nearest with ties to away.
- void fcvtau(const Register& rd, const VRegister& vn);
-
- // FP convert to signed integer, nearest with ties to away.
- void fcvtas(const VRegister& vd, const VRegister& vn);
-
- // FP convert to unsigned integer, nearest with ties to away.
- void fcvtau(const VRegister& vd, const VRegister& vn);
-
- // FP convert to signed integer, round towards -infinity.
- void fcvtms(const Register& rd, const VRegister& vn);
-
- // FP convert to unsigned integer, round towards -infinity.
- void fcvtmu(const Register& rd, const VRegister& vn);
-
- // FP convert to signed integer, round towards -infinity.
- void fcvtms(const VRegister& vd, const VRegister& vn);
-
- // FP convert to unsigned integer, round towards -infinity.
- void fcvtmu(const VRegister& vd, const VRegister& vn);
-
- // FP convert to signed integer, nearest with ties to even.
- void fcvtns(const Register& rd, const VRegister& vn);
-
- // FP convert to unsigned integer, nearest with ties to even.
- void fcvtnu(const Register& rd, const VRegister& vn);
-
- // FP convert to signed integer, nearest with ties to even.
- void fcvtns(const VRegister& rd, const VRegister& vn);
-
- // FP convert to unsigned integer, nearest with ties to even.
- void fcvtnu(const VRegister& rd, const VRegister& vn);
-
- // FP convert to signed integer or fixed-point, round towards zero.
- void fcvtzs(const Register& rd, const VRegister& vn, int fbits = 0);
-
- // FP convert to unsigned integer or fixed-point, round towards zero.
- void fcvtzu(const Register& rd, const VRegister& vn, int fbits = 0);
-
- // FP convert to signed integer or fixed-point, round towards zero.
- void fcvtzs(const VRegister& vd, const VRegister& vn, int fbits = 0);
-
- // FP convert to unsigned integer or fixed-point, round towards zero.
- void fcvtzu(const VRegister& vd, const VRegister& vn, int fbits = 0);
-
- // FP convert to signed integer, round towards +infinity.
- void fcvtps(const Register& rd, const VRegister& vn);
-
- // FP convert to unsigned integer, round towards +infinity.
- void fcvtpu(const Register& rd, const VRegister& vn);
-
- // FP convert to signed integer, round towards +infinity.
- void fcvtps(const VRegister& vd, const VRegister& vn);
-
- // FP convert to unsigned integer, round towards +infinity.
- void fcvtpu(const VRegister& vd, const VRegister& vn);
-
- // Convert signed integer or fixed point to FP.
- void scvtf(const VRegister& fd, const Register& rn, int fbits = 0);
-
- // Convert unsigned integer or fixed point to FP.
- void ucvtf(const VRegister& fd, const Register& rn, int fbits = 0);
-
- // Convert signed integer or fixed-point to FP.
- void scvtf(const VRegister& fd, const VRegister& vn, int fbits = 0);
-
- // Convert unsigned integer or fixed-point to FP.
- void ucvtf(const VRegister& fd, const VRegister& vn, int fbits = 0);
-
- // Unsigned absolute difference.
- void uabd(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed absolute difference.
- void sabd(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned absolute difference and accumulate.
- void uaba(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed absolute difference and accumulate.
- void saba(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Add.
- void add(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Subtract.
- void sub(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned halving add.
- void uhadd(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed halving add.
- void shadd(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned rounding halving add.
- void urhadd(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed rounding halving add.
- void srhadd(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned halving sub.
- void uhsub(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed halving sub.
- void shsub(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned saturating add.
- void uqadd(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed saturating add.
- void sqadd(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned saturating subtract.
- void uqsub(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed saturating subtract.
- void sqsub(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Add pairwise.
- void addp(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Add pair of elements scalar.
- void addp(const VRegister& vd,
- const VRegister& vn);
-
- // Multiply-add to accumulator.
- void mla(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Multiply-subtract to accumulator.
- void mls(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Multiply.
- void mul(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Multiply by scalar element.
- void mul(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Multiply-add by scalar element.
- void mla(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Multiply-subtract by scalar element.
- void mls(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Signed long multiply-add by scalar element.
- void smlal(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Signed long multiply-add by scalar element (second part).
- void smlal2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Unsigned long multiply-add by scalar element.
- void umlal(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Unsigned long multiply-add by scalar element (second part).
- void umlal2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Signed long multiply-sub by scalar element.
- void smlsl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Signed long multiply-sub by scalar element (second part).
- void smlsl2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Unsigned long multiply-sub by scalar element.
- void umlsl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Unsigned long multiply-sub by scalar element (second part).
- void umlsl2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Signed long multiply by scalar element.
- void smull(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Signed long multiply by scalar element (second part).
- void smull2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Unsigned long multiply by scalar element.
- void umull(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Unsigned long multiply by scalar element (second part).
- void umull2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Signed saturating double long multiply by element.
- void sqdmull(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Signed saturating double long multiply by element (second part).
- void sqdmull2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Signed saturating doubling long multiply-add by element.
- void sqdmlal(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Signed saturating doubling long multiply-add by element (second part).
- void sqdmlal2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Signed saturating doubling long multiply-sub by element.
- void sqdmlsl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Signed saturating doubling long multiply-sub by element (second part).
- void sqdmlsl2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Compare equal.
- void cmeq(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Compare signed greater than or equal.
- void cmge(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Compare signed greater than.
- void cmgt(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Compare unsigned higher.
- void cmhi(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Compare unsigned higher or same.
- void cmhs(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Compare bitwise test bits nonzero.
- void cmtst(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Compare bitwise to zero.
- void cmeq(const VRegister& vd,
- const VRegister& vn,
- int value);
-
- // Compare signed greater than or equal to zero.
- void cmge(const VRegister& vd,
- const VRegister& vn,
- int value);
-
- // Compare signed greater than zero.
- void cmgt(const VRegister& vd,
- const VRegister& vn,
- int value);
-
- // Compare signed less than or equal to zero.
- void cmle(const VRegister& vd,
- const VRegister& vn,
- int value);
-
- // Compare signed less than zero.
- void cmlt(const VRegister& vd,
- const VRegister& vn,
- int value);
-
- // Signed shift left by register.
- void sshl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned shift left by register.
- void ushl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed saturating shift left by register.
- void sqshl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned saturating shift left by register.
- void uqshl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed rounding shift left by register.
- void srshl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned rounding shift left by register.
- void urshl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed saturating rounding shift left by register.
- void sqrshl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned saturating rounding shift left by register.
- void uqrshl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Bitwise and.
- void and_(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Bitwise or.
- void orr(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Bitwise or immediate.
- void orr(const VRegister& vd,
- const int imm8,
- const int left_shift = 0);
-
- // Move register to register.
- void mov(const VRegister& vd,
- const VRegister& vn);
-
- // Bitwise orn.
- void orn(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Bitwise eor.
- void eor(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Bit clear immediate.
- void bic(const VRegister& vd,
- const int imm8,
- const int left_shift = 0);
-
- // Bit clear.
- void bic(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Bitwise insert if false.
- void bif(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Bitwise insert if true.
- void bit(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Bitwise select.
- void bsl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Polynomial multiply.
- void pmul(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Vector move immediate.
- void movi(const VRegister& vd,
- const uint64_t imm,
- Shift shift = LSL,
- const int shift_amount = 0);
-
- // Bitwise not.
- void mvn(const VRegister& vd,
- const VRegister& vn);
-
- // Vector move inverted immediate.
- void mvni(const VRegister& vd,
- const int imm8,
- Shift shift = LSL,
- const int shift_amount = 0);
-
- // Signed saturating accumulate of unsigned value.
- void suqadd(const VRegister& vd,
- const VRegister& vn);
-
- // Unsigned saturating accumulate of signed value.
- void usqadd(const VRegister& vd,
- const VRegister& vn);
-
- // Absolute value.
- void abs(const VRegister& vd,
- const VRegister& vn);
-
- // Signed saturating absolute value.
- void sqabs(const VRegister& vd,
- const VRegister& vn);
-
- // Negate.
- void neg(const VRegister& vd,
- const VRegister& vn);
-
- // Signed saturating negate.
- void sqneg(const VRegister& vd,
- const VRegister& vn);
-
- // Bitwise not.
- void not_(const VRegister& vd,
- const VRegister& vn);
-
- // Extract narrow.
- void xtn(const VRegister& vd,
- const VRegister& vn);
-
- // Extract narrow (second part).
- void xtn2(const VRegister& vd,
- const VRegister& vn);
-
- // Signed saturating extract narrow.
- void sqxtn(const VRegister& vd,
- const VRegister& vn);
-
- // Signed saturating extract narrow (second part).
- void sqxtn2(const VRegister& vd,
- const VRegister& vn);
-
- // Unsigned saturating extract narrow.
- void uqxtn(const VRegister& vd,
- const VRegister& vn);
-
- // Unsigned saturating extract narrow (second part).
- void uqxtn2(const VRegister& vd,
- const VRegister& vn);
-
- // Signed saturating extract unsigned narrow.
- void sqxtun(const VRegister& vd,
- const VRegister& vn);
-
- // Signed saturating extract unsigned narrow (second part).
- void sqxtun2(const VRegister& vd,
- const VRegister& vn);
-
- // Extract vector from pair of vectors.
- void ext(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int index);
-
- // Duplicate vector element to vector or scalar.
- void dup(const VRegister& vd,
- const VRegister& vn,
- int vn_index);
-
- // Move vector element to scalar.
- void mov(const VRegister& vd,
- const VRegister& vn,
- int vn_index);
-
- // Duplicate general-purpose register to vector.
- void dup(const VRegister& vd,
- const Register& rn);
-
- // Insert vector element from another vector element.
- void ins(const VRegister& vd,
- int vd_index,
- const VRegister& vn,
- int vn_index);
-
- // Move vector element to another vector element.
- void mov(const VRegister& vd,
- int vd_index,
- const VRegister& vn,
- int vn_index);
-
- // Insert vector element from general-purpose register.
- void ins(const VRegister& vd,
- int vd_index,
- const Register& rn);
-
- // Move general-purpose register to a vector element.
- void mov(const VRegister& vd,
- int vd_index,
- const Register& rn);
-
- // Unsigned move vector element to general-purpose register.
- void umov(const Register& rd,
- const VRegister& vn,
- int vn_index);
-
- // Move vector element to general-purpose register.
- void mov(const Register& rd,
- const VRegister& vn,
- int vn_index);
-
- // Signed move vector element to general-purpose register.
- void smov(const Register& rd,
- const VRegister& vn,
- int vn_index);
-
- // One-element structure load to one register.
- void ld1(const VRegister& vt,
- const MemOperand& src);
-
- // One-element structure load to two registers.
- void ld1(const VRegister& vt,
- const VRegister& vt2,
- const MemOperand& src);
-
- // One-element structure load to three registers.
- void ld1(const VRegister& vt,
- const VRegister& vt2,
- const VRegister& vt3,
- const MemOperand& src);
-
- // One-element structure load to four registers.
- void ld1(const VRegister& vt,
- const VRegister& vt2,
- const VRegister& vt3,
- const VRegister& vt4,
- const MemOperand& src);
-
- // One-element single structure load to one lane.
- void ld1(const VRegister& vt,
- int lane,
- const MemOperand& src);
-
- // One-element single structure load to all lanes.
- void ld1r(const VRegister& vt,
- const MemOperand& src);
-
- // Two-element structure load.
- void ld2(const VRegister& vt,
- const VRegister& vt2,
- const MemOperand& src);
-
- // Two-element single structure load to one lane.
- void ld2(const VRegister& vt,
- const VRegister& vt2,
- int lane,
- const MemOperand& src);
-
- // Two-element single structure load to all lanes.
- void ld2r(const VRegister& vt,
- const VRegister& vt2,
- const MemOperand& src);
-
- // Three-element structure load.
- void ld3(const VRegister& vt,
- const VRegister& vt2,
- const VRegister& vt3,
- const MemOperand& src);
-
- // Three-element single structure load to one lane.
- void ld3(const VRegister& vt,
- const VRegister& vt2,
- const VRegister& vt3,
- int lane,
- const MemOperand& src);
-
- // Three-element single structure load to all lanes.
- void ld3r(const VRegister& vt,
- const VRegister& vt2,
- const VRegister& vt3,
- const MemOperand& src);
-
- // Four-element structure load.
- void ld4(const VRegister& vt,
- const VRegister& vt2,
- const VRegister& vt3,
- const VRegister& vt4,
- const MemOperand& src);
-
- // Four-element single structure load to one lane.
- void ld4(const VRegister& vt,
- const VRegister& vt2,
- const VRegister& vt3,
- const VRegister& vt4,
- int lane,
- const MemOperand& src);
-
- // Four-element single structure load to all lanes.
- void ld4r(const VRegister& vt,
- const VRegister& vt2,
- const VRegister& vt3,
- const VRegister& vt4,
- const MemOperand& src);
-
- // Count leading sign bits.
- void cls(const VRegister& vd,
- const VRegister& vn);
-
- // Count leading zero bits (vector).
- void clz(const VRegister& vd,
- const VRegister& vn);
-
- // Population count per byte.
- void cnt(const VRegister& vd,
- const VRegister& vn);
-
- // Reverse bit order.
- void rbit(const VRegister& vd,
- const VRegister& vn);
-
- // Reverse elements in 16-bit halfwords.
- void rev16(const VRegister& vd,
- const VRegister& vn);
-
- // Reverse elements in 32-bit words.
- void rev32(const VRegister& vd,
- const VRegister& vn);
-
- // Reverse elements in 64-bit doublewords.
- void rev64(const VRegister& vd,
- const VRegister& vn);
-
- // Unsigned reciprocal square root estimate.
- void ursqrte(const VRegister& vd,
- const VRegister& vn);
-
- // Unsigned reciprocal estimate.
- void urecpe(const VRegister& vd,
- const VRegister& vn);
-
- // Signed pairwise long add.
- void saddlp(const VRegister& vd,
- const VRegister& vn);
-
- // Unsigned pairwise long add.
- void uaddlp(const VRegister& vd,
- const VRegister& vn);
-
- // Signed pairwise long add and accumulate.
- void sadalp(const VRegister& vd,
- const VRegister& vn);
-
- // Unsigned pairwise long add and accumulate.
- void uadalp(const VRegister& vd,
- const VRegister& vn);
-
- // Shift left by immediate.
- void shl(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Signed saturating shift left by immediate.
- void sqshl(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Signed saturating shift left unsigned by immediate.
- void sqshlu(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Unsigned saturating shift left by immediate.
- void uqshl(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Signed shift left long by immediate.
- void sshll(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Signed shift left long by immediate (second part).
- void sshll2(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Signed extend long.
- void sxtl(const VRegister& vd,
- const VRegister& vn);
-
- // Signed extend long (second part).
- void sxtl2(const VRegister& vd,
- const VRegister& vn);
-
- // Unsigned shift left long by immediate.
- void ushll(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Unsigned shift left long by immediate (second part).
- void ushll2(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Shift left long by element size.
- void shll(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Shift left long by element size (second part).
- void shll2(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Unsigned extend long.
- void uxtl(const VRegister& vd,
- const VRegister& vn);
-
- // Unsigned extend long (second part).
- void uxtl2(const VRegister& vd,
- const VRegister& vn);
-
- // Shift left by immediate and insert.
- void sli(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Shift right by immediate and insert.
- void sri(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Signed maximum.
- void smax(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed pairwise maximum.
- void smaxp(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Add across vector.
- void addv(const VRegister& vd,
- const VRegister& vn);
-
- // Signed add long across vector.
- void saddlv(const VRegister& vd,
- const VRegister& vn);
-
- // Unsigned add long across vector.
- void uaddlv(const VRegister& vd,
- const VRegister& vn);
-
- // FP maximum number across vector.
- void fmaxnmv(const VRegister& vd,
- const VRegister& vn);
-
- // FP maximum across vector.
- void fmaxv(const VRegister& vd,
- const VRegister& vn);
-
- // FP minimum number across vector.
- void fminnmv(const VRegister& vd,
- const VRegister& vn);
-
- // FP minimum across vector.
- void fminv(const VRegister& vd,
- const VRegister& vn);
-
- // Signed maximum across vector.
- void smaxv(const VRegister& vd,
- const VRegister& vn);
-
- // Signed minimum.
- void smin(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed minimum pairwise.
- void sminp(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed minimum across vector.
- void sminv(const VRegister& vd,
- const VRegister& vn);
-
- // One-element structure store from one register.
- void st1(const VRegister& vt,
- const MemOperand& src);
-
- // One-element structure store from two registers.
- void st1(const VRegister& vt,
- const VRegister& vt2,
- const MemOperand& src);
-
- // One-element structure store from three registers.
- void st1(const VRegister& vt,
- const VRegister& vt2,
- const VRegister& vt3,
- const MemOperand& src);
-
- // One-element structure store from four registers.
- void st1(const VRegister& vt,
- const VRegister& vt2,
- const VRegister& vt3,
- const VRegister& vt4,
- const MemOperand& src);
-
- // One-element single structure store from one lane.
- void st1(const VRegister& vt,
- int lane,
- const MemOperand& src);
-
- // Two-element structure store from two registers.
- void st2(const VRegister& vt,
- const VRegister& vt2,
- const MemOperand& src);
-
- // Two-element single structure store from two lanes.
- void st2(const VRegister& vt,
- const VRegister& vt2,
- int lane,
- const MemOperand& src);
-
- // Three-element structure store from three registers.
- void st3(const VRegister& vt,
- const VRegister& vt2,
- const VRegister& vt3,
- const MemOperand& src);
-
- // Three-element single structure store from three lanes.
- void st3(const VRegister& vt,
- const VRegister& vt2,
- const VRegister& vt3,
- int lane,
- const MemOperand& src);
-
- // Four-element structure store from four registers.
- void st4(const VRegister& vt,
- const VRegister& vt2,
- const VRegister& vt3,
- const VRegister& vt4,
- const MemOperand& src);
-
- // Four-element single structure store from four lanes.
- void st4(const VRegister& vt,
- const VRegister& vt2,
- const VRegister& vt3,
- const VRegister& vt4,
- int lane,
- const MemOperand& src);
-
- // Unsigned add long.
- void uaddl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned add long (second part).
- void uaddl2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned add wide.
- void uaddw(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned add wide (second part).
- void uaddw2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed add long.
- void saddl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed add long (second part).
- void saddl2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed add wide.
- void saddw(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed add wide (second part).
- void saddw2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned subtract long.
- void usubl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned subtract long (second part).
- void usubl2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned subtract wide.
- void usubw(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned subtract wide (second part).
- void usubw2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed subtract long.
- void ssubl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed subtract long (second part).
- void ssubl2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed integer subtract wide.
- void ssubw(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed integer subtract wide (second part).
- void ssubw2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned maximum.
- void umax(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned pairwise maximum.
- void umaxp(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned maximum across vector.
- void umaxv(const VRegister& vd,
- const VRegister& vn);
-
- // Unsigned minimum.
- void umin(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned pairwise minimum.
- void uminp(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned minimum across vector.
- void uminv(const VRegister& vd,
- const VRegister& vn);
-
- // Transpose vectors (primary).
- void trn1(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Transpose vectors (secondary).
- void trn2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unzip vectors (primary).
- void uzp1(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unzip vectors (secondary).
- void uzp2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Zip vectors (primary).
- void zip1(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Zip vectors (secondary).
- void zip2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed shift right by immediate.
- void sshr(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Unsigned shift right by immediate.
- void ushr(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Signed rounding shift right by immediate.
- void srshr(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Unsigned rounding shift right by immediate.
- void urshr(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Signed shift right by immediate and accumulate.
- void ssra(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Unsigned shift right by immediate and accumulate.
- void usra(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Signed rounding shift right by immediate and accumulate.
- void srsra(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Unsigned rounding shift right by immediate and accumulate.
- void ursra(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Shift right narrow by immediate.
- void shrn(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Shift right narrow by immediate (second part).
- void shrn2(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Rounding shift right narrow by immediate.
- void rshrn(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Rounding shift right narrow by immediate (second part).
- void rshrn2(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Unsigned saturating shift right narrow by immediate.
- void uqshrn(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Unsigned saturating shift right narrow by immediate (second part).
- void uqshrn2(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Unsigned saturating rounding shift right narrow by immediate.
- void uqrshrn(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Unsigned saturating rounding shift right narrow by immediate (second part).
- void uqrshrn2(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Signed saturating shift right narrow by immediate.
- void sqshrn(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Signed saturating shift right narrow by immediate (second part).
- void sqshrn2(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Signed saturating rounded shift right narrow by immediate.
- void sqrshrn(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Signed saturating rounded shift right narrow by immediate (second part).
- void sqrshrn2(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Signed saturating shift right unsigned narrow by immediate.
- void sqshrun(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Signed saturating shift right unsigned narrow by immediate (second part).
- void sqshrun2(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Signed sat rounded shift right unsigned narrow by immediate.
- void sqrshrun(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // Signed sat rounded shift right unsigned narrow by immediate (second part).
- void sqrshrun2(const VRegister& vd,
- const VRegister& vn,
- int shift);
-
- // FP reciprocal step.
- void frecps(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // FP reciprocal estimate.
- void frecpe(const VRegister& vd,
- const VRegister& vn);
-
- // FP reciprocal square root estimate.
- void frsqrte(const VRegister& vd,
- const VRegister& vn);
-
- // FP reciprocal square root step.
- void frsqrts(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed absolute difference and accumulate long.
- void sabal(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed absolute difference and accumulate long (second part).
- void sabal2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned absolute difference and accumulate long.
- void uabal(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned absolute difference and accumulate long (second part).
- void uabal2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed absolute difference long.
- void sabdl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed absolute difference long (second part).
- void sabdl2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned absolute difference long.
- void uabdl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned absolute difference long (second part).
- void uabdl2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Polynomial multiply long.
- void pmull(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Polynomial multiply long (second part).
- void pmull2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed long multiply-add.
- void smlal(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed long multiply-add (second part).
- void smlal2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned long multiply-add.
- void umlal(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned long multiply-add (second part).
- void umlal2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed long multiply-sub.
- void smlsl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed long multiply-sub (second part).
- void smlsl2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned long multiply-sub.
- void umlsl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned long multiply-sub (second part).
- void umlsl2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed long multiply.
- void smull(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed long multiply (second part).
- void smull2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed saturating doubling long multiply-add.
- void sqdmlal(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed saturating doubling long multiply-add (second part).
- void sqdmlal2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed saturating doubling long multiply-subtract.
- void sqdmlsl(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed saturating doubling long multiply-subtract (second part).
- void sqdmlsl2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed saturating doubling long multiply.
- void sqdmull(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed saturating doubling long multiply (second part).
- void sqdmull2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed saturating doubling multiply returning high half.
- void sqdmulh(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed saturating rounding doubling multiply returning high half.
- void sqrdmulh(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Signed saturating doubling multiply element returning high half.
- void sqdmulh(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Signed saturating rounding doubling multiply element returning high half.
- void sqrdmulh(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // Unsigned long multiply long.
- void umull(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Unsigned long multiply (second part).
- void umull2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Add narrow returning high half.
- void addhn(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Add narrow returning high half (second part).
- void addhn2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Rounding add narrow returning high half.
- void raddhn(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Rounding add narrow returning high half (second part).
- void raddhn2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Subtract narrow returning high half.
- void subhn(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Subtract narrow returning high half (second part).
- void subhn2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Rounding subtract narrow returning high half.
- void rsubhn(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // Rounding subtract narrow returning high half (second part).
- void rsubhn2(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // FP vector multiply accumulate.
- void fmla(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // FP vector multiply subtract.
- void fmls(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // FP vector multiply extended.
- void fmulx(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // FP absolute greater than or equal.
- void facge(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // FP absolute greater than.
- void facgt(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // FP multiply by element.
- void fmul(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // FP fused multiply-add to accumulator by element.
- void fmla(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // FP fused multiply-sub from accumulator by element.
- void fmls(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // FP multiply extended by element.
- void fmulx(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index);
-
- // FP compare equal.
- void fcmeq(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // FP greater than.
- void fcmgt(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // FP greater than or equal.
- void fcmge(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // FP compare equal to zero.
- void fcmeq(const VRegister& vd,
- const VRegister& vn,
- double imm);
-
- // FP greater than zero.
- void fcmgt(const VRegister& vd,
- const VRegister& vn,
- double imm);
-
- // FP greater than or equal to zero.
- void fcmge(const VRegister& vd,
- const VRegister& vn,
- double imm);
-
- // FP less than or equal to zero.
- void fcmle(const VRegister& vd,
- const VRegister& vn,
- double imm);
-
- // FP less than to zero.
- void fcmlt(const VRegister& vd,
- const VRegister& vn,
- double imm);
-
- // FP absolute difference.
- void fabd(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // FP pairwise add vector.
- void faddp(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // FP pairwise add scalar.
- void faddp(const VRegister& vd,
- const VRegister& vn);
-
- // FP pairwise maximum vector.
- void fmaxp(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // FP pairwise maximum scalar.
- void fmaxp(const VRegister& vd,
- const VRegister& vn);
-
- // FP pairwise minimum vector.
- void fminp(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // FP pairwise minimum scalar.
- void fminp(const VRegister& vd,
- const VRegister& vn);
-
- // FP pairwise maximum number vector.
- void fmaxnmp(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // FP pairwise maximum number scalar.
- void fmaxnmp(const VRegister& vd,
- const VRegister& vn);
-
- // FP pairwise minimum number vector.
- void fminnmp(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm);
-
- // FP pairwise minimum number scalar.
- void fminnmp(const VRegister& vd,
- const VRegister& vn);
-
- // Emit generic instructions.
- // Emit raw instructions into the instruction stream.
- void dci(Instr raw_inst) { Emit(raw_inst); }
-
- // Emit 32 bits of data into the instruction stream.
- void dc32(uint32_t data) {
- VIXL_ASSERT(buffer_monitor_ > 0);
- buffer_->Emit32(data);
- }
-
- // Emit 64 bits of data into the instruction stream.
- void dc64(uint64_t data) {
- VIXL_ASSERT(buffer_monitor_ > 0);
- buffer_->Emit64(data);
- }
-
- // Copy a string into the instruction stream, including the terminating NULL
- // character. The instruction pointer is then aligned correctly for
- // subsequent instructions.
- void EmitString(const char * string) {
- VIXL_ASSERT(string != NULL);
- VIXL_ASSERT(buffer_monitor_ > 0);
-
- buffer_->EmitString(string);
- buffer_->Align();
- }
-
- // Code generation helpers.
-
- // Register encoding.
- static Instr Rd(CPURegister rd) {
- VIXL_ASSERT(rd.code() != kSPRegInternalCode);
- return rd.code() << Rd_offset;
- }
-
- static Instr Rn(CPURegister rn) {
- VIXL_ASSERT(rn.code() != kSPRegInternalCode);
- return rn.code() << Rn_offset;
- }
-
- static Instr Rm(CPURegister rm) {
- VIXL_ASSERT(rm.code() != kSPRegInternalCode);
- return rm.code() << Rm_offset;
- }
-
- static Instr RmNot31(CPURegister rm) {
- VIXL_ASSERT(rm.code() != kSPRegInternalCode);
- VIXL_ASSERT(!rm.IsZero());
- return Rm(rm);
- }
-
- static Instr Ra(CPURegister ra) {
- VIXL_ASSERT(ra.code() != kSPRegInternalCode);
- return ra.code() << Ra_offset;
- }
-
- static Instr Rt(CPURegister rt) {
- VIXL_ASSERT(rt.code() != kSPRegInternalCode);
- return rt.code() << Rt_offset;
- }
-
- static Instr Rt2(CPURegister rt2) {
- VIXL_ASSERT(rt2.code() != kSPRegInternalCode);
- return rt2.code() << Rt2_offset;
- }
-
- static Instr Rs(CPURegister rs) {
- VIXL_ASSERT(rs.code() != kSPRegInternalCode);
- return rs.code() << Rs_offset;
- }
-
- // These encoding functions allow the stack pointer to be encoded, and
- // disallow the zero register.
- static Instr RdSP(Register rd) {
- VIXL_ASSERT(!rd.IsZero());
- return (rd.code() & kRegCodeMask) << Rd_offset;
- }
-
- static Instr RnSP(Register rn) {
- VIXL_ASSERT(!rn.IsZero());
- return (rn.code() & kRegCodeMask) << Rn_offset;
- }
-
- // Flags encoding.
- static Instr Flags(FlagsUpdate S) {
- if (S == SetFlags) {
- return 1 << FlagsUpdate_offset;
- } else if (S == LeaveFlags) {
- return 0 << FlagsUpdate_offset;
- }
- VIXL_UNREACHABLE();
- return 0;
- }
-
- static Instr Cond(Condition cond) {
- return cond << Condition_offset;
- }
-
- // PC-relative address encoding.
- static Instr ImmPCRelAddress(int imm21) {
- VIXL_ASSERT(is_int21(imm21));
- Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
- Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
- Instr immlo = imm << ImmPCRelLo_offset;
- return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
- }
-
- // Branch encoding.
- static Instr ImmUncondBranch(int imm26) {
- VIXL_ASSERT(is_int26(imm26));
- return truncate_to_int26(imm26) << ImmUncondBranch_offset;
- }
-
- static Instr ImmCondBranch(int imm19) {
- VIXL_ASSERT(is_int19(imm19));
- return truncate_to_int19(imm19) << ImmCondBranch_offset;
- }
-
- static Instr ImmCmpBranch(int imm19) {
- VIXL_ASSERT(is_int19(imm19));
- return truncate_to_int19(imm19) << ImmCmpBranch_offset;
- }
-
- static Instr ImmTestBranch(int imm14) {
- VIXL_ASSERT(is_int14(imm14));
- return truncate_to_int14(imm14) << ImmTestBranch_offset;
- }
-
- static Instr ImmTestBranchBit(unsigned bit_pos) {
- VIXL_ASSERT(is_uint6(bit_pos));
- // Subtract five from the shift offset, as we need bit 5 from bit_pos.
- unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
- unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
- b5 &= ImmTestBranchBit5_mask;
- b40 &= ImmTestBranchBit40_mask;
- return b5 | b40;
- }
-
- // Data Processing encoding.
- static Instr SF(Register rd) {
- return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
- }
-
- static Instr ImmAddSub(int imm) {
- VIXL_ASSERT(IsImmAddSub(imm));
- if (is_uint12(imm)) { // No shift required.
- imm <<= ImmAddSub_offset;
- } else {
- imm = ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
- }
- return imm;
- }
-
- static Instr ImmS(unsigned imms, unsigned reg_size) {
- VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
- ((reg_size == kWRegSize) && is_uint5(imms)));
- USE(reg_size);
- return imms << ImmS_offset;
- }
-
- static Instr ImmR(unsigned immr, unsigned reg_size) {
- VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
- ((reg_size == kWRegSize) && is_uint5(immr)));
- USE(reg_size);
- VIXL_ASSERT(is_uint6(immr));
- return immr << ImmR_offset;
- }
-
- static Instr ImmSetBits(unsigned imms, unsigned reg_size) {
- VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
- VIXL_ASSERT(is_uint6(imms));
- VIXL_ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
- USE(reg_size);
- return imms << ImmSetBits_offset;
- }
-
- static Instr ImmRotate(unsigned immr, unsigned reg_size) {
- VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
- VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
- ((reg_size == kWRegSize) && is_uint5(immr)));
- USE(reg_size);
- return immr << ImmRotate_offset;
- }
-
- static Instr ImmLLiteral(int imm19) {
- VIXL_ASSERT(is_int19(imm19));
- return truncate_to_int19(imm19) << ImmLLiteral_offset;
- }
-
- static Instr BitN(unsigned bitn, unsigned reg_size) {
- VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
- VIXL_ASSERT((reg_size == kXRegSize) || (bitn == 0));
- USE(reg_size);
- return bitn << BitN_offset;
- }
-
- static Instr ShiftDP(Shift shift) {
- VIXL_ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
- return shift << ShiftDP_offset;
- }
-
- static Instr ImmDPShift(unsigned amount) {
- VIXL_ASSERT(is_uint6(amount));
- return amount << ImmDPShift_offset;
- }
-
- static Instr ExtendMode(Extend extend) {
- return extend << ExtendMode_offset;
- }
-
- static Instr ImmExtendShift(unsigned left_shift) {
- VIXL_ASSERT(left_shift <= 4);
- return left_shift << ImmExtendShift_offset;
- }
-
- static Instr ImmCondCmp(unsigned imm) {
- VIXL_ASSERT(is_uint5(imm));
- return imm << ImmCondCmp_offset;
- }
-
- static Instr Nzcv(StatusFlags nzcv) {
- return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
- }
-
- // MemOperand offset encoding.
- static Instr ImmLSUnsigned(int imm12) {
- VIXL_ASSERT(is_uint12(imm12));
- return imm12 << ImmLSUnsigned_offset;
- }
-
- static Instr ImmLS(int imm9) {
- VIXL_ASSERT(is_int9(imm9));
- return truncate_to_int9(imm9) << ImmLS_offset;
- }
-
- static Instr ImmLSPair(int imm7, unsigned access_size) {
- VIXL_ASSERT(((imm7 >> access_size) << access_size) == imm7);
- int scaled_imm7 = imm7 >> access_size;
- VIXL_ASSERT(is_int7(scaled_imm7));
- return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
- }
-
- static Instr ImmShiftLS(unsigned shift_amount) {
- VIXL_ASSERT(is_uint1(shift_amount));
- return shift_amount << ImmShiftLS_offset;
- }
-
- static Instr ImmPrefetchOperation(int imm5) {
- VIXL_ASSERT(is_uint5(imm5));
- return imm5 << ImmPrefetchOperation_offset;
- }
-
- static Instr ImmException(int imm16) {
- VIXL_ASSERT(is_uint16(imm16));
- return imm16 << ImmException_offset;
- }
-
- static Instr ImmSystemRegister(int imm15) {
- VIXL_ASSERT(is_uint15(imm15));
- return imm15 << ImmSystemRegister_offset;
- }
-
- static Instr ImmHint(int imm7) {
- VIXL_ASSERT(is_uint7(imm7));
- return imm7 << ImmHint_offset;
- }
-
- static Instr CRm(int imm4) {
- VIXL_ASSERT(is_uint4(imm4));
- return imm4 << CRm_offset;
- }
-
- static Instr CRn(int imm4) {
- VIXL_ASSERT(is_uint4(imm4));
- return imm4 << CRn_offset;
- }
-
- static Instr SysOp(int imm14) {
- VIXL_ASSERT(is_uint14(imm14));
- return imm14 << SysOp_offset;
- }
-
- static Instr ImmSysOp1(int imm3) {
- VIXL_ASSERT(is_uint3(imm3));
- return imm3 << SysOp1_offset;
- }
-
- static Instr ImmSysOp2(int imm3) {
- VIXL_ASSERT(is_uint3(imm3));
- return imm3 << SysOp2_offset;
- }
-
- static Instr ImmBarrierDomain(int imm2) {
- VIXL_ASSERT(is_uint2(imm2));
- return imm2 << ImmBarrierDomain_offset;
- }
-
- static Instr ImmBarrierType(int imm2) {
- VIXL_ASSERT(is_uint2(imm2));
- return imm2 << ImmBarrierType_offset;
- }
-
- // Move immediates encoding.
- static Instr ImmMoveWide(uint64_t imm) {
- VIXL_ASSERT(is_uint16(imm));
- return static_cast<Instr>(imm << ImmMoveWide_offset);
- }
-
- static Instr ShiftMoveWide(int64_t shift) {
- VIXL_ASSERT(is_uint2(shift));
- return static_cast<Instr>(shift << ShiftMoveWide_offset);
- }
-
- // FP Immediates.
- static Instr ImmFP32(float imm);
- static Instr ImmFP64(double imm);
-
- // FP register type.
- static Instr FPType(FPRegister fd) {
- return fd.Is64Bits() ? FP64 : FP32;
- }
-
- static Instr FPScale(unsigned scale) {
- VIXL_ASSERT(is_uint6(scale));
- return scale << FPScale_offset;
- }
-
- // Immediate field checking helpers.
- static bool IsImmAddSub(int64_t immediate);
- static bool IsImmConditionalCompare(int64_t immediate);
- static bool IsImmFP32(float imm);
- static bool IsImmFP64(double imm);
- static bool IsImmLogical(uint64_t value,
- unsigned width,
- unsigned* n = NULL,
- unsigned* imm_s = NULL,
- unsigned* imm_r = NULL);
- static bool IsImmLSPair(int64_t offset, unsigned access_size);
- static bool IsImmLSScaled(int64_t offset, unsigned access_size);
- static bool IsImmLSUnscaled(int64_t offset);
- static bool IsImmMovn(uint64_t imm, unsigned reg_size);
- static bool IsImmMovz(uint64_t imm, unsigned reg_size);
-
- // Instruction bits for vector format in data processing operations.
- static Instr VFormat(VRegister vd) {
- if (vd.Is64Bits()) {
- switch (vd.lanes()) {
- case 2: return NEON_2S;
- case 4: return NEON_4H;
- case 8: return NEON_8B;
- default: return 0xffffffff;
- }
- } else {
- VIXL_ASSERT(vd.Is128Bits());
- switch (vd.lanes()) {
- case 2: return NEON_2D;
- case 4: return NEON_4S;
- case 8: return NEON_8H;
- case 16: return NEON_16B;
- default: return 0xffffffff;
- }
- }
- }
-
- // Instruction bits for vector format in floating point data processing
- // operations.
- static Instr FPFormat(VRegister vd) {
- if (vd.lanes() == 1) {
- // Floating point scalar formats.
- VIXL_ASSERT(vd.Is32Bits() || vd.Is64Bits());
- return vd.Is64Bits() ? FP64 : FP32;
- }
-
- // Two lane floating point vector formats.
- if (vd.lanes() == 2) {
- VIXL_ASSERT(vd.Is64Bits() || vd.Is128Bits());
- return vd.Is128Bits() ? NEON_FP_2D : NEON_FP_2S;
- }
-
- // Four lane floating point vector format.
- VIXL_ASSERT((vd.lanes() == 4) && vd.Is128Bits());
- return NEON_FP_4S;
- }
-
- // Instruction bits for vector format in load and store operations.
- static Instr LSVFormat(VRegister vd) {
- if (vd.Is64Bits()) {
- switch (vd.lanes()) {
- case 1: return LS_NEON_1D;
- case 2: return LS_NEON_2S;
- case 4: return LS_NEON_4H;
- case 8: return LS_NEON_8B;
- default: return 0xffffffff;
- }
- } else {
- VIXL_ASSERT(vd.Is128Bits());
- switch (vd.lanes()) {
- case 2: return LS_NEON_2D;
- case 4: return LS_NEON_4S;
- case 8: return LS_NEON_8H;
- case 16: return LS_NEON_16B;
- default: return 0xffffffff;
- }
- }
- }
-
- // Instruction bits for scalar format in data processing operations.
- static Instr SFormat(VRegister vd) {
- VIXL_ASSERT(vd.lanes() == 1);
- switch (vd.SizeInBytes()) {
- case 1: return NEON_B;
- case 2: return NEON_H;
- case 4: return NEON_S;
- case 8: return NEON_D;
- default: return 0xffffffff;
- }
- }
-
- static Instr ImmNEONHLM(int index, int num_bits) {
- int h, l, m;
- if (num_bits == 3) {
- VIXL_ASSERT(is_uint3(index));
- h = (index >> 2) & 1;
- l = (index >> 1) & 1;
- m = (index >> 0) & 1;
- } else if (num_bits == 2) {
- VIXL_ASSERT(is_uint2(index));
- h = (index >> 1) & 1;
- l = (index >> 0) & 1;
- m = 0;
- } else {
- VIXL_ASSERT(is_uint1(index) && (num_bits == 1));
- h = (index >> 0) & 1;
- l = 0;
- m = 0;
- }
- return (h << NEONH_offset) | (l << NEONL_offset) | (m << NEONM_offset);
- }
-
- static Instr ImmNEONExt(int imm4) {
- VIXL_ASSERT(is_uint4(imm4));
- return imm4 << ImmNEONExt_offset;
- }
-
- static Instr ImmNEON5(Instr format, int index) {
- VIXL_ASSERT(is_uint4(index));
- int s = LaneSizeInBytesLog2FromFormat(static_cast<VectorFormat>(format));
- int imm5 = (index << (s + 1)) | (1 << s);
- return imm5 << ImmNEON5_offset;
- }
-
- static Instr ImmNEON4(Instr format, int index) {
- VIXL_ASSERT(is_uint4(index));
- int s = LaneSizeInBytesLog2FromFormat(static_cast<VectorFormat>(format));
- int imm4 = index << s;
- return imm4 << ImmNEON4_offset;
- }
-
- static Instr ImmNEONabcdefgh(int imm8) {
- VIXL_ASSERT(is_uint8(imm8));
- Instr instr;
- instr = ((imm8 >> 5) & 7) << ImmNEONabc_offset;
- instr |= (imm8 & 0x1f) << ImmNEONdefgh_offset;
- return instr;
- }
-
- static Instr NEONCmode(int cmode) {
- VIXL_ASSERT(is_uint4(cmode));
- return cmode << NEONCmode_offset;
- }
-
- static Instr NEONModImmOp(int op) {
- VIXL_ASSERT(is_uint1(op));
- return op << NEONModImmOp_offset;
- }
-
- // Size of the code generated since label to the current position.
- size_t SizeOfCodeGeneratedSince(Label* label) const {
- VIXL_ASSERT(label->IsBound());
- return buffer_->OffsetFrom(label->location());
- }
-
- size_t SizeOfCodeGenerated() const {
- return buffer_->CursorOffset();
- }
-
- size_t BufferCapacity() const { return buffer_->capacity(); }
-
- size_t RemainingBufferSpace() const { return buffer_->RemainingBytes(); }
-
- void EnsureSpaceFor(size_t amount) {
- if (buffer_->RemainingBytes() < amount) {
- size_t capacity = buffer_->capacity();
- size_t size = buffer_->CursorOffset();
- do {
- // TODO(all): refine.
- capacity *= 2;
- } while ((capacity - size) < amount);
- buffer_->Grow(capacity);
- }
- }
-
-#ifdef VIXL_DEBUG
- void AcquireBuffer() {
- VIXL_ASSERT(buffer_monitor_ >= 0);
- buffer_monitor_++;
- }
-
- void ReleaseBuffer() {
- buffer_monitor_--;
- VIXL_ASSERT(buffer_monitor_ >= 0);
- }
-#endif
-
- PositionIndependentCodeOption pic() const {
- return pic_;
- }
-
- bool AllowPageOffsetDependentCode() const {
- return (pic() == PageOffsetDependentCode) ||
- (pic() == PositionDependentCode);
- }
-
- static const Register& AppropriateZeroRegFor(const CPURegister& reg) {
- return reg.Is64Bits() ? xzr : wzr;
- }
-
-
- protected:
- void LoadStore(const CPURegister& rt,
- const MemOperand& addr,
- LoadStoreOp op,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- void LoadStorePair(const CPURegister& rt,
- const CPURegister& rt2,
- const MemOperand& addr,
- LoadStorePairOp op);
- void LoadStoreStruct(const VRegister& vt,
- const MemOperand& addr,
- NEONLoadStoreMultiStructOp op);
- void LoadStoreStruct1(const VRegister& vt,
- int reg_count,
- const MemOperand& addr);
- void LoadStoreStructSingle(const VRegister& vt,
- uint32_t lane,
- const MemOperand& addr,
- NEONLoadStoreSingleStructOp op);
- void LoadStoreStructSingleAllLanes(const VRegister& vt,
- const MemOperand& addr,
- NEONLoadStoreSingleStructOp op);
- void LoadStoreStructVerify(const VRegister& vt,
- const MemOperand& addr,
- Instr op);
-
- void Prefetch(PrefetchOperation op,
- const MemOperand& addr,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // TODO(all): The third parameter should be passed by reference but gcc 4.8.2
- // reports a bogus uninitialised warning then.
- void Logical(const Register& rd,
- const Register& rn,
- const Operand operand,
- LogicalOp op);
- void LogicalImmediate(const Register& rd,
- const Register& rn,
- unsigned n,
- unsigned imm_s,
- unsigned imm_r,
- LogicalOp op);
-
- void ConditionalCompare(const Register& rn,
- const Operand& operand,
- StatusFlags nzcv,
- Condition cond,
- ConditionalCompareOp op);
-
- void AddSubWithCarry(const Register& rd,
- const Register& rn,
- const Operand& operand,
- FlagsUpdate S,
- AddSubWithCarryOp op);
-
-
- // Functions for emulating operands not directly supported by the instruction
- // set.
- void EmitShift(const Register& rd,
- const Register& rn,
- Shift shift,
- unsigned amount);
- void EmitExtendShift(const Register& rd,
- const Register& rn,
- Extend extend,
- unsigned left_shift);
-
- void AddSub(const Register& rd,
- const Register& rn,
- const Operand& operand,
- FlagsUpdate S,
- AddSubOp op);
-
- void NEONTable(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- NEONTableOp op);
-
- // Find an appropriate LoadStoreOp or LoadStorePairOp for the specified
- // registers. Only simple loads are supported; sign- and zero-extension (such
- // as in LDPSW_x or LDRB_w) are not supported.
- static LoadStoreOp LoadOpFor(const CPURegister& rt);
- static LoadStorePairOp LoadPairOpFor(const CPURegister& rt,
- const CPURegister& rt2);
- static LoadStoreOp StoreOpFor(const CPURegister& rt);
- static LoadStorePairOp StorePairOpFor(const CPURegister& rt,
- const CPURegister& rt2);
- static LoadStorePairNonTemporalOp LoadPairNonTemporalOpFor(
- const CPURegister& rt, const CPURegister& rt2);
- static LoadStorePairNonTemporalOp StorePairNonTemporalOpFor(
- const CPURegister& rt, const CPURegister& rt2);
- static LoadLiteralOp LoadLiteralOpFor(const CPURegister& rt);
-
-
- private:
- static uint32_t FP32ToImm8(float imm);
- static uint32_t FP64ToImm8(double imm);
-
- // Instruction helpers.
- void MoveWide(const Register& rd,
- uint64_t imm,
- int shift,
- MoveWideImmediateOp mov_op);
- void DataProcShiftedRegister(const Register& rd,
- const Register& rn,
- const Operand& operand,
- FlagsUpdate S,
- Instr op);
- void DataProcExtendedRegister(const Register& rd,
- const Register& rn,
- const Operand& operand,
- FlagsUpdate S,
- Instr op);
- void LoadStorePairNonTemporal(const CPURegister& rt,
- const CPURegister& rt2,
- const MemOperand& addr,
- LoadStorePairNonTemporalOp op);
- void LoadLiteral(const CPURegister& rt, uint64_t imm, LoadLiteralOp op);
- void ConditionalSelect(const Register& rd,
- const Register& rn,
- const Register& rm,
- Condition cond,
- ConditionalSelectOp op);
- void DataProcessing1Source(const Register& rd,
- const Register& rn,
- DataProcessing1SourceOp op);
- void DataProcessing3Source(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra,
- DataProcessing3SourceOp op);
- void FPDataProcessing1Source(const VRegister& fd,
- const VRegister& fn,
- FPDataProcessing1SourceOp op);
- void FPDataProcessing3Source(const VRegister& fd,
- const VRegister& fn,
- const VRegister& fm,
- const VRegister& fa,
- FPDataProcessing3SourceOp op);
- void NEONAcrossLanesL(const VRegister& vd,
- const VRegister& vn,
- NEONAcrossLanesOp op);
- void NEONAcrossLanes(const VRegister& vd,
- const VRegister& vn,
- NEONAcrossLanesOp op);
- void NEONModifiedImmShiftLsl(const VRegister& vd,
- const int imm8,
- const int left_shift,
- NEONModifiedImmediateOp op);
- void NEONModifiedImmShiftMsl(const VRegister& vd,
- const int imm8,
- const int shift_amount,
- NEONModifiedImmediateOp op);
- void NEONFP2Same(const VRegister& vd,
- const VRegister& vn,
- Instr vop);
- void NEON3Same(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- NEON3SameOp vop);
- void NEONFP3Same(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- Instr op);
- void NEON3DifferentL(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- NEON3DifferentOp vop);
- void NEON3DifferentW(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- NEON3DifferentOp vop);
- void NEON3DifferentHN(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- NEON3DifferentOp vop);
- void NEONFP2RegMisc(const VRegister& vd,
- const VRegister& vn,
- NEON2RegMiscOp vop,
- double value = 0.0);
- void NEON2RegMisc(const VRegister& vd,
- const VRegister& vn,
- NEON2RegMiscOp vop,
- int value = 0);
- void NEONFP2RegMisc(const VRegister& vd,
- const VRegister& vn,
- Instr op);
- void NEONAddlp(const VRegister& vd,
- const VRegister& vn,
- NEON2RegMiscOp op);
- void NEONPerm(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- NEONPermOp op);
- void NEONFPByElement(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index,
- NEONByIndexedElementOp op);
- void NEONByElement(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index,
- NEONByIndexedElementOp op);
- void NEONByElementL(const VRegister& vd,
- const VRegister& vn,
- const VRegister& vm,
- int vm_index,
- NEONByIndexedElementOp op);
- void NEONShiftImmediate(const VRegister& vd,
- const VRegister& vn,
- NEONShiftImmediateOp op,
- int immh_immb);
- void NEONShiftLeftImmediate(const VRegister& vd,
- const VRegister& vn,
- int shift,
- NEONShiftImmediateOp op);
- void NEONShiftRightImmediate(const VRegister& vd,
- const VRegister& vn,
- int shift,
- NEONShiftImmediateOp op);
- void NEONShiftImmediateL(const VRegister& vd,
- const VRegister& vn,
- int shift,
- NEONShiftImmediateOp op);
- void NEONShiftImmediateN(const VRegister& vd,
- const VRegister& vn,
- int shift,
- NEONShiftImmediateOp op);
- void NEONXtn(const VRegister& vd,
- const VRegister& vn,
- NEON2RegMiscOp vop);
-
- Instr LoadStoreStructAddrModeField(const MemOperand& addr);
-
- // Encode the specified MemOperand for the specified access size and scaling
- // preference.
- Instr LoadStoreMemOperand(const MemOperand& addr,
- unsigned access_size,
- LoadStoreScalingOption option);
-
- // Link the current (not-yet-emitted) instruction to the specified label, then
- // return an offset to be encoded in the instruction. If the label is not yet
- // bound, an offset of 0 is returned.
- ptrdiff_t LinkAndGetByteOffsetTo(Label * label);
- ptrdiff_t LinkAndGetInstructionOffsetTo(Label * label);
- ptrdiff_t LinkAndGetPageOffsetTo(Label * label);
-
- // A common implementation for the LinkAndGet<Type>OffsetTo helpers.
- template <int element_shift>
- ptrdiff_t LinkAndGetOffsetTo(Label* label);
-
- // Literal load offset are in words (32-bit).
- ptrdiff_t LinkAndGetWordOffsetTo(RawLiteral* literal);
-
- // Emit the instruction in buffer_.
- void Emit(Instr instruction) {
- VIXL_STATIC_ASSERT(sizeof(instruction) == kInstructionSize);
- VIXL_ASSERT(buffer_monitor_ > 0);
- buffer_->Emit32(instruction);
- }
-
- // Buffer where the code is emitted.
- CodeBuffer* buffer_;
- PositionIndependentCodeOption pic_;
-
-#ifdef VIXL_DEBUG
- int64_t buffer_monitor_;
-#endif
-};
-
-
-// All Assembler emits MUST acquire/release the underlying code buffer. The
-// helper scope below will do so and optionally ensure the buffer is big enough
-// to receive the emit. It is possible to request the scope not to perform any
-// checks (kNoCheck) if for example it is known in advance the buffer size is
-// adequate or there is some other size checking mechanism in place.
-class CodeBufferCheckScope {
- public:
- // Tell whether or not the scope needs to ensure the associated CodeBuffer
- // has enough space for the requested size.
- enum CheckPolicy {
- kNoCheck,
- kCheck
- };
-
- // Tell whether or not the scope should assert the amount of code emitted
- // within the scope is consistent with the requested amount.
- enum AssertPolicy {
- kNoAssert, // No assert required.
- kExactSize, // The code emitted must be exactly size bytes.
- kMaximumSize // The code emitted must be at most size bytes.
- };
-
- CodeBufferCheckScope(Assembler* assm,
- size_t size,
- CheckPolicy check_policy = kCheck,
- AssertPolicy assert_policy = kMaximumSize)
- : assm_(assm) {
- if (check_policy == kCheck) assm->EnsureSpaceFor(size);
-#ifdef VIXL_DEBUG
- assm->bind(&start_);
- size_ = size;
- assert_policy_ = assert_policy;
- assm->AcquireBuffer();
-#else
- USE(assert_policy);
-#endif
- }
-
- // This is a shortcut for CodeBufferCheckScope(assm, 0, kNoCheck, kNoAssert).
- explicit CodeBufferCheckScope(Assembler* assm) : assm_(assm) {
-#ifdef VIXL_DEBUG
- size_ = 0;
- assert_policy_ = kNoAssert;
- assm->AcquireBuffer();
-#endif
- }
-
- ~CodeBufferCheckScope() {
-#ifdef VIXL_DEBUG
- assm_->ReleaseBuffer();
- switch (assert_policy_) {
- case kNoAssert: break;
- case kExactSize:
- VIXL_ASSERT(assm_->SizeOfCodeGeneratedSince(&start_) == size_);
- break;
- case kMaximumSize:
- VIXL_ASSERT(assm_->SizeOfCodeGeneratedSince(&start_) <= size_);
- break;
- default:
- VIXL_UNREACHABLE();
- }
-#endif
- }
-
- protected:
- Assembler* assm_;
-#ifdef VIXL_DEBUG
- Label start_;
- size_t size_;
- AssertPolicy assert_policy_;
-#endif
-};
-
-
-template <typename T>
-void Literal<T>::UpdateValue(T new_value, const Assembler* assembler) {
- return UpdateValue(new_value, assembler->GetStartAddress<uint8_t*>());
-}
-
-
-template <typename T>
-void Literal<T>::UpdateValue(T high64, T low64, const Assembler* assembler) {
- return UpdateValue(high64, low64, assembler->GetStartAddress<uint8_t*>());
-}
-
-
-} // namespace vixl
-
-#endif // VIXL_A64_ASSEMBLER_A64_H_
diff --git a/disas/libvixl/vixl/a64/constants-a64.h b/disas/libvixl/vixl/a64/constants-a64.h
deleted file mode 100644
index 2caa73af87..0000000000
--- a/disas/libvixl/vixl/a64/constants-a64.h
+++ /dev/null
@@ -1,2116 +0,0 @@
-// Copyright 2015, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef VIXL_A64_CONSTANTS_A64_H_
-#define VIXL_A64_CONSTANTS_A64_H_
-
-namespace vixl {
-
-const unsigned kNumberOfRegisters = 32;
-const unsigned kNumberOfVRegisters = 32;
-const unsigned kNumberOfFPRegisters = kNumberOfVRegisters;
-// Callee saved registers are x21-x30(lr).
-const int kNumberOfCalleeSavedRegisters = 10;
-const int kFirstCalleeSavedRegisterIndex = 21;
-// Callee saved FP registers are d8-d15.
-const int kNumberOfCalleeSavedFPRegisters = 8;
-const int kFirstCalleeSavedFPRegisterIndex = 8;
-
-#define REGISTER_CODE_LIST(R) \
-R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7) \
-R(8) R(9) R(10) R(11) R(12) R(13) R(14) R(15) \
-R(16) R(17) R(18) R(19) R(20) R(21) R(22) R(23) \
-R(24) R(25) R(26) R(27) R(28) R(29) R(30) R(31)
-
-#define INSTRUCTION_FIELDS_LIST(V_) \
-/* Register fields */ \
-V_(Rd, 4, 0, Bits) /* Destination register. */ \
-V_(Rn, 9, 5, Bits) /* First source register. */ \
-V_(Rm, 20, 16, Bits) /* Second source register. */ \
-V_(Ra, 14, 10, Bits) /* Third source register. */ \
-V_(Rt, 4, 0, Bits) /* Load/store register. */ \
-V_(Rt2, 14, 10, Bits) /* Load/store second register. */ \
-V_(Rs, 20, 16, Bits) /* Exclusive access status. */ \
- \
-/* Common bits */ \
-V_(SixtyFourBits, 31, 31, Bits) \
-V_(FlagsUpdate, 29, 29, Bits) \
- \
-/* PC relative addressing */ \
-V_(ImmPCRelHi, 23, 5, SignedBits) \
-V_(ImmPCRelLo, 30, 29, Bits) \
- \
-/* Add/subtract/logical shift register */ \
-V_(ShiftDP, 23, 22, Bits) \
-V_(ImmDPShift, 15, 10, Bits) \
- \
-/* Add/subtract immediate */ \
-V_(ImmAddSub, 21, 10, Bits) \
-V_(ShiftAddSub, 23, 22, Bits) \
- \
-/* Add/substract extend */ \
-V_(ImmExtendShift, 12, 10, Bits) \
-V_(ExtendMode, 15, 13, Bits) \
- \
-/* Move wide */ \
-V_(ImmMoveWide, 20, 5, Bits) \
-V_(ShiftMoveWide, 22, 21, Bits) \
- \
-/* Logical immediate, bitfield and extract */ \
-V_(BitN, 22, 22, Bits) \
-V_(ImmRotate, 21, 16, Bits) \
-V_(ImmSetBits, 15, 10, Bits) \
-V_(ImmR, 21, 16, Bits) \
-V_(ImmS, 15, 10, Bits) \
- \
-/* Test and branch immediate */ \
-V_(ImmTestBranch, 18, 5, SignedBits) \
-V_(ImmTestBranchBit40, 23, 19, Bits) \
-V_(ImmTestBranchBit5, 31, 31, Bits) \
- \
-/* Conditionals */ \
-V_(Condition, 15, 12, Bits) \
-V_(ConditionBranch, 3, 0, Bits) \
-V_(Nzcv, 3, 0, Bits) \
-V_(ImmCondCmp, 20, 16, Bits) \
-V_(ImmCondBranch, 23, 5, SignedBits) \
- \
-/* Floating point */ \
-V_(FPType, 23, 22, Bits) \
-V_(ImmFP, 20, 13, Bits) \
-V_(FPScale, 15, 10, Bits) \
- \
-/* Load Store */ \
-V_(ImmLS, 20, 12, SignedBits) \
-V_(ImmLSUnsigned, 21, 10, Bits) \
-V_(ImmLSPair, 21, 15, SignedBits) \
-V_(ImmShiftLS, 12, 12, Bits) \
-V_(LSOpc, 23, 22, Bits) \
-V_(LSVector, 26, 26, Bits) \
-V_(LSSize, 31, 30, Bits) \
-V_(ImmPrefetchOperation, 4, 0, Bits) \
-V_(PrefetchHint, 4, 3, Bits) \
-V_(PrefetchTarget, 2, 1, Bits) \
-V_(PrefetchStream, 0, 0, Bits) \
- \
-/* Other immediates */ \
-V_(ImmUncondBranch, 25, 0, SignedBits) \
-V_(ImmCmpBranch, 23, 5, SignedBits) \
-V_(ImmLLiteral, 23, 5, SignedBits) \
-V_(ImmException, 20, 5, Bits) \
-V_(ImmHint, 11, 5, Bits) \
-V_(ImmBarrierDomain, 11, 10, Bits) \
-V_(ImmBarrierType, 9, 8, Bits) \
- \
-/* System (MRS, MSR, SYS) */ \
-V_(ImmSystemRegister, 19, 5, Bits) \
-V_(SysO0, 19, 19, Bits) \
-V_(SysOp, 18, 5, Bits) \
-V_(SysOp1, 18, 16, Bits) \
-V_(SysOp2, 7, 5, Bits) \
-V_(CRn, 15, 12, Bits) \
-V_(CRm, 11, 8, Bits) \
- \
-/* Load-/store-exclusive */ \
-V_(LdStXLoad, 22, 22, Bits) \
-V_(LdStXNotExclusive, 23, 23, Bits) \
-V_(LdStXAcquireRelease, 15, 15, Bits) \
-V_(LdStXSizeLog2, 31, 30, Bits) \
-V_(LdStXPair, 21, 21, Bits) \
- \
-/* NEON generic fields */ \
-V_(NEONQ, 30, 30, Bits) \
-V_(NEONSize, 23, 22, Bits) \
-V_(NEONLSSize, 11, 10, Bits) \
-V_(NEONS, 12, 12, Bits) \
-V_(NEONL, 21, 21, Bits) \
-V_(NEONM, 20, 20, Bits) \
-V_(NEONH, 11, 11, Bits) \
-V_(ImmNEONExt, 14, 11, Bits) \
-V_(ImmNEON5, 20, 16, Bits) \
-V_(ImmNEON4, 14, 11, Bits) \
- \
-/* NEON Modified Immediate fields */ \
-V_(ImmNEONabc, 18, 16, Bits) \
-V_(ImmNEONdefgh, 9, 5, Bits) \
-V_(NEONModImmOp, 29, 29, Bits) \
-V_(NEONCmode, 15, 12, Bits) \
- \
-/* NEON Shift Immediate fields */ \
-V_(ImmNEONImmhImmb, 22, 16, Bits) \
-V_(ImmNEONImmh, 22, 19, Bits) \
-V_(ImmNEONImmb, 18, 16, Bits)
-
-#define SYSTEM_REGISTER_FIELDS_LIST(V_, M_) \
-/* NZCV */ \
-V_(Flags, 31, 28, Bits) \
-V_(N, 31, 31, Bits) \
-V_(Z, 30, 30, Bits) \
-V_(C, 29, 29, Bits) \
-V_(V, 28, 28, Bits) \
-M_(NZCV, Flags_mask) \
-/* FPCR */ \
-V_(AHP, 26, 26, Bits) \
-V_(DN, 25, 25, Bits) \
-V_(FZ, 24, 24, Bits) \
-V_(RMode, 23, 22, Bits) \
-M_(FPCR, AHP_mask | DN_mask | FZ_mask | RMode_mask)
-
-// Fields offsets.
-#define DECLARE_FIELDS_OFFSETS(Name, HighBit, LowBit, X) \
-const int Name##_offset = LowBit; \
-const int Name##_width = HighBit - LowBit + 1; \
-const uint32_t Name##_mask = ((1 << Name##_width) - 1) << LowBit;
-#define NOTHING(A, B)
-INSTRUCTION_FIELDS_LIST(DECLARE_FIELDS_OFFSETS)
-SYSTEM_REGISTER_FIELDS_LIST(DECLARE_FIELDS_OFFSETS, NOTHING)
-#undef NOTHING
-#undef DECLARE_FIELDS_BITS
-
-// ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST), formed
-// from ImmPCRelLo and ImmPCRelHi.
-const int ImmPCRel_mask = ImmPCRelLo_mask | ImmPCRelHi_mask;
-
-// Condition codes.
-enum Condition {
- eq = 0, // Z set Equal.
- ne = 1, // Z clear Not equal.
- cs = 2, // C set Carry set.
- cc = 3, // C clear Carry clear.
- mi = 4, // N set Negative.
- pl = 5, // N clear Positive or zero.
- vs = 6, // V set Overflow.
- vc = 7, // V clear No overflow.
- hi = 8, // C set, Z clear Unsigned higher.
- ls = 9, // C clear or Z set Unsigned lower or same.
- ge = 10, // N == V Greater or equal.
- lt = 11, // N != V Less than.
- gt = 12, // Z clear, N == V Greater than.
- le = 13, // Z set or N != V Less then or equal
- al = 14, // Always.
- nv = 15, // Behaves as always/al.
-
- // Aliases.
- hs = cs, // C set Unsigned higher or same.
- lo = cc // C clear Unsigned lower.
-};
-
-inline Condition InvertCondition(Condition cond) {
- // Conditions al and nv behave identically, as "always true". They can't be
- // inverted, because there is no "always false" condition.
- VIXL_ASSERT((cond != al) && (cond != nv));
- return static_cast<Condition>(cond ^ 1);
-}
-
-enum FPTrapFlags {
- EnableTrap = 1,
- DisableTrap = 0
-};
-
-enum FlagsUpdate {
- SetFlags = 1,
- LeaveFlags = 0
-};
-
-enum StatusFlags {
- NoFlag = 0,
-
- // Derive the flag combinations from the system register bit descriptions.
- NFlag = N_mask,
- ZFlag = Z_mask,
- CFlag = C_mask,
- VFlag = V_mask,
- NZFlag = NFlag | ZFlag,
- NCFlag = NFlag | CFlag,
- NVFlag = NFlag | VFlag,
- ZCFlag = ZFlag | CFlag,
- ZVFlag = ZFlag | VFlag,
- CVFlag = CFlag | VFlag,
- NZCFlag = NFlag | ZFlag | CFlag,
- NZVFlag = NFlag | ZFlag | VFlag,
- NCVFlag = NFlag | CFlag | VFlag,
- ZCVFlag = ZFlag | CFlag | VFlag,
- NZCVFlag = NFlag | ZFlag | CFlag | VFlag,
-
- // Floating-point comparison results.
- FPEqualFlag = ZCFlag,
- FPLessThanFlag = NFlag,
- FPGreaterThanFlag = CFlag,
- FPUnorderedFlag = CVFlag
-};
-
-enum Shift {
- NO_SHIFT = -1,
- LSL = 0x0,
- LSR = 0x1,
- ASR = 0x2,
- ROR = 0x3,
- MSL = 0x4
-};
-
-enum Extend {
- NO_EXTEND = -1,
- UXTB = 0,
- UXTH = 1,
- UXTW = 2,
- UXTX = 3,
- SXTB = 4,
- SXTH = 5,
- SXTW = 6,
- SXTX = 7
-};
-
-enum SystemHint {
- NOP = 0,
- YIELD = 1,
- WFE = 2,
- WFI = 3,
- SEV = 4,
- SEVL = 5
-};
-
-enum BarrierDomain {
- OuterShareable = 0,
- NonShareable = 1,
- InnerShareable = 2,
- FullSystem = 3
-};
-
-enum BarrierType {
- BarrierOther = 0,
- BarrierReads = 1,
- BarrierWrites = 2,
- BarrierAll = 3
-};
-
-enum PrefetchOperation {
- PLDL1KEEP = 0x00,
- PLDL1STRM = 0x01,
- PLDL2KEEP = 0x02,
- PLDL2STRM = 0x03,
- PLDL3KEEP = 0x04,
- PLDL3STRM = 0x05,
-
- PLIL1KEEP = 0x08,
- PLIL1STRM = 0x09,
- PLIL2KEEP = 0x0a,
- PLIL2STRM = 0x0b,
- PLIL3KEEP = 0x0c,
- PLIL3STRM = 0x0d,
-
- PSTL1KEEP = 0x10,
- PSTL1STRM = 0x11,
- PSTL2KEEP = 0x12,
- PSTL2STRM = 0x13,
- PSTL3KEEP = 0x14,
- PSTL3STRM = 0x15
-};
-
-// System/special register names.
-// This information is not encoded as one field but as the concatenation of
-// multiple fields (Op0<0>, Op1, Crn, Crm, Op2).
-enum SystemRegister {
- NZCV = ((0x1 << SysO0_offset) |
- (0x3 << SysOp1_offset) |
- (0x4 << CRn_offset) |
- (0x2 << CRm_offset) |
- (0x0 << SysOp2_offset)) >> ImmSystemRegister_offset,
- FPCR = ((0x1 << SysO0_offset) |
- (0x3 << SysOp1_offset) |
- (0x4 << CRn_offset) |
- (0x4 << CRm_offset) |
- (0x0 << SysOp2_offset)) >> ImmSystemRegister_offset
-};
-
-enum InstructionCacheOp {
- IVAU = ((0x3 << SysOp1_offset) |
- (0x7 << CRn_offset) |
- (0x5 << CRm_offset) |
- (0x1 << SysOp2_offset)) >> SysOp_offset
-};
-
-enum DataCacheOp {
- CVAC = ((0x3 << SysOp1_offset) |
- (0x7 << CRn_offset) |
- (0xa << CRm_offset) |
- (0x1 << SysOp2_offset)) >> SysOp_offset,
- CVAU = ((0x3 << SysOp1_offset) |
- (0x7 << CRn_offset) |
- (0xb << CRm_offset) |
- (0x1 << SysOp2_offset)) >> SysOp_offset,
- CIVAC = ((0x3 << SysOp1_offset) |
- (0x7 << CRn_offset) |
- (0xe << CRm_offset) |
- (0x1 << SysOp2_offset)) >> SysOp_offset,
- ZVA = ((0x3 << SysOp1_offset) |
- (0x7 << CRn_offset) |
- (0x4 << CRm_offset) |
- (0x1 << SysOp2_offset)) >> SysOp_offset
-};
-
-// Instruction enumerations.
-//
-// These are the masks that define a class of instructions, and the list of
-// instructions within each class. Each enumeration has a Fixed, FMask and
-// Mask value.
-//
-// Fixed: The fixed bits in this instruction class.
-// FMask: The mask used to extract the fixed bits in the class.
-// Mask: The mask used to identify the instructions within a class.
-//
-// The enumerations can be used like this:
-//
-// VIXL_ASSERT(instr->Mask(PCRelAddressingFMask) == PCRelAddressingFixed);
-// switch(instr->Mask(PCRelAddressingMask)) {
-// case ADR: Format("adr 'Xd, 'AddrPCRelByte"); break;
-// case ADRP: Format("adrp 'Xd, 'AddrPCRelPage"); break;
-// default: printf("Unknown instruction\n");
-// }
-
-
-// Generic fields.
-enum GenericInstrField {
- SixtyFourBits = 0x80000000,
- ThirtyTwoBits = 0x00000000,
- FP32 = 0x00000000,
- FP64 = 0x00400000
-};
-
-enum NEONFormatField {
- NEONFormatFieldMask = 0x40C00000,
- NEON_Q = 0x40000000,
- NEON_8B = 0x00000000,
- NEON_16B = NEON_8B | NEON_Q,
- NEON_4H = 0x00400000,
- NEON_8H = NEON_4H | NEON_Q,
- NEON_2S = 0x00800000,
- NEON_4S = NEON_2S | NEON_Q,
- NEON_1D = 0x00C00000,
- NEON_2D = 0x00C00000 | NEON_Q
-};
-
-enum NEONFPFormatField {
- NEONFPFormatFieldMask = 0x40400000,
- NEON_FP_2S = FP32,
- NEON_FP_4S = FP32 | NEON_Q,
- NEON_FP_2D = FP64 | NEON_Q
-};
-
-enum NEONLSFormatField {
- NEONLSFormatFieldMask = 0x40000C00,
- LS_NEON_8B = 0x00000000,
- LS_NEON_16B = LS_NEON_8B | NEON_Q,
- LS_NEON_4H = 0x00000400,
- LS_NEON_8H = LS_NEON_4H | NEON_Q,
- LS_NEON_2S = 0x00000800,
- LS_NEON_4S = LS_NEON_2S | NEON_Q,
- LS_NEON_1D = 0x00000C00,
- LS_NEON_2D = LS_NEON_1D | NEON_Q
-};
-
-enum NEONScalarFormatField {
- NEONScalarFormatFieldMask = 0x00C00000,
- NEONScalar = 0x10000000,
- NEON_B = 0x00000000,
- NEON_H = 0x00400000,
- NEON_S = 0x00800000,
- NEON_D = 0x00C00000
-};
-
-// PC relative addressing.
-enum PCRelAddressingOp {
- PCRelAddressingFixed = 0x10000000,
- PCRelAddressingFMask = 0x1F000000,
- PCRelAddressingMask = 0x9F000000,
- ADR = PCRelAddressingFixed | 0x00000000,
- ADRP = PCRelAddressingFixed | 0x80000000
-};
-
-// Add/sub (immediate, shifted and extended.)
-const int kSFOffset = 31;
-enum AddSubOp {
- AddSubOpMask = 0x60000000,
- AddSubSetFlagsBit = 0x20000000,
- ADD = 0x00000000,
- ADDS = ADD | AddSubSetFlagsBit,
- SUB = 0x40000000,
- SUBS = SUB | AddSubSetFlagsBit
-};
-
-#define ADD_SUB_OP_LIST(V) \
- V(ADD), \
- V(ADDS), \
- V(SUB), \
- V(SUBS)
-
-enum AddSubImmediateOp {
- AddSubImmediateFixed = 0x11000000,
- AddSubImmediateFMask = 0x1F000000,
- AddSubImmediateMask = 0xFF000000,
- #define ADD_SUB_IMMEDIATE(A) \
- A##_w_imm = AddSubImmediateFixed | A, \
- A##_x_imm = AddSubImmediateFixed | A | SixtyFourBits
- ADD_SUB_OP_LIST(ADD_SUB_IMMEDIATE)
- #undef ADD_SUB_IMMEDIATE
-};
-
-enum AddSubShiftedOp {
- AddSubShiftedFixed = 0x0B000000,
- AddSubShiftedFMask = 0x1F200000,
- AddSubShiftedMask = 0xFF200000,
- #define ADD_SUB_SHIFTED(A) \
- A##_w_shift = AddSubShiftedFixed | A, \
- A##_x_shift = AddSubShiftedFixed | A | SixtyFourBits
- ADD_SUB_OP_LIST(ADD_SUB_SHIFTED)
- #undef ADD_SUB_SHIFTED
-};
-
-enum AddSubExtendedOp {
- AddSubExtendedFixed = 0x0B200000,
- AddSubExtendedFMask = 0x1F200000,
- AddSubExtendedMask = 0xFFE00000,
- #define ADD_SUB_EXTENDED(A) \
- A##_w_ext = AddSubExtendedFixed | A, \
- A##_x_ext = AddSubExtendedFixed | A | SixtyFourBits
- ADD_SUB_OP_LIST(ADD_SUB_EXTENDED)
- #undef ADD_SUB_EXTENDED
-};
-
-// Add/sub with carry.
-enum AddSubWithCarryOp {
- AddSubWithCarryFixed = 0x1A000000,
- AddSubWithCarryFMask = 0x1FE00000,
- AddSubWithCarryMask = 0xFFE0FC00,
- ADC_w = AddSubWithCarryFixed | ADD,
- ADC_x = AddSubWithCarryFixed | ADD | SixtyFourBits,
- ADC = ADC_w,
- ADCS_w = AddSubWithCarryFixed | ADDS,
- ADCS_x = AddSubWithCarryFixed | ADDS | SixtyFourBits,
- SBC_w = AddSubWithCarryFixed | SUB,
- SBC_x = AddSubWithCarryFixed | SUB | SixtyFourBits,
- SBC = SBC_w,
- SBCS_w = AddSubWithCarryFixed | SUBS,
- SBCS_x = AddSubWithCarryFixed | SUBS | SixtyFourBits
-};
-
-
-// Logical (immediate and shifted register).
-enum LogicalOp {
- LogicalOpMask = 0x60200000,
- NOT = 0x00200000,
- AND = 0x00000000,
- BIC = AND | NOT,
- ORR = 0x20000000,
- ORN = ORR | NOT,
- EOR = 0x40000000,
- EON = EOR | NOT,
- ANDS = 0x60000000,
- BICS = ANDS | NOT
-};
-
-// Logical immediate.
-enum LogicalImmediateOp {
- LogicalImmediateFixed = 0x12000000,
- LogicalImmediateFMask = 0x1F800000,
- LogicalImmediateMask = 0xFF800000,
- AND_w_imm = LogicalImmediateFixed | AND,
- AND_x_imm = LogicalImmediateFixed | AND | SixtyFourBits,
- ORR_w_imm = LogicalImmediateFixed | ORR,
- ORR_x_imm = LogicalImmediateFixed | ORR | SixtyFourBits,
- EOR_w_imm = LogicalImmediateFixed | EOR,
- EOR_x_imm = LogicalImmediateFixed | EOR | SixtyFourBits,
- ANDS_w_imm = LogicalImmediateFixed | ANDS,
- ANDS_x_imm = LogicalImmediateFixed | ANDS | SixtyFourBits
-};
-
-// Logical shifted register.
-enum LogicalShiftedOp {
- LogicalShiftedFixed = 0x0A000000,
- LogicalShiftedFMask = 0x1F000000,
- LogicalShiftedMask = 0xFF200000,
- AND_w = LogicalShiftedFixed | AND,
- AND_x = LogicalShiftedFixed | AND | SixtyFourBits,
- AND_shift = AND_w,
- BIC_w = LogicalShiftedFixed | BIC,
- BIC_x = LogicalShiftedFixed | BIC | SixtyFourBits,
- BIC_shift = BIC_w,
- ORR_w = LogicalShiftedFixed | ORR,
- ORR_x = LogicalShiftedFixed | ORR | SixtyFourBits,
- ORR_shift = ORR_w,
- ORN_w = LogicalShiftedFixed | ORN,
- ORN_x = LogicalShiftedFixed | ORN | SixtyFourBits,
- ORN_shift = ORN_w,
- EOR_w = LogicalShiftedFixed | EOR,
- EOR_x = LogicalShiftedFixed | EOR | SixtyFourBits,
- EOR_shift = EOR_w,
- EON_w = LogicalShiftedFixed | EON,
- EON_x = LogicalShiftedFixed | EON | SixtyFourBits,
- EON_shift = EON_w,
- ANDS_w = LogicalShiftedFixed | ANDS,
- ANDS_x = LogicalShiftedFixed | ANDS | SixtyFourBits,
- ANDS_shift = ANDS_w,
- BICS_w = LogicalShiftedFixed | BICS,
- BICS_x = LogicalShiftedFixed | BICS | SixtyFourBits,
- BICS_shift = BICS_w
-};
-
-// Move wide immediate.
-enum MoveWideImmediateOp {
- MoveWideImmediateFixed = 0x12800000,
- MoveWideImmediateFMask = 0x1F800000,
- MoveWideImmediateMask = 0xFF800000,
- MOVN = 0x00000000,
- MOVZ = 0x40000000,
- MOVK = 0x60000000,
- MOVN_w = MoveWideImmediateFixed | MOVN,
- MOVN_x = MoveWideImmediateFixed | MOVN | SixtyFourBits,
- MOVZ_w = MoveWideImmediateFixed | MOVZ,
- MOVZ_x = MoveWideImmediateFixed | MOVZ | SixtyFourBits,
- MOVK_w = MoveWideImmediateFixed | MOVK,
- MOVK_x = MoveWideImmediateFixed | MOVK | SixtyFourBits
-};
-
-// Bitfield.
-const int kBitfieldNOffset = 22;
-enum BitfieldOp {
- BitfieldFixed = 0x13000000,
- BitfieldFMask = 0x1F800000,
- BitfieldMask = 0xFF800000,
- SBFM_w = BitfieldFixed | 0x00000000,
- SBFM_x = BitfieldFixed | 0x80000000,
- SBFM = SBFM_w,
- BFM_w = BitfieldFixed | 0x20000000,
- BFM_x = BitfieldFixed | 0xA0000000,
- BFM = BFM_w,
- UBFM_w = BitfieldFixed | 0x40000000,
- UBFM_x = BitfieldFixed | 0xC0000000,
- UBFM = UBFM_w
- // Bitfield N field.
-};
-
-// Extract.
-enum ExtractOp {
- ExtractFixed = 0x13800000,
- ExtractFMask = 0x1F800000,
- ExtractMask = 0xFFA00000,
- EXTR_w = ExtractFixed | 0x00000000,
- EXTR_x = ExtractFixed | 0x80000000,
- EXTR = EXTR_w
-};
-
-// Unconditional branch.
-enum UnconditionalBranchOp {
- UnconditionalBranchFixed = 0x14000000,
- UnconditionalBranchFMask = 0x7C000000,
- UnconditionalBranchMask = 0xFC000000,
- B = UnconditionalBranchFixed | 0x00000000,
- BL = UnconditionalBranchFixed | 0x80000000
-};
-
-// Unconditional branch to register.
-enum UnconditionalBranchToRegisterOp {
- UnconditionalBranchToRegisterFixed = 0xD6000000,
- UnconditionalBranchToRegisterFMask = 0xFE000000,
- UnconditionalBranchToRegisterMask = 0xFFFFFC1F,
- BR = UnconditionalBranchToRegisterFixed | 0x001F0000,
- BLR = UnconditionalBranchToRegisterFixed | 0x003F0000,
- RET = UnconditionalBranchToRegisterFixed | 0x005F0000
-};
-
-// Compare and branch.
-enum CompareBranchOp {
- CompareBranchFixed = 0x34000000,
- CompareBranchFMask = 0x7E000000,
- CompareBranchMask = 0xFF000000,
- CBZ_w = CompareBranchFixed | 0x00000000,
- CBZ_x = CompareBranchFixed | 0x80000000,
- CBZ = CBZ_w,
- CBNZ_w = CompareBranchFixed | 0x01000000,
- CBNZ_x = CompareBranchFixed | 0x81000000,
- CBNZ = CBNZ_w
-};
-
-// Test and branch.
-enum TestBranchOp {
- TestBranchFixed = 0x36000000,
- TestBranchFMask = 0x7E000000,
- TestBranchMask = 0x7F000000,
- TBZ = TestBranchFixed | 0x00000000,
- TBNZ = TestBranchFixed | 0x01000000
-};
-
-// Conditional branch.
-enum ConditionalBranchOp {
- ConditionalBranchFixed = 0x54000000,
- ConditionalBranchFMask = 0xFE000000,
- ConditionalBranchMask = 0xFF000010,
- B_cond = ConditionalBranchFixed | 0x00000000
-};
-
-// System.
-// System instruction encoding is complicated because some instructions use op
-// and CR fields to encode parameters. To handle this cleanly, the system
-// instructions are split into more than one enum.
-
-enum SystemOp {
- SystemFixed = 0xD5000000,
- SystemFMask = 0xFFC00000
-};
-
-enum SystemSysRegOp {
- SystemSysRegFixed = 0xD5100000,
- SystemSysRegFMask = 0xFFD00000,
- SystemSysRegMask = 0xFFF00000,
- MRS = SystemSysRegFixed | 0x00200000,
- MSR = SystemSysRegFixed | 0x00000000
-};
-
-enum SystemHintOp {
- SystemHintFixed = 0xD503201F,
- SystemHintFMask = 0xFFFFF01F,
- SystemHintMask = 0xFFFFF01F,
- HINT = SystemHintFixed | 0x00000000
-};
-
-enum SystemSysOp {
- SystemSysFixed = 0xD5080000,
- SystemSysFMask = 0xFFF80000,
- SystemSysMask = 0xFFF80000,
- SYS = SystemSysFixed | 0x00000000
-};
-
-// Exception.
-enum ExceptionOp {
- ExceptionFixed = 0xD4000000,
- ExceptionFMask = 0xFF000000,
- ExceptionMask = 0xFFE0001F,
- HLT = ExceptionFixed | 0x00400000,
- BRK = ExceptionFixed | 0x00200000,
- SVC = ExceptionFixed | 0x00000001,
- HVC = ExceptionFixed | 0x00000002,
- SMC = ExceptionFixed | 0x00000003,
- DCPS1 = ExceptionFixed | 0x00A00001,
- DCPS2 = ExceptionFixed | 0x00A00002,
- DCPS3 = ExceptionFixed | 0x00A00003
-};
-
-enum MemBarrierOp {
- MemBarrierFixed = 0xD503309F,
- MemBarrierFMask = 0xFFFFF09F,
- MemBarrierMask = 0xFFFFF0FF,
- DSB = MemBarrierFixed | 0x00000000,
- DMB = MemBarrierFixed | 0x00000020,
- ISB = MemBarrierFixed | 0x00000040
-};
-
-enum SystemExclusiveMonitorOp {
- SystemExclusiveMonitorFixed = 0xD503305F,
- SystemExclusiveMonitorFMask = 0xFFFFF0FF,
- SystemExclusiveMonitorMask = 0xFFFFF0FF,
- CLREX = SystemExclusiveMonitorFixed
-};
-
-// Any load or store.
-enum LoadStoreAnyOp {
- LoadStoreAnyFMask = 0x0a000000,
- LoadStoreAnyFixed = 0x08000000
-};
-
-// Any load pair or store pair.
-enum LoadStorePairAnyOp {
- LoadStorePairAnyFMask = 0x3a000000,
- LoadStorePairAnyFixed = 0x28000000
-};
-
-#define LOAD_STORE_PAIR_OP_LIST(V) \
- V(STP, w, 0x00000000), \
- V(LDP, w, 0x00400000), \
- V(LDPSW, x, 0x40400000), \
- V(STP, x, 0x80000000), \
- V(LDP, x, 0x80400000), \
- V(STP, s, 0x04000000), \
- V(LDP, s, 0x04400000), \
- V(STP, d, 0x44000000), \
- V(LDP, d, 0x44400000), \
- V(STP, q, 0x84000000), \
- V(LDP, q, 0x84400000)
-
-// Load/store pair (post, pre and offset.)
-enum LoadStorePairOp {
- LoadStorePairMask = 0xC4400000,
- LoadStorePairLBit = 1 << 22,
- #define LOAD_STORE_PAIR(A, B, C) \
- A##_##B = C
- LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR)
- #undef LOAD_STORE_PAIR
-};
-
-enum LoadStorePairPostIndexOp {
- LoadStorePairPostIndexFixed = 0x28800000,
- LoadStorePairPostIndexFMask = 0x3B800000,
- LoadStorePairPostIndexMask = 0xFFC00000,
- #define LOAD_STORE_PAIR_POST_INDEX(A, B, C) \
- A##_##B##_post = LoadStorePairPostIndexFixed | A##_##B
- LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_POST_INDEX)
- #undef LOAD_STORE_PAIR_POST_INDEX
-};
-
-enum LoadStorePairPreIndexOp {
- LoadStorePairPreIndexFixed = 0x29800000,
- LoadStorePairPreIndexFMask = 0x3B800000,
- LoadStorePairPreIndexMask = 0xFFC00000,
- #define LOAD_STORE_PAIR_PRE_INDEX(A, B, C) \
- A##_##B##_pre = LoadStorePairPreIndexFixed | A##_##B
- LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_PRE_INDEX)
- #undef LOAD_STORE_PAIR_PRE_INDEX
-};
-
-enum LoadStorePairOffsetOp {
- LoadStorePairOffsetFixed = 0x29000000,
- LoadStorePairOffsetFMask = 0x3B800000,
- LoadStorePairOffsetMask = 0xFFC00000,
- #define LOAD_STORE_PAIR_OFFSET(A, B, C) \
- A##_##B##_off = LoadStorePairOffsetFixed | A##_##B
- LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_OFFSET)
- #undef LOAD_STORE_PAIR_OFFSET
-};
-
-enum LoadStorePairNonTemporalOp {
- LoadStorePairNonTemporalFixed = 0x28000000,
- LoadStorePairNonTemporalFMask = 0x3B800000,
- LoadStorePairNonTemporalMask = 0xFFC00000,
- LoadStorePairNonTemporalLBit = 1 << 22,
- STNP_w = LoadStorePairNonTemporalFixed | STP_w,
- LDNP_w = LoadStorePairNonTemporalFixed | LDP_w,
- STNP_x = LoadStorePairNonTemporalFixed | STP_x,
- LDNP_x = LoadStorePairNonTemporalFixed | LDP_x,
- STNP_s = LoadStorePairNonTemporalFixed | STP_s,
- LDNP_s = LoadStorePairNonTemporalFixed | LDP_s,
- STNP_d = LoadStorePairNonTemporalFixed | STP_d,
- LDNP_d = LoadStorePairNonTemporalFixed | LDP_d,
- STNP_q = LoadStorePairNonTemporalFixed | STP_q,
- LDNP_q = LoadStorePairNonTemporalFixed | LDP_q
-};
-
-// Load literal.
-enum LoadLiteralOp {
- LoadLiteralFixed = 0x18000000,
- LoadLiteralFMask = 0x3B000000,
- LoadLiteralMask = 0xFF000000,
- LDR_w_lit = LoadLiteralFixed | 0x00000000,
- LDR_x_lit = LoadLiteralFixed | 0x40000000,
- LDRSW_x_lit = LoadLiteralFixed | 0x80000000,
- PRFM_lit = LoadLiteralFixed | 0xC0000000,
- LDR_s_lit = LoadLiteralFixed | 0x04000000,
- LDR_d_lit = LoadLiteralFixed | 0x44000000,
- LDR_q_lit = LoadLiteralFixed | 0x84000000
-};
-
-#define LOAD_STORE_OP_LIST(V) \
- V(ST, RB, w, 0x00000000), \
- V(ST, RH, w, 0x40000000), \
- V(ST, R, w, 0x80000000), \
- V(ST, R, x, 0xC0000000), \
- V(LD, RB, w, 0x00400000), \
- V(LD, RH, w, 0x40400000), \
- V(LD, R, w, 0x80400000), \
- V(LD, R, x, 0xC0400000), \
- V(LD, RSB, x, 0x00800000), \
- V(LD, RSH, x, 0x40800000), \
- V(LD, RSW, x, 0x80800000), \
- V(LD, RSB, w, 0x00C00000), \
- V(LD, RSH, w, 0x40C00000), \
- V(ST, R, b, 0x04000000), \
- V(ST, R, h, 0x44000000), \
- V(ST, R, s, 0x84000000), \
- V(ST, R, d, 0xC4000000), \
- V(ST, R, q, 0x04800000), \
- V(LD, R, b, 0x04400000), \
- V(LD, R, h, 0x44400000), \
- V(LD, R, s, 0x84400000), \
- V(LD, R, d, 0xC4400000), \
- V(LD, R, q, 0x04C00000)
-
-// Load/store (post, pre, offset and unsigned.)
-enum LoadStoreOp {
- LoadStoreMask = 0xC4C00000,
- LoadStoreVMask = 0x04000000,
- #define LOAD_STORE(A, B, C, D) \
- A##B##_##C = D
- LOAD_STORE_OP_LIST(LOAD_STORE),
- #undef LOAD_STORE
- PRFM = 0xC0800000
-};
-
-// Load/store unscaled offset.
-enum LoadStoreUnscaledOffsetOp {
- LoadStoreUnscaledOffsetFixed = 0x38000000,
- LoadStoreUnscaledOffsetFMask = 0x3B200C00,
- LoadStoreUnscaledOffsetMask = 0xFFE00C00,
- PRFUM = LoadStoreUnscaledOffsetFixed | PRFM,
- #define LOAD_STORE_UNSCALED(A, B, C, D) \
- A##U##B##_##C = LoadStoreUnscaledOffsetFixed | D
- LOAD_STORE_OP_LIST(LOAD_STORE_UNSCALED)
- #undef LOAD_STORE_UNSCALED
-};
-
-// Load/store post index.
-enum LoadStorePostIndex {
- LoadStorePostIndexFixed = 0x38000400,
- LoadStorePostIndexFMask = 0x3B200C00,
- LoadStorePostIndexMask = 0xFFE00C00,
- #define LOAD_STORE_POST_INDEX(A, B, C, D) \
- A##B##_##C##_post = LoadStorePostIndexFixed | D
- LOAD_STORE_OP_LIST(LOAD_STORE_POST_INDEX)
- #undef LOAD_STORE_POST_INDEX
-};
-
-// Load/store pre index.
-enum LoadStorePreIndex {
- LoadStorePreIndexFixed = 0x38000C00,
- LoadStorePreIndexFMask = 0x3B200C00,
- LoadStorePreIndexMask = 0xFFE00C00,
- #define LOAD_STORE_PRE_INDEX(A, B, C, D) \
- A##B##_##C##_pre = LoadStorePreIndexFixed | D
- LOAD_STORE_OP_LIST(LOAD_STORE_PRE_INDEX)
- #undef LOAD_STORE_PRE_INDEX
-};
-
-// Load/store unsigned offset.
-enum LoadStoreUnsignedOffset {
- LoadStoreUnsignedOffsetFixed = 0x39000000,
- LoadStoreUnsignedOffsetFMask = 0x3B000000,
- LoadStoreUnsignedOffsetMask = 0xFFC00000,
- PRFM_unsigned = LoadStoreUnsignedOffsetFixed | PRFM,
- #define LOAD_STORE_UNSIGNED_OFFSET(A, B, C, D) \
- A##B##_##C##_unsigned = LoadStoreUnsignedOffsetFixed | D
- LOAD_STORE_OP_LIST(LOAD_STORE_UNSIGNED_OFFSET)
- #undef LOAD_STORE_UNSIGNED_OFFSET
-};
-
-// Load/store register offset.
-enum LoadStoreRegisterOffset {
- LoadStoreRegisterOffsetFixed = 0x38200800,
- LoadStoreRegisterOffsetFMask = 0x3B200C00,
- LoadStoreRegisterOffsetMask = 0xFFE00C00,
- PRFM_reg = LoadStoreRegisterOffsetFixed | PRFM,
- #define LOAD_STORE_REGISTER_OFFSET(A, B, C, D) \
- A##B##_##C##_reg = LoadStoreRegisterOffsetFixed | D
- LOAD_STORE_OP_LIST(LOAD_STORE_REGISTER_OFFSET)
- #undef LOAD_STORE_REGISTER_OFFSET
-};
-
-enum LoadStoreExclusive {
- LoadStoreExclusiveFixed = 0x08000000,
- LoadStoreExclusiveFMask = 0x3F000000,
- LoadStoreExclusiveMask = 0xFFE08000,
- STXRB_w = LoadStoreExclusiveFixed | 0x00000000,
- STXRH_w = LoadStoreExclusiveFixed | 0x40000000,
- STXR_w = LoadStoreExclusiveFixed | 0x80000000,
- STXR_x = LoadStoreExclusiveFixed | 0xC0000000,
- LDXRB_w = LoadStoreExclusiveFixed | 0x00400000,
- LDXRH_w = LoadStoreExclusiveFixed | 0x40400000,
- LDXR_w = LoadStoreExclusiveFixed | 0x80400000,
- LDXR_x = LoadStoreExclusiveFixed | 0xC0400000,
- STXP_w = LoadStoreExclusiveFixed | 0x80200000,
- STXP_x = LoadStoreExclusiveFixed | 0xC0200000,
- LDXP_w = LoadStoreExclusiveFixed | 0x80600000,
- LDXP_x = LoadStoreExclusiveFixed | 0xC0600000,
- STLXRB_w = LoadStoreExclusiveFixed | 0x00008000,
- STLXRH_w = LoadStoreExclusiveFixed | 0x40008000,
- STLXR_w = LoadStoreExclusiveFixed | 0x80008000,
- STLXR_x = LoadStoreExclusiveFixed | 0xC0008000,
- LDAXRB_w = LoadStoreExclusiveFixed | 0x00408000,
- LDAXRH_w = LoadStoreExclusiveFixed | 0x40408000,
- LDAXR_w = LoadStoreExclusiveFixed | 0x80408000,
- LDAXR_x = LoadStoreExclusiveFixed | 0xC0408000,
- STLXP_w = LoadStoreExclusiveFixed | 0x80208000,
- STLXP_x = LoadStoreExclusiveFixed | 0xC0208000,
- LDAXP_w = LoadStoreExclusiveFixed | 0x80608000,
- LDAXP_x = LoadStoreExclusiveFixed | 0xC0608000,
- STLRB_w = LoadStoreExclusiveFixed | 0x00808000,
- STLRH_w = LoadStoreExclusiveFixed | 0x40808000,
- STLR_w = LoadStoreExclusiveFixed | 0x80808000,
- STLR_x = LoadStoreExclusiveFixed | 0xC0808000,
- LDARB_w = LoadStoreExclusiveFixed | 0x00C08000,
- LDARH_w = LoadStoreExclusiveFixed | 0x40C08000,
- LDAR_w = LoadStoreExclusiveFixed | 0x80C08000,
- LDAR_x = LoadStoreExclusiveFixed | 0xC0C08000
-};
-
-// Conditional compare.
-enum ConditionalCompareOp {
- ConditionalCompareMask = 0x60000000,
- CCMN = 0x20000000,
- CCMP = 0x60000000
-};
-
-// Conditional compare register.
-enum ConditionalCompareRegisterOp {
- ConditionalCompareRegisterFixed = 0x1A400000,
- ConditionalCompareRegisterFMask = 0x1FE00800,
- ConditionalCompareRegisterMask = 0xFFE00C10,
- CCMN_w = ConditionalCompareRegisterFixed | CCMN,
- CCMN_x = ConditionalCompareRegisterFixed | SixtyFourBits | CCMN,
- CCMP_w = ConditionalCompareRegisterFixed | CCMP,
- CCMP_x = ConditionalCompareRegisterFixed | SixtyFourBits | CCMP
-};
-
-// Conditional compare immediate.
-enum ConditionalCompareImmediateOp {
- ConditionalCompareImmediateFixed = 0x1A400800,
- ConditionalCompareImmediateFMask = 0x1FE00800,
- ConditionalCompareImmediateMask = 0xFFE00C10,
- CCMN_w_imm = ConditionalCompareImmediateFixed | CCMN,
- CCMN_x_imm = ConditionalCompareImmediateFixed | SixtyFourBits | CCMN,
- CCMP_w_imm = ConditionalCompareImmediateFixed | CCMP,
- CCMP_x_imm = ConditionalCompareImmediateFixed | SixtyFourBits | CCMP
-};
-
-// Conditional select.
-enum ConditionalSelectOp {
- ConditionalSelectFixed = 0x1A800000,
- ConditionalSelectFMask = 0x1FE00000,
- ConditionalSelectMask = 0xFFE00C00,
- CSEL_w = ConditionalSelectFixed | 0x00000000,
- CSEL_x = ConditionalSelectFixed | 0x80000000,
- CSEL = CSEL_w,
- CSINC_w = ConditionalSelectFixed | 0x00000400,
- CSINC_x = ConditionalSelectFixed | 0x80000400,
- CSINC = CSINC_w,
- CSINV_w = ConditionalSelectFixed | 0x40000000,
- CSINV_x = ConditionalSelectFixed | 0xC0000000,
- CSINV = CSINV_w,
- CSNEG_w = ConditionalSelectFixed | 0x40000400,
- CSNEG_x = ConditionalSelectFixed | 0xC0000400,
- CSNEG = CSNEG_w
-};
-
-// Data processing 1 source.
-enum DataProcessing1SourceOp {
- DataProcessing1SourceFixed = 0x5AC00000,
- DataProcessing1SourceFMask = 0x5FE00000,
- DataProcessing1SourceMask = 0xFFFFFC00,
- RBIT = DataProcessing1SourceFixed | 0x00000000,
- RBIT_w = RBIT,
- RBIT_x = RBIT | SixtyFourBits,
- REV16 = DataProcessing1SourceFixed | 0x00000400,
- REV16_w = REV16,
- REV16_x = REV16 | SixtyFourBits,
- REV = DataProcessing1SourceFixed | 0x00000800,
- REV_w = REV,
- REV32_x = REV | SixtyFourBits,
- REV_x = DataProcessing1SourceFixed | SixtyFourBits | 0x00000C00,
- CLZ = DataProcessing1SourceFixed | 0x00001000,
- CLZ_w = CLZ,
- CLZ_x = CLZ | SixtyFourBits,
- CLS = DataProcessing1SourceFixed | 0x00001400,
- CLS_w = CLS,
- CLS_x = CLS | SixtyFourBits
-};
-
-// Data processing 2 source.
-enum DataProcessing2SourceOp {
- DataProcessing2SourceFixed = 0x1AC00000,
- DataProcessing2SourceFMask = 0x5FE00000,
- DataProcessing2SourceMask = 0xFFE0FC00,
- UDIV_w = DataProcessing2SourceFixed | 0x00000800,
- UDIV_x = DataProcessing2SourceFixed | 0x80000800,
- UDIV = UDIV_w,
- SDIV_w = DataProcessing2SourceFixed | 0x00000C00,
- SDIV_x = DataProcessing2SourceFixed | 0x80000C00,
- SDIV = SDIV_w,
- LSLV_w = DataProcessing2SourceFixed | 0x00002000,
- LSLV_x = DataProcessing2SourceFixed | 0x80002000,
- LSLV = LSLV_w,
- LSRV_w = DataProcessing2SourceFixed | 0x00002400,
- LSRV_x = DataProcessing2SourceFixed | 0x80002400,
- LSRV = LSRV_w,
- ASRV_w = DataProcessing2SourceFixed | 0x00002800,
- ASRV_x = DataProcessing2SourceFixed | 0x80002800,
- ASRV = ASRV_w,
- RORV_w = DataProcessing2SourceFixed | 0x00002C00,
- RORV_x = DataProcessing2SourceFixed | 0x80002C00,
- RORV = RORV_w,
- CRC32B = DataProcessing2SourceFixed | 0x00004000,
- CRC32H = DataProcessing2SourceFixed | 0x00004400,
- CRC32W = DataProcessing2SourceFixed | 0x00004800,
- CRC32X = DataProcessing2SourceFixed | SixtyFourBits | 0x00004C00,
- CRC32CB = DataProcessing2SourceFixed | 0x00005000,
- CRC32CH = DataProcessing2SourceFixed | 0x00005400,
- CRC32CW = DataProcessing2SourceFixed | 0x00005800,
- CRC32CX = DataProcessing2SourceFixed | SixtyFourBits | 0x00005C00
-};
-
-// Data processing 3 source.
-enum DataProcessing3SourceOp {
- DataProcessing3SourceFixed = 0x1B000000,
- DataProcessing3SourceFMask = 0x1F000000,
- DataProcessing3SourceMask = 0xFFE08000,
- MADD_w = DataProcessing3SourceFixed | 0x00000000,
- MADD_x = DataProcessing3SourceFixed | 0x80000000,
- MADD = MADD_w,
- MSUB_w = DataProcessing3SourceFixed | 0x00008000,
- MSUB_x = DataProcessing3SourceFixed | 0x80008000,
- MSUB = MSUB_w,
- SMADDL_x = DataProcessing3SourceFixed | 0x80200000,
- SMSUBL_x = DataProcessing3SourceFixed | 0x80208000,
- SMULH_x = DataProcessing3SourceFixed | 0x80400000,
- UMADDL_x = DataProcessing3SourceFixed | 0x80A00000,
- UMSUBL_x = DataProcessing3SourceFixed | 0x80A08000,
- UMULH_x = DataProcessing3SourceFixed | 0x80C00000
-};
-
-// Floating point compare.
-enum FPCompareOp {
- FPCompareFixed = 0x1E202000,
- FPCompareFMask = 0x5F203C00,
- FPCompareMask = 0xFFE0FC1F,
- FCMP_s = FPCompareFixed | 0x00000000,
- FCMP_d = FPCompareFixed | FP64 | 0x00000000,
- FCMP = FCMP_s,
- FCMP_s_zero = FPCompareFixed | 0x00000008,
- FCMP_d_zero = FPCompareFixed | FP64 | 0x00000008,
- FCMP_zero = FCMP_s_zero,
- FCMPE_s = FPCompareFixed | 0x00000010,
- FCMPE_d = FPCompareFixed | FP64 | 0x00000010,
- FCMPE = FCMPE_s,
- FCMPE_s_zero = FPCompareFixed | 0x00000018,
- FCMPE_d_zero = FPCompareFixed | FP64 | 0x00000018,
- FCMPE_zero = FCMPE_s_zero
-};
-
-// Floating point conditional compare.
-enum FPConditionalCompareOp {
- FPConditionalCompareFixed = 0x1E200400,
- FPConditionalCompareFMask = 0x5F200C00,
- FPConditionalCompareMask = 0xFFE00C10,
- FCCMP_s = FPConditionalCompareFixed | 0x00000000,
- FCCMP_d = FPConditionalCompareFixed | FP64 | 0x00000000,
- FCCMP = FCCMP_s,
- FCCMPE_s = FPConditionalCompareFixed | 0x00000010,
- FCCMPE_d = FPConditionalCompareFixed | FP64 | 0x00000010,
- FCCMPE = FCCMPE_s
-};
-
-// Floating point conditional select.
-enum FPConditionalSelectOp {
- FPConditionalSelectFixed = 0x1E200C00,
- FPConditionalSelectFMask = 0x5F200C00,
- FPConditionalSelectMask = 0xFFE00C00,
- FCSEL_s = FPConditionalSelectFixed | 0x00000000,
- FCSEL_d = FPConditionalSelectFixed | FP64 | 0x00000000,
- FCSEL = FCSEL_s
-};
-
-// Floating point immediate.
-enum FPImmediateOp {
- FPImmediateFixed = 0x1E201000,
- FPImmediateFMask = 0x5F201C00,
- FPImmediateMask = 0xFFE01C00,
- FMOV_s_imm = FPImmediateFixed | 0x00000000,
- FMOV_d_imm = FPImmediateFixed | FP64 | 0x00000000
-};
-
-// Floating point data processing 1 source.
-enum FPDataProcessing1SourceOp {
- FPDataProcessing1SourceFixed = 0x1E204000,
- FPDataProcessing1SourceFMask = 0x5F207C00,
- FPDataProcessing1SourceMask = 0xFFFFFC00,
- FMOV_s = FPDataProcessing1SourceFixed | 0x00000000,
- FMOV_d = FPDataProcessing1SourceFixed | FP64 | 0x00000000,
- FMOV = FMOV_s,
- FABS_s = FPDataProcessing1SourceFixed | 0x00008000,
- FABS_d = FPDataProcessing1SourceFixed | FP64 | 0x00008000,
- FABS = FABS_s,
- FNEG_s = FPDataProcessing1SourceFixed | 0x00010000,
- FNEG_d = FPDataProcessing1SourceFixed | FP64 | 0x00010000,
- FNEG = FNEG_s,
- FSQRT_s = FPDataProcessing1SourceFixed | 0x00018000,
- FSQRT_d = FPDataProcessing1SourceFixed | FP64 | 0x00018000,
- FSQRT = FSQRT_s,
- FCVT_ds = FPDataProcessing1SourceFixed | 0x00028000,
- FCVT_sd = FPDataProcessing1SourceFixed | FP64 | 0x00020000,
- FCVT_hs = FPDataProcessing1SourceFixed | 0x00038000,
- FCVT_hd = FPDataProcessing1SourceFixed | FP64 | 0x00038000,
- FCVT_sh = FPDataProcessing1SourceFixed | 0x00C20000,
- FCVT_dh = FPDataProcessing1SourceFixed | 0x00C28000,
- FRINTN_s = FPDataProcessing1SourceFixed | 0x00040000,
- FRINTN_d = FPDataProcessing1SourceFixed | FP64 | 0x00040000,
- FRINTN = FRINTN_s,
- FRINTP_s = FPDataProcessing1SourceFixed | 0x00048000,
- FRINTP_d = FPDataProcessing1SourceFixed | FP64 | 0x00048000,
- FRINTP = FRINTP_s,
- FRINTM_s = FPDataProcessing1SourceFixed | 0x00050000,
- FRINTM_d = FPDataProcessing1SourceFixed | FP64 | 0x00050000,
- FRINTM = FRINTM_s,
- FRINTZ_s = FPDataProcessing1SourceFixed | 0x00058000,
- FRINTZ_d = FPDataProcessing1SourceFixed | FP64 | 0x00058000,
- FRINTZ = FRINTZ_s,
- FRINTA_s = FPDataProcessing1SourceFixed | 0x00060000,
- FRINTA_d = FPDataProcessing1SourceFixed | FP64 | 0x00060000,
- FRINTA = FRINTA_s,
- FRINTX_s = FPDataProcessing1SourceFixed | 0x00070000,
- FRINTX_d = FPDataProcessing1SourceFixed | FP64 | 0x00070000,
- FRINTX = FRINTX_s,
- FRINTI_s = FPDataProcessing1SourceFixed | 0x00078000,
- FRINTI_d = FPDataProcessing1SourceFixed | FP64 | 0x00078000,
- FRINTI = FRINTI_s
-};
-
-// Floating point data processing 2 source.
-enum FPDataProcessing2SourceOp {
- FPDataProcessing2SourceFixed = 0x1E200800,
- FPDataProcessing2SourceFMask = 0x5F200C00,
- FPDataProcessing2SourceMask = 0xFFE0FC00,
- FMUL = FPDataProcessing2SourceFixed | 0x00000000,
- FMUL_s = FMUL,
- FMUL_d = FMUL | FP64,
- FDIV = FPDataProcessing2SourceFixed | 0x00001000,
- FDIV_s = FDIV,
- FDIV_d = FDIV | FP64,
- FADD = FPDataProcessing2SourceFixed | 0x00002000,
- FADD_s = FADD,
- FADD_d = FADD | FP64,
- FSUB = FPDataProcessing2SourceFixed | 0x00003000,
- FSUB_s = FSUB,
- FSUB_d = FSUB | FP64,
- FMAX = FPDataProcessing2SourceFixed | 0x00004000,
- FMAX_s = FMAX,
- FMAX_d = FMAX | FP64,
- FMIN = FPDataProcessing2SourceFixed | 0x00005000,
- FMIN_s = FMIN,
- FMIN_d = FMIN | FP64,
- FMAXNM = FPDataProcessing2SourceFixed | 0x00006000,
- FMAXNM_s = FMAXNM,
- FMAXNM_d = FMAXNM | FP64,
- FMINNM = FPDataProcessing2SourceFixed | 0x00007000,
- FMINNM_s = FMINNM,
- FMINNM_d = FMINNM | FP64,
- FNMUL = FPDataProcessing2SourceFixed | 0x00008000,
- FNMUL_s = FNMUL,
- FNMUL_d = FNMUL | FP64
-};
-
-// Floating point data processing 3 source.
-enum FPDataProcessing3SourceOp {
- FPDataProcessing3SourceFixed = 0x1F000000,
- FPDataProcessing3SourceFMask = 0x5F000000,
- FPDataProcessing3SourceMask = 0xFFE08000,
- FMADD_s = FPDataProcessing3SourceFixed | 0x00000000,
- FMSUB_s = FPDataProcessing3SourceFixed | 0x00008000,
- FNMADD_s = FPDataProcessing3SourceFixed | 0x00200000,
- FNMSUB_s = FPDataProcessing3SourceFixed | 0x00208000,
- FMADD_d = FPDataProcessing3SourceFixed | 0x00400000,
- FMSUB_d = FPDataProcessing3SourceFixed | 0x00408000,
- FNMADD_d = FPDataProcessing3SourceFixed | 0x00600000,
- FNMSUB_d = FPDataProcessing3SourceFixed | 0x00608000
-};
-
-// Conversion between floating point and integer.
-enum FPIntegerConvertOp {
- FPIntegerConvertFixed = 0x1E200000,
- FPIntegerConvertFMask = 0x5F20FC00,
- FPIntegerConvertMask = 0xFFFFFC00,
- FCVTNS = FPIntegerConvertFixed | 0x00000000,
- FCVTNS_ws = FCVTNS,
- FCVTNS_xs = FCVTNS | SixtyFourBits,
- FCVTNS_wd = FCVTNS | FP64,
- FCVTNS_xd = FCVTNS | SixtyFourBits | FP64,
- FCVTNU = FPIntegerConvertFixed | 0x00010000,
- FCVTNU_ws = FCVTNU,
- FCVTNU_xs = FCVTNU | SixtyFourBits,
- FCVTNU_wd = FCVTNU | FP64,
- FCVTNU_xd = FCVTNU | SixtyFourBits | FP64,
- FCVTPS = FPIntegerConvertFixed | 0x00080000,
- FCVTPS_ws = FCVTPS,
- FCVTPS_xs = FCVTPS | SixtyFourBits,
- FCVTPS_wd = FCVTPS | FP64,
- FCVTPS_xd = FCVTPS | SixtyFourBits | FP64,
- FCVTPU = FPIntegerConvertFixed | 0x00090000,
- FCVTPU_ws = FCVTPU,
- FCVTPU_xs = FCVTPU | SixtyFourBits,
- FCVTPU_wd = FCVTPU | FP64,
- FCVTPU_xd = FCVTPU | SixtyFourBits | FP64,
- FCVTMS = FPIntegerConvertFixed | 0x00100000,
- FCVTMS_ws = FCVTMS,
- FCVTMS_xs = FCVTMS | SixtyFourBits,
- FCVTMS_wd = FCVTMS | FP64,
- FCVTMS_xd = FCVTMS | SixtyFourBits | FP64,
- FCVTMU = FPIntegerConvertFixed | 0x00110000,
- FCVTMU_ws = FCVTMU,
- FCVTMU_xs = FCVTMU | SixtyFourBits,
- FCVTMU_wd = FCVTMU | FP64,
- FCVTMU_xd = FCVTMU | SixtyFourBits | FP64,
- FCVTZS = FPIntegerConvertFixed | 0x00180000,
- FCVTZS_ws = FCVTZS,
- FCVTZS_xs = FCVTZS | SixtyFourBits,
- FCVTZS_wd = FCVTZS | FP64,
- FCVTZS_xd = FCVTZS | SixtyFourBits | FP64,
- FCVTZU = FPIntegerConvertFixed | 0x00190000,
- FCVTZU_ws = FCVTZU,
- FCVTZU_xs = FCVTZU | SixtyFourBits,
- FCVTZU_wd = FCVTZU | FP64,
- FCVTZU_xd = FCVTZU | SixtyFourBits | FP64,
- SCVTF = FPIntegerConvertFixed | 0x00020000,
- SCVTF_sw = SCVTF,
- SCVTF_sx = SCVTF | SixtyFourBits,
- SCVTF_dw = SCVTF | FP64,
- SCVTF_dx = SCVTF | SixtyFourBits | FP64,
- UCVTF = FPIntegerConvertFixed | 0x00030000,
- UCVTF_sw = UCVTF,
- UCVTF_sx = UCVTF | SixtyFourBits,
- UCVTF_dw = UCVTF | FP64,
- UCVTF_dx = UCVTF | SixtyFourBits | FP64,
- FCVTAS = FPIntegerConvertFixed | 0x00040000,
- FCVTAS_ws = FCVTAS,
- FCVTAS_xs = FCVTAS | SixtyFourBits,
- FCVTAS_wd = FCVTAS | FP64,
- FCVTAS_xd = FCVTAS | SixtyFourBits | FP64,
- FCVTAU = FPIntegerConvertFixed | 0x00050000,
- FCVTAU_ws = FCVTAU,
- FCVTAU_xs = FCVTAU | SixtyFourBits,
- FCVTAU_wd = FCVTAU | FP64,
- FCVTAU_xd = FCVTAU | SixtyFourBits | FP64,
- FMOV_ws = FPIntegerConvertFixed | 0x00060000,
- FMOV_sw = FPIntegerConvertFixed | 0x00070000,
- FMOV_xd = FMOV_ws | SixtyFourBits | FP64,
- FMOV_dx = FMOV_sw | SixtyFourBits | FP64,
- FMOV_d1_x = FPIntegerConvertFixed | SixtyFourBits | 0x008F0000,
- FMOV_x_d1 = FPIntegerConvertFixed | SixtyFourBits | 0x008E0000
-};
-
-// Conversion between fixed point and floating point.
-enum FPFixedPointConvertOp {
- FPFixedPointConvertFixed = 0x1E000000,
- FPFixedPointConvertFMask = 0x5F200000,
- FPFixedPointConvertMask = 0xFFFF0000,
- FCVTZS_fixed = FPFixedPointConvertFixed | 0x00180000,
- FCVTZS_ws_fixed = FCVTZS_fixed,
- FCVTZS_xs_fixed = FCVTZS_fixed | SixtyFourBits,
- FCVTZS_wd_fixed = FCVTZS_fixed | FP64,
- FCVTZS_xd_fixed = FCVTZS_fixed | SixtyFourBits | FP64,
- FCVTZU_fixed = FPFixedPointConvertFixed | 0x00190000,
- FCVTZU_ws_fixed = FCVTZU_fixed,
- FCVTZU_xs_fixed = FCVTZU_fixed | SixtyFourBits,
- FCVTZU_wd_fixed = FCVTZU_fixed | FP64,
- FCVTZU_xd_fixed = FCVTZU_fixed | SixtyFourBits | FP64,
- SCVTF_fixed = FPFixedPointConvertFixed | 0x00020000,
- SCVTF_sw_fixed = SCVTF_fixed,
- SCVTF_sx_fixed = SCVTF_fixed | SixtyFourBits,
- SCVTF_dw_fixed = SCVTF_fixed | FP64,
- SCVTF_dx_fixed = SCVTF_fixed | SixtyFourBits | FP64,
- UCVTF_fixed = FPFixedPointConvertFixed | 0x00030000,
- UCVTF_sw_fixed = UCVTF_fixed,
- UCVTF_sx_fixed = UCVTF_fixed | SixtyFourBits,
- UCVTF_dw_fixed = UCVTF_fixed | FP64,
- UCVTF_dx_fixed = UCVTF_fixed | SixtyFourBits | FP64
-};
-
-// Crypto - two register SHA.
-enum Crypto2RegSHAOp {
- Crypto2RegSHAFixed = 0x5E280800,
- Crypto2RegSHAFMask = 0xFF3E0C00
-};
-
-// Crypto - three register SHA.
-enum Crypto3RegSHAOp {
- Crypto3RegSHAFixed = 0x5E000000,
- Crypto3RegSHAFMask = 0xFF208C00
-};
-
-// Crypto - AES.
-enum CryptoAESOp {
- CryptoAESFixed = 0x4E280800,
- CryptoAESFMask = 0xFF3E0C00
-};
-
-// NEON instructions with two register operands.
-enum NEON2RegMiscOp {
- NEON2RegMiscFixed = 0x0E200800,
- NEON2RegMiscFMask = 0x9F3E0C00,
- NEON2RegMiscMask = 0xBF3FFC00,
- NEON2RegMiscUBit = 0x20000000,
- NEON_REV64 = NEON2RegMiscFixed | 0x00000000,
- NEON_REV32 = NEON2RegMiscFixed | 0x20000000,
- NEON_REV16 = NEON2RegMiscFixed | 0x00001000,
- NEON_SADDLP = NEON2RegMiscFixed | 0x00002000,
- NEON_UADDLP = NEON_SADDLP | NEON2RegMiscUBit,
- NEON_SUQADD = NEON2RegMiscFixed | 0x00003000,
- NEON_USQADD = NEON_SUQADD | NEON2RegMiscUBit,
- NEON_CLS = NEON2RegMiscFixed | 0x00004000,
- NEON_CLZ = NEON2RegMiscFixed | 0x20004000,
- NEON_CNT = NEON2RegMiscFixed | 0x00005000,
- NEON_RBIT_NOT = NEON2RegMiscFixed | 0x20005000,
- NEON_SADALP = NEON2RegMiscFixed | 0x00006000,
- NEON_UADALP = NEON_SADALP | NEON2RegMiscUBit,
- NEON_SQABS = NEON2RegMiscFixed | 0x00007000,
- NEON_SQNEG = NEON2RegMiscFixed | 0x20007000,
- NEON_CMGT_zero = NEON2RegMiscFixed | 0x00008000,
- NEON_CMGE_zero = NEON2RegMiscFixed | 0x20008000,
- NEON_CMEQ_zero = NEON2RegMiscFixed | 0x00009000,
- NEON_CMLE_zero = NEON2RegMiscFixed | 0x20009000,
- NEON_CMLT_zero = NEON2RegMiscFixed | 0x0000A000,
- NEON_ABS = NEON2RegMiscFixed | 0x0000B000,
- NEON_NEG = NEON2RegMiscFixed | 0x2000B000,
- NEON_XTN = NEON2RegMiscFixed | 0x00012000,
- NEON_SQXTUN = NEON2RegMiscFixed | 0x20012000,
- NEON_SHLL = NEON2RegMiscFixed | 0x20013000,
- NEON_SQXTN = NEON2RegMiscFixed | 0x00014000,
- NEON_UQXTN = NEON_SQXTN | NEON2RegMiscUBit,
-
- NEON2RegMiscOpcode = 0x0001F000,
- NEON_RBIT_NOT_opcode = NEON_RBIT_NOT & NEON2RegMiscOpcode,
- NEON_NEG_opcode = NEON_NEG & NEON2RegMiscOpcode,
- NEON_XTN_opcode = NEON_XTN & NEON2RegMiscOpcode,
- NEON_UQXTN_opcode = NEON_UQXTN & NEON2RegMiscOpcode,
-
- // These instructions use only one bit of the size field. The other bit is
- // used to distinguish between instructions.
- NEON2RegMiscFPMask = NEON2RegMiscMask | 0x00800000,
- NEON_FABS = NEON2RegMiscFixed | 0x0080F000,
- NEON_FNEG = NEON2RegMiscFixed | 0x2080F000,
- NEON_FCVTN = NEON2RegMiscFixed | 0x00016000,
- NEON_FCVTXN = NEON2RegMiscFixed | 0x20016000,
- NEON_FCVTL = NEON2RegMiscFixed | 0x00017000,
- NEON_FRINTN = NEON2RegMiscFixed | 0x00018000,
- NEON_FRINTA = NEON2RegMiscFixed | 0x20018000,
- NEON_FRINTP = NEON2RegMiscFixed | 0x00818000,
- NEON_FRINTM = NEON2RegMiscFixed | 0x00019000,
- NEON_FRINTX = NEON2RegMiscFixed | 0x20019000,
- NEON_FRINTZ = NEON2RegMiscFixed | 0x00819000,
- NEON_FRINTI = NEON2RegMiscFixed | 0x20819000,
- NEON_FCVTNS = NEON2RegMiscFixed | 0x0001A000,
- NEON_FCVTNU = NEON_FCVTNS | NEON2RegMiscUBit,
- NEON_FCVTPS = NEON2RegMiscFixed | 0x0081A000,
- NEON_FCVTPU = NEON_FCVTPS | NEON2RegMiscUBit,
- NEON_FCVTMS = NEON2RegMiscFixed | 0x0001B000,
- NEON_FCVTMU = NEON_FCVTMS | NEON2RegMiscUBit,
- NEON_FCVTZS = NEON2RegMiscFixed | 0x0081B000,
- NEON_FCVTZU = NEON_FCVTZS | NEON2RegMiscUBit,
- NEON_FCVTAS = NEON2RegMiscFixed | 0x0001C000,
- NEON_FCVTAU = NEON_FCVTAS | NEON2RegMiscUBit,
- NEON_FSQRT = NEON2RegMiscFixed | 0x2081F000,
- NEON_SCVTF = NEON2RegMiscFixed | 0x0001D000,
- NEON_UCVTF = NEON_SCVTF | NEON2RegMiscUBit,
- NEON_URSQRTE = NEON2RegMiscFixed | 0x2081C000,
- NEON_URECPE = NEON2RegMiscFixed | 0x0081C000,
- NEON_FRSQRTE = NEON2RegMiscFixed | 0x2081D000,
- NEON_FRECPE = NEON2RegMiscFixed | 0x0081D000,
- NEON_FCMGT_zero = NEON2RegMiscFixed | 0x0080C000,
- NEON_FCMGE_zero = NEON2RegMiscFixed | 0x2080C000,
- NEON_FCMEQ_zero = NEON2RegMiscFixed | 0x0080D000,
- NEON_FCMLE_zero = NEON2RegMiscFixed | 0x2080D000,
- NEON_FCMLT_zero = NEON2RegMiscFixed | 0x0080E000,
-
- NEON_FCVTL_opcode = NEON_FCVTL & NEON2RegMiscOpcode,
- NEON_FCVTN_opcode = NEON_FCVTN & NEON2RegMiscOpcode
-};
-
-// NEON instructions with three same-type operands.
-enum NEON3SameOp {
- NEON3SameFixed = 0x0E200400,
- NEON3SameFMask = 0x9F200400,
- NEON3SameMask = 0xBF20FC00,
- NEON3SameUBit = 0x20000000,
- NEON_ADD = NEON3SameFixed | 0x00008000,
- NEON_ADDP = NEON3SameFixed | 0x0000B800,
- NEON_SHADD = NEON3SameFixed | 0x00000000,
- NEON_SHSUB = NEON3SameFixed | 0x00002000,
- NEON_SRHADD = NEON3SameFixed | 0x00001000,
- NEON_CMEQ = NEON3SameFixed | NEON3SameUBit | 0x00008800,
- NEON_CMGE = NEON3SameFixed | 0x00003800,
- NEON_CMGT = NEON3SameFixed | 0x00003000,
- NEON_CMHI = NEON3SameFixed | NEON3SameUBit | NEON_CMGT,
- NEON_CMHS = NEON3SameFixed | NEON3SameUBit | NEON_CMGE,
- NEON_CMTST = NEON3SameFixed | 0x00008800,
- NEON_MLA = NEON3SameFixed | 0x00009000,
- NEON_MLS = NEON3SameFixed | 0x20009000,
- NEON_MUL = NEON3SameFixed | 0x00009800,
- NEON_PMUL = NEON3SameFixed | 0x20009800,
- NEON_SRSHL = NEON3SameFixed | 0x00005000,
- NEON_SQSHL = NEON3SameFixed | 0x00004800,
- NEON_SQRSHL = NEON3SameFixed | 0x00005800,
- NEON_SSHL = NEON3SameFixed | 0x00004000,
- NEON_SMAX = NEON3SameFixed | 0x00006000,
- NEON_SMAXP = NEON3SameFixed | 0x0000A000,
- NEON_SMIN = NEON3SameFixed | 0x00006800,
- NEON_SMINP = NEON3SameFixed | 0x0000A800,
- NEON_SABD = NEON3SameFixed | 0x00007000,
- NEON_SABA = NEON3SameFixed | 0x00007800,
- NEON_UABD = NEON3SameFixed | NEON3SameUBit | NEON_SABD,
- NEON_UABA = NEON3SameFixed | NEON3SameUBit | NEON_SABA,
- NEON_SQADD = NEON3SameFixed | 0x00000800,
- NEON_SQSUB = NEON3SameFixed | 0x00002800,
- NEON_SUB = NEON3SameFixed | NEON3SameUBit | 0x00008000,
- NEON_UHADD = NEON3SameFixed | NEON3SameUBit | NEON_SHADD,
- NEON_UHSUB = NEON3SameFixed | NEON3SameUBit | NEON_SHSUB,
- NEON_URHADD = NEON3SameFixed | NEON3SameUBit | NEON_SRHADD,
- NEON_UMAX = NEON3SameFixed | NEON3SameUBit | NEON_SMAX,
- NEON_UMAXP = NEON3SameFixed | NEON3SameUBit | NEON_SMAXP,
- NEON_UMIN = NEON3SameFixed | NEON3SameUBit | NEON_SMIN,
- NEON_UMINP = NEON3SameFixed | NEON3SameUBit | NEON_SMINP,
- NEON_URSHL = NEON3SameFixed | NEON3SameUBit | NEON_SRSHL,
- NEON_UQADD = NEON3SameFixed | NEON3SameUBit | NEON_SQADD,
- NEON_UQRSHL = NEON3SameFixed | NEON3SameUBit | NEON_SQRSHL,
- NEON_UQSHL = NEON3SameFixed | NEON3SameUBit | NEON_SQSHL,
- NEON_UQSUB = NEON3SameFixed | NEON3SameUBit | NEON_SQSUB,
- NEON_USHL = NEON3SameFixed | NEON3SameUBit | NEON_SSHL,
- NEON_SQDMULH = NEON3SameFixed | 0x0000B000,
- NEON_SQRDMULH = NEON3SameFixed | 0x2000B000,
-
- // NEON floating point instructions with three same-type operands.
- NEON3SameFPFixed = NEON3SameFixed | 0x0000C000,
- NEON3SameFPFMask = NEON3SameFMask | 0x0000C000,
- NEON3SameFPMask = NEON3SameMask | 0x00800000,
- NEON_FADD = NEON3SameFixed | 0x0000D000,
- NEON_FSUB = NEON3SameFixed | 0x0080D000,
- NEON_FMUL = NEON3SameFixed | 0x2000D800,
- NEON_FDIV = NEON3SameFixed | 0x2000F800,
- NEON_FMAX = NEON3SameFixed | 0x0000F000,
- NEON_FMAXNM = NEON3SameFixed | 0x0000C000,
- NEON_FMAXP = NEON3SameFixed | 0x2000F000,
- NEON_FMAXNMP = NEON3SameFixed | 0x2000C000,
- NEON_FMIN = NEON3SameFixed | 0x0080F000,
- NEON_FMINNM = NEON3SameFixed | 0x0080C000,
- NEON_FMINP = NEON3SameFixed | 0x2080F000,
- NEON_FMINNMP = NEON3SameFixed | 0x2080C000,
- NEON_FMLA = NEON3SameFixed | 0x0000C800,
- NEON_FMLS = NEON3SameFixed | 0x0080C800,
- NEON_FMULX = NEON3SameFixed | 0x0000D800,
- NEON_FRECPS = NEON3SameFixed | 0x0000F800,
- NEON_FRSQRTS = NEON3SameFixed | 0x0080F800,
- NEON_FABD = NEON3SameFixed | 0x2080D000,
- NEON_FADDP = NEON3SameFixed | 0x2000D000,
- NEON_FCMEQ = NEON3SameFixed | 0x0000E000,
- NEON_FCMGE = NEON3SameFixed | 0x2000E000,
- NEON_FCMGT = NEON3SameFixed | 0x2080E000,
- NEON_FACGE = NEON3SameFixed | 0x2000E800,
- NEON_FACGT = NEON3SameFixed | 0x2080E800,
-
- // NEON logical instructions with three same-type operands.
- NEON3SameLogicalFixed = NEON3SameFixed | 0x00001800,
- NEON3SameLogicalFMask = NEON3SameFMask | 0x0000F800,
- NEON3SameLogicalMask = 0xBFE0FC00,
- NEON3SameLogicalFormatMask = NEON_Q,
- NEON_AND = NEON3SameLogicalFixed | 0x00000000,
- NEON_ORR = NEON3SameLogicalFixed | 0x00A00000,
- NEON_ORN = NEON3SameLogicalFixed | 0x00C00000,
- NEON_EOR = NEON3SameLogicalFixed | 0x20000000,
- NEON_BIC = NEON3SameLogicalFixed | 0x00400000,
- NEON_BIF = NEON3SameLogicalFixed | 0x20C00000,
- NEON_BIT = NEON3SameLogicalFixed | 0x20800000,
- NEON_BSL = NEON3SameLogicalFixed | 0x20400000
-};
-
-// NEON instructions with three different-type operands.
-enum NEON3DifferentOp {
- NEON3DifferentFixed = 0x0E200000,
- NEON3DifferentFMask = 0x9F200C00,
- NEON3DifferentMask = 0xFF20FC00,
- NEON_ADDHN = NEON3DifferentFixed | 0x00004000,
- NEON_ADDHN2 = NEON_ADDHN | NEON_Q,
- NEON_PMULL = NEON3DifferentFixed | 0x0000E000,
- NEON_PMULL2 = NEON_PMULL | NEON_Q,
- NEON_RADDHN = NEON3DifferentFixed | 0x20004000,
- NEON_RADDHN2 = NEON_RADDHN | NEON_Q,
- NEON_RSUBHN = NEON3DifferentFixed | 0x20006000,
- NEON_RSUBHN2 = NEON_RSUBHN | NEON_Q,
- NEON_SABAL = NEON3DifferentFixed | 0x00005000,
- NEON_SABAL2 = NEON_SABAL | NEON_Q,
- NEON_SABDL = NEON3DifferentFixed | 0x00007000,
- NEON_SABDL2 = NEON_SABDL | NEON_Q,
- NEON_SADDL = NEON3DifferentFixed | 0x00000000,
- NEON_SADDL2 = NEON_SADDL | NEON_Q,
- NEON_SADDW = NEON3DifferentFixed | 0x00001000,
- NEON_SADDW2 = NEON_SADDW | NEON_Q,
- NEON_SMLAL = NEON3DifferentFixed | 0x00008000,
- NEON_SMLAL2 = NEON_SMLAL | NEON_Q,
- NEON_SMLSL = NEON3DifferentFixed | 0x0000A000,
- NEON_SMLSL2 = NEON_SMLSL | NEON_Q,
- NEON_SMULL = NEON3DifferentFixed | 0x0000C000,
- NEON_SMULL2 = NEON_SMULL | NEON_Q,
- NEON_SSUBL = NEON3DifferentFixed | 0x00002000,
- NEON_SSUBL2 = NEON_SSUBL | NEON_Q,
- NEON_SSUBW = NEON3DifferentFixed | 0x00003000,
- NEON_SSUBW2 = NEON_SSUBW | NEON_Q,
- NEON_SQDMLAL = NEON3DifferentFixed | 0x00009000,
- NEON_SQDMLAL2 = NEON_SQDMLAL | NEON_Q,
- NEON_SQDMLSL = NEON3DifferentFixed | 0x0000B000,
- NEON_SQDMLSL2 = NEON_SQDMLSL | NEON_Q,
- NEON_SQDMULL = NEON3DifferentFixed | 0x0000D000,
- NEON_SQDMULL2 = NEON_SQDMULL | NEON_Q,
- NEON_SUBHN = NEON3DifferentFixed | 0x00006000,
- NEON_SUBHN2 = NEON_SUBHN | NEON_Q,
- NEON_UABAL = NEON_SABAL | NEON3SameUBit,
- NEON_UABAL2 = NEON_UABAL | NEON_Q,
- NEON_UABDL = NEON_SABDL | NEON3SameUBit,
- NEON_UABDL2 = NEON_UABDL | NEON_Q,
- NEON_UADDL = NEON_SADDL | NEON3SameUBit,
- NEON_UADDL2 = NEON_UADDL | NEON_Q,
- NEON_UADDW = NEON_SADDW | NEON3SameUBit,
- NEON_UADDW2 = NEON_UADDW | NEON_Q,
- NEON_UMLAL = NEON_SMLAL | NEON3SameUBit,
- NEON_UMLAL2 = NEON_UMLAL | NEON_Q,
- NEON_UMLSL = NEON_SMLSL | NEON3SameUBit,
- NEON_UMLSL2 = NEON_UMLSL | NEON_Q,
- NEON_UMULL = NEON_SMULL | NEON3SameUBit,
- NEON_UMULL2 = NEON_UMULL | NEON_Q,
- NEON_USUBL = NEON_SSUBL | NEON3SameUBit,
- NEON_USUBL2 = NEON_USUBL | NEON_Q,
- NEON_USUBW = NEON_SSUBW | NEON3SameUBit,
- NEON_USUBW2 = NEON_USUBW | NEON_Q
-};
-
-// NEON instructions operating across vectors.
-enum NEONAcrossLanesOp {
- NEONAcrossLanesFixed = 0x0E300800,
- NEONAcrossLanesFMask = 0x9F3E0C00,
- NEONAcrossLanesMask = 0xBF3FFC00,
- NEON_ADDV = NEONAcrossLanesFixed | 0x0001B000,
- NEON_SADDLV = NEONAcrossLanesFixed | 0x00003000,
- NEON_UADDLV = NEONAcrossLanesFixed | 0x20003000,
- NEON_SMAXV = NEONAcrossLanesFixed | 0x0000A000,
- NEON_SMINV = NEONAcrossLanesFixed | 0x0001A000,
- NEON_UMAXV = NEONAcrossLanesFixed | 0x2000A000,
- NEON_UMINV = NEONAcrossLanesFixed | 0x2001A000,
-
- // NEON floating point across instructions.
- NEONAcrossLanesFPFixed = NEONAcrossLanesFixed | 0x0000C000,
- NEONAcrossLanesFPFMask = NEONAcrossLanesFMask | 0x0000C000,
- NEONAcrossLanesFPMask = NEONAcrossLanesMask | 0x00800000,
-
- NEON_FMAXV = NEONAcrossLanesFPFixed | 0x2000F000,
- NEON_FMINV = NEONAcrossLanesFPFixed | 0x2080F000,
- NEON_FMAXNMV = NEONAcrossLanesFPFixed | 0x2000C000,
- NEON_FMINNMV = NEONAcrossLanesFPFixed | 0x2080C000
-};
-
-// NEON instructions with indexed element operand.
-enum NEONByIndexedElementOp {
- NEONByIndexedElementFixed = 0x0F000000,
- NEONByIndexedElementFMask = 0x9F000400,
- NEONByIndexedElementMask = 0xBF00F400,
- NEON_MUL_byelement = NEONByIndexedElementFixed | 0x00008000,
- NEON_MLA_byelement = NEONByIndexedElementFixed | 0x20000000,
- NEON_MLS_byelement = NEONByIndexedElementFixed | 0x20004000,
- NEON_SMULL_byelement = NEONByIndexedElementFixed | 0x0000A000,
- NEON_SMLAL_byelement = NEONByIndexedElementFixed | 0x00002000,
- NEON_SMLSL_byelement = NEONByIndexedElementFixed | 0x00006000,
- NEON_UMULL_byelement = NEONByIndexedElementFixed | 0x2000A000,
- NEON_UMLAL_byelement = NEONByIndexedElementFixed | 0x20002000,
- NEON_UMLSL_byelement = NEONByIndexedElementFixed | 0x20006000,
- NEON_SQDMULL_byelement = NEONByIndexedElementFixed | 0x0000B000,
- NEON_SQDMLAL_byelement = NEONByIndexedElementFixed | 0x00003000,
- NEON_SQDMLSL_byelement = NEONByIndexedElementFixed | 0x00007000,
- NEON_SQDMULH_byelement = NEONByIndexedElementFixed | 0x0000C000,
- NEON_SQRDMULH_byelement = NEONByIndexedElementFixed | 0x0000D000,
-
- // Floating point instructions.
- NEONByIndexedElementFPFixed = NEONByIndexedElementFixed | 0x00800000,
- NEONByIndexedElementFPMask = NEONByIndexedElementMask | 0x00800000,
- NEON_FMLA_byelement = NEONByIndexedElementFPFixed | 0x00001000,
- NEON_FMLS_byelement = NEONByIndexedElementFPFixed | 0x00005000,
- NEON_FMUL_byelement = NEONByIndexedElementFPFixed | 0x00009000,
- NEON_FMULX_byelement = NEONByIndexedElementFPFixed | 0x20009000
-};
-
-// NEON register copy.
-enum NEONCopyOp {
- NEONCopyFixed = 0x0E000400,
- NEONCopyFMask = 0x9FE08400,
- NEONCopyMask = 0x3FE08400,
- NEONCopyInsElementMask = NEONCopyMask | 0x40000000,
- NEONCopyInsGeneralMask = NEONCopyMask | 0x40007800,
- NEONCopyDupElementMask = NEONCopyMask | 0x20007800,
- NEONCopyDupGeneralMask = NEONCopyDupElementMask,
- NEONCopyUmovMask = NEONCopyMask | 0x20007800,
- NEONCopySmovMask = NEONCopyMask | 0x20007800,
- NEON_INS_ELEMENT = NEONCopyFixed | 0x60000000,
- NEON_INS_GENERAL = NEONCopyFixed | 0x40001800,
- NEON_DUP_ELEMENT = NEONCopyFixed | 0x00000000,
- NEON_DUP_GENERAL = NEONCopyFixed | 0x00000800,
- NEON_SMOV = NEONCopyFixed | 0x00002800,
- NEON_UMOV = NEONCopyFixed | 0x00003800
-};
-
-// NEON extract.
-enum NEONExtractOp {
- NEONExtractFixed = 0x2E000000,
- NEONExtractFMask = 0xBF208400,
- NEONExtractMask = 0xBFE08400,
- NEON_EXT = NEONExtractFixed | 0x00000000
-};
-
-enum NEONLoadStoreMultiOp {
- NEONLoadStoreMultiL = 0x00400000,
- NEONLoadStoreMulti1_1v = 0x00007000,
- NEONLoadStoreMulti1_2v = 0x0000A000,
- NEONLoadStoreMulti1_3v = 0x00006000,
- NEONLoadStoreMulti1_4v = 0x00002000,
- NEONLoadStoreMulti2 = 0x00008000,
- NEONLoadStoreMulti3 = 0x00004000,
- NEONLoadStoreMulti4 = 0x00000000
-};
-
-// NEON load/store multiple structures.
-enum NEONLoadStoreMultiStructOp {
- NEONLoadStoreMultiStructFixed = 0x0C000000,
- NEONLoadStoreMultiStructFMask = 0xBFBF0000,
- NEONLoadStoreMultiStructMask = 0xBFFFF000,
- NEONLoadStoreMultiStructStore = NEONLoadStoreMultiStructFixed,
- NEONLoadStoreMultiStructLoad = NEONLoadStoreMultiStructFixed |
- NEONLoadStoreMultiL,
- NEON_LD1_1v = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti1_1v,
- NEON_LD1_2v = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti1_2v,
- NEON_LD1_3v = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti1_3v,
- NEON_LD1_4v = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti1_4v,
- NEON_LD2 = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti2,
- NEON_LD3 = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti3,
- NEON_LD4 = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti4,
- NEON_ST1_1v = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti1_1v,
- NEON_ST1_2v = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti1_2v,
- NEON_ST1_3v = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti1_3v,
- NEON_ST1_4v = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti1_4v,
- NEON_ST2 = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti2,
- NEON_ST3 = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti3,
- NEON_ST4 = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti4
-};
-
-// NEON load/store multiple structures with post-index addressing.
-enum NEONLoadStoreMultiStructPostIndexOp {
- NEONLoadStoreMultiStructPostIndexFixed = 0x0C800000,
- NEONLoadStoreMultiStructPostIndexFMask = 0xBFA00000,
- NEONLoadStoreMultiStructPostIndexMask = 0xBFE0F000,
- NEONLoadStoreMultiStructPostIndex = 0x00800000,
- NEON_LD1_1v_post = NEON_LD1_1v | NEONLoadStoreMultiStructPostIndex,
- NEON_LD1_2v_post = NEON_LD1_2v | NEONLoadStoreMultiStructPostIndex,
- NEON_LD1_3v_post = NEON_LD1_3v | NEONLoadStoreMultiStructPostIndex,
- NEON_LD1_4v_post = NEON_LD1_4v | NEONLoadStoreMultiStructPostIndex,
- NEON_LD2_post = NEON_LD2 | NEONLoadStoreMultiStructPostIndex,
- NEON_LD3_post = NEON_LD3 | NEONLoadStoreMultiStructPostIndex,
- NEON_LD4_post = NEON_LD4 | NEONLoadStoreMultiStructPostIndex,
- NEON_ST1_1v_post = NEON_ST1_1v | NEONLoadStoreMultiStructPostIndex,
- NEON_ST1_2v_post = NEON_ST1_2v | NEONLoadStoreMultiStructPostIndex,
- NEON_ST1_3v_post = NEON_ST1_3v | NEONLoadStoreMultiStructPostIndex,
- NEON_ST1_4v_post = NEON_ST1_4v | NEONLoadStoreMultiStructPostIndex,
- NEON_ST2_post = NEON_ST2 | NEONLoadStoreMultiStructPostIndex,
- NEON_ST3_post = NEON_ST3 | NEONLoadStoreMultiStructPostIndex,
- NEON_ST4_post = NEON_ST4 | NEONLoadStoreMultiStructPostIndex
-};
-
-enum NEONLoadStoreSingleOp {
- NEONLoadStoreSingle1 = 0x00000000,
- NEONLoadStoreSingle2 = 0x00200000,
- NEONLoadStoreSingle3 = 0x00002000,
- NEONLoadStoreSingle4 = 0x00202000,
- NEONLoadStoreSingleL = 0x00400000,
- NEONLoadStoreSingle_b = 0x00000000,
- NEONLoadStoreSingle_h = 0x00004000,
- NEONLoadStoreSingle_s = 0x00008000,
- NEONLoadStoreSingle_d = 0x00008400,
- NEONLoadStoreSingleAllLanes = 0x0000C000,
- NEONLoadStoreSingleLenMask = 0x00202000
-};
-
-// NEON load/store single structure.
-enum NEONLoadStoreSingleStructOp {
- NEONLoadStoreSingleStructFixed = 0x0D000000,
- NEONLoadStoreSingleStructFMask = 0xBF9F0000,
- NEONLoadStoreSingleStructMask = 0xBFFFE000,
- NEONLoadStoreSingleStructStore = NEONLoadStoreSingleStructFixed,
- NEONLoadStoreSingleStructLoad = NEONLoadStoreSingleStructFixed |
- NEONLoadStoreSingleL,
- NEONLoadStoreSingleStructLoad1 = NEONLoadStoreSingle1 |
- NEONLoadStoreSingleStructLoad,
- NEONLoadStoreSingleStructLoad2 = NEONLoadStoreSingle2 |
- NEONLoadStoreSingleStructLoad,
- NEONLoadStoreSingleStructLoad3 = NEONLoadStoreSingle3 |
- NEONLoadStoreSingleStructLoad,
- NEONLoadStoreSingleStructLoad4 = NEONLoadStoreSingle4 |
- NEONLoadStoreSingleStructLoad,
- NEONLoadStoreSingleStructStore1 = NEONLoadStoreSingle1 |
- NEONLoadStoreSingleStructFixed,
- NEONLoadStoreSingleStructStore2 = NEONLoadStoreSingle2 |
- NEONLoadStoreSingleStructFixed,
- NEONLoadStoreSingleStructStore3 = NEONLoadStoreSingle3 |
- NEONLoadStoreSingleStructFixed,
- NEONLoadStoreSingleStructStore4 = NEONLoadStoreSingle4 |
- NEONLoadStoreSingleStructFixed,
- NEON_LD1_b = NEONLoadStoreSingleStructLoad1 | NEONLoadStoreSingle_b,
- NEON_LD1_h = NEONLoadStoreSingleStructLoad1 | NEONLoadStoreSingle_h,
- NEON_LD1_s = NEONLoadStoreSingleStructLoad1 | NEONLoadStoreSingle_s,
- NEON_LD1_d = NEONLoadStoreSingleStructLoad1 | NEONLoadStoreSingle_d,
- NEON_LD1R = NEONLoadStoreSingleStructLoad1 | NEONLoadStoreSingleAllLanes,
- NEON_ST1_b = NEONLoadStoreSingleStructStore1 | NEONLoadStoreSingle_b,
- NEON_ST1_h = NEONLoadStoreSingleStructStore1 | NEONLoadStoreSingle_h,
- NEON_ST1_s = NEONLoadStoreSingleStructStore1 | NEONLoadStoreSingle_s,
- NEON_ST1_d = NEONLoadStoreSingleStructStore1 | NEONLoadStoreSingle_d,
-
- NEON_LD2_b = NEONLoadStoreSingleStructLoad2 | NEONLoadStoreSingle_b,
- NEON_LD2_h = NEONLoadStoreSingleStructLoad2 | NEONLoadStoreSingle_h,
- NEON_LD2_s = NEONLoadStoreSingleStructLoad2 | NEONLoadStoreSingle_s,
- NEON_LD2_d = NEONLoadStoreSingleStructLoad2 | NEONLoadStoreSingle_d,
- NEON_LD2R = NEONLoadStoreSingleStructLoad2 | NEONLoadStoreSingleAllLanes,
- NEON_ST2_b = NEONLoadStoreSingleStructStore2 | NEONLoadStoreSingle_b,
- NEON_ST2_h = NEONLoadStoreSingleStructStore2 | NEONLoadStoreSingle_h,
- NEON_ST2_s = NEONLoadStoreSingleStructStore2 | NEONLoadStoreSingle_s,
- NEON_ST2_d = NEONLoadStoreSingleStructStore2 | NEONLoadStoreSingle_d,
-
- NEON_LD3_b = NEONLoadStoreSingleStructLoad3 | NEONLoadStoreSingle_b,
- NEON_LD3_h = NEONLoadStoreSingleStructLoad3 | NEONLoadStoreSingle_h,
- NEON_LD3_s = NEONLoadStoreSingleStructLoad3 | NEONLoadStoreSingle_s,
- NEON_LD3_d = NEONLoadStoreSingleStructLoad3 | NEONLoadStoreSingle_d,
- NEON_LD3R = NEONLoadStoreSingleStructLoad3 | NEONLoadStoreSingleAllLanes,
- NEON_ST3_b = NEONLoadStoreSingleStructStore3 | NEONLoadStoreSingle_b,
- NEON_ST3_h = NEONLoadStoreSingleStructStore3 | NEONLoadStoreSingle_h,
- NEON_ST3_s = NEONLoadStoreSingleStructStore3 | NEONLoadStoreSingle_s,
- NEON_ST3_d = NEONLoadStoreSingleStructStore3 | NEONLoadStoreSingle_d,
-
- NEON_LD4_b = NEONLoadStoreSingleStructLoad4 | NEONLoadStoreSingle_b,
- NEON_LD4_h = NEONLoadStoreSingleStructLoad4 | NEONLoadStoreSingle_h,
- NEON_LD4_s = NEONLoadStoreSingleStructLoad4 | NEONLoadStoreSingle_s,
- NEON_LD4_d = NEONLoadStoreSingleStructLoad4 | NEONLoadStoreSingle_d,
- NEON_LD4R = NEONLoadStoreSingleStructLoad4 | NEONLoadStoreSingleAllLanes,
- NEON_ST4_b = NEONLoadStoreSingleStructStore4 | NEONLoadStoreSingle_b,
- NEON_ST4_h = NEONLoadStoreSingleStructStore4 | NEONLoadStoreSingle_h,
- NEON_ST4_s = NEONLoadStoreSingleStructStore4 | NEONLoadStoreSingle_s,
- NEON_ST4_d = NEONLoadStoreSingleStructStore4 | NEONLoadStoreSingle_d
-};
-
-// NEON load/store single structure with post-index addressing.
-enum NEONLoadStoreSingleStructPostIndexOp {
- NEONLoadStoreSingleStructPostIndexFixed = 0x0D800000,
- NEONLoadStoreSingleStructPostIndexFMask = 0xBF800000,
- NEONLoadStoreSingleStructPostIndexMask = 0xBFE0E000,
- NEONLoadStoreSingleStructPostIndex = 0x00800000,
- NEON_LD1_b_post = NEON_LD1_b | NEONLoadStoreSingleStructPostIndex,
- NEON_LD1_h_post = NEON_LD1_h | NEONLoadStoreSingleStructPostIndex,
- NEON_LD1_s_post = NEON_LD1_s | NEONLoadStoreSingleStructPostIndex,
- NEON_LD1_d_post = NEON_LD1_d | NEONLoadStoreSingleStructPostIndex,
- NEON_LD1R_post = NEON_LD1R | NEONLoadStoreSingleStructPostIndex,
- NEON_ST1_b_post = NEON_ST1_b | NEONLoadStoreSingleStructPostIndex,
- NEON_ST1_h_post = NEON_ST1_h | NEONLoadStoreSingleStructPostIndex,
- NEON_ST1_s_post = NEON_ST1_s | NEONLoadStoreSingleStructPostIndex,
- NEON_ST1_d_post = NEON_ST1_d | NEONLoadStoreSingleStructPostIndex,
-
- NEON_LD2_b_post = NEON_LD2_b | NEONLoadStoreSingleStructPostIndex,
- NEON_LD2_h_post = NEON_LD2_h | NEONLoadStoreSingleStructPostIndex,
- NEON_LD2_s_post = NEON_LD2_s | NEONLoadStoreSingleStructPostIndex,
- NEON_LD2_d_post = NEON_LD2_d | NEONLoadStoreSingleStructPostIndex,
- NEON_LD2R_post = NEON_LD2R | NEONLoadStoreSingleStructPostIndex,
- NEON_ST2_b_post = NEON_ST2_b | NEONLoadStoreSingleStructPostIndex,
- NEON_ST2_h_post = NEON_ST2_h | NEONLoadStoreSingleStructPostIndex,
- NEON_ST2_s_post = NEON_ST2_s | NEONLoadStoreSingleStructPostIndex,
- NEON_ST2_d_post = NEON_ST2_d | NEONLoadStoreSingleStructPostIndex,
-
- NEON_LD3_b_post = NEON_LD3_b | NEONLoadStoreSingleStructPostIndex,
- NEON_LD3_h_post = NEON_LD3_h | NEONLoadStoreSingleStructPostIndex,
- NEON_LD3_s_post = NEON_LD3_s | NEONLoadStoreSingleStructPostIndex,
- NEON_LD3_d_post = NEON_LD3_d | NEONLoadStoreSingleStructPostIndex,
- NEON_LD3R_post = NEON_LD3R | NEONLoadStoreSingleStructPostIndex,
- NEON_ST3_b_post = NEON_ST3_b | NEONLoadStoreSingleStructPostIndex,
- NEON_ST3_h_post = NEON_ST3_h | NEONLoadStoreSingleStructPostIndex,
- NEON_ST3_s_post = NEON_ST3_s | NEONLoadStoreSingleStructPostIndex,
- NEON_ST3_d_post = NEON_ST3_d | NEONLoadStoreSingleStructPostIndex,
-
- NEON_LD4_b_post = NEON_LD4_b | NEONLoadStoreSingleStructPostIndex,
- NEON_LD4_h_post = NEON_LD4_h | NEONLoadStoreSingleStructPostIndex,
- NEON_LD4_s_post = NEON_LD4_s | NEONLoadStoreSingleStructPostIndex,
- NEON_LD4_d_post = NEON_LD4_d | NEONLoadStoreSingleStructPostIndex,
- NEON_LD4R_post = NEON_LD4R | NEONLoadStoreSingleStructPostIndex,
- NEON_ST4_b_post = NEON_ST4_b | NEONLoadStoreSingleStructPostIndex,
- NEON_ST4_h_post = NEON_ST4_h | NEONLoadStoreSingleStructPostIndex,
- NEON_ST4_s_post = NEON_ST4_s | NEONLoadStoreSingleStructPostIndex,
- NEON_ST4_d_post = NEON_ST4_d | NEONLoadStoreSingleStructPostIndex
-};
-
-// NEON modified immediate.
-enum NEONModifiedImmediateOp {
- NEONModifiedImmediateFixed = 0x0F000400,
- NEONModifiedImmediateFMask = 0x9FF80400,
- NEONModifiedImmediateOpBit = 0x20000000,
- NEONModifiedImmediate_MOVI = NEONModifiedImmediateFixed | 0x00000000,
- NEONModifiedImmediate_MVNI = NEONModifiedImmediateFixed | 0x20000000,
- NEONModifiedImmediate_ORR = NEONModifiedImmediateFixed | 0x00001000,
- NEONModifiedImmediate_BIC = NEONModifiedImmediateFixed | 0x20001000
-};
-
-// NEON shift immediate.
-enum NEONShiftImmediateOp {
- NEONShiftImmediateFixed = 0x0F000400,
- NEONShiftImmediateFMask = 0x9F800400,
- NEONShiftImmediateMask = 0xBF80FC00,
- NEONShiftImmediateUBit = 0x20000000,
- NEON_SHL = NEONShiftImmediateFixed | 0x00005000,
- NEON_SSHLL = NEONShiftImmediateFixed | 0x0000A000,
- NEON_USHLL = NEONShiftImmediateFixed | 0x2000A000,
- NEON_SLI = NEONShiftImmediateFixed | 0x20005000,
- NEON_SRI = NEONShiftImmediateFixed | 0x20004000,
- NEON_SHRN = NEONShiftImmediateFixed | 0x00008000,
- NEON_RSHRN = NEONShiftImmediateFixed | 0x00008800,
- NEON_UQSHRN = NEONShiftImmediateFixed | 0x20009000,
- NEON_UQRSHRN = NEONShiftImmediateFixed | 0x20009800,
- NEON_SQSHRN = NEONShiftImmediateFixed | 0x00009000,
- NEON_SQRSHRN = NEONShiftImmediateFixed | 0x00009800,
- NEON_SQSHRUN = NEONShiftImmediateFixed | 0x20008000,
- NEON_SQRSHRUN = NEONShiftImmediateFixed | 0x20008800,
- NEON_SSHR = NEONShiftImmediateFixed | 0x00000000,
- NEON_SRSHR = NEONShiftImmediateFixed | 0x00002000,
- NEON_USHR = NEONShiftImmediateFixed | 0x20000000,
- NEON_URSHR = NEONShiftImmediateFixed | 0x20002000,
- NEON_SSRA = NEONShiftImmediateFixed | 0x00001000,
- NEON_SRSRA = NEONShiftImmediateFixed | 0x00003000,
- NEON_USRA = NEONShiftImmediateFixed | 0x20001000,
- NEON_URSRA = NEONShiftImmediateFixed | 0x20003000,
- NEON_SQSHLU = NEONShiftImmediateFixed | 0x20006000,
- NEON_SCVTF_imm = NEONShiftImmediateFixed | 0x0000E000,
- NEON_UCVTF_imm = NEONShiftImmediateFixed | 0x2000E000,
- NEON_FCVTZS_imm = NEONShiftImmediateFixed | 0x0000F800,
- NEON_FCVTZU_imm = NEONShiftImmediateFixed | 0x2000F800,
- NEON_SQSHL_imm = NEONShiftImmediateFixed | 0x00007000,
- NEON_UQSHL_imm = NEONShiftImmediateFixed | 0x20007000
-};
-
-// NEON table.
-enum NEONTableOp {
- NEONTableFixed = 0x0E000000,
- NEONTableFMask = 0xBF208C00,
- NEONTableExt = 0x00001000,
- NEONTableMask = 0xBF20FC00,
- NEON_TBL_1v = NEONTableFixed | 0x00000000,
- NEON_TBL_2v = NEONTableFixed | 0x00002000,
- NEON_TBL_3v = NEONTableFixed | 0x00004000,
- NEON_TBL_4v = NEONTableFixed | 0x00006000,
- NEON_TBX_1v = NEON_TBL_1v | NEONTableExt,
- NEON_TBX_2v = NEON_TBL_2v | NEONTableExt,
- NEON_TBX_3v = NEON_TBL_3v | NEONTableExt,
- NEON_TBX_4v = NEON_TBL_4v | NEONTableExt
-};
-
-// NEON perm.
-enum NEONPermOp {
- NEONPermFixed = 0x0E000800,
- NEONPermFMask = 0xBF208C00,
- NEONPermMask = 0x3F20FC00,
- NEON_UZP1 = NEONPermFixed | 0x00001000,
- NEON_TRN1 = NEONPermFixed | 0x00002000,
- NEON_ZIP1 = NEONPermFixed | 0x00003000,
- NEON_UZP2 = NEONPermFixed | 0x00005000,
- NEON_TRN2 = NEONPermFixed | 0x00006000,
- NEON_ZIP2 = NEONPermFixed | 0x00007000
-};
-
-// NEON scalar instructions with two register operands.
-enum NEONScalar2RegMiscOp {
- NEONScalar2RegMiscFixed = 0x5E200800,
- NEONScalar2RegMiscFMask = 0xDF3E0C00,
- NEONScalar2RegMiscMask = NEON_Q | NEONScalar | NEON2RegMiscMask,
- NEON_CMGT_zero_scalar = NEON_Q | NEONScalar | NEON_CMGT_zero,
- NEON_CMEQ_zero_scalar = NEON_Q | NEONScalar | NEON_CMEQ_zero,
- NEON_CMLT_zero_scalar = NEON_Q | NEONScalar | NEON_CMLT_zero,
- NEON_CMGE_zero_scalar = NEON_Q | NEONScalar | NEON_CMGE_zero,
- NEON_CMLE_zero_scalar = NEON_Q | NEONScalar | NEON_CMLE_zero,
- NEON_ABS_scalar = NEON_Q | NEONScalar | NEON_ABS,
- NEON_SQABS_scalar = NEON_Q | NEONScalar | NEON_SQABS,
- NEON_NEG_scalar = NEON_Q | NEONScalar | NEON_NEG,
- NEON_SQNEG_scalar = NEON_Q | NEONScalar | NEON_SQNEG,
- NEON_SQXTN_scalar = NEON_Q | NEONScalar | NEON_SQXTN,
- NEON_UQXTN_scalar = NEON_Q | NEONScalar | NEON_UQXTN,
- NEON_SQXTUN_scalar = NEON_Q | NEONScalar | NEON_SQXTUN,
- NEON_SUQADD_scalar = NEON_Q | NEONScalar | NEON_SUQADD,
- NEON_USQADD_scalar = NEON_Q | NEONScalar | NEON_USQADD,
-
- NEONScalar2RegMiscOpcode = NEON2RegMiscOpcode,
- NEON_NEG_scalar_opcode = NEON_NEG_scalar & NEONScalar2RegMiscOpcode,
-
- NEONScalar2RegMiscFPMask = NEONScalar2RegMiscMask | 0x00800000,
- NEON_FRSQRTE_scalar = NEON_Q | NEONScalar | NEON_FRSQRTE,
- NEON_FRECPE_scalar = NEON_Q | NEONScalar | NEON_FRECPE,
- NEON_SCVTF_scalar = NEON_Q | NEONScalar | NEON_SCVTF,
- NEON_UCVTF_scalar = NEON_Q | NEONScalar | NEON_UCVTF,
- NEON_FCMGT_zero_scalar = NEON_Q | NEONScalar | NEON_FCMGT_zero,
- NEON_FCMEQ_zero_scalar = NEON_Q | NEONScalar | NEON_FCMEQ_zero,
- NEON_FCMLT_zero_scalar = NEON_Q | NEONScalar | NEON_FCMLT_zero,
- NEON_FCMGE_zero_scalar = NEON_Q | NEONScalar | NEON_FCMGE_zero,
- NEON_FCMLE_zero_scalar = NEON_Q | NEONScalar | NEON_FCMLE_zero,
- NEON_FRECPX_scalar = NEONScalar2RegMiscFixed | 0x0081F000,
- NEON_FCVTNS_scalar = NEON_Q | NEONScalar | NEON_FCVTNS,
- NEON_FCVTNU_scalar = NEON_Q | NEONScalar | NEON_FCVTNU,
- NEON_FCVTPS_scalar = NEON_Q | NEONScalar | NEON_FCVTPS,
- NEON_FCVTPU_scalar = NEON_Q | NEONScalar | NEON_FCVTPU,
- NEON_FCVTMS_scalar = NEON_Q | NEONScalar | NEON_FCVTMS,
- NEON_FCVTMU_scalar = NEON_Q | NEONScalar | NEON_FCVTMU,
- NEON_FCVTZS_scalar = NEON_Q | NEONScalar | NEON_FCVTZS,
- NEON_FCVTZU_scalar = NEON_Q | NEONScalar | NEON_FCVTZU,
- NEON_FCVTAS_scalar = NEON_Q | NEONScalar | NEON_FCVTAS,
- NEON_FCVTAU_scalar = NEON_Q | NEONScalar | NEON_FCVTAU,
- NEON_FCVTXN_scalar = NEON_Q | NEONScalar | NEON_FCVTXN
-};
-
-// NEON scalar instructions with three same-type operands.
-enum NEONScalar3SameOp {
- NEONScalar3SameFixed = 0x5E200400,
- NEONScalar3SameFMask = 0xDF200400,
- NEONScalar3SameMask = 0xFF20FC00,
- NEON_ADD_scalar = NEON_Q | NEONScalar | NEON_ADD,
- NEON_CMEQ_scalar = NEON_Q | NEONScalar | NEON_CMEQ,
- NEON_CMGE_scalar = NEON_Q | NEONScalar | NEON_CMGE,
- NEON_CMGT_scalar = NEON_Q | NEONScalar | NEON_CMGT,
- NEON_CMHI_scalar = NEON_Q | NEONScalar | NEON_CMHI,
- NEON_CMHS_scalar = NEON_Q | NEONScalar | NEON_CMHS,
- NEON_CMTST_scalar = NEON_Q | NEONScalar | NEON_CMTST,
- NEON_SUB_scalar = NEON_Q | NEONScalar | NEON_SUB,
- NEON_UQADD_scalar = NEON_Q | NEONScalar | NEON_UQADD,
- NEON_SQADD_scalar = NEON_Q | NEONScalar | NEON_SQADD,
- NEON_UQSUB_scalar = NEON_Q | NEONScalar | NEON_UQSUB,
- NEON_SQSUB_scalar = NEON_Q | NEONScalar | NEON_SQSUB,
- NEON_USHL_scalar = NEON_Q | NEONScalar | NEON_USHL,
- NEON_SSHL_scalar = NEON_Q | NEONScalar | NEON_SSHL,
- NEON_UQSHL_scalar = NEON_Q | NEONScalar | NEON_UQSHL,
- NEON_SQSHL_scalar = NEON_Q | NEONScalar | NEON_SQSHL,
- NEON_URSHL_scalar = NEON_Q | NEONScalar | NEON_URSHL,
- NEON_SRSHL_scalar = NEON_Q | NEONScalar | NEON_SRSHL,
- NEON_UQRSHL_scalar = NEON_Q | NEONScalar | NEON_UQRSHL,
- NEON_SQRSHL_scalar = NEON_Q | NEONScalar | NEON_SQRSHL,
- NEON_SQDMULH_scalar = NEON_Q | NEONScalar | NEON_SQDMULH,
- NEON_SQRDMULH_scalar = NEON_Q | NEONScalar | NEON_SQRDMULH,
-
- // NEON floating point scalar instructions with three same-type operands.
- NEONScalar3SameFPFixed = NEONScalar3SameFixed | 0x0000C000,
- NEONScalar3SameFPFMask = NEONScalar3SameFMask | 0x0000C000,
- NEONScalar3SameFPMask = NEONScalar3SameMask | 0x00800000,
- NEON_FACGE_scalar = NEON_Q | NEONScalar | NEON_FACGE,
- NEON_FACGT_scalar = NEON_Q | NEONScalar | NEON_FACGT,
- NEON_FCMEQ_scalar = NEON_Q | NEONScalar | NEON_FCMEQ,
- NEON_FCMGE_scalar = NEON_Q | NEONScalar | NEON_FCMGE,
- NEON_FCMGT_scalar = NEON_Q | NEONScalar | NEON_FCMGT,
- NEON_FMULX_scalar = NEON_Q | NEONScalar | NEON_FMULX,
- NEON_FRECPS_scalar = NEON_Q | NEONScalar | NEON_FRECPS,
- NEON_FRSQRTS_scalar = NEON_Q | NEONScalar | NEON_FRSQRTS,
- NEON_FABD_scalar = NEON_Q | NEONScalar | NEON_FABD
-};
-
-// NEON scalar instructions with three different-type operands.
-enum NEONScalar3DiffOp {
- NEONScalar3DiffFixed = 0x5E200000,
- NEONScalar3DiffFMask = 0xDF200C00,
- NEONScalar3DiffMask = NEON_Q | NEONScalar | NEON3DifferentMask,
- NEON_SQDMLAL_scalar = NEON_Q | NEONScalar | NEON_SQDMLAL,
- NEON_SQDMLSL_scalar = NEON_Q | NEONScalar | NEON_SQDMLSL,
- NEON_SQDMULL_scalar = NEON_Q | NEONScalar | NEON_SQDMULL
-};
-
-// NEON scalar instructions with indexed element operand.
-enum NEONScalarByIndexedElementOp {
- NEONScalarByIndexedElementFixed = 0x5F000000,
- NEONScalarByIndexedElementFMask = 0xDF000400,
- NEONScalarByIndexedElementMask = 0xFF00F400,
- NEON_SQDMLAL_byelement_scalar = NEON_Q | NEONScalar | NEON_SQDMLAL_byelement,
- NEON_SQDMLSL_byelement_scalar = NEON_Q | NEONScalar | NEON_SQDMLSL_byelement,
- NEON_SQDMULL_byelement_scalar = NEON_Q | NEONScalar | NEON_SQDMULL_byelement,
- NEON_SQDMULH_byelement_scalar = NEON_Q | NEONScalar | NEON_SQDMULH_byelement,
- NEON_SQRDMULH_byelement_scalar
- = NEON_Q | NEONScalar | NEON_SQRDMULH_byelement,
-
- // Floating point instructions.
- NEONScalarByIndexedElementFPFixed
- = NEONScalarByIndexedElementFixed | 0x00800000,
- NEONScalarByIndexedElementFPMask
- = NEONScalarByIndexedElementMask | 0x00800000,
- NEON_FMLA_byelement_scalar = NEON_Q | NEONScalar | NEON_FMLA_byelement,
- NEON_FMLS_byelement_scalar = NEON_Q | NEONScalar | NEON_FMLS_byelement,
- NEON_FMUL_byelement_scalar = NEON_Q | NEONScalar | NEON_FMUL_byelement,
- NEON_FMULX_byelement_scalar = NEON_Q | NEONScalar | NEON_FMULX_byelement
-};
-
-// NEON scalar register copy.
-enum NEONScalarCopyOp {
- NEONScalarCopyFixed = 0x5E000400,
- NEONScalarCopyFMask = 0xDFE08400,
- NEONScalarCopyMask = 0xFFE0FC00,
- NEON_DUP_ELEMENT_scalar = NEON_Q | NEONScalar | NEON_DUP_ELEMENT
-};
-
-// NEON scalar pairwise instructions.
-enum NEONScalarPairwiseOp {
- NEONScalarPairwiseFixed = 0x5E300800,
- NEONScalarPairwiseFMask = 0xDF3E0C00,
- NEONScalarPairwiseMask = 0xFFB1F800,
- NEON_ADDP_scalar = NEONScalarPairwiseFixed | 0x0081B000,
- NEON_FMAXNMP_scalar = NEONScalarPairwiseFixed | 0x2000C000,
- NEON_FMINNMP_scalar = NEONScalarPairwiseFixed | 0x2080C000,
- NEON_FADDP_scalar = NEONScalarPairwiseFixed | 0x2000D000,
- NEON_FMAXP_scalar = NEONScalarPairwiseFixed | 0x2000F000,
- NEON_FMINP_scalar = NEONScalarPairwiseFixed | 0x2080F000
-};
-
-// NEON scalar shift immediate.
-enum NEONScalarShiftImmediateOp {
- NEONScalarShiftImmediateFixed = 0x5F000400,
- NEONScalarShiftImmediateFMask = 0xDF800400,
- NEONScalarShiftImmediateMask = 0xFF80FC00,
- NEON_SHL_scalar = NEON_Q | NEONScalar | NEON_SHL,
- NEON_SLI_scalar = NEON_Q | NEONScalar | NEON_SLI,
- NEON_SRI_scalar = NEON_Q | NEONScalar | NEON_SRI,
- NEON_SSHR_scalar = NEON_Q | NEONScalar | NEON_SSHR,
- NEON_USHR_scalar = NEON_Q | NEONScalar | NEON_USHR,
- NEON_SRSHR_scalar = NEON_Q | NEONScalar | NEON_SRSHR,
- NEON_URSHR_scalar = NEON_Q | NEONScalar | NEON_URSHR,
- NEON_SSRA_scalar = NEON_Q | NEONScalar | NEON_SSRA,
- NEON_USRA_scalar = NEON_Q | NEONScalar | NEON_USRA,
- NEON_SRSRA_scalar = NEON_Q | NEONScalar | NEON_SRSRA,
- NEON_URSRA_scalar = NEON_Q | NEONScalar | NEON_URSRA,
- NEON_UQSHRN_scalar = NEON_Q | NEONScalar | NEON_UQSHRN,
- NEON_UQRSHRN_scalar = NEON_Q | NEONScalar | NEON_UQRSHRN,
- NEON_SQSHRN_scalar = NEON_Q | NEONScalar | NEON_SQSHRN,
- NEON_SQRSHRN_scalar = NEON_Q | NEONScalar | NEON_SQRSHRN,
- NEON_SQSHRUN_scalar = NEON_Q | NEONScalar | NEON_SQSHRUN,
- NEON_SQRSHRUN_scalar = NEON_Q | NEONScalar | NEON_SQRSHRUN,
- NEON_SQSHLU_scalar = NEON_Q | NEONScalar | NEON_SQSHLU,
- NEON_SQSHL_imm_scalar = NEON_Q | NEONScalar | NEON_SQSHL_imm,
- NEON_UQSHL_imm_scalar = NEON_Q | NEONScalar | NEON_UQSHL_imm,
- NEON_SCVTF_imm_scalar = NEON_Q | NEONScalar | NEON_SCVTF_imm,
- NEON_UCVTF_imm_scalar = NEON_Q | NEONScalar | NEON_UCVTF_imm,
- NEON_FCVTZS_imm_scalar = NEON_Q | NEONScalar | NEON_FCVTZS_imm,
- NEON_FCVTZU_imm_scalar = NEON_Q | NEONScalar | NEON_FCVTZU_imm
-};
-
-// Unimplemented and unallocated instructions. These are defined to make fixed
-// bit assertion easier.
-enum UnimplementedOp {
- UnimplementedFixed = 0x00000000,
- UnimplementedFMask = 0x00000000
-};
-
-enum UnallocatedOp {
- UnallocatedFixed = 0x00000000,
- UnallocatedFMask = 0x00000000
-};
-
-} // namespace vixl
-
-#endif // VIXL_A64_CONSTANTS_A64_H_
diff --git a/disas/libvixl/vixl/a64/cpu-a64.h b/disas/libvixl/vixl/a64/cpu-a64.h
deleted file mode 100644
index cdf09a6af1..0000000000
--- a/disas/libvixl/vixl/a64/cpu-a64.h
+++ /dev/null
@@ -1,83 +0,0 @@
-// Copyright 2014, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef VIXL_CPU_A64_H
-#define VIXL_CPU_A64_H
-
-#include "vixl/globals.h"
-#include "vixl/a64/instructions-a64.h"
-
-namespace vixl {
-
-class CPU {
- public:
- // Initialise CPU support.
- static void SetUp();
-
- // Ensures the data at a given address and with a given size is the same for
- // the I and D caches. I and D caches are not automatically coherent on ARM
- // so this operation is required before any dynamically generated code can
- // safely run.
- static void EnsureIAndDCacheCoherency(void *address, size_t length);
-
- // Handle tagged pointers.
- template <typename T>
- static T SetPointerTag(T pointer, uint64_t tag) {
- VIXL_ASSERT(is_uintn(kAddressTagWidth, tag));
-
- // Use C-style casts to get static_cast behaviour for integral types (T),
- // and reinterpret_cast behaviour for other types.
-
- uint64_t raw = (uint64_t)pointer;
- VIXL_STATIC_ASSERT(sizeof(pointer) == sizeof(raw));
-
- raw = (raw & ~kAddressTagMask) | (tag << kAddressTagOffset);
- return (T)raw;
- }
-
- template <typename T>
- static uint64_t GetPointerTag(T pointer) {
- // Use C-style casts to get static_cast behaviour for integral types (T),
- // and reinterpret_cast behaviour for other types.
-
- uint64_t raw = (uint64_t)pointer;
- VIXL_STATIC_ASSERT(sizeof(pointer) == sizeof(raw));
-
- return (raw & kAddressTagMask) >> kAddressTagOffset;
- }
-
- private:
- // Return the content of the cache type register.
- static uint32_t GetCacheType();
-
- // I and D cache line size in bytes.
- static unsigned icache_line_size_;
- static unsigned dcache_line_size_;
-};
-
-} // namespace vixl
-
-#endif // VIXL_CPU_A64_H
diff --git a/disas/libvixl/vixl/a64/decoder-a64.cc b/disas/libvixl/vixl/a64/decoder-a64.cc
deleted file mode 100644
index 5ba2d3ce04..0000000000
--- a/disas/libvixl/vixl/a64/decoder-a64.cc
+++ /dev/null
@@ -1,877 +0,0 @@
-// Copyright 2014, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#include "vixl/globals.h"
-#include "vixl/utils.h"
-#include "vixl/a64/decoder-a64.h"
-
-namespace vixl {
-
-void Decoder::DecodeInstruction(const Instruction *instr) {
- if (instr->Bits(28, 27) == 0) {
- VisitUnallocated(instr);
- } else {
- switch (instr->Bits(27, 24)) {
- // 0: PC relative addressing.
- case 0x0: DecodePCRelAddressing(instr); break;
-
- // 1: Add/sub immediate.
- case 0x1: DecodeAddSubImmediate(instr); break;
-
- // A: Logical shifted register.
- // Add/sub with carry.
- // Conditional compare register.
- // Conditional compare immediate.
- // Conditional select.
- // Data processing 1 source.
- // Data processing 2 source.
- // B: Add/sub shifted register.
- // Add/sub extended register.
- // Data processing 3 source.
- case 0xA:
- case 0xB: DecodeDataProcessing(instr); break;
-
- // 2: Logical immediate.
- // Move wide immediate.
- case 0x2: DecodeLogical(instr); break;
-
- // 3: Bitfield.
- // Extract.
- case 0x3: DecodeBitfieldExtract(instr); break;
-
- // 4: Unconditional branch immediate.
- // Exception generation.
- // Compare and branch immediate.
- // 5: Compare and branch immediate.
- // Conditional branch.
- // System.
- // 6,7: Unconditional branch.
- // Test and branch immediate.
- case 0x4:
- case 0x5:
- case 0x6:
- case 0x7: DecodeBranchSystemException(instr); break;
-
- // 8,9: Load/store register pair post-index.
- // Load register literal.
- // Load/store register unscaled immediate.
- // Load/store register immediate post-index.
- // Load/store register immediate pre-index.
- // Load/store register offset.
- // Load/store exclusive.
- // C,D: Load/store register pair offset.
- // Load/store register pair pre-index.
- // Load/store register unsigned immediate.
- // Advanced SIMD.
- case 0x8:
- case 0x9:
- case 0xC:
- case 0xD: DecodeLoadStore(instr); break;
-
- // E: FP fixed point conversion.
- // FP integer conversion.
- // FP data processing 1 source.
- // FP compare.
- // FP immediate.
- // FP data processing 2 source.
- // FP conditional compare.
- // FP conditional select.
- // Advanced SIMD.
- // F: FP data processing 3 source.
- // Advanced SIMD.
- case 0xE:
- case 0xF: DecodeFP(instr); break;
- }
- }
-}
-
-void Decoder::AppendVisitor(DecoderVisitor* new_visitor) {
- visitors_.push_back(new_visitor);
-}
-
-
-void Decoder::PrependVisitor(DecoderVisitor* new_visitor) {
- visitors_.push_front(new_visitor);
-}
-
-
-void Decoder::InsertVisitorBefore(DecoderVisitor* new_visitor,
- DecoderVisitor* registered_visitor) {
- std::list<DecoderVisitor*>::iterator it;
- for (it = visitors_.begin(); it != visitors_.end(); it++) {
- if (*it == registered_visitor) {
- visitors_.insert(it, new_visitor);
- return;
- }
- }
- // We reached the end of the list. The last element must be
- // registered_visitor.
- VIXL_ASSERT(*it == registered_visitor);
- visitors_.insert(it, new_visitor);
-}
-
-
-void Decoder::InsertVisitorAfter(DecoderVisitor* new_visitor,
- DecoderVisitor* registered_visitor) {
- std::list<DecoderVisitor*>::iterator it;
- for (it = visitors_.begin(); it != visitors_.end(); it++) {
- if (*it == registered_visitor) {
- it++;
- visitors_.insert(it, new_visitor);
- return;
- }
- }
- // We reached the end of the list. The last element must be
- // registered_visitor.
- VIXL_ASSERT(*it == registered_visitor);
- visitors_.push_back(new_visitor);
-}
-
-
-void Decoder::RemoveVisitor(DecoderVisitor* visitor) {
- visitors_.remove(visitor);
-}
-
-
-void Decoder::DecodePCRelAddressing(const Instruction* instr) {
- VIXL_ASSERT(instr->Bits(27, 24) == 0x0);
- // We know bit 28 is set, as <b28:b27> = 0 is filtered out at the top level
- // decode.
- VIXL_ASSERT(instr->Bit(28) == 0x1);
- VisitPCRelAddressing(instr);
-}
-
-
-void Decoder::DecodeBranchSystemException(const Instruction* instr) {
- VIXL_ASSERT((instr->Bits(27, 24) == 0x4) ||
- (instr->Bits(27, 24) == 0x5) ||
- (instr->Bits(27, 24) == 0x6) ||
- (instr->Bits(27, 24) == 0x7) );
-
- switch (instr->Bits(31, 29)) {
- case 0:
- case 4: {
- VisitUnconditionalBranch(instr);
- break;
- }
- case 1:
- case 5: {
- if (instr->Bit(25) == 0) {
- VisitCompareBranch(instr);
- } else {
- VisitTestBranch(instr);
- }
- break;
- }
- case 2: {
- if (instr->Bit(25) == 0) {
- if ((instr->Bit(24) == 0x1) ||
- (instr->Mask(0x01000010) == 0x00000010)) {
- VisitUnallocated(instr);
- } else {
- VisitConditionalBranch(instr);
- }
- } else {
- VisitUnallocated(instr);
- }
- break;
- }
- case 6: {
- if (instr->Bit(25) == 0) {
- if (instr->Bit(24) == 0) {
- if ((instr->Bits(4, 2) != 0) ||
- (instr->Mask(0x00E0001D) == 0x00200001) ||
- (instr->Mask(0x00E0001D) == 0x00400001) ||
- (instr->Mask(0x00E0001E) == 0x00200002) ||
- (instr->Mask(0x00E0001E) == 0x00400002) ||
- (instr->Mask(0x00E0001C) == 0x00600000) ||
- (instr->Mask(0x00E0001C) == 0x00800000) ||
- (instr->Mask(0x00E0001F) == 0x00A00000) ||
- (instr->Mask(0x00C0001C) == 0x00C00000)) {
- VisitUnallocated(instr);
- } else {
- VisitException(instr);
- }
- } else {
- if (instr->Bits(23, 22) == 0) {
- const Instr masked_003FF0E0 = instr->Mask(0x003FF0E0);
- if ((instr->Bits(21, 19) == 0x4) ||
- (masked_003FF0E0 == 0x00033000) ||
- (masked_003FF0E0 == 0x003FF020) ||
- (masked_003FF0E0 == 0x003FF060) ||
- (masked_003FF0E0 == 0x003FF0E0) ||
- (instr->Mask(0x00388000) == 0x00008000) ||
- (instr->Mask(0x0038E000) == 0x00000000) ||
- (instr->Mask(0x0039E000) == 0x00002000) ||
- (instr->Mask(0x003AE000) == 0x00002000) ||
- (instr->Mask(0x003CE000) == 0x00042000) ||
- (instr->Mask(0x003FFFC0) == 0x000320C0) ||
- (instr->Mask(0x003FF100) == 0x00032100) ||
- (instr->Mask(0x003FF200) == 0x00032200) ||
- (instr->Mask(0x003FF400) == 0x00032400) ||
- (instr->Mask(0x003FF800) == 0x00032800) ||
- (instr->Mask(0x0038F000) == 0x00005000) ||
- (instr->Mask(0x0038E000) == 0x00006000)) {
- VisitUnallocated(instr);
- } else {
- VisitSystem(instr);
- }
- } else {
- VisitUnallocated(instr);
- }
- }
- } else {
- if ((instr->Bit(24) == 0x1) ||
- (instr->Bits(20, 16) != 0x1F) ||
- (instr->Bits(15, 10) != 0) ||
- (instr->Bits(4, 0) != 0) ||
- (instr->Bits(24, 21) == 0x3) ||
- (instr->Bits(24, 22) == 0x3)) {
- VisitUnallocated(instr);
- } else {
- VisitUnconditionalBranchToRegister(instr);
- }
- }
- break;
- }
- case 3:
- case 7: {
- VisitUnallocated(instr);
- break;
- }
- }
-}
-
-
-void Decoder::DecodeLoadStore(const Instruction* instr) {
- VIXL_ASSERT((instr->Bits(27, 24) == 0x8) ||
- (instr->Bits(27, 24) == 0x9) ||
- (instr->Bits(27, 24) == 0xC) ||
- (instr->Bits(27, 24) == 0xD) );
- // TODO(all): rearrange the tree to integrate this branch.
- if ((instr->Bit(28) == 0) && (instr->Bit(29) == 0) && (instr->Bit(26) == 1)) {
- DecodeNEONLoadStore(instr);
- return;
- }
-
- if (instr->Bit(24) == 0) {
- if (instr->Bit(28) == 0) {
- if (instr->Bit(29) == 0) {
- if (instr->Bit(26) == 0) {
- VisitLoadStoreExclusive(instr);
- } else {
- VIXL_UNREACHABLE();
- }
- } else {
- if ((instr->Bits(31, 30) == 0x3) ||
- (instr->Mask(0xC4400000) == 0x40000000)) {
- VisitUnallocated(instr);
- } else {
- if (instr->Bit(23) == 0) {
- if (instr->Mask(0xC4400000) == 0xC0400000) {
- VisitUnallocated(instr);
- } else {
- VisitLoadStorePairNonTemporal(instr);
- }
- } else {
- VisitLoadStorePairPostIndex(instr);
- }
- }
- }
- } else {
- if (instr->Bit(29) == 0) {
- if (instr->Mask(0xC4000000) == 0xC4000000) {
- VisitUnallocated(instr);
- } else {
- VisitLoadLiteral(instr);
- }
- } else {
- if ((instr->Mask(0x84C00000) == 0x80C00000) ||
- (instr->Mask(0x44800000) == 0x44800000) ||
- (instr->Mask(0x84800000) == 0x84800000)) {
- VisitUnallocated(instr);
- } else {
- if (instr->Bit(21) == 0) {
- switch (instr->Bits(11, 10)) {
- case 0: {
- VisitLoadStoreUnscaledOffset(instr);
- break;
- }
- case 1: {
- if (instr->Mask(0xC4C00000) == 0xC0800000) {
- VisitUnallocated(instr);
- } else {
- VisitLoadStorePostIndex(instr);
- }
- break;
- }
- case 2: {
- // TODO: VisitLoadStoreRegisterOffsetUnpriv.
- VisitUnimplemented(instr);
- break;
- }
- case 3: {
- if (instr->Mask(0xC4C00000) == 0xC0800000) {
- VisitUnallocated(instr);
- } else {
- VisitLoadStorePreIndex(instr);
- }
- break;
- }
- }
- } else {
- if (instr->Bits(11, 10) == 0x2) {
- if (instr->Bit(14) == 0) {
- VisitUnallocated(instr);
- } else {
- VisitLoadStoreRegisterOffset(instr);
- }
- } else {
- VisitUnallocated(instr);
- }
- }
- }
- }
- }
- } else {
- if (instr->Bit(28) == 0) {
- if (instr->Bit(29) == 0) {
- VisitUnallocated(instr);
- } else {
- if ((instr->Bits(31, 30) == 0x3) ||
- (instr->Mask(0xC4400000) == 0x40000000)) {
- VisitUnallocated(instr);
- } else {
- if (instr->Bit(23) == 0) {
- VisitLoadStorePairOffset(instr);
- } else {
- VisitLoadStorePairPreIndex(instr);
- }
- }
- }
- } else {
- if (instr->Bit(29) == 0) {
- VisitUnallocated(instr);
- } else {
- if ((instr->Mask(0x84C00000) == 0x80C00000) ||
- (instr->Mask(0x44800000) == 0x44800000) ||
- (instr->Mask(0x84800000) == 0x84800000)) {
- VisitUnallocated(instr);
- } else {
- VisitLoadStoreUnsignedOffset(instr);
- }
- }
- }
- }
-}
-
-
-void Decoder::DecodeLogical(const Instruction* instr) {
- VIXL_ASSERT(instr->Bits(27, 24) == 0x2);
-
- if (instr->Mask(0x80400000) == 0x00400000) {
- VisitUnallocated(instr);
- } else {
- if (instr->Bit(23) == 0) {
- VisitLogicalImmediate(instr);
- } else {
- if (instr->Bits(30, 29) == 0x1) {
- VisitUnallocated(instr);
- } else {
- VisitMoveWideImmediate(instr);
- }
- }
- }
-}
-
-
-void Decoder::DecodeBitfieldExtract(const Instruction* instr) {
- VIXL_ASSERT(instr->Bits(27, 24) == 0x3);
-
- if ((instr->Mask(0x80400000) == 0x80000000) ||
- (instr->Mask(0x80400000) == 0x00400000) ||
- (instr->Mask(0x80008000) == 0x00008000)) {
- VisitUnallocated(instr);
- } else if (instr->Bit(23) == 0) {
- if ((instr->Mask(0x80200000) == 0x00200000) ||
- (instr->Mask(0x60000000) == 0x60000000)) {
- VisitUnallocated(instr);
- } else {
- VisitBitfield(instr);
- }
- } else {
- if ((instr->Mask(0x60200000) == 0x00200000) ||
- (instr->Mask(0x60000000) != 0x00000000)) {
- VisitUnallocated(instr);
- } else {
- VisitExtract(instr);
- }
- }
-}
-
-
-void Decoder::DecodeAddSubImmediate(const Instruction* instr) {
- VIXL_ASSERT(instr->Bits(27, 24) == 0x1);
- if (instr->Bit(23) == 1) {
- VisitUnallocated(instr);
- } else {
- VisitAddSubImmediate(instr);
- }
-}
-
-
-void Decoder::DecodeDataProcessing(const Instruction* instr) {
- VIXL_ASSERT((instr->Bits(27, 24) == 0xA) ||
- (instr->Bits(27, 24) == 0xB));
-
- if (instr->Bit(24) == 0) {
- if (instr->Bit(28) == 0) {
- if (instr->Mask(0x80008000) == 0x00008000) {
- VisitUnallocated(instr);
- } else {
- VisitLogicalShifted(instr);
- }
- } else {
- switch (instr->Bits(23, 21)) {
- case 0: {
- if (instr->Mask(0x0000FC00) != 0) {
- VisitUnallocated(instr);
- } else {
- VisitAddSubWithCarry(instr);
- }
- break;
- }
- case 2: {
- if ((instr->Bit(29) == 0) ||
- (instr->Mask(0x00000410) != 0)) {
- VisitUnallocated(instr);
- } else {
- if (instr->Bit(11) == 0) {
- VisitConditionalCompareRegister(instr);
- } else {
- VisitConditionalCompareImmediate(instr);
- }
- }
- break;
- }
- case 4: {
- if (instr->Mask(0x20000800) != 0x00000000) {
- VisitUnallocated(instr);
- } else {
- VisitConditionalSelect(instr);
- }
- break;
- }
- case 6: {
- if (instr->Bit(29) == 0x1) {
- VisitUnallocated(instr);
- VIXL_FALLTHROUGH();
- } else {
- if (instr->Bit(30) == 0) {
- if ((instr->Bit(15) == 0x1) ||
- (instr->Bits(15, 11) == 0) ||
- (instr->Bits(15, 12) == 0x1) ||
- (instr->Bits(15, 12) == 0x3) ||
- (instr->Bits(15, 13) == 0x3) ||
- (instr->Mask(0x8000EC00) == 0x00004C00) ||
- (instr->Mask(0x8000E800) == 0x80004000) ||
- (instr->Mask(0x8000E400) == 0x80004000)) {
- VisitUnallocated(instr);
- } else {
- VisitDataProcessing2Source(instr);
- }
- } else {
- if ((instr->Bit(13) == 1) ||
- (instr->Bits(20, 16) != 0) ||
- (instr->Bits(15, 14) != 0) ||
- (instr->Mask(0xA01FFC00) == 0x00000C00) ||
- (instr->Mask(0x201FF800) == 0x00001800)) {
- VisitUnallocated(instr);
- } else {
- VisitDataProcessing1Source(instr);
- }
- }
- break;
- }
- }
- case 1:
- case 3:
- case 5:
- case 7: VisitUnallocated(instr); break;
- }
- }
- } else {
- if (instr->Bit(28) == 0) {
- if (instr->Bit(21) == 0) {
- if ((instr->Bits(23, 22) == 0x3) ||
- (instr->Mask(0x80008000) == 0x00008000)) {
- VisitUnallocated(instr);
- } else {
- VisitAddSubShifted(instr);
- }
- } else {
- if ((instr->Mask(0x00C00000) != 0x00000000) ||
- (instr->Mask(0x00001400) == 0x00001400) ||
- (instr->Mask(0x00001800) == 0x00001800)) {
- VisitUnallocated(instr);
- } else {
- VisitAddSubExtended(instr);
- }
- }
- } else {
- if ((instr->Bit(30) == 0x1) ||
- (instr->Bits(30, 29) == 0x1) ||
- (instr->Mask(0xE0600000) == 0x00200000) ||
- (instr->Mask(0xE0608000) == 0x00400000) ||
- (instr->Mask(0x60608000) == 0x00408000) ||
- (instr->Mask(0x60E00000) == 0x00E00000) ||
- (instr->Mask(0x60E00000) == 0x00800000) ||
- (instr->Mask(0x60E00000) == 0x00600000)) {
- VisitUnallocated(instr);
- } else {
- VisitDataProcessing3Source(instr);
- }
- }
- }
-}
-
-
-void Decoder::DecodeFP(const Instruction* instr) {
- VIXL_ASSERT((instr->Bits(27, 24) == 0xE) ||
- (instr->Bits(27, 24) == 0xF));
- if (instr->Bit(28) == 0) {
- DecodeNEONVectorDataProcessing(instr);
- } else {
- if (instr->Bits(31, 30) == 0x3) {
- VisitUnallocated(instr);
- } else if (instr->Bits(31, 30) == 0x1) {
- DecodeNEONScalarDataProcessing(instr);
- } else {
- if (instr->Bit(29) == 0) {
- if (instr->Bit(24) == 0) {
- if (instr->Bit(21) == 0) {
- if ((instr->Bit(23) == 1) ||
- (instr->Bit(18) == 1) ||
- (instr->Mask(0x80008000) == 0x00000000) ||
- (instr->Mask(0x000E0000) == 0x00000000) ||
- (instr->Mask(0x000E0000) == 0x000A0000) ||
- (instr->Mask(0x00160000) == 0x00000000) ||
- (instr->Mask(0x00160000) == 0x00120000)) {
- VisitUnallocated(instr);
- } else {
- VisitFPFixedPointConvert(instr);
- }
- } else {
- if (instr->Bits(15, 10) == 32) {
- VisitUnallocated(instr);
- } else if (instr->Bits(15, 10) == 0) {
- if ((instr->Bits(23, 22) == 0x3) ||
- (instr->Mask(0x000E0000) == 0x000A0000) ||
- (instr->Mask(0x000E0000) == 0x000C0000) ||
- (instr->Mask(0x00160000) == 0x00120000) ||
- (instr->Mask(0x00160000) == 0x00140000) ||
- (instr->Mask(0x20C40000) == 0x00800000) ||
- (instr->Mask(0x20C60000) == 0x00840000) ||
- (instr->Mask(0xA0C60000) == 0x80060000) ||
- (instr->Mask(0xA0C60000) == 0x00860000) ||
- (instr->Mask(0xA0C60000) == 0x00460000) ||
- (instr->Mask(0xA0CE0000) == 0x80860000) ||
- (instr->Mask(0xA0CE0000) == 0x804E0000) ||
- (instr->Mask(0xA0CE0000) == 0x000E0000) ||
- (instr->Mask(0xA0D60000) == 0x00160000) ||
- (instr->Mask(0xA0D60000) == 0x80560000) ||
- (instr->Mask(0xA0D60000) == 0x80960000)) {
- VisitUnallocated(instr);
- } else {
- VisitFPIntegerConvert(instr);
- }
- } else if (instr->Bits(14, 10) == 16) {
- const Instr masked_A0DF8000 = instr->Mask(0xA0DF8000);
- if ((instr->Mask(0x80180000) != 0) ||
- (masked_A0DF8000 == 0x00020000) ||
- (masked_A0DF8000 == 0x00030000) ||
- (masked_A0DF8000 == 0x00068000) ||
- (masked_A0DF8000 == 0x00428000) ||
- (masked_A0DF8000 == 0x00430000) ||
- (masked_A0DF8000 == 0x00468000) ||
- (instr->Mask(0xA0D80000) == 0x00800000) ||
- (instr->Mask(0xA0DE0000) == 0x00C00000) ||
- (instr->Mask(0xA0DF0000) == 0x00C30000) ||
- (instr->Mask(0xA0DC0000) == 0x00C40000)) {
- VisitUnallocated(instr);
- } else {
- VisitFPDataProcessing1Source(instr);
- }
- } else if (instr->Bits(13, 10) == 8) {
- if ((instr->Bits(15, 14) != 0) ||
- (instr->Bits(2, 0) != 0) ||
- (instr->Mask(0x80800000) != 0x00000000)) {
- VisitUnallocated(instr);
- } else {
- VisitFPCompare(instr);
- }
- } else if (instr->Bits(12, 10) == 4) {
- if ((instr->Bits(9, 5) != 0) ||
- (instr->Mask(0x80800000) != 0x00000000)) {
- VisitUnallocated(instr);
- } else {
- VisitFPImmediate(instr);
- }
- } else {
- if (instr->Mask(0x80800000) != 0x00000000) {
- VisitUnallocated(instr);
- } else {
- switch (instr->Bits(11, 10)) {
- case 1: {
- VisitFPConditionalCompare(instr);
- break;
- }
- case 2: {
- if ((instr->Bits(15, 14) == 0x3) ||
- (instr->Mask(0x00009000) == 0x00009000) ||
- (instr->Mask(0x0000A000) == 0x0000A000)) {
- VisitUnallocated(instr);
- } else {
- VisitFPDataProcessing2Source(instr);
- }
- break;
- }
- case 3: {
- VisitFPConditionalSelect(instr);
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- }
- }
- }
- } else {
- // Bit 30 == 1 has been handled earlier.
- VIXL_ASSERT(instr->Bit(30) == 0);
- if (instr->Mask(0xA0800000) != 0) {
- VisitUnallocated(instr);
- } else {
- VisitFPDataProcessing3Source(instr);
- }
- }
- } else {
- VisitUnallocated(instr);
- }
- }
- }
-}
-
-
-void Decoder::DecodeNEONLoadStore(const Instruction* instr) {
- VIXL_ASSERT(instr->Bits(29, 25) == 0x6);
- if (instr->Bit(31) == 0) {
- if ((instr->Bit(24) == 0) && (instr->Bit(21) == 1)) {
- VisitUnallocated(instr);
- return;
- }
-
- if (instr->Bit(23) == 0) {
- if (instr->Bits(20, 16) == 0) {
- if (instr->Bit(24) == 0) {
- VisitNEONLoadStoreMultiStruct(instr);
- } else {
- VisitNEONLoadStoreSingleStruct(instr);
- }
- } else {
- VisitUnallocated(instr);
- }
- } else {
- if (instr->Bit(24) == 0) {
- VisitNEONLoadStoreMultiStructPostIndex(instr);
- } else {
- VisitNEONLoadStoreSingleStructPostIndex(instr);
- }
- }
- } else {
- VisitUnallocated(instr);
- }
-}
-
-
-void Decoder::DecodeNEONVectorDataProcessing(const Instruction* instr) {
- VIXL_ASSERT(instr->Bits(28, 25) == 0x7);
- if (instr->Bit(31) == 0) {
- if (instr->Bit(24) == 0) {
- if (instr->Bit(21) == 0) {
- if (instr->Bit(15) == 0) {
- if (instr->Bit(10) == 0) {
- if (instr->Bit(29) == 0) {
- if (instr->Bit(11) == 0) {
- VisitNEONTable(instr);
- } else {
- VisitNEONPerm(instr);
- }
- } else {
- VisitNEONExtract(instr);
- }
- } else {
- if (instr->Bits(23, 22) == 0) {
- VisitNEONCopy(instr);
- } else {
- VisitUnallocated(instr);
- }
- }
- } else {
- VisitUnallocated(instr);
- }
- } else {
- if (instr->Bit(10) == 0) {
- if (instr->Bit(11) == 0) {
- VisitNEON3Different(instr);
- } else {
- if (instr->Bits(18, 17) == 0) {
- if (instr->Bit(20) == 0) {
- if (instr->Bit(19) == 0) {
- VisitNEON2RegMisc(instr);
- } else {
- if (instr->Bits(30, 29) == 0x2) {
- VisitCryptoAES(instr);
- } else {
- VisitUnallocated(instr);
- }
- }
- } else {
- if (instr->Bit(19) == 0) {
- VisitNEONAcrossLanes(instr);
- } else {
- VisitUnallocated(instr);
- }
- }
- } else {
- VisitUnallocated(instr);
- }
- }
- } else {
- VisitNEON3Same(instr);
- }
- }
- } else {
- if (instr->Bit(10) == 0) {
- VisitNEONByIndexedElement(instr);
- } else {
- if (instr->Bit(23) == 0) {
- if (instr->Bits(22, 19) == 0) {
- VisitNEONModifiedImmediate(instr);
- } else {
- VisitNEONShiftImmediate(instr);
- }
- } else {
- VisitUnallocated(instr);
- }
- }
- }
- } else {
- VisitUnallocated(instr);
- }
-}
-
-
-void Decoder::DecodeNEONScalarDataProcessing(const Instruction* instr) {
- VIXL_ASSERT(instr->Bits(28, 25) == 0xF);
- if (instr->Bit(24) == 0) {
- if (instr->Bit(21) == 0) {
- if (instr->Bit(15) == 0) {
- if (instr->Bit(10) == 0) {
- if (instr->Bit(29) == 0) {
- if (instr->Bit(11) == 0) {
- VisitCrypto3RegSHA(instr);
- } else {
- VisitUnallocated(instr);
- }
- } else {
- VisitUnallocated(instr);
- }
- } else {
- if (instr->Bits(23, 22) == 0) {
- VisitNEONScalarCopy(instr);
- } else {
- VisitUnallocated(instr);
- }
- }
- } else {
- VisitUnallocated(instr);
- }
- } else {
- if (instr->Bit(10) == 0) {
- if (instr->Bit(11) == 0) {
- VisitNEONScalar3Diff(instr);
- } else {
- if (instr->Bits(18, 17) == 0) {
- if (instr->Bit(20) == 0) {
- if (instr->Bit(19) == 0) {
- VisitNEONScalar2RegMisc(instr);
- } else {
- if (instr->Bit(29) == 0) {
- VisitCrypto2RegSHA(instr);
- } else {
- VisitUnallocated(instr);
- }
- }
- } else {
- if (instr->Bit(19) == 0) {
- VisitNEONScalarPairwise(instr);
- } else {
- VisitUnallocated(instr);
- }
- }
- } else {
- VisitUnallocated(instr);
- }
- }
- } else {
- VisitNEONScalar3Same(instr);
- }
- }
- } else {
- if (instr->Bit(10) == 0) {
- VisitNEONScalarByIndexedElement(instr);
- } else {
- if (instr->Bit(23) == 0) {
- VisitNEONScalarShiftImmediate(instr);
- } else {
- VisitUnallocated(instr);
- }
- }
- }
-}
-
-
-#define DEFINE_VISITOR_CALLERS(A) \
- void Decoder::Visit##A(const Instruction *instr) { \
- VIXL_ASSERT(instr->Mask(A##FMask) == A##Fixed); \
- std::list<DecoderVisitor*>::iterator it; \
- for (it = visitors_.begin(); it != visitors_.end(); it++) { \
- (*it)->Visit##A(instr); \
- } \
- }
-VISITOR_LIST(DEFINE_VISITOR_CALLERS)
-#undef DEFINE_VISITOR_CALLERS
-} // namespace vixl
diff --git a/disas/libvixl/vixl/a64/decoder-a64.h b/disas/libvixl/vixl/a64/decoder-a64.h
deleted file mode 100644
index b3f04f68fc..0000000000
--- a/disas/libvixl/vixl/a64/decoder-a64.h
+++ /dev/null
@@ -1,275 +0,0 @@
-// Copyright 2014, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef VIXL_A64_DECODER_A64_H_
-#define VIXL_A64_DECODER_A64_H_
-
-#include <list>
-
-#include "vixl/globals.h"
-#include "vixl/a64/instructions-a64.h"
-
-
-// List macro containing all visitors needed by the decoder class.
-
-#define VISITOR_LIST_THAT_RETURN(V) \
- V(PCRelAddressing) \
- V(AddSubImmediate) \
- V(LogicalImmediate) \
- V(MoveWideImmediate) \
- V(Bitfield) \
- V(Extract) \
- V(UnconditionalBranch) \
- V(UnconditionalBranchToRegister) \
- V(CompareBranch) \
- V(TestBranch) \
- V(ConditionalBranch) \
- V(System) \
- V(Exception) \
- V(LoadStorePairPostIndex) \
- V(LoadStorePairOffset) \
- V(LoadStorePairPreIndex) \
- V(LoadStorePairNonTemporal) \
- V(LoadLiteral) \
- V(LoadStoreUnscaledOffset) \
- V(LoadStorePostIndex) \
- V(LoadStorePreIndex) \
- V(LoadStoreRegisterOffset) \
- V(LoadStoreUnsignedOffset) \
- V(LoadStoreExclusive) \
- V(LogicalShifted) \
- V(AddSubShifted) \
- V(AddSubExtended) \
- V(AddSubWithCarry) \
- V(ConditionalCompareRegister) \
- V(ConditionalCompareImmediate) \
- V(ConditionalSelect) \
- V(DataProcessing1Source) \
- V(DataProcessing2Source) \
- V(DataProcessing3Source) \
- V(FPCompare) \
- V(FPConditionalCompare) \
- V(FPConditionalSelect) \
- V(FPImmediate) \
- V(FPDataProcessing1Source) \
- V(FPDataProcessing2Source) \
- V(FPDataProcessing3Source) \
- V(FPIntegerConvert) \
- V(FPFixedPointConvert) \
- V(Crypto2RegSHA) \
- V(Crypto3RegSHA) \
- V(CryptoAES) \
- V(NEON2RegMisc) \
- V(NEON3Different) \
- V(NEON3Same) \
- V(NEONAcrossLanes) \
- V(NEONByIndexedElement) \
- V(NEONCopy) \
- V(NEONExtract) \
- V(NEONLoadStoreMultiStruct) \
- V(NEONLoadStoreMultiStructPostIndex) \
- V(NEONLoadStoreSingleStruct) \
- V(NEONLoadStoreSingleStructPostIndex) \
- V(NEONModifiedImmediate) \
- V(NEONScalar2RegMisc) \
- V(NEONScalar3Diff) \
- V(NEONScalar3Same) \
- V(NEONScalarByIndexedElement) \
- V(NEONScalarCopy) \
- V(NEONScalarPairwise) \
- V(NEONScalarShiftImmediate) \
- V(NEONShiftImmediate) \
- V(NEONTable) \
- V(NEONPerm) \
-
-#define VISITOR_LIST_THAT_DONT_RETURN(V) \
- V(Unallocated) \
- V(Unimplemented) \
-
-#define VISITOR_LIST(V) \
- VISITOR_LIST_THAT_RETURN(V) \
- VISITOR_LIST_THAT_DONT_RETURN(V) \
-
-namespace vixl {
-
-// The Visitor interface. Disassembler and simulator (and other tools)
-// must provide implementations for all of these functions.
-class DecoderVisitor {
- public:
- enum VisitorConstness {
- kConstVisitor,
- kNonConstVisitor
- };
- explicit DecoderVisitor(VisitorConstness constness = kConstVisitor)
- : constness_(constness) {}
-
- virtual ~DecoderVisitor() {}
-
- #define DECLARE(A) virtual void Visit##A(const Instruction* instr) = 0;
- VISITOR_LIST(DECLARE)
- #undef DECLARE
-
- bool IsConstVisitor() const { return constness_ == kConstVisitor; }
- Instruction* MutableInstruction(const Instruction* instr) {
- VIXL_ASSERT(!IsConstVisitor());
- return const_cast<Instruction*>(instr);
- }
-
- private:
- const VisitorConstness constness_;
-};
-
-
-class Decoder {
- public:
- Decoder() {}
-
- // Top-level wrappers around the actual decoding function.
- void Decode(const Instruction* instr) {
- std::list<DecoderVisitor*>::iterator it;
- for (it = visitors_.begin(); it != visitors_.end(); it++) {
- VIXL_ASSERT((*it)->IsConstVisitor());
- }
- DecodeInstruction(instr);
- }
- void Decode(Instruction* instr) {
- DecodeInstruction(const_cast<const Instruction*>(instr));
- }
-
- // Register a new visitor class with the decoder.
- // Decode() will call the corresponding visitor method from all registered
- // visitor classes when decoding reaches the leaf node of the instruction
- // decode tree.
- // Visitors are called in order.
- // A visitor can be registered multiple times.
- //
- // d.AppendVisitor(V1);
- // d.AppendVisitor(V2);
- // d.PrependVisitor(V2);
- // d.AppendVisitor(V3);
- //
- // d.Decode(i);
- //
- // will call in order visitor methods in V2, V1, V2, V3.
- void AppendVisitor(DecoderVisitor* visitor);
- void PrependVisitor(DecoderVisitor* visitor);
- // These helpers register `new_visitor` before or after the first instance of
- // `registered_visiter` in the list.
- // So if
- // V1, V2, V1, V2
- // are registered in this order in the decoder, calls to
- // d.InsertVisitorAfter(V3, V1);
- // d.InsertVisitorBefore(V4, V2);
- // will yield the order
- // V1, V3, V4, V2, V1, V2
- //
- // For more complex modifications of the order of registered visitors, one can
- // directly access and modify the list of visitors via the `visitors()'
- // accessor.
- void InsertVisitorBefore(DecoderVisitor* new_visitor,
- DecoderVisitor* registered_visitor);
- void InsertVisitorAfter(DecoderVisitor* new_visitor,
- DecoderVisitor* registered_visitor);
-
- // Remove all instances of a previously registered visitor class from the list
- // of visitors stored by the decoder.
- void RemoveVisitor(DecoderVisitor* visitor);
-
- #define DECLARE(A) void Visit##A(const Instruction* instr);
- VISITOR_LIST(DECLARE)
- #undef DECLARE
-
-
- std::list<DecoderVisitor*>* visitors() { return &visitors_; }
-
- private:
- // Decodes an instruction and calls the visitor functions registered with the
- // Decoder class.
- void DecodeInstruction(const Instruction* instr);
-
- // Decode the PC relative addressing instruction, and call the corresponding
- // visitors.
- // On entry, instruction bits 27:24 = 0x0.
- void DecodePCRelAddressing(const Instruction* instr);
-
- // Decode the add/subtract immediate instruction, and call the correspoding
- // visitors.
- // On entry, instruction bits 27:24 = 0x1.
- void DecodeAddSubImmediate(const Instruction* instr);
-
- // Decode the branch, system command, and exception generation parts of
- // the instruction tree, and call the corresponding visitors.
- // On entry, instruction bits 27:24 = {0x4, 0x5, 0x6, 0x7}.
- void DecodeBranchSystemException(const Instruction* instr);
-
- // Decode the load and store parts of the instruction tree, and call
- // the corresponding visitors.
- // On entry, instruction bits 27:24 = {0x8, 0x9, 0xC, 0xD}.
- void DecodeLoadStore(const Instruction* instr);
-
- // Decode the logical immediate and move wide immediate parts of the
- // instruction tree, and call the corresponding visitors.
- // On entry, instruction bits 27:24 = 0x2.
- void DecodeLogical(const Instruction* instr);
-
- // Decode the bitfield and extraction parts of the instruction tree,
- // and call the corresponding visitors.
- // On entry, instruction bits 27:24 = 0x3.
- void DecodeBitfieldExtract(const Instruction* instr);
-
- // Decode the data processing parts of the instruction tree, and call the
- // corresponding visitors.
- // On entry, instruction bits 27:24 = {0x1, 0xA, 0xB}.
- void DecodeDataProcessing(const Instruction* instr);
-
- // Decode the floating point parts of the instruction tree, and call the
- // corresponding visitors.
- // On entry, instruction bits 27:24 = {0xE, 0xF}.
- void DecodeFP(const Instruction* instr);
-
- // Decode the Advanced SIMD (NEON) load/store part of the instruction tree,
- // and call the corresponding visitors.
- // On entry, instruction bits 29:25 = 0x6.
- void DecodeNEONLoadStore(const Instruction* instr);
-
- // Decode the Advanced SIMD (NEON) vector data processing part of the
- // instruction tree, and call the corresponding visitors.
- // On entry, instruction bits 28:25 = 0x7.
- void DecodeNEONVectorDataProcessing(const Instruction* instr);
-
- // Decode the Advanced SIMD (NEON) scalar data processing part of the
- // instruction tree, and call the corresponding visitors.
- // On entry, instruction bits 28:25 = 0xF.
- void DecodeNEONScalarDataProcessing(const Instruction* instr);
-
- private:
- // Visitors are registered in a list.
- std::list<DecoderVisitor*> visitors_;
-};
-
-} // namespace vixl
-
-#endif // VIXL_A64_DECODER_A64_H_
diff --git a/disas/libvixl/vixl/a64/disasm-a64.cc b/disas/libvixl/vixl/a64/disasm-a64.cc
deleted file mode 100644
index f34d1d68da..0000000000
--- a/disas/libvixl/vixl/a64/disasm-a64.cc
+++ /dev/null
@@ -1,3495 +0,0 @@
-// Copyright 2015, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#include <cstdlib>
-#include "vixl/a64/disasm-a64.h"
-
-namespace vixl {
-
-Disassembler::Disassembler() {
- buffer_size_ = 256;
- buffer_ = reinterpret_cast<char*>(malloc(buffer_size_));
- buffer_pos_ = 0;
- own_buffer_ = true;
- code_address_offset_ = 0;
-}
-
-
-Disassembler::Disassembler(char* text_buffer, int buffer_size) {
- buffer_size_ = buffer_size;
- buffer_ = text_buffer;
- buffer_pos_ = 0;
- own_buffer_ = false;
- code_address_offset_ = 0;
-}
-
-
-Disassembler::~Disassembler() {
- if (own_buffer_) {
- free(buffer_);
- }
-}
-
-
-char* Disassembler::GetOutput() {
- return buffer_;
-}
-
-
-void Disassembler::VisitAddSubImmediate(const Instruction* instr) {
- bool rd_is_zr = RdIsZROrSP(instr);
- bool stack_op = (rd_is_zr || RnIsZROrSP(instr)) &&
- (instr->ImmAddSub() == 0) ? true : false;
- const char *mnemonic = "";
- const char *form = "'Rds, 'Rns, 'IAddSub";
- const char *form_cmp = "'Rns, 'IAddSub";
- const char *form_mov = "'Rds, 'Rns";
-
- switch (instr->Mask(AddSubImmediateMask)) {
- case ADD_w_imm:
- case ADD_x_imm: {
- mnemonic = "add";
- if (stack_op) {
- mnemonic = "mov";
- form = form_mov;
- }
- break;
- }
- case ADDS_w_imm:
- case ADDS_x_imm: {
- mnemonic = "adds";
- if (rd_is_zr) {
- mnemonic = "cmn";
- form = form_cmp;
- }
- break;
- }
- case SUB_w_imm:
- case SUB_x_imm: mnemonic = "sub"; break;
- case SUBS_w_imm:
- case SUBS_x_imm: {
- mnemonic = "subs";
- if (rd_is_zr) {
- mnemonic = "cmp";
- form = form_cmp;
- }
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitAddSubShifted(const Instruction* instr) {
- bool rd_is_zr = RdIsZROrSP(instr);
- bool rn_is_zr = RnIsZROrSP(instr);
- const char *mnemonic = "";
- const char *form = "'Rd, 'Rn, 'Rm'NDP";
- const char *form_cmp = "'Rn, 'Rm'NDP";
- const char *form_neg = "'Rd, 'Rm'NDP";
-
- switch (instr->Mask(AddSubShiftedMask)) {
- case ADD_w_shift:
- case ADD_x_shift: mnemonic = "add"; break;
- case ADDS_w_shift:
- case ADDS_x_shift: {
- mnemonic = "adds";
- if (rd_is_zr) {
- mnemonic = "cmn";
- form = form_cmp;
- }
- break;
- }
- case SUB_w_shift:
- case SUB_x_shift: {
- mnemonic = "sub";
- if (rn_is_zr) {
- mnemonic = "neg";
- form = form_neg;
- }
- break;
- }
- case SUBS_w_shift:
- case SUBS_x_shift: {
- mnemonic = "subs";
- if (rd_is_zr) {
- mnemonic = "cmp";
- form = form_cmp;
- } else if (rn_is_zr) {
- mnemonic = "negs";
- form = form_neg;
- }
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitAddSubExtended(const Instruction* instr) {
- bool rd_is_zr = RdIsZROrSP(instr);
- const char *mnemonic = "";
- Extend mode = static_cast<Extend>(instr->ExtendMode());
- const char *form = ((mode == UXTX) || (mode == SXTX)) ?
- "'Rds, 'Rns, 'Xm'Ext" : "'Rds, 'Rns, 'Wm'Ext";
- const char *form_cmp = ((mode == UXTX) || (mode == SXTX)) ?
- "'Rns, 'Xm'Ext" : "'Rns, 'Wm'Ext";
-
- switch (instr->Mask(AddSubExtendedMask)) {
- case ADD_w_ext:
- case ADD_x_ext: mnemonic = "add"; break;
- case ADDS_w_ext:
- case ADDS_x_ext: {
- mnemonic = "adds";
- if (rd_is_zr) {
- mnemonic = "cmn";
- form = form_cmp;
- }
- break;
- }
- case SUB_w_ext:
- case SUB_x_ext: mnemonic = "sub"; break;
- case SUBS_w_ext:
- case SUBS_x_ext: {
- mnemonic = "subs";
- if (rd_is_zr) {
- mnemonic = "cmp";
- form = form_cmp;
- }
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitAddSubWithCarry(const Instruction* instr) {
- bool rn_is_zr = RnIsZROrSP(instr);
- const char *mnemonic = "";
- const char *form = "'Rd, 'Rn, 'Rm";
- const char *form_neg = "'Rd, 'Rm";
-
- switch (instr->Mask(AddSubWithCarryMask)) {
- case ADC_w:
- case ADC_x: mnemonic = "adc"; break;
- case ADCS_w:
- case ADCS_x: mnemonic = "adcs"; break;
- case SBC_w:
- case SBC_x: {
- mnemonic = "sbc";
- if (rn_is_zr) {
- mnemonic = "ngc";
- form = form_neg;
- }
- break;
- }
- case SBCS_w:
- case SBCS_x: {
- mnemonic = "sbcs";
- if (rn_is_zr) {
- mnemonic = "ngcs";
- form = form_neg;
- }
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLogicalImmediate(const Instruction* instr) {
- bool rd_is_zr = RdIsZROrSP(instr);
- bool rn_is_zr = RnIsZROrSP(instr);
- const char *mnemonic = "";
- const char *form = "'Rds, 'Rn, 'ITri";
-
- if (instr->ImmLogical() == 0) {
- // The immediate encoded in the instruction is not in the expected format.
- Format(instr, "unallocated", "(LogicalImmediate)");
- return;
- }
-
- switch (instr->Mask(LogicalImmediateMask)) {
- case AND_w_imm:
- case AND_x_imm: mnemonic = "and"; break;
- case ORR_w_imm:
- case ORR_x_imm: {
- mnemonic = "orr";
- unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize
- : kWRegSize;
- if (rn_is_zr && !IsMovzMovnImm(reg_size, instr->ImmLogical())) {
- mnemonic = "mov";
- form = "'Rds, 'ITri";
- }
- break;
- }
- case EOR_w_imm:
- case EOR_x_imm: mnemonic = "eor"; break;
- case ANDS_w_imm:
- case ANDS_x_imm: {
- mnemonic = "ands";
- if (rd_is_zr) {
- mnemonic = "tst";
- form = "'Rn, 'ITri";
- }
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-bool Disassembler::IsMovzMovnImm(unsigned reg_size, uint64_t value) {
- VIXL_ASSERT((reg_size == kXRegSize) ||
- ((reg_size == kWRegSize) && (value <= 0xffffffff)));
-
- // Test for movz: 16 bits set at positions 0, 16, 32 or 48.
- if (((value & UINT64_C(0xffffffffffff0000)) == 0) ||
- ((value & UINT64_C(0xffffffff0000ffff)) == 0) ||
- ((value & UINT64_C(0xffff0000ffffffff)) == 0) ||
- ((value & UINT64_C(0x0000ffffffffffff)) == 0)) {
- return true;
- }
-
- // Test for movn: NOT(16 bits set at positions 0, 16, 32 or 48).
- if ((reg_size == kXRegSize) &&
- (((~value & UINT64_C(0xffffffffffff0000)) == 0) ||
- ((~value & UINT64_C(0xffffffff0000ffff)) == 0) ||
- ((~value & UINT64_C(0xffff0000ffffffff)) == 0) ||
- ((~value & UINT64_C(0x0000ffffffffffff)) == 0))) {
- return true;
- }
- if ((reg_size == kWRegSize) &&
- (((value & 0xffff0000) == 0xffff0000) ||
- ((value & 0x0000ffff) == 0x0000ffff))) {
- return true;
- }
- return false;
-}
-
-
-void Disassembler::VisitLogicalShifted(const Instruction* instr) {
- bool rd_is_zr = RdIsZROrSP(instr);
- bool rn_is_zr = RnIsZROrSP(instr);
- const char *mnemonic = "";
- const char *form = "'Rd, 'Rn, 'Rm'NLo";
-
- switch (instr->Mask(LogicalShiftedMask)) {
- case AND_w:
- case AND_x: mnemonic = "and"; break;
- case BIC_w:
- case BIC_x: mnemonic = "bic"; break;
- case EOR_w:
- case EOR_x: mnemonic = "eor"; break;
- case EON_w:
- case EON_x: mnemonic = "eon"; break;
- case BICS_w:
- case BICS_x: mnemonic = "bics"; break;
- case ANDS_w:
- case ANDS_x: {
- mnemonic = "ands";
- if (rd_is_zr) {
- mnemonic = "tst";
- form = "'Rn, 'Rm'NLo";
- }
- break;
- }
- case ORR_w:
- case ORR_x: {
- mnemonic = "orr";
- if (rn_is_zr && (instr->ImmDPShift() == 0) && (instr->ShiftDP() == LSL)) {
- mnemonic = "mov";
- form = "'Rd, 'Rm";
- }
- break;
- }
- case ORN_w:
- case ORN_x: {
- mnemonic = "orn";
- if (rn_is_zr) {
- mnemonic = "mvn";
- form = "'Rd, 'Rm'NLo";
- }
- break;
- }
- default: VIXL_UNREACHABLE();
- }
-
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitConditionalCompareRegister(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Rn, 'Rm, 'INzcv, 'Cond";
-
- switch (instr->Mask(ConditionalCompareRegisterMask)) {
- case CCMN_w:
- case CCMN_x: mnemonic = "ccmn"; break;
- case CCMP_w:
- case CCMP_x: mnemonic = "ccmp"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitConditionalCompareImmediate(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Rn, 'IP, 'INzcv, 'Cond";
-
- switch (instr->Mask(ConditionalCompareImmediateMask)) {
- case CCMN_w_imm:
- case CCMN_x_imm: mnemonic = "ccmn"; break;
- case CCMP_w_imm:
- case CCMP_x_imm: mnemonic = "ccmp"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitConditionalSelect(const Instruction* instr) {
- bool rnm_is_zr = (RnIsZROrSP(instr) && RmIsZROrSP(instr));
- bool rn_is_rm = (instr->Rn() == instr->Rm());
- const char *mnemonic = "";
- const char *form = "'Rd, 'Rn, 'Rm, 'Cond";
- const char *form_test = "'Rd, 'CInv";
- const char *form_update = "'Rd, 'Rn, 'CInv";
-
- Condition cond = static_cast<Condition>(instr->Condition());
- bool invertible_cond = (cond != al) && (cond != nv);
-
- switch (instr->Mask(ConditionalSelectMask)) {
- case CSEL_w:
- case CSEL_x: mnemonic = "csel"; break;
- case CSINC_w:
- case CSINC_x: {
- mnemonic = "csinc";
- if (rnm_is_zr && invertible_cond) {
- mnemonic = "cset";
- form = form_test;
- } else if (rn_is_rm && invertible_cond) {
- mnemonic = "cinc";
- form = form_update;
- }
- break;
- }
- case CSINV_w:
- case CSINV_x: {
- mnemonic = "csinv";
- if (rnm_is_zr && invertible_cond) {
- mnemonic = "csetm";
- form = form_test;
- } else if (rn_is_rm && invertible_cond) {
- mnemonic = "cinv";
- form = form_update;
- }
- break;
- }
- case CSNEG_w:
- case CSNEG_x: {
- mnemonic = "csneg";
- if (rn_is_rm && invertible_cond) {
- mnemonic = "cneg";
- form = form_update;
- }
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitBitfield(const Instruction* instr) {
- unsigned s = instr->ImmS();
- unsigned r = instr->ImmR();
- unsigned rd_size_minus_1 =
- ((instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize) - 1;
- const char *mnemonic = "";
- const char *form = "";
- const char *form_shift_right = "'Rd, 'Rn, 'IBr";
- const char *form_extend = "'Rd, 'Wn";
- const char *form_bfiz = "'Rd, 'Rn, 'IBZ-r, 'IBs+1";
- const char *form_bfx = "'Rd, 'Rn, 'IBr, 'IBs-r+1";
- const char *form_lsl = "'Rd, 'Rn, 'IBZ-r";
-
- switch (instr->Mask(BitfieldMask)) {
- case SBFM_w:
- case SBFM_x: {
- mnemonic = "sbfx";
- form = form_bfx;
- if (r == 0) {
- form = form_extend;
- if (s == 7) {
- mnemonic = "sxtb";
- } else if (s == 15) {
- mnemonic = "sxth";
- } else if ((s == 31) && (instr->SixtyFourBits() == 1)) {
- mnemonic = "sxtw";
- } else {
- form = form_bfx;
- }
- } else if (s == rd_size_minus_1) {
- mnemonic = "asr";
- form = form_shift_right;
- } else if (s < r) {
- mnemonic = "sbfiz";
- form = form_bfiz;
- }
- break;
- }
- case UBFM_w:
- case UBFM_x: {
- mnemonic = "ubfx";
- form = form_bfx;
- if (r == 0) {
- form = form_extend;
- if (s == 7) {
- mnemonic = "uxtb";
- } else if (s == 15) {
- mnemonic = "uxth";
- } else {
- form = form_bfx;
- }
- }
- if (s == rd_size_minus_1) {
- mnemonic = "lsr";
- form = form_shift_right;
- } else if (r == s + 1) {
- mnemonic = "lsl";
- form = form_lsl;
- } else if (s < r) {
- mnemonic = "ubfiz";
- form = form_bfiz;
- }
- break;
- }
- case BFM_w:
- case BFM_x: {
- mnemonic = "bfxil";
- form = form_bfx;
- if (s < r) {
- mnemonic = "bfi";
- form = form_bfiz;
- }
- }
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitExtract(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Rd, 'Rn, 'Rm, 'IExtract";
-
- switch (instr->Mask(ExtractMask)) {
- case EXTR_w:
- case EXTR_x: {
- if (instr->Rn() == instr->Rm()) {
- mnemonic = "ror";
- form = "'Rd, 'Rn, 'IExtract";
- } else {
- mnemonic = "extr";
- }
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitPCRelAddressing(const Instruction* instr) {
- switch (instr->Mask(PCRelAddressingMask)) {
- case ADR: Format(instr, "adr", "'Xd, 'AddrPCRelByte"); break;
- case ADRP: Format(instr, "adrp", "'Xd, 'AddrPCRelPage"); break;
- default: Format(instr, "unimplemented", "(PCRelAddressing)");
- }
-}
-
-
-void Disassembler::VisitConditionalBranch(const Instruction* instr) {
- switch (instr->Mask(ConditionalBranchMask)) {
- case B_cond: Format(instr, "b.'CBrn", "'TImmCond"); break;
- default: VIXL_UNREACHABLE();
- }
-}
-
-
-void Disassembler::VisitUnconditionalBranchToRegister(
- const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'Xn";
-
- switch (instr->Mask(UnconditionalBranchToRegisterMask)) {
- case BR: mnemonic = "br"; break;
- case BLR: mnemonic = "blr"; break;
- case RET: {
- mnemonic = "ret";
- if (instr->Rn() == kLinkRegCode) {
- form = NULL;
- }
- break;
- }
- default: form = "(UnconditionalBranchToRegister)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitUnconditionalBranch(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'TImmUncn";
-
- switch (instr->Mask(UnconditionalBranchMask)) {
- case B: mnemonic = "b"; break;
- case BL: mnemonic = "bl"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitDataProcessing1Source(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Rd, 'Rn";
-
- switch (instr->Mask(DataProcessing1SourceMask)) {
- #define FORMAT(A, B) \
- case A##_w: \
- case A##_x: mnemonic = B; break;
- FORMAT(RBIT, "rbit");
- FORMAT(REV16, "rev16");
- FORMAT(REV, "rev");
- FORMAT(CLZ, "clz");
- FORMAT(CLS, "cls");
- #undef FORMAT
- case REV32_x: mnemonic = "rev32"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitDataProcessing2Source(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'Rd, 'Rn, 'Rm";
- const char *form_wwx = "'Wd, 'Wn, 'Xm";
-
- switch (instr->Mask(DataProcessing2SourceMask)) {
- #define FORMAT(A, B) \
- case A##_w: \
- case A##_x: mnemonic = B; break;
- FORMAT(UDIV, "udiv");
- FORMAT(SDIV, "sdiv");
- FORMAT(LSLV, "lsl");
- FORMAT(LSRV, "lsr");
- FORMAT(ASRV, "asr");
- FORMAT(RORV, "ror");
- #undef FORMAT
- case CRC32B: mnemonic = "crc32b"; break;
- case CRC32H: mnemonic = "crc32h"; break;
- case CRC32W: mnemonic = "crc32w"; break;
- case CRC32X: mnemonic = "crc32x"; form = form_wwx; break;
- case CRC32CB: mnemonic = "crc32cb"; break;
- case CRC32CH: mnemonic = "crc32ch"; break;
- case CRC32CW: mnemonic = "crc32cw"; break;
- case CRC32CX: mnemonic = "crc32cx"; form = form_wwx; break;
- default: form = "(DataProcessing2Source)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitDataProcessing3Source(const Instruction* instr) {
- bool ra_is_zr = RaIsZROrSP(instr);
- const char *mnemonic = "";
- const char *form = "'Xd, 'Wn, 'Wm, 'Xa";
- const char *form_rrr = "'Rd, 'Rn, 'Rm";
- const char *form_rrrr = "'Rd, 'Rn, 'Rm, 'Ra";
- const char *form_xww = "'Xd, 'Wn, 'Wm";
- const char *form_xxx = "'Xd, 'Xn, 'Xm";
-
- switch (instr->Mask(DataProcessing3SourceMask)) {
- case MADD_w:
- case MADD_x: {
- mnemonic = "madd";
- form = form_rrrr;
- if (ra_is_zr) {
- mnemonic = "mul";
- form = form_rrr;
- }
- break;
- }
- case MSUB_w:
- case MSUB_x: {
- mnemonic = "msub";
- form = form_rrrr;
- if (ra_is_zr) {
- mnemonic = "mneg";
- form = form_rrr;
- }
- break;
- }
- case SMADDL_x: {
- mnemonic = "smaddl";
- if (ra_is_zr) {
- mnemonic = "smull";
- form = form_xww;
- }
- break;
- }
- case SMSUBL_x: {
- mnemonic = "smsubl";
- if (ra_is_zr) {
- mnemonic = "smnegl";
- form = form_xww;
- }
- break;
- }
- case UMADDL_x: {
- mnemonic = "umaddl";
- if (ra_is_zr) {
- mnemonic = "umull";
- form = form_xww;
- }
- break;
- }
- case UMSUBL_x: {
- mnemonic = "umsubl";
- if (ra_is_zr) {
- mnemonic = "umnegl";
- form = form_xww;
- }
- break;
- }
- case SMULH_x: {
- mnemonic = "smulh";
- form = form_xxx;
- break;
- }
- case UMULH_x: {
- mnemonic = "umulh";
- form = form_xxx;
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitCompareBranch(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Rt, 'TImmCmpa";
-
- switch (instr->Mask(CompareBranchMask)) {
- case CBZ_w:
- case CBZ_x: mnemonic = "cbz"; break;
- case CBNZ_w:
- case CBNZ_x: mnemonic = "cbnz"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitTestBranch(const Instruction* instr) {
- const char *mnemonic = "";
- // If the top bit of the immediate is clear, the tested register is
- // disassembled as Wt, otherwise Xt. As the top bit of the immediate is
- // encoded in bit 31 of the instruction, we can reuse the Rt form, which
- // uses bit 31 (normally "sf") to choose the register size.
- const char *form = "'Rt, 'IS, 'TImmTest";
-
- switch (instr->Mask(TestBranchMask)) {
- case TBZ: mnemonic = "tbz"; break;
- case TBNZ: mnemonic = "tbnz"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitMoveWideImmediate(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Rd, 'IMoveImm";
-
- // Print the shift separately for movk, to make it clear which half word will
- // be overwritten. Movn and movz print the computed immediate, which includes
- // shift calculation.
- switch (instr->Mask(MoveWideImmediateMask)) {
- case MOVN_w:
- case MOVN_x:
- if ((instr->ImmMoveWide()) || (instr->ShiftMoveWide() == 0)) {
- if ((instr->SixtyFourBits() == 0) && (instr->ImmMoveWide() == 0xffff)) {
- mnemonic = "movn";
- } else {
- mnemonic = "mov";
- form = "'Rd, 'IMoveNeg";
- }
- } else {
- mnemonic = "movn";
- }
- break;
- case MOVZ_w:
- case MOVZ_x:
- if ((instr->ImmMoveWide()) || (instr->ShiftMoveWide() == 0))
- mnemonic = "mov";
- else
- mnemonic = "movz";
- break;
- case MOVK_w:
- case MOVK_x: mnemonic = "movk"; form = "'Rd, 'IMoveLSL"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-#define LOAD_STORE_LIST(V) \
- V(STRB_w, "strb", "'Wt") \
- V(STRH_w, "strh", "'Wt") \
- V(STR_w, "str", "'Wt") \
- V(STR_x, "str", "'Xt") \
- V(LDRB_w, "ldrb", "'Wt") \
- V(LDRH_w, "ldrh", "'Wt") \
- V(LDR_w, "ldr", "'Wt") \
- V(LDR_x, "ldr", "'Xt") \
- V(LDRSB_x, "ldrsb", "'Xt") \
- V(LDRSH_x, "ldrsh", "'Xt") \
- V(LDRSW_x, "ldrsw", "'Xt") \
- V(LDRSB_w, "ldrsb", "'Wt") \
- V(LDRSH_w, "ldrsh", "'Wt") \
- V(STR_b, "str", "'Bt") \
- V(STR_h, "str", "'Ht") \
- V(STR_s, "str", "'St") \
- V(STR_d, "str", "'Dt") \
- V(LDR_b, "ldr", "'Bt") \
- V(LDR_h, "ldr", "'Ht") \
- V(LDR_s, "ldr", "'St") \
- V(LDR_d, "ldr", "'Dt") \
- V(STR_q, "str", "'Qt") \
- V(LDR_q, "ldr", "'Qt")
-
-void Disassembler::VisitLoadStorePreIndex(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(LoadStorePreIndex)";
-
- switch (instr->Mask(LoadStorePreIndexMask)) {
- #define LS_PREINDEX(A, B, C) \
- case A##_pre: mnemonic = B; form = C ", ['Xns'ILS]!"; break;
- LOAD_STORE_LIST(LS_PREINDEX)
- #undef LS_PREINDEX
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadStorePostIndex(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(LoadStorePostIndex)";
-
- switch (instr->Mask(LoadStorePostIndexMask)) {
- #define LS_POSTINDEX(A, B, C) \
- case A##_post: mnemonic = B; form = C ", ['Xns]'ILS"; break;
- LOAD_STORE_LIST(LS_POSTINDEX)
- #undef LS_POSTINDEX
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadStoreUnsignedOffset(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(LoadStoreUnsignedOffset)";
-
- switch (instr->Mask(LoadStoreUnsignedOffsetMask)) {
- #define LS_UNSIGNEDOFFSET(A, B, C) \
- case A##_unsigned: mnemonic = B; form = C ", ['Xns'ILU]"; break;
- LOAD_STORE_LIST(LS_UNSIGNEDOFFSET)
- #undef LS_UNSIGNEDOFFSET
- case PRFM_unsigned: mnemonic = "prfm"; form = "'PrefOp, ['Xns'ILU]";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadStoreRegisterOffset(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(LoadStoreRegisterOffset)";
-
- switch (instr->Mask(LoadStoreRegisterOffsetMask)) {
- #define LS_REGISTEROFFSET(A, B, C) \
- case A##_reg: mnemonic = B; form = C ", ['Xns, 'Offsetreg]"; break;
- LOAD_STORE_LIST(LS_REGISTEROFFSET)
- #undef LS_REGISTEROFFSET
- case PRFM_reg: mnemonic = "prfm"; form = "'PrefOp, ['Xns, 'Offsetreg]";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadStoreUnscaledOffset(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'Wt, ['Xns'ILS]";
- const char *form_x = "'Xt, ['Xns'ILS]";
- const char *form_b = "'Bt, ['Xns'ILS]";
- const char *form_h = "'Ht, ['Xns'ILS]";
- const char *form_s = "'St, ['Xns'ILS]";
- const char *form_d = "'Dt, ['Xns'ILS]";
- const char *form_q = "'Qt, ['Xns'ILS]";
- const char *form_prefetch = "'PrefOp, ['Xns'ILS]";
-
- switch (instr->Mask(LoadStoreUnscaledOffsetMask)) {
- case STURB_w: mnemonic = "sturb"; break;
- case STURH_w: mnemonic = "sturh"; break;
- case STUR_w: mnemonic = "stur"; break;
- case STUR_x: mnemonic = "stur"; form = form_x; break;
- case STUR_b: mnemonic = "stur"; form = form_b; break;
- case STUR_h: mnemonic = "stur"; form = form_h; break;
- case STUR_s: mnemonic = "stur"; form = form_s; break;
- case STUR_d: mnemonic = "stur"; form = form_d; break;
- case STUR_q: mnemonic = "stur"; form = form_q; break;
- case LDURB_w: mnemonic = "ldurb"; break;
- case LDURH_w: mnemonic = "ldurh"; break;
- case LDUR_w: mnemonic = "ldur"; break;
- case LDUR_x: mnemonic = "ldur"; form = form_x; break;
- case LDUR_b: mnemonic = "ldur"; form = form_b; break;
- case LDUR_h: mnemonic = "ldur"; form = form_h; break;
- case LDUR_s: mnemonic = "ldur"; form = form_s; break;
- case LDUR_d: mnemonic = "ldur"; form = form_d; break;
- case LDUR_q: mnemonic = "ldur"; form = form_q; break;
- case LDURSB_x: form = form_x; VIXL_FALLTHROUGH();
- case LDURSB_w: mnemonic = "ldursb"; break;
- case LDURSH_x: form = form_x; VIXL_FALLTHROUGH();
- case LDURSH_w: mnemonic = "ldursh"; break;
- case LDURSW_x: mnemonic = "ldursw"; form = form_x; break;
- case PRFUM: mnemonic = "prfum"; form = form_prefetch; break;
- default: form = "(LoadStoreUnscaledOffset)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadLiteral(const Instruction* instr) {
- const char *mnemonic = "ldr";
- const char *form = "(LoadLiteral)";
-
- switch (instr->Mask(LoadLiteralMask)) {
- case LDR_w_lit: form = "'Wt, 'ILLiteral 'LValue"; break;
- case LDR_x_lit: form = "'Xt, 'ILLiteral 'LValue"; break;
- case LDR_s_lit: form = "'St, 'ILLiteral 'LValue"; break;
- case LDR_d_lit: form = "'Dt, 'ILLiteral 'LValue"; break;
- case LDR_q_lit: form = "'Qt, 'ILLiteral 'LValue"; break;
- case LDRSW_x_lit: {
- mnemonic = "ldrsw";
- form = "'Xt, 'ILLiteral 'LValue";
- break;
- }
- case PRFM_lit: {
- mnemonic = "prfm";
- form = "'PrefOp, 'ILLiteral 'LValue";
- break;
- }
- default: mnemonic = "unimplemented";
- }
- Format(instr, mnemonic, form);
-}
-
-
-#define LOAD_STORE_PAIR_LIST(V) \
- V(STP_w, "stp", "'Wt, 'Wt2", "2") \
- V(LDP_w, "ldp", "'Wt, 'Wt2", "2") \
- V(LDPSW_x, "ldpsw", "'Xt, 'Xt2", "2") \
- V(STP_x, "stp", "'Xt, 'Xt2", "3") \
- V(LDP_x, "ldp", "'Xt, 'Xt2", "3") \
- V(STP_s, "stp", "'St, 'St2", "2") \
- V(LDP_s, "ldp", "'St, 'St2", "2") \
- V(STP_d, "stp", "'Dt, 'Dt2", "3") \
- V(LDP_d, "ldp", "'Dt, 'Dt2", "3") \
- V(LDP_q, "ldp", "'Qt, 'Qt2", "4") \
- V(STP_q, "stp", "'Qt, 'Qt2", "4")
-
-void Disassembler::VisitLoadStorePairPostIndex(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(LoadStorePairPostIndex)";
-
- switch (instr->Mask(LoadStorePairPostIndexMask)) {
- #define LSP_POSTINDEX(A, B, C, D) \
- case A##_post: mnemonic = B; form = C ", ['Xns]'ILP" D; break;
- LOAD_STORE_PAIR_LIST(LSP_POSTINDEX)
- #undef LSP_POSTINDEX
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadStorePairPreIndex(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(LoadStorePairPreIndex)";
-
- switch (instr->Mask(LoadStorePairPreIndexMask)) {
- #define LSP_PREINDEX(A, B, C, D) \
- case A##_pre: mnemonic = B; form = C ", ['Xns'ILP" D "]!"; break;
- LOAD_STORE_PAIR_LIST(LSP_PREINDEX)
- #undef LSP_PREINDEX
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadStorePairOffset(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(LoadStorePairOffset)";
-
- switch (instr->Mask(LoadStorePairOffsetMask)) {
- #define LSP_OFFSET(A, B, C, D) \
- case A##_off: mnemonic = B; form = C ", ['Xns'ILP" D "]"; break;
- LOAD_STORE_PAIR_LIST(LSP_OFFSET)
- #undef LSP_OFFSET
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadStorePairNonTemporal(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form;
-
- switch (instr->Mask(LoadStorePairNonTemporalMask)) {
- case STNP_w: mnemonic = "stnp"; form = "'Wt, 'Wt2, ['Xns'ILP2]"; break;
- case LDNP_w: mnemonic = "ldnp"; form = "'Wt, 'Wt2, ['Xns'ILP2]"; break;
- case STNP_x: mnemonic = "stnp"; form = "'Xt, 'Xt2, ['Xns'ILP3]"; break;
- case LDNP_x: mnemonic = "ldnp"; form = "'Xt, 'Xt2, ['Xns'ILP3]"; break;
- case STNP_s: mnemonic = "stnp"; form = "'St, 'St2, ['Xns'ILP2]"; break;
- case LDNP_s: mnemonic = "ldnp"; form = "'St, 'St2, ['Xns'ILP2]"; break;
- case STNP_d: mnemonic = "stnp"; form = "'Dt, 'Dt2, ['Xns'ILP3]"; break;
- case LDNP_d: mnemonic = "ldnp"; form = "'Dt, 'Dt2, ['Xns'ILP3]"; break;
- case STNP_q: mnemonic = "stnp"; form = "'Qt, 'Qt2, ['Xns'ILP4]"; break;
- case LDNP_q: mnemonic = "ldnp"; form = "'Qt, 'Qt2, ['Xns'ILP4]"; break;
- default: form = "(LoadStorePairNonTemporal)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadStoreExclusive(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form;
-
- switch (instr->Mask(LoadStoreExclusiveMask)) {
- case STXRB_w: mnemonic = "stxrb"; form = "'Ws, 'Wt, ['Xns]"; break;
- case STXRH_w: mnemonic = "stxrh"; form = "'Ws, 'Wt, ['Xns]"; break;
- case STXR_w: mnemonic = "stxr"; form = "'Ws, 'Wt, ['Xns]"; break;
- case STXR_x: mnemonic = "stxr"; form = "'Ws, 'Xt, ['Xns]"; break;
- case LDXRB_w: mnemonic = "ldxrb"; form = "'Wt, ['Xns]"; break;
- case LDXRH_w: mnemonic = "ldxrh"; form = "'Wt, ['Xns]"; break;
- case LDXR_w: mnemonic = "ldxr"; form = "'Wt, ['Xns]"; break;
- case LDXR_x: mnemonic = "ldxr"; form = "'Xt, ['Xns]"; break;
- case STXP_w: mnemonic = "stxp"; form = "'Ws, 'Wt, 'Wt2, ['Xns]"; break;
- case STXP_x: mnemonic = "stxp"; form = "'Ws, 'Xt, 'Xt2, ['Xns]"; break;
- case LDXP_w: mnemonic = "ldxp"; form = "'Wt, 'Wt2, ['Xns]"; break;
- case LDXP_x: mnemonic = "ldxp"; form = "'Xt, 'Xt2, ['Xns]"; break;
- case STLXRB_w: mnemonic = "stlxrb"; form = "'Ws, 'Wt, ['Xns]"; break;
- case STLXRH_w: mnemonic = "stlxrh"; form = "'Ws, 'Wt, ['Xns]"; break;
- case STLXR_w: mnemonic = "stlxr"; form = "'Ws, 'Wt, ['Xns]"; break;
- case STLXR_x: mnemonic = "stlxr"; form = "'Ws, 'Xt, ['Xns]"; break;
- case LDAXRB_w: mnemonic = "ldaxrb"; form = "'Wt, ['Xns]"; break;
- case LDAXRH_w: mnemonic = "ldaxrh"; form = "'Wt, ['Xns]"; break;
- case LDAXR_w: mnemonic = "ldaxr"; form = "'Wt, ['Xns]"; break;
- case LDAXR_x: mnemonic = "ldaxr"; form = "'Xt, ['Xns]"; break;
- case STLXP_w: mnemonic = "stlxp"; form = "'Ws, 'Wt, 'Wt2, ['Xns]"; break;
- case STLXP_x: mnemonic = "stlxp"; form = "'Ws, 'Xt, 'Xt2, ['Xns]"; break;
- case LDAXP_w: mnemonic = "ldaxp"; form = "'Wt, 'Wt2, ['Xns]"; break;
- case LDAXP_x: mnemonic = "ldaxp"; form = "'Xt, 'Xt2, ['Xns]"; break;
- case STLRB_w: mnemonic = "stlrb"; form = "'Wt, ['Xns]"; break;
- case STLRH_w: mnemonic = "stlrh"; form = "'Wt, ['Xns]"; break;
- case STLR_w: mnemonic = "stlr"; form = "'Wt, ['Xns]"; break;
- case STLR_x: mnemonic = "stlr"; form = "'Xt, ['Xns]"; break;
- case LDARB_w: mnemonic = "ldarb"; form = "'Wt, ['Xns]"; break;
- case LDARH_w: mnemonic = "ldarh"; form = "'Wt, ['Xns]"; break;
- case LDAR_w: mnemonic = "ldar"; form = "'Wt, ['Xns]"; break;
- case LDAR_x: mnemonic = "ldar"; form = "'Xt, ['Xns]"; break;
- default: form = "(LoadStoreExclusive)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPCompare(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'Fn, 'Fm";
- const char *form_zero = "'Fn, #0.0";
-
- switch (instr->Mask(FPCompareMask)) {
- case FCMP_s_zero:
- case FCMP_d_zero: form = form_zero; VIXL_FALLTHROUGH();
- case FCMP_s:
- case FCMP_d: mnemonic = "fcmp"; break;
- case FCMPE_s_zero:
- case FCMPE_d_zero: form = form_zero; VIXL_FALLTHROUGH();
- case FCMPE_s:
- case FCMPE_d: mnemonic = "fcmpe"; break;
- default: form = "(FPCompare)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPConditionalCompare(const Instruction* instr) {
- const char *mnemonic = "unmplemented";
- const char *form = "'Fn, 'Fm, 'INzcv, 'Cond";
-
- switch (instr->Mask(FPConditionalCompareMask)) {
- case FCCMP_s:
- case FCCMP_d: mnemonic = "fccmp"; break;
- case FCCMPE_s:
- case FCCMPE_d: mnemonic = "fccmpe"; break;
- default: form = "(FPConditionalCompare)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPConditionalSelect(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Fd, 'Fn, 'Fm, 'Cond";
-
- switch (instr->Mask(FPConditionalSelectMask)) {
- case FCSEL_s:
- case FCSEL_d: mnemonic = "fcsel"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPDataProcessing1Source(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'Fd, 'Fn";
-
- switch (instr->Mask(FPDataProcessing1SourceMask)) {
- #define FORMAT(A, B) \
- case A##_s: \
- case A##_d: mnemonic = B; break;
- FORMAT(FMOV, "fmov");
- FORMAT(FABS, "fabs");
- FORMAT(FNEG, "fneg");
- FORMAT(FSQRT, "fsqrt");
- FORMAT(FRINTN, "frintn");
- FORMAT(FRINTP, "frintp");
- FORMAT(FRINTM, "frintm");
- FORMAT(FRINTZ, "frintz");
- FORMAT(FRINTA, "frinta");
- FORMAT(FRINTX, "frintx");
- FORMAT(FRINTI, "frinti");
- #undef FORMAT
- case FCVT_ds: mnemonic = "fcvt"; form = "'Dd, 'Sn"; break;
- case FCVT_sd: mnemonic = "fcvt"; form = "'Sd, 'Dn"; break;
- case FCVT_hs: mnemonic = "fcvt"; form = "'Hd, 'Sn"; break;
- case FCVT_sh: mnemonic = "fcvt"; form = "'Sd, 'Hn"; break;
- case FCVT_dh: mnemonic = "fcvt"; form = "'Dd, 'Hn"; break;
- case FCVT_hd: mnemonic = "fcvt"; form = "'Hd, 'Dn"; break;
- default: form = "(FPDataProcessing1Source)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPDataProcessing2Source(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Fd, 'Fn, 'Fm";
-
- switch (instr->Mask(FPDataProcessing2SourceMask)) {
- #define FORMAT(A, B) \
- case A##_s: \
- case A##_d: mnemonic = B; break;
- FORMAT(FMUL, "fmul");
- FORMAT(FDIV, "fdiv");
- FORMAT(FADD, "fadd");
- FORMAT(FSUB, "fsub");
- FORMAT(FMAX, "fmax");
- FORMAT(FMIN, "fmin");
- FORMAT(FMAXNM, "fmaxnm");
- FORMAT(FMINNM, "fminnm");
- FORMAT(FNMUL, "fnmul");
- #undef FORMAT
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPDataProcessing3Source(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Fd, 'Fn, 'Fm, 'Fa";
-
- switch (instr->Mask(FPDataProcessing3SourceMask)) {
- #define FORMAT(A, B) \
- case A##_s: \
- case A##_d: mnemonic = B; break;
- FORMAT(FMADD, "fmadd");
- FORMAT(FMSUB, "fmsub");
- FORMAT(FNMADD, "fnmadd");
- FORMAT(FNMSUB, "fnmsub");
- #undef FORMAT
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPImmediate(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "(FPImmediate)";
-
- switch (instr->Mask(FPImmediateMask)) {
- case FMOV_s_imm: mnemonic = "fmov"; form = "'Sd, 'IFPSingle"; break;
- case FMOV_d_imm: mnemonic = "fmov"; form = "'Dd, 'IFPDouble"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPIntegerConvert(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(FPIntegerConvert)";
- const char *form_rf = "'Rd, 'Fn";
- const char *form_fr = "'Fd, 'Rn";
-
- switch (instr->Mask(FPIntegerConvertMask)) {
- case FMOV_ws:
- case FMOV_xd: mnemonic = "fmov"; form = form_rf; break;
- case FMOV_sw:
- case FMOV_dx: mnemonic = "fmov"; form = form_fr; break;
- case FMOV_d1_x: mnemonic = "fmov"; form = "'Vd.D[1], 'Rn"; break;
- case FMOV_x_d1: mnemonic = "fmov"; form = "'Rd, 'Vn.D[1]"; break;
- case FCVTAS_ws:
- case FCVTAS_xs:
- case FCVTAS_wd:
- case FCVTAS_xd: mnemonic = "fcvtas"; form = form_rf; break;
- case FCVTAU_ws:
- case FCVTAU_xs:
- case FCVTAU_wd:
- case FCVTAU_xd: mnemonic = "fcvtau"; form = form_rf; break;
- case FCVTMS_ws:
- case FCVTMS_xs:
- case FCVTMS_wd:
- case FCVTMS_xd: mnemonic = "fcvtms"; form = form_rf; break;
- case FCVTMU_ws:
- case FCVTMU_xs:
- case FCVTMU_wd:
- case FCVTMU_xd: mnemonic = "fcvtmu"; form = form_rf; break;
- case FCVTNS_ws:
- case FCVTNS_xs:
- case FCVTNS_wd:
- case FCVTNS_xd: mnemonic = "fcvtns"; form = form_rf; break;
- case FCVTNU_ws:
- case FCVTNU_xs:
- case FCVTNU_wd:
- case FCVTNU_xd: mnemonic = "fcvtnu"; form = form_rf; break;
- case FCVTZU_xd:
- case FCVTZU_ws:
- case FCVTZU_wd:
- case FCVTZU_xs: mnemonic = "fcvtzu"; form = form_rf; break;
- case FCVTZS_xd:
- case FCVTZS_wd:
- case FCVTZS_xs:
- case FCVTZS_ws: mnemonic = "fcvtzs"; form = form_rf; break;
- case FCVTPU_xd:
- case FCVTPU_ws:
- case FCVTPU_wd:
- case FCVTPU_xs: mnemonic = "fcvtpu"; form = form_rf; break;
- case FCVTPS_xd:
- case FCVTPS_wd:
- case FCVTPS_xs:
- case FCVTPS_ws: mnemonic = "fcvtps"; form = form_rf; break;
- case SCVTF_sw:
- case SCVTF_sx:
- case SCVTF_dw:
- case SCVTF_dx: mnemonic = "scvtf"; form = form_fr; break;
- case UCVTF_sw:
- case UCVTF_sx:
- case UCVTF_dw:
- case UCVTF_dx: mnemonic = "ucvtf"; form = form_fr; break;
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPFixedPointConvert(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Rd, 'Fn, 'IFPFBits";
- const char *form_fr = "'Fd, 'Rn, 'IFPFBits";
-
- switch (instr->Mask(FPFixedPointConvertMask)) {
- case FCVTZS_ws_fixed:
- case FCVTZS_xs_fixed:
- case FCVTZS_wd_fixed:
- case FCVTZS_xd_fixed: mnemonic = "fcvtzs"; break;
- case FCVTZU_ws_fixed:
- case FCVTZU_xs_fixed:
- case FCVTZU_wd_fixed:
- case FCVTZU_xd_fixed: mnemonic = "fcvtzu"; break;
- case SCVTF_sw_fixed:
- case SCVTF_sx_fixed:
- case SCVTF_dw_fixed:
- case SCVTF_dx_fixed: mnemonic = "scvtf"; form = form_fr; break;
- case UCVTF_sw_fixed:
- case UCVTF_sx_fixed:
- case UCVTF_dw_fixed:
- case UCVTF_dx_fixed: mnemonic = "ucvtf"; form = form_fr; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitSystem(const Instruction* instr) {
- // Some system instructions hijack their Op and Cp fields to represent a
- // range of immediates instead of indicating a different instruction. This
- // makes the decoding tricky.
- const char *mnemonic = "unimplemented";
- const char *form = "(System)";
-
- if (instr->Mask(SystemExclusiveMonitorFMask) == SystemExclusiveMonitorFixed) {
- switch (instr->Mask(SystemExclusiveMonitorMask)) {
- case CLREX: {
- mnemonic = "clrex";
- form = (instr->CRm() == 0xf) ? NULL : "'IX";
- break;
- }
- }
- } else if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) {
- switch (instr->Mask(SystemSysRegMask)) {
- case MRS: {
- mnemonic = "mrs";
- switch (instr->ImmSystemRegister()) {
- case NZCV: form = "'Xt, nzcv"; break;
- case FPCR: form = "'Xt, fpcr"; break;
- default: form = "'Xt, (unknown)"; break;
- }
- break;
- }
- case MSR: {
- mnemonic = "msr";
- switch (instr->ImmSystemRegister()) {
- case NZCV: form = "nzcv, 'Xt"; break;
- case FPCR: form = "fpcr, 'Xt"; break;
- default: form = "(unknown), 'Xt"; break;
- }
- break;
- }
- }
- } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
- switch (instr->ImmHint()) {
- case NOP: {
- mnemonic = "nop";
- form = NULL;
- break;
- }
- }
- } else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) {
- switch (instr->Mask(MemBarrierMask)) {
- case DMB: {
- mnemonic = "dmb";
- form = "'M";
- break;
- }
- case DSB: {
- mnemonic = "dsb";
- form = "'M";
- break;
- }
- case ISB: {
- mnemonic = "isb";
- form = NULL;
- break;
- }
- }
- } else if (instr->Mask(SystemSysFMask) == SystemSysFixed) {
- switch (instr->SysOp()) {
- case IVAU:
- mnemonic = "ic";
- form = "ivau, 'Xt";
- break;
- case CVAC:
- mnemonic = "dc";
- form = "cvac, 'Xt";
- break;
- case CVAU:
- mnemonic = "dc";
- form = "cvau, 'Xt";
- break;
- case CIVAC:
- mnemonic = "dc";
- form = "civac, 'Xt";
- break;
- case ZVA:
- mnemonic = "dc";
- form = "zva, 'Xt";
- break;
- default:
- mnemonic = "sys";
- if (instr->Rt() == 31) {
- form = "'G1, 'Kn, 'Km, 'G2";
- } else {
- form = "'G1, 'Kn, 'Km, 'G2, 'Xt";
- }
- break;
- }
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitException(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'IDebug";
-
- switch (instr->Mask(ExceptionMask)) {
- case HLT: mnemonic = "hlt"; break;
- case BRK: mnemonic = "brk"; break;
- case SVC: mnemonic = "svc"; break;
- case HVC: mnemonic = "hvc"; break;
- case SMC: mnemonic = "smc"; break;
- case DCPS1: mnemonic = "dcps1"; form = "{'IDebug}"; break;
- case DCPS2: mnemonic = "dcps2"; form = "{'IDebug}"; break;
- case DCPS3: mnemonic = "dcps3"; form = "{'IDebug}"; break;
- default: form = "(Exception)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitCrypto2RegSHA(const Instruction* instr) {
- VisitUnimplemented(instr);
-}
-
-
-void Disassembler::VisitCrypto3RegSHA(const Instruction* instr) {
- VisitUnimplemented(instr);
-}
-
-
-void Disassembler::VisitCryptoAES(const Instruction* instr) {
- VisitUnimplemented(instr);
-}
-
-
-void Disassembler::VisitNEON2RegMisc(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'Vd.%s, 'Vn.%s";
- const char *form_cmp_zero = "'Vd.%s, 'Vn.%s, #0";
- const char *form_fcmp_zero = "'Vd.%s, 'Vn.%s, #0.0";
- NEONFormatDecoder nfd(instr);
-
- static const NEONFormatMap map_lp_ta = {
- {23, 22, 30}, {NF_4H, NF_8H, NF_2S, NF_4S, NF_1D, NF_2D}
- };
-
- static const NEONFormatMap map_cvt_ta = {
- {22}, {NF_4S, NF_2D}
- };
-
- static const NEONFormatMap map_cvt_tb = {
- {22, 30}, {NF_4H, NF_8H, NF_2S, NF_4S}
- };
-
- if (instr->Mask(NEON2RegMiscOpcode) <= NEON_NEG_opcode) {
- // These instructions all use a two bit size field, except NOT and RBIT,
- // which use the field to encode the operation.
- switch (instr->Mask(NEON2RegMiscMask)) {
- case NEON_REV64: mnemonic = "rev64"; break;
- case NEON_REV32: mnemonic = "rev32"; break;
- case NEON_REV16: mnemonic = "rev16"; break;
- case NEON_SADDLP:
- mnemonic = "saddlp";
- nfd.SetFormatMap(0, &map_lp_ta);
- break;
- case NEON_UADDLP:
- mnemonic = "uaddlp";
- nfd.SetFormatMap(0, &map_lp_ta);
- break;
- case NEON_SUQADD: mnemonic = "suqadd"; break;
- case NEON_USQADD: mnemonic = "usqadd"; break;
- case NEON_CLS: mnemonic = "cls"; break;
- case NEON_CLZ: mnemonic = "clz"; break;
- case NEON_CNT: mnemonic = "cnt"; break;
- case NEON_SADALP:
- mnemonic = "sadalp";
- nfd.SetFormatMap(0, &map_lp_ta);
- break;
- case NEON_UADALP:
- mnemonic = "uadalp";
- nfd.SetFormatMap(0, &map_lp_ta);
- break;
- case NEON_SQABS: mnemonic = "sqabs"; break;
- case NEON_SQNEG: mnemonic = "sqneg"; break;
- case NEON_CMGT_zero: mnemonic = "cmgt"; form = form_cmp_zero; break;
- case NEON_CMGE_zero: mnemonic = "cmge"; form = form_cmp_zero; break;
- case NEON_CMEQ_zero: mnemonic = "cmeq"; form = form_cmp_zero; break;
- case NEON_CMLE_zero: mnemonic = "cmle"; form = form_cmp_zero; break;
- case NEON_CMLT_zero: mnemonic = "cmlt"; form = form_cmp_zero; break;
- case NEON_ABS: mnemonic = "abs"; break;
- case NEON_NEG: mnemonic = "neg"; break;
- case NEON_RBIT_NOT:
- switch (instr->FPType()) {
- case 0: mnemonic = "mvn"; break;
- case 1: mnemonic = "rbit"; break;
- default: form = "(NEON2RegMisc)";
- }
- nfd.SetFormatMaps(nfd.LogicalFormatMap());
- break;
- }
- } else {
- // These instructions all use a one bit size field, except XTN, SQXTUN,
- // SHLL, SQXTN and UQXTN, which use a two bit size field.
- nfd.SetFormatMaps(nfd.FPFormatMap());
- switch (instr->Mask(NEON2RegMiscFPMask)) {
- case NEON_FABS: mnemonic = "fabs"; break;
- case NEON_FNEG: mnemonic = "fneg"; break;
- case NEON_FCVTN:
- mnemonic = instr->Mask(NEON_Q) ? "fcvtn2" : "fcvtn";
- nfd.SetFormatMap(0, &map_cvt_tb);
- nfd.SetFormatMap(1, &map_cvt_ta);
- break;
- case NEON_FCVTXN:
- mnemonic = instr->Mask(NEON_Q) ? "fcvtxn2" : "fcvtxn";
- nfd.SetFormatMap(0, &map_cvt_tb);
- nfd.SetFormatMap(1, &map_cvt_ta);
- break;
- case NEON_FCVTL:
- mnemonic = instr->Mask(NEON_Q) ? "fcvtl2" : "fcvtl";
- nfd.SetFormatMap(0, &map_cvt_ta);
- nfd.SetFormatMap(1, &map_cvt_tb);
- break;
- case NEON_FRINTN: mnemonic = "frintn"; break;
- case NEON_FRINTA: mnemonic = "frinta"; break;
- case NEON_FRINTP: mnemonic = "frintp"; break;
- case NEON_FRINTM: mnemonic = "frintm"; break;
- case NEON_FRINTX: mnemonic = "frintx"; break;
- case NEON_FRINTZ: mnemonic = "frintz"; break;
- case NEON_FRINTI: mnemonic = "frinti"; break;
- case NEON_FCVTNS: mnemonic = "fcvtns"; break;
- case NEON_FCVTNU: mnemonic = "fcvtnu"; break;
- case NEON_FCVTPS: mnemonic = "fcvtps"; break;
- case NEON_FCVTPU: mnemonic = "fcvtpu"; break;
- case NEON_FCVTMS: mnemonic = "fcvtms"; break;
- case NEON_FCVTMU: mnemonic = "fcvtmu"; break;
- case NEON_FCVTZS: mnemonic = "fcvtzs"; break;
- case NEON_FCVTZU: mnemonic = "fcvtzu"; break;
- case NEON_FCVTAS: mnemonic = "fcvtas"; break;
- case NEON_FCVTAU: mnemonic = "fcvtau"; break;
- case NEON_FSQRT: mnemonic = "fsqrt"; break;
- case NEON_SCVTF: mnemonic = "scvtf"; break;
- case NEON_UCVTF: mnemonic = "ucvtf"; break;
- case NEON_URSQRTE: mnemonic = "ursqrte"; break;
- case NEON_URECPE: mnemonic = "urecpe"; break;
- case NEON_FRSQRTE: mnemonic = "frsqrte"; break;
- case NEON_FRECPE: mnemonic = "frecpe"; break;
- case NEON_FCMGT_zero: mnemonic = "fcmgt"; form = form_fcmp_zero; break;
- case NEON_FCMGE_zero: mnemonic = "fcmge"; form = form_fcmp_zero; break;
- case NEON_FCMEQ_zero: mnemonic = "fcmeq"; form = form_fcmp_zero; break;
- case NEON_FCMLE_zero: mnemonic = "fcmle"; form = form_fcmp_zero; break;
- case NEON_FCMLT_zero: mnemonic = "fcmlt"; form = form_fcmp_zero; break;
- default:
- if ((NEON_XTN_opcode <= instr->Mask(NEON2RegMiscOpcode)) &&
- (instr->Mask(NEON2RegMiscOpcode) <= NEON_UQXTN_opcode)) {
- nfd.SetFormatMap(0, nfd.IntegerFormatMap());
- nfd.SetFormatMap(1, nfd.LongIntegerFormatMap());
-
- switch (instr->Mask(NEON2RegMiscMask)) {
- case NEON_XTN: mnemonic = "xtn"; break;
- case NEON_SQXTN: mnemonic = "sqxtn"; break;
- case NEON_UQXTN: mnemonic = "uqxtn"; break;
- case NEON_SQXTUN: mnemonic = "sqxtun"; break;
- case NEON_SHLL:
- mnemonic = "shll";
- nfd.SetFormatMap(0, nfd.LongIntegerFormatMap());
- nfd.SetFormatMap(1, nfd.IntegerFormatMap());
- switch (instr->NEONSize()) {
- case 0: form = "'Vd.%s, 'Vn.%s, #8"; break;
- case 1: form = "'Vd.%s, 'Vn.%s, #16"; break;
- case 2: form = "'Vd.%s, 'Vn.%s, #32"; break;
- default: form = "(NEON2RegMisc)";
- }
- }
- Format(instr, nfd.Mnemonic(mnemonic), nfd.Substitute(form));
- return;
- } else {
- form = "(NEON2RegMisc)";
- }
- }
- }
- Format(instr, mnemonic, nfd.Substitute(form));
-}
-
-
-void Disassembler::VisitNEON3Same(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'Vd.%s, 'Vn.%s, 'Vm.%s";
- NEONFormatDecoder nfd(instr);
-
- if (instr->Mask(NEON3SameLogicalFMask) == NEON3SameLogicalFixed) {
- switch (instr->Mask(NEON3SameLogicalMask)) {
- case NEON_AND: mnemonic = "and"; break;
- case NEON_ORR:
- mnemonic = "orr";
- if (instr->Rm() == instr->Rn()) {
- mnemonic = "mov";
- form = "'Vd.%s, 'Vn.%s";
- }
- break;
- case NEON_ORN: mnemonic = "orn"; break;
- case NEON_EOR: mnemonic = "eor"; break;
- case NEON_BIC: mnemonic = "bic"; break;
- case NEON_BIF: mnemonic = "bif"; break;
- case NEON_BIT: mnemonic = "bit"; break;
- case NEON_BSL: mnemonic = "bsl"; break;
- default: form = "(NEON3Same)";
- }
- nfd.SetFormatMaps(nfd.LogicalFormatMap());
- } else {
- static const char *mnemonics[] = {
- "shadd", "uhadd", "shadd", "uhadd",
- "sqadd", "uqadd", "sqadd", "uqadd",
- "srhadd", "urhadd", "srhadd", "urhadd",
- NULL, NULL, NULL, NULL, // Handled by logical cases above.
- "shsub", "uhsub", "shsub", "uhsub",
- "sqsub", "uqsub", "sqsub", "uqsub",
- "cmgt", "cmhi", "cmgt", "cmhi",
- "cmge", "cmhs", "cmge", "cmhs",
- "sshl", "ushl", "sshl", "ushl",
- "sqshl", "uqshl", "sqshl", "uqshl",
- "srshl", "urshl", "srshl", "urshl",
- "sqrshl", "uqrshl", "sqrshl", "uqrshl",
- "smax", "umax", "smax", "umax",
- "smin", "umin", "smin", "umin",
- "sabd", "uabd", "sabd", "uabd",
- "saba", "uaba", "saba", "uaba",
- "add", "sub", "add", "sub",
- "cmtst", "cmeq", "cmtst", "cmeq",
- "mla", "mls", "mla", "mls",
- "mul", "pmul", "mul", "pmul",
- "smaxp", "umaxp", "smaxp", "umaxp",
- "sminp", "uminp", "sminp", "uminp",
- "sqdmulh", "sqrdmulh", "sqdmulh", "sqrdmulh",
- "addp", "unallocated", "addp", "unallocated",
- "fmaxnm", "fmaxnmp", "fminnm", "fminnmp",
- "fmla", "unallocated", "fmls", "unallocated",
- "fadd", "faddp", "fsub", "fabd",
- "fmulx", "fmul", "unallocated", "unallocated",
- "fcmeq", "fcmge", "unallocated", "fcmgt",
- "unallocated", "facge", "unallocated", "facgt",
- "fmax", "fmaxp", "fmin", "fminp",
- "frecps", "fdiv", "frsqrts", "unallocated"};
-
- // Operation is determined by the opcode bits (15-11), the top bit of
- // size (23) and the U bit (29).
- unsigned index = (instr->Bits(15, 11) << 2) | (instr->Bit(23) << 1) |
- instr->Bit(29);
- VIXL_ASSERT(index < (sizeof(mnemonics) / sizeof(mnemonics[0])));
- mnemonic = mnemonics[index];
- // Assert that index is not one of the previously handled logical
- // instructions.
- VIXL_ASSERT(mnemonic != NULL);
-
- if (instr->Mask(NEON3SameFPFMask) == NEON3SameFPFixed) {
- nfd.SetFormatMaps(nfd.FPFormatMap());
- }
- }
- Format(instr, mnemonic, nfd.Substitute(form));
-}
-
-
-void Disassembler::VisitNEON3Different(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'Vd.%s, 'Vn.%s, 'Vm.%s";
-
- NEONFormatDecoder nfd(instr);
- nfd.SetFormatMap(0, nfd.LongIntegerFormatMap());
-
- // Ignore the Q bit. Appending a "2" suffix is handled later.
- switch (instr->Mask(NEON3DifferentMask) & ~NEON_Q) {
- case NEON_PMULL: mnemonic = "pmull"; break;
- case NEON_SABAL: mnemonic = "sabal"; break;
- case NEON_SABDL: mnemonic = "sabdl"; break;
- case NEON_SADDL: mnemonic = "saddl"; break;
- case NEON_SMLAL: mnemonic = "smlal"; break;
- case NEON_SMLSL: mnemonic = "smlsl"; break;
- case NEON_SMULL: mnemonic = "smull"; break;
- case NEON_SSUBL: mnemonic = "ssubl"; break;
- case NEON_SQDMLAL: mnemonic = "sqdmlal"; break;
- case NEON_SQDMLSL: mnemonic = "sqdmlsl"; break;
- case NEON_SQDMULL: mnemonic = "sqdmull"; break;
- case NEON_UABAL: mnemonic = "uabal"; break;
- case NEON_UABDL: mnemonic = "uabdl"; break;
- case NEON_UADDL: mnemonic = "uaddl"; break;
- case NEON_UMLAL: mnemonic = "umlal"; break;
- case NEON_UMLSL: mnemonic = "umlsl"; break;
- case NEON_UMULL: mnemonic = "umull"; break;
- case NEON_USUBL: mnemonic = "usubl"; break;
- case NEON_SADDW:
- mnemonic = "saddw";
- nfd.SetFormatMap(1, nfd.LongIntegerFormatMap());
- break;
- case NEON_SSUBW:
- mnemonic = "ssubw";
- nfd.SetFormatMap(1, nfd.LongIntegerFormatMap());
- break;
- case NEON_UADDW:
- mnemonic = "uaddw";
- nfd.SetFormatMap(1, nfd.LongIntegerFormatMap());
- break;
- case NEON_USUBW:
- mnemonic = "usubw";
- nfd.SetFormatMap(1, nfd.LongIntegerFormatMap());
- break;
- case NEON_ADDHN:
- mnemonic = "addhn";
- nfd.SetFormatMaps(nfd.LongIntegerFormatMap());
- nfd.SetFormatMap(0, nfd.IntegerFormatMap());
- break;
- case NEON_RADDHN:
- mnemonic = "raddhn";
- nfd.SetFormatMaps(nfd.LongIntegerFormatMap());
- nfd.SetFormatMap(0, nfd.IntegerFormatMap());
- break;
- case NEON_RSUBHN:
- mnemonic = "rsubhn";
- nfd.SetFormatMaps(nfd.LongIntegerFormatMap());
- nfd.SetFormatMap(0, nfd.IntegerFormatMap());
- break;
- case NEON_SUBHN:
- mnemonic = "subhn";
- nfd.SetFormatMaps(nfd.LongIntegerFormatMap());
- nfd.SetFormatMap(0, nfd.IntegerFormatMap());
- break;
- default: form = "(NEON3Different)";
- }
- Format(instr, nfd.Mnemonic(mnemonic), nfd.Substitute(form));
-}
-
-
-void Disassembler::VisitNEONAcrossLanes(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "%sd, 'Vn.%s";
-
- NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap(),
- NEONFormatDecoder::IntegerFormatMap());
-
- if (instr->Mask(NEONAcrossLanesFPFMask) == NEONAcrossLanesFPFixed) {
- nfd.SetFormatMap(0, nfd.FPScalarFormatMap());
- nfd.SetFormatMap(1, nfd.FPFormatMap());
- switch (instr->Mask(NEONAcrossLanesFPMask)) {
- case NEON_FMAXV: mnemonic = "fmaxv"; break;
- case NEON_FMINV: mnemonic = "fminv"; break;
- case NEON_FMAXNMV: mnemonic = "fmaxnmv"; break;
- case NEON_FMINNMV: mnemonic = "fminnmv"; break;
- default: form = "(NEONAcrossLanes)"; break;
- }
- } else if (instr->Mask(NEONAcrossLanesFMask) == NEONAcrossLanesFixed) {
- switch (instr->Mask(NEONAcrossLanesMask)) {
- case NEON_ADDV: mnemonic = "addv"; break;
- case NEON_SMAXV: mnemonic = "smaxv"; break;
- case NEON_SMINV: mnemonic = "sminv"; break;
- case NEON_UMAXV: mnemonic = "umaxv"; break;
- case NEON_UMINV: mnemonic = "uminv"; break;
- case NEON_SADDLV:
- mnemonic = "saddlv";
- nfd.SetFormatMap(0, nfd.LongScalarFormatMap());
- break;
- case NEON_UADDLV:
- mnemonic = "uaddlv";
- nfd.SetFormatMap(0, nfd.LongScalarFormatMap());
- break;
- default: form = "(NEONAcrossLanes)"; break;
- }
- }
- Format(instr, mnemonic, nfd.Substitute(form,
- NEONFormatDecoder::kPlaceholder, NEONFormatDecoder::kFormat));
-}
-
-
-void Disassembler::VisitNEONByIndexedElement(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- bool l_instr = false;
- bool fp_instr = false;
-
- const char *form = "'Vd.%s, 'Vn.%s, 'Ve.%s['IVByElemIndex]";
-
- static const NEONFormatMap map_ta = {
- {23, 22}, {NF_UNDEF, NF_4S, NF_2D}
- };
- NEONFormatDecoder nfd(instr, &map_ta,
- NEONFormatDecoder::IntegerFormatMap(),
- NEONFormatDecoder::ScalarFormatMap());
-
- switch (instr->Mask(NEONByIndexedElementMask)) {
- case NEON_SMULL_byelement: mnemonic = "smull"; l_instr = true; break;
- case NEON_UMULL_byelement: mnemonic = "umull"; l_instr = true; break;
- case NEON_SMLAL_byelement: mnemonic = "smlal"; l_instr = true; break;
- case NEON_UMLAL_byelement: mnemonic = "umlal"; l_instr = true; break;
- case NEON_SMLSL_byelement: mnemonic = "smlsl"; l_instr = true; break;
- case NEON_UMLSL_byelement: mnemonic = "umlsl"; l_instr = true; break;
- case NEON_SQDMULL_byelement: mnemonic = "sqdmull"; l_instr = true; break;
- case NEON_SQDMLAL_byelement: mnemonic = "sqdmlal"; l_instr = true; break;
- case NEON_SQDMLSL_byelement: mnemonic = "sqdmlsl"; l_instr = true; break;
- case NEON_MUL_byelement: mnemonic = "mul"; break;
- case NEON_MLA_byelement: mnemonic = "mla"; break;
- case NEON_MLS_byelement: mnemonic = "mls"; break;
- case NEON_SQDMULH_byelement: mnemonic = "sqdmulh"; break;
- case NEON_SQRDMULH_byelement: mnemonic = "sqrdmulh"; break;
- default:
- switch (instr->Mask(NEONByIndexedElementFPMask)) {
- case NEON_FMUL_byelement: mnemonic = "fmul"; fp_instr = true; break;
- case NEON_FMLA_byelement: mnemonic = "fmla"; fp_instr = true; break;
- case NEON_FMLS_byelement: mnemonic = "fmls"; fp_instr = true; break;
- case NEON_FMULX_byelement: mnemonic = "fmulx"; fp_instr = true; break;
- }
- }
-
- if (l_instr) {
- Format(instr, nfd.Mnemonic(mnemonic), nfd.Substitute(form));
- } else if (fp_instr) {
- nfd.SetFormatMap(0, nfd.FPFormatMap());
- Format(instr, mnemonic, nfd.Substitute(form));
- } else {
- nfd.SetFormatMap(0, nfd.IntegerFormatMap());
- Format(instr, mnemonic, nfd.Substitute(form));
- }
-}
-
-
-void Disassembler::VisitNEONCopy(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(NEONCopy)";
-
- NEONFormatDecoder nfd(instr, NEONFormatDecoder::TriangularFormatMap(),
- NEONFormatDecoder::TriangularScalarFormatMap());
-
- if (instr->Mask(NEONCopyInsElementMask) == NEON_INS_ELEMENT) {
- mnemonic = "mov";
- nfd.SetFormatMap(0, nfd.TriangularScalarFormatMap());
- form = "'Vd.%s['IVInsIndex1], 'Vn.%s['IVInsIndex2]";
- } else if (instr->Mask(NEONCopyInsGeneralMask) == NEON_INS_GENERAL) {
- mnemonic = "mov";
- nfd.SetFormatMap(0, nfd.TriangularScalarFormatMap());
- if (nfd.GetVectorFormat() == kFormatD) {
- form = "'Vd.%s['IVInsIndex1], 'Xn";
- } else {
- form = "'Vd.%s['IVInsIndex1], 'Wn";
- }
- } else if (instr->Mask(NEONCopyUmovMask) == NEON_UMOV) {
- if (instr->Mask(NEON_Q) || ((instr->ImmNEON5() & 7) == 4)) {
- mnemonic = "mov";
- } else {
- mnemonic = "umov";
- }
- nfd.SetFormatMap(0, nfd.TriangularScalarFormatMap());
- if (nfd.GetVectorFormat() == kFormatD) {
- form = "'Xd, 'Vn.%s['IVInsIndex1]";
- } else {
- form = "'Wd, 'Vn.%s['IVInsIndex1]";
- }
- } else if (instr->Mask(NEONCopySmovMask) == NEON_SMOV) {
- mnemonic = "smov";
- nfd.SetFormatMap(0, nfd.TriangularScalarFormatMap());
- form = "'Rdq, 'Vn.%s['IVInsIndex1]";
- } else if (instr->Mask(NEONCopyDupElementMask) == NEON_DUP_ELEMENT) {
- mnemonic = "dup";
- form = "'Vd.%s, 'Vn.%s['IVInsIndex1]";
- } else if (instr->Mask(NEONCopyDupGeneralMask) == NEON_DUP_GENERAL) {
- mnemonic = "dup";
- if (nfd.GetVectorFormat() == kFormat2D) {
- form = "'Vd.%s, 'Xn";
- } else {
- form = "'Vd.%s, 'Wn";
- }
- }
- Format(instr, mnemonic, nfd.Substitute(form));
-}
-
-
-void Disassembler::VisitNEONExtract(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(NEONExtract)";
- NEONFormatDecoder nfd(instr, NEONFormatDecoder::LogicalFormatMap());
- if (instr->Mask(NEONExtractMask) == NEON_EXT) {
- mnemonic = "ext";
- form = "'Vd.%s, 'Vn.%s, 'Vm.%s, 'IVExtract";
- }
- Format(instr, mnemonic, nfd.Substitute(form));
-}
-
-
-void Disassembler::VisitNEONLoadStoreMultiStruct(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(NEONLoadStoreMultiStruct)";
- const char *form_1v = "{'Vt.%1$s}, ['Xns]";
- const char *form_2v = "{'Vt.%1$s, 'Vt2.%1$s}, ['Xns]";
- const char *form_3v = "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s}, ['Xns]";
- const char *form_4v = "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s, 'Vt4.%1$s}, ['Xns]";
- NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap());
-
- switch (instr->Mask(NEONLoadStoreMultiStructMask)) {
- case NEON_LD1_1v: mnemonic = "ld1"; form = form_1v; break;
- case NEON_LD1_2v: mnemonic = "ld1"; form = form_2v; break;
- case NEON_LD1_3v: mnemonic = "ld1"; form = form_3v; break;
- case NEON_LD1_4v: mnemonic = "ld1"; form = form_4v; break;
- case NEON_LD2: mnemonic = "ld2"; form = form_2v; break;
- case NEON_LD3: mnemonic = "ld3"; form = form_3v; break;
- case NEON_LD4: mnemonic = "ld4"; form = form_4v; break;
- case NEON_ST1_1v: mnemonic = "st1"; form = form_1v; break;
- case NEON_ST1_2v: mnemonic = "st1"; form = form_2v; break;
- case NEON_ST1_3v: mnemonic = "st1"; form = form_3v; break;
- case NEON_ST1_4v: mnemonic = "st1"; form = form_4v; break;
- case NEON_ST2: mnemonic = "st2"; form = form_2v; break;
- case NEON_ST3: mnemonic = "st3"; form = form_3v; break;
- case NEON_ST4: mnemonic = "st4"; form = form_4v; break;
- default: break;
- }
-
- Format(instr, mnemonic, nfd.Substitute(form));
-}
-
-
-void Disassembler::VisitNEONLoadStoreMultiStructPostIndex(
- const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(NEONLoadStoreMultiStructPostIndex)";
- const char *form_1v = "{'Vt.%1$s}, ['Xns], 'Xmr1";
- const char *form_2v = "{'Vt.%1$s, 'Vt2.%1$s}, ['Xns], 'Xmr2";
- const char *form_3v = "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s}, ['Xns], 'Xmr3";
- const char *form_4v =
- "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s, 'Vt4.%1$s}, ['Xns], 'Xmr4";
- NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap());
-
- switch (instr->Mask(NEONLoadStoreMultiStructPostIndexMask)) {
- case NEON_LD1_1v_post: mnemonic = "ld1"; form = form_1v; break;
- case NEON_LD1_2v_post: mnemonic = "ld1"; form = form_2v; break;
- case NEON_LD1_3v_post: mnemonic = "ld1"; form = form_3v; break;
- case NEON_LD1_4v_post: mnemonic = "ld1"; form = form_4v; break;
- case NEON_LD2_post: mnemonic = "ld2"; form = form_2v; break;
- case NEON_LD3_post: mnemonic = "ld3"; form = form_3v; break;
- case NEON_LD4_post: mnemonic = "ld4"; form = form_4v; break;
- case NEON_ST1_1v_post: mnemonic = "st1"; form = form_1v; break;
- case NEON_ST1_2v_post: mnemonic = "st1"; form = form_2v; break;
- case NEON_ST1_3v_post: mnemonic = "st1"; form = form_3v; break;
- case NEON_ST1_4v_post: mnemonic = "st1"; form = form_4v; break;
- case NEON_ST2_post: mnemonic = "st2"; form = form_2v; break;
- case NEON_ST3_post: mnemonic = "st3"; form = form_3v; break;
- case NEON_ST4_post: mnemonic = "st4"; form = form_4v; break;
- default: break;
- }
-
- Format(instr, mnemonic, nfd.Substitute(form));
-}
-
-
-void Disassembler::VisitNEONLoadStoreSingleStruct(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(NEONLoadStoreSingleStruct)";
-
- const char *form_1b = "{'Vt.b}['IVLSLane0], ['Xns]";
- const char *form_1h = "{'Vt.h}['IVLSLane1], ['Xns]";
- const char *form_1s = "{'Vt.s}['IVLSLane2], ['Xns]";
- const char *form_1d = "{'Vt.d}['IVLSLane3], ['Xns]";
- NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap());
-
- switch (instr->Mask(NEONLoadStoreSingleStructMask)) {
- case NEON_LD1_b: mnemonic = "ld1"; form = form_1b; break;
- case NEON_LD1_h: mnemonic = "ld1"; form = form_1h; break;
- case NEON_LD1_s:
- mnemonic = "ld1";
- VIXL_STATIC_ASSERT((NEON_LD1_s | (1 << NEONLSSize_offset)) == NEON_LD1_d);
- form = ((instr->NEONLSSize() & 1) == 0) ? form_1s : form_1d;
- break;
- case NEON_ST1_b: mnemonic = "st1"; form = form_1b; break;
- case NEON_ST1_h: mnemonic = "st1"; form = form_1h; break;
- case NEON_ST1_s:
- mnemonic = "st1";
- VIXL_STATIC_ASSERT((NEON_ST1_s | (1 << NEONLSSize_offset)) == NEON_ST1_d);
- form = ((instr->NEONLSSize() & 1) == 0) ? form_1s : form_1d;
- break;
- case NEON_LD1R:
- mnemonic = "ld1r";
- form = "{'Vt.%s}, ['Xns]";
- break;
- case NEON_LD2_b:
- case NEON_ST2_b:
- mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
- form = "{'Vt.b, 'Vt2.b}['IVLSLane0], ['Xns]";
- break;
- case NEON_LD2_h:
- case NEON_ST2_h:
- mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
- form = "{'Vt.h, 'Vt2.h}['IVLSLane1], ['Xns]";
- break;
- case NEON_LD2_s:
- case NEON_ST2_s:
- VIXL_STATIC_ASSERT((NEON_ST2_s | (1 << NEONLSSize_offset)) == NEON_ST2_d);
- VIXL_STATIC_ASSERT((NEON_LD2_s | (1 << NEONLSSize_offset)) == NEON_LD2_d);
- mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
- if ((instr->NEONLSSize() & 1) == 0)
- form = "{'Vt.s, 'Vt2.s}['IVLSLane2], ['Xns]";
- else
- form = "{'Vt.d, 'Vt2.d}['IVLSLane3], ['Xns]";
- break;
- case NEON_LD2R:
- mnemonic = "ld2r";
- form = "{'Vt.%s, 'Vt2.%s}, ['Xns]";
- break;
- case NEON_LD3_b:
- case NEON_ST3_b:
- mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
- form = "{'Vt.b, 'Vt2.b, 'Vt3.b}['IVLSLane0], ['Xns]";
- break;
- case NEON_LD3_h:
- case NEON_ST3_h:
- mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
- form = "{'Vt.h, 'Vt2.h, 'Vt3.h}['IVLSLane1], ['Xns]";
- break;
- case NEON_LD3_s:
- case NEON_ST3_s:
- mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
- if ((instr->NEONLSSize() & 1) == 0)
- form = "{'Vt.s, 'Vt2.s, 'Vt3.s}['IVLSLane2], ['Xns]";
- else
- form = "{'Vt.d, 'Vt2.d, 'Vt3.d}['IVLSLane3], ['Xns]";
- break;
- case NEON_LD3R:
- mnemonic = "ld3r";
- form = "{'Vt.%s, 'Vt2.%s, 'Vt3.%s}, ['Xns]";
- break;
- case NEON_LD4_b:
- case NEON_ST4_b:
- mnemonic = (instr->LdStXLoad() == 1) ? "ld4" : "st4";
- form = "{'Vt.b, 'Vt2.b, 'Vt3.b, 'Vt4.b}['IVLSLane0], ['Xns]";
- break;
- case NEON_LD4_h:
- case NEON_ST4_h:
- mnemonic = (instr->LdStXLoad() == 1) ? "ld4" : "st4";
- form = "{'Vt.h, 'Vt2.h, 'Vt3.h, 'Vt4.h}['IVLSLane1], ['Xns]";
- break;
- case NEON_LD4_s:
- case NEON_ST4_s:
- VIXL_STATIC_ASSERT((NEON_LD4_s | (1 << NEONLSSize_offset)) == NEON_LD4_d);
- VIXL_STATIC_ASSERT((NEON_ST4_s | (1 << NEONLSSize_offset)) == NEON_ST4_d);
- mnemonic = (instr->LdStXLoad() == 1) ? "ld4" : "st4";
- if ((instr->NEONLSSize() & 1) == 0)
- form = "{'Vt.s, 'Vt2.s, 'Vt3.s, 'Vt4.s}['IVLSLane2], ['Xns]";
- else
- form = "{'Vt.d, 'Vt2.d, 'Vt3.d, 'Vt4.d}['IVLSLane3], ['Xns]";
- break;
- case NEON_LD4R:
- mnemonic = "ld4r";
- form = "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s, 'Vt4.%1$s}, ['Xns]";
- break;
- default: break;
- }
-
- Format(instr, mnemonic, nfd.Substitute(form));
-}
-
-
-void Disassembler::VisitNEONLoadStoreSingleStructPostIndex(
- const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(NEONLoadStoreSingleStructPostIndex)";
-
- const char *form_1b = "{'Vt.b}['IVLSLane0], ['Xns], 'Xmb1";
- const char *form_1h = "{'Vt.h}['IVLSLane1], ['Xns], 'Xmb2";
- const char *form_1s = "{'Vt.s}['IVLSLane2], ['Xns], 'Xmb4";
- const char *form_1d = "{'Vt.d}['IVLSLane3], ['Xns], 'Xmb8";
- NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap());
-
- switch (instr->Mask(NEONLoadStoreSingleStructPostIndexMask)) {
- case NEON_LD1_b_post: mnemonic = "ld1"; form = form_1b; break;
- case NEON_LD1_h_post: mnemonic = "ld1"; form = form_1h; break;
- case NEON_LD1_s_post:
- mnemonic = "ld1";
- VIXL_STATIC_ASSERT((NEON_LD1_s | (1 << NEONLSSize_offset)) == NEON_LD1_d);
- form = ((instr->NEONLSSize() & 1) == 0) ? form_1s : form_1d;
- break;
- case NEON_ST1_b_post: mnemonic = "st1"; form = form_1b; break;
- case NEON_ST1_h_post: mnemonic = "st1"; form = form_1h; break;
- case NEON_ST1_s_post:
- mnemonic = "st1";
- VIXL_STATIC_ASSERT((NEON_ST1_s | (1 << NEONLSSize_offset)) == NEON_ST1_d);
- form = ((instr->NEONLSSize() & 1) == 0) ? form_1s : form_1d;
- break;
- case NEON_LD1R_post:
- mnemonic = "ld1r";
- form = "{'Vt.%s}, ['Xns], 'Xmz1";
- break;
- case NEON_LD2_b_post:
- case NEON_ST2_b_post:
- mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
- form = "{'Vt.b, 'Vt2.b}['IVLSLane0], ['Xns], 'Xmb2";
- break;
- case NEON_ST2_h_post:
- case NEON_LD2_h_post:
- mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
- form = "{'Vt.h, 'Vt2.h}['IVLSLane1], ['Xns], 'Xmb4";
- break;
- case NEON_LD2_s_post:
- case NEON_ST2_s_post:
- mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
- if ((instr->NEONLSSize() & 1) == 0)
- form = "{'Vt.s, 'Vt2.s}['IVLSLane2], ['Xns], 'Xmb8";
- else
- form = "{'Vt.d, 'Vt2.d}['IVLSLane3], ['Xns], 'Xmb16";
- break;
- case NEON_LD2R_post:
- mnemonic = "ld2r";
- form = "{'Vt.%s, 'Vt2.%s}, ['Xns], 'Xmz2";
- break;
- case NEON_LD3_b_post:
- case NEON_ST3_b_post:
- mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
- form = "{'Vt.b, 'Vt2.b, 'Vt3.b}['IVLSLane0], ['Xns], 'Xmb3";
- break;
- case NEON_LD3_h_post:
- case NEON_ST3_h_post:
- mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
- form = "{'Vt.h, 'Vt2.h, 'Vt3.h}['IVLSLane1], ['Xns], 'Xmb6";
- break;
- case NEON_LD3_s_post:
- case NEON_ST3_s_post:
- mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
- if ((instr->NEONLSSize() & 1) == 0)
- form = "{'Vt.s, 'Vt2.s, 'Vt3.s}['IVLSLane2], ['Xns], 'Xmb12";
- else
- form = "{'Vt.d, 'Vt2.d, 'Vt3.d}['IVLSLane3], ['Xns], 'Xmr3";
- break;
- case NEON_LD3R_post:
- mnemonic = "ld3r";
- form = "{'Vt.%s, 'Vt2.%s, 'Vt3.%s}, ['Xns], 'Xmz3";
- break;
- case NEON_LD4_b_post:
- case NEON_ST4_b_post:
- mnemonic = (instr->LdStXLoad() == 1) ? "ld4" : "st4";
- form = "{'Vt.b, 'Vt2.b, 'Vt3.b, 'Vt4.b}['IVLSLane0], ['Xns], 'Xmb4";
- break;
- case NEON_LD4_h_post:
- case NEON_ST4_h_post:
- mnemonic = (instr->LdStXLoad()) == 1 ? "ld4" : "st4";
- form = "{'Vt.h, 'Vt2.h, 'Vt3.h, 'Vt4.h}['IVLSLane1], ['Xns], 'Xmb8";
- break;
- case NEON_LD4_s_post:
- case NEON_ST4_s_post:
- mnemonic = (instr->LdStXLoad() == 1) ? "ld4" : "st4";
- if ((instr->NEONLSSize() & 1) == 0)
- form = "{'Vt.s, 'Vt2.s, 'Vt3.s, 'Vt4.s}['IVLSLane2], ['Xns], 'Xmb16";
- else
- form = "{'Vt.d, 'Vt2.d, 'Vt3.d, 'Vt4.d}['IVLSLane3], ['Xns], 'Xmb32";
- break;
- case NEON_LD4R_post:
- mnemonic = "ld4r";
- form = "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s, 'Vt4.%1$s}, ['Xns], 'Xmz4";
- break;
- default: break;
- }
-
- Format(instr, mnemonic, nfd.Substitute(form));
-}
-
-
-void Disassembler::VisitNEONModifiedImmediate(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'Vt.%s, 'IVMIImm8, lsl 'IVMIShiftAmt1";
-
- int cmode = instr->NEONCmode();
- int cmode_3 = (cmode >> 3) & 1;
- int cmode_2 = (cmode >> 2) & 1;
- int cmode_1 = (cmode >> 1) & 1;
- int cmode_0 = cmode & 1;
- int q = instr->NEONQ();
- int op = instr->NEONModImmOp();
-
- static const NEONFormatMap map_b = { {30}, {NF_8B, NF_16B} };
- static const NEONFormatMap map_h = { {30}, {NF_4H, NF_8H} };
- static const NEONFormatMap map_s = { {30}, {NF_2S, NF_4S} };
- NEONFormatDecoder nfd(instr, &map_b);
-
- if (cmode_3 == 0) {
- if (cmode_0 == 0) {
- mnemonic = (op == 1) ? "mvni" : "movi";
- } else { // cmode<0> == '1'.
- mnemonic = (op == 1) ? "bic" : "orr";
- }
- nfd.SetFormatMap(0, &map_s);
- } else { // cmode<3> == '1'.
- if (cmode_2 == 0) {
- if (cmode_0 == 0) {
- mnemonic = (op == 1) ? "mvni" : "movi";
- } else { // cmode<0> == '1'.
- mnemonic = (op == 1) ? "bic" : "orr";
- }
- nfd.SetFormatMap(0, &map_h);
- } else { // cmode<2> == '1'.
- if (cmode_1 == 0) {
- mnemonic = (op == 1) ? "mvni" : "movi";
- form = "'Vt.%s, 'IVMIImm8, msl 'IVMIShiftAmt2";
- nfd.SetFormatMap(0, &map_s);
- } else { // cmode<1> == '1'.
- if (cmode_0 == 0) {
- mnemonic = "movi";
- if (op == 0) {
- form = "'Vt.%s, 'IVMIImm8";
- } else {
- form = (q == 0) ? "'Dd, 'IVMIImm" : "'Vt.2d, 'IVMIImm";
- }
- } else { // cmode<0> == '1'
- mnemonic = "fmov";
- if (op == 0) {
- form = "'Vt.%s, 'IVMIImmFPSingle";
- nfd.SetFormatMap(0, &map_s);
- } else {
- if (q == 1) {
- form = "'Vt.2d, 'IVMIImmFPDouble";
- }
- }
- }
- }
- }
- }
- Format(instr, mnemonic, nfd.Substitute(form));
-}
-
-
-void Disassembler::VisitNEONScalar2RegMisc(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "%sd, %sn";
- const char *form_0 = "%sd, %sn, #0";
- const char *form_fp0 = "%sd, %sn, #0.0";
-
- NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap());
-
- if (instr->Mask(NEON2RegMiscOpcode) <= NEON_NEG_scalar_opcode) {
- // These instructions all use a two bit size field, except NOT and RBIT,
- // which use the field to encode the operation.
- switch (instr->Mask(NEONScalar2RegMiscMask)) {
- case NEON_CMGT_zero_scalar: mnemonic = "cmgt"; form = form_0; break;
- case NEON_CMGE_zero_scalar: mnemonic = "cmge"; form = form_0; break;
- case NEON_CMLE_zero_scalar: mnemonic = "cmle"; form = form_0; break;
- case NEON_CMLT_zero_scalar: mnemonic = "cmlt"; form = form_0; break;
- case NEON_CMEQ_zero_scalar: mnemonic = "cmeq"; form = form_0; break;
- case NEON_NEG_scalar: mnemonic = "neg"; break;
- case NEON_SQNEG_scalar: mnemonic = "sqneg"; break;
- case NEON_ABS_scalar: mnemonic = "abs"; break;
- case NEON_SQABS_scalar: mnemonic = "sqabs"; break;
- case NEON_SUQADD_scalar: mnemonic = "suqadd"; break;
- case NEON_USQADD_scalar: mnemonic = "usqadd"; break;
- default: form = "(NEONScalar2RegMisc)";
- }
- } else {
- // These instructions all use a one bit size field, except SQXTUN, SQXTN
- // and UQXTN, which use a two bit size field.
- nfd.SetFormatMaps(nfd.FPScalarFormatMap());
- switch (instr->Mask(NEONScalar2RegMiscFPMask)) {
- case NEON_FRSQRTE_scalar: mnemonic = "frsqrte"; break;
- case NEON_FRECPE_scalar: mnemonic = "frecpe"; break;
- case NEON_SCVTF_scalar: mnemonic = "scvtf"; break;
- case NEON_UCVTF_scalar: mnemonic = "ucvtf"; break;
- case NEON_FCMGT_zero_scalar: mnemonic = "fcmgt"; form = form_fp0; break;
- case NEON_FCMGE_zero_scalar: mnemonic = "fcmge"; form = form_fp0; break;
- case NEON_FCMLE_zero_scalar: mnemonic = "fcmle"; form = form_fp0; break;
- case NEON_FCMLT_zero_scalar: mnemonic = "fcmlt"; form = form_fp0; break;
- case NEON_FCMEQ_zero_scalar: mnemonic = "fcmeq"; form = form_fp0; break;
- case NEON_FRECPX_scalar: mnemonic = "frecpx"; break;
- case NEON_FCVTNS_scalar: mnemonic = "fcvtns"; break;
- case NEON_FCVTNU_scalar: mnemonic = "fcvtnu"; break;
- case NEON_FCVTPS_scalar: mnemonic = "fcvtps"; break;
- case NEON_FCVTPU_scalar: mnemonic = "fcvtpu"; break;
- case NEON_FCVTMS_scalar: mnemonic = "fcvtms"; break;
- case NEON_FCVTMU_scalar: mnemonic = "fcvtmu"; break;
- case NEON_FCVTZS_scalar: mnemonic = "fcvtzs"; break;
- case NEON_FCVTZU_scalar: mnemonic = "fcvtzu"; break;
- case NEON_FCVTAS_scalar: mnemonic = "fcvtas"; break;
- case NEON_FCVTAU_scalar: mnemonic = "fcvtau"; break;
- case NEON_FCVTXN_scalar:
- nfd.SetFormatMap(0, nfd.LongScalarFormatMap());
- mnemonic = "fcvtxn";
- break;
- default:
- nfd.SetFormatMap(0, nfd.ScalarFormatMap());
- nfd.SetFormatMap(1, nfd.LongScalarFormatMap());
- switch (instr->Mask(NEONScalar2RegMiscMask)) {
- case NEON_SQXTN_scalar: mnemonic = "sqxtn"; break;
- case NEON_UQXTN_scalar: mnemonic = "uqxtn"; break;
- case NEON_SQXTUN_scalar: mnemonic = "sqxtun"; break;
- default: form = "(NEONScalar2RegMisc)";
- }
- }
- }
- Format(instr, mnemonic, nfd.SubstitutePlaceholders(form));
-}
-
-
-void Disassembler::VisitNEONScalar3Diff(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "%sd, %sn, %sm";
- NEONFormatDecoder nfd(instr, NEONFormatDecoder::LongScalarFormatMap(),
- NEONFormatDecoder::ScalarFormatMap());
-
- switch (instr->Mask(NEONScalar3DiffMask)) {
- case NEON_SQDMLAL_scalar : mnemonic = "sqdmlal"; break;
- case NEON_SQDMLSL_scalar : mnemonic = "sqdmlsl"; break;
- case NEON_SQDMULL_scalar : mnemonic = "sqdmull"; break;
- default: form = "(NEONScalar3Diff)";
- }
- Format(instr, mnemonic, nfd.SubstitutePlaceholders(form));
-}
-
-
-void Disassembler::VisitNEONScalar3Same(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "%sd, %sn, %sm";
- NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap());
-
- if (instr->Mask(NEONScalar3SameFPFMask) == NEONScalar3SameFPFixed) {
- nfd.SetFormatMaps(nfd.FPScalarFormatMap());
- switch (instr->Mask(NEONScalar3SameFPMask)) {
- case NEON_FACGE_scalar: mnemonic = "facge"; break;
- case NEON_FACGT_scalar: mnemonic = "facgt"; break;
- case NEON_FCMEQ_scalar: mnemonic = "fcmeq"; break;
- case NEON_FCMGE_scalar: mnemonic = "fcmge"; break;
- case NEON_FCMGT_scalar: mnemonic = "fcmgt"; break;
- case NEON_FMULX_scalar: mnemonic = "fmulx"; break;
- case NEON_FRECPS_scalar: mnemonic = "frecps"; break;
- case NEON_FRSQRTS_scalar: mnemonic = "frsqrts"; break;
- case NEON_FABD_scalar: mnemonic = "fabd"; break;
- default: form = "(NEONScalar3Same)";
- }
- } else {
- switch (instr->Mask(NEONScalar3SameMask)) {
- case NEON_ADD_scalar: mnemonic = "add"; break;
- case NEON_SUB_scalar: mnemonic = "sub"; break;
- case NEON_CMEQ_scalar: mnemonic = "cmeq"; break;
- case NEON_CMGE_scalar: mnemonic = "cmge"; break;
- case NEON_CMGT_scalar: mnemonic = "cmgt"; break;
- case NEON_CMHI_scalar: mnemonic = "cmhi"; break;
- case NEON_CMHS_scalar: mnemonic = "cmhs"; break;
- case NEON_CMTST_scalar: mnemonic = "cmtst"; break;
- case NEON_UQADD_scalar: mnemonic = "uqadd"; break;
- case NEON_SQADD_scalar: mnemonic = "sqadd"; break;
- case NEON_UQSUB_scalar: mnemonic = "uqsub"; break;
- case NEON_SQSUB_scalar: mnemonic = "sqsub"; break;
- case NEON_USHL_scalar: mnemonic = "ushl"; break;
- case NEON_SSHL_scalar: mnemonic = "sshl"; break;
- case NEON_UQSHL_scalar: mnemonic = "uqshl"; break;
- case NEON_SQSHL_scalar: mnemonic = "sqshl"; break;
- case NEON_URSHL_scalar: mnemonic = "urshl"; break;
- case NEON_SRSHL_scalar: mnemonic = "srshl"; break;
- case NEON_UQRSHL_scalar: mnemonic = "uqrshl"; break;
- case NEON_SQRSHL_scalar: mnemonic = "sqrshl"; break;
- case NEON_SQDMULH_scalar: mnemonic = "sqdmulh"; break;
- case NEON_SQRDMULH_scalar: mnemonic = "sqrdmulh"; break;
- default: form = "(NEONScalar3Same)";
- }
- }
- Format(instr, mnemonic, nfd.SubstitutePlaceholders(form));
-}
-
-
-void Disassembler::VisitNEONScalarByIndexedElement(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "%sd, %sn, 'Ve.%s['IVByElemIndex]";
- NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap());
- bool long_instr = false;
-
- switch (instr->Mask(NEONScalarByIndexedElementMask)) {
- case NEON_SQDMULL_byelement_scalar:
- mnemonic = "sqdmull";
- long_instr = true;
- break;
- case NEON_SQDMLAL_byelement_scalar:
- mnemonic = "sqdmlal";
- long_instr = true;
- break;
- case NEON_SQDMLSL_byelement_scalar:
- mnemonic = "sqdmlsl";
- long_instr = true;
- break;
- case NEON_SQDMULH_byelement_scalar:
- mnemonic = "sqdmulh";
- break;
- case NEON_SQRDMULH_byelement_scalar:
- mnemonic = "sqrdmulh";
- break;
- default:
- nfd.SetFormatMap(0, nfd.FPScalarFormatMap());
- switch (instr->Mask(NEONScalarByIndexedElementFPMask)) {
- case NEON_FMUL_byelement_scalar: mnemonic = "fmul"; break;
- case NEON_FMLA_byelement_scalar: mnemonic = "fmla"; break;
- case NEON_FMLS_byelement_scalar: mnemonic = "fmls"; break;
- case NEON_FMULX_byelement_scalar: mnemonic = "fmulx"; break;
- default: form = "(NEONScalarByIndexedElement)";
- }
- }
-
- if (long_instr) {
- nfd.SetFormatMap(0, nfd.LongScalarFormatMap());
- }
-
- Format(instr, mnemonic, nfd.Substitute(
- form, nfd.kPlaceholder, nfd.kPlaceholder, nfd.kFormat));
-}
-
-
-void Disassembler::VisitNEONScalarCopy(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(NEONScalarCopy)";
-
- NEONFormatDecoder nfd(instr, NEONFormatDecoder::TriangularScalarFormatMap());
-
- if (instr->Mask(NEONScalarCopyMask) == NEON_DUP_ELEMENT_scalar) {
- mnemonic = "mov";
- form = "%sd, 'Vn.%s['IVInsIndex1]";
- }
-
- Format(instr, mnemonic, nfd.Substitute(form, nfd.kPlaceholder, nfd.kFormat));
-}
-
-
-void Disassembler::VisitNEONScalarPairwise(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "%sd, 'Vn.%s";
- NEONFormatMap map = { {22}, {NF_2S, NF_2D} };
- NEONFormatDecoder nfd(instr, NEONFormatDecoder::FPScalarFormatMap(), &map);
-
- switch (instr->Mask(NEONScalarPairwiseMask)) {
- case NEON_ADDP_scalar: mnemonic = "addp"; break;
- case NEON_FADDP_scalar: mnemonic = "faddp"; break;
- case NEON_FMAXP_scalar: mnemonic = "fmaxp"; break;
- case NEON_FMAXNMP_scalar: mnemonic = "fmaxnmp"; break;
- case NEON_FMINP_scalar: mnemonic = "fminp"; break;
- case NEON_FMINNMP_scalar: mnemonic = "fminnmp"; break;
- default: form = "(NEONScalarPairwise)";
- }
- Format(instr, mnemonic, nfd.Substitute(form,
- NEONFormatDecoder::kPlaceholder, NEONFormatDecoder::kFormat));
-}
-
-
-void Disassembler::VisitNEONScalarShiftImmediate(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "%sd, %sn, 'Is1";
- const char *form_2 = "%sd, %sn, 'Is2";
-
- static const NEONFormatMap map_shift = {
- {22, 21, 20, 19},
- {NF_UNDEF, NF_B, NF_H, NF_H, NF_S, NF_S, NF_S, NF_S,
- NF_D, NF_D, NF_D, NF_D, NF_D, NF_D, NF_D, NF_D}
- };
- static const NEONFormatMap map_shift_narrow = {
- {21, 20, 19},
- {NF_UNDEF, NF_H, NF_S, NF_S, NF_D, NF_D, NF_D, NF_D}
- };
- NEONFormatDecoder nfd(instr, &map_shift);
-
- if (instr->ImmNEONImmh()) { // immh has to be non-zero.
- switch (instr->Mask(NEONScalarShiftImmediateMask)) {
- case NEON_FCVTZU_imm_scalar: mnemonic = "fcvtzu"; break;
- case NEON_FCVTZS_imm_scalar: mnemonic = "fcvtzs"; break;
- case NEON_SCVTF_imm_scalar: mnemonic = "scvtf"; break;
- case NEON_UCVTF_imm_scalar: mnemonic = "ucvtf"; break;
- case NEON_SRI_scalar: mnemonic = "sri"; break;
- case NEON_SSHR_scalar: mnemonic = "sshr"; break;
- case NEON_USHR_scalar: mnemonic = "ushr"; break;
- case NEON_SRSHR_scalar: mnemonic = "srshr"; break;
- case NEON_URSHR_scalar: mnemonic = "urshr"; break;
- case NEON_SSRA_scalar: mnemonic = "ssra"; break;
- case NEON_USRA_scalar: mnemonic = "usra"; break;
- case NEON_SRSRA_scalar: mnemonic = "srsra"; break;
- case NEON_URSRA_scalar: mnemonic = "ursra"; break;
- case NEON_SHL_scalar: mnemonic = "shl"; form = form_2; break;
- case NEON_SLI_scalar: mnemonic = "sli"; form = form_2; break;
- case NEON_SQSHLU_scalar: mnemonic = "sqshlu"; form = form_2; break;
- case NEON_SQSHL_imm_scalar: mnemonic = "sqshl"; form = form_2; break;
- case NEON_UQSHL_imm_scalar: mnemonic = "uqshl"; form = form_2; break;
- case NEON_UQSHRN_scalar:
- mnemonic = "uqshrn";
- nfd.SetFormatMap(1, &map_shift_narrow);
- break;
- case NEON_UQRSHRN_scalar:
- mnemonic = "uqrshrn";
- nfd.SetFormatMap(1, &map_shift_narrow);
- break;
- case NEON_SQSHRN_scalar:
- mnemonic = "sqshrn";
- nfd.SetFormatMap(1, &map_shift_narrow);
- break;
- case NEON_SQRSHRN_scalar:
- mnemonic = "sqrshrn";
- nfd.SetFormatMap(1, &map_shift_narrow);
- break;
- case NEON_SQSHRUN_scalar:
- mnemonic = "sqshrun";
- nfd.SetFormatMap(1, &map_shift_narrow);
- break;
- case NEON_SQRSHRUN_scalar:
- mnemonic = "sqrshrun";
- nfd.SetFormatMap(1, &map_shift_narrow);
- break;
- default:
- form = "(NEONScalarShiftImmediate)";
- }
- } else {
- form = "(NEONScalarShiftImmediate)";
- }
- Format(instr, mnemonic, nfd.SubstitutePlaceholders(form));
-}
-
-
-void Disassembler::VisitNEONShiftImmediate(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'Vd.%s, 'Vn.%s, 'Is1";
- const char *form_shift_2 = "'Vd.%s, 'Vn.%s, 'Is2";
- const char *form_xtl = "'Vd.%s, 'Vn.%s";
-
- // 0001->8H, 001x->4S, 01xx->2D, all others undefined.
- static const NEONFormatMap map_shift_ta = {
- {22, 21, 20, 19},
- {NF_UNDEF, NF_8H, NF_4S, NF_4S, NF_2D, NF_2D, NF_2D, NF_2D}
- };
-
- // 00010->8B, 00011->16B, 001x0->4H, 001x1->8H,
- // 01xx0->2S, 01xx1->4S, 1xxx1->2D, all others undefined.
- static const NEONFormatMap map_shift_tb = {
- {22, 21, 20, 19, 30},
- {NF_UNDEF, NF_UNDEF, NF_8B, NF_16B, NF_4H, NF_8H, NF_4H, NF_8H,
- NF_2S, NF_4S, NF_2S, NF_4S, NF_2S, NF_4S, NF_2S, NF_4S,
- NF_UNDEF, NF_2D, NF_UNDEF, NF_2D, NF_UNDEF, NF_2D, NF_UNDEF, NF_2D,
- NF_UNDEF, NF_2D, NF_UNDEF, NF_2D, NF_UNDEF, NF_2D, NF_UNDEF, NF_2D}
- };
-
- NEONFormatDecoder nfd(instr, &map_shift_tb);
-
- if (instr->ImmNEONImmh()) { // immh has to be non-zero.
- switch (instr->Mask(NEONShiftImmediateMask)) {
- case NEON_SQSHLU: mnemonic = "sqshlu"; form = form_shift_2; break;
- case NEON_SQSHL_imm: mnemonic = "sqshl"; form = form_shift_2; break;
- case NEON_UQSHL_imm: mnemonic = "uqshl"; form = form_shift_2; break;
- case NEON_SHL: mnemonic = "shl"; form = form_shift_2; break;
- case NEON_SLI: mnemonic = "sli"; form = form_shift_2; break;
- case NEON_SCVTF_imm: mnemonic = "scvtf"; break;
- case NEON_UCVTF_imm: mnemonic = "ucvtf"; break;
- case NEON_FCVTZU_imm: mnemonic = "fcvtzu"; break;
- case NEON_FCVTZS_imm: mnemonic = "fcvtzs"; break;
- case NEON_SRI: mnemonic = "sri"; break;
- case NEON_SSHR: mnemonic = "sshr"; break;
- case NEON_USHR: mnemonic = "ushr"; break;
- case NEON_SRSHR: mnemonic = "srshr"; break;
- case NEON_URSHR: mnemonic = "urshr"; break;
- case NEON_SSRA: mnemonic = "ssra"; break;
- case NEON_USRA: mnemonic = "usra"; break;
- case NEON_SRSRA: mnemonic = "srsra"; break;
- case NEON_URSRA: mnemonic = "ursra"; break;
- case NEON_SHRN:
- mnemonic = instr->Mask(NEON_Q) ? "shrn2" : "shrn";
- nfd.SetFormatMap(1, &map_shift_ta);
- break;
- case NEON_RSHRN:
- mnemonic = instr->Mask(NEON_Q) ? "rshrn2" : "rshrn";
- nfd.SetFormatMap(1, &map_shift_ta);
- break;
- case NEON_UQSHRN:
- mnemonic = instr->Mask(NEON_Q) ? "uqshrn2" : "uqshrn";
- nfd.SetFormatMap(1, &map_shift_ta);
- break;
- case NEON_UQRSHRN:
- mnemonic = instr->Mask(NEON_Q) ? "uqrshrn2" : "uqrshrn";
- nfd.SetFormatMap(1, &map_shift_ta);
- break;
- case NEON_SQSHRN:
- mnemonic = instr->Mask(NEON_Q) ? "sqshrn2" : "sqshrn";
- nfd.SetFormatMap(1, &map_shift_ta);
- break;
- case NEON_SQRSHRN:
- mnemonic = instr->Mask(NEON_Q) ? "sqrshrn2" : "sqrshrn";
- nfd.SetFormatMap(1, &map_shift_ta);
- break;
- case NEON_SQSHRUN:
- mnemonic = instr->Mask(NEON_Q) ? "sqshrun2" : "sqshrun";
- nfd.SetFormatMap(1, &map_shift_ta);
- break;
- case NEON_SQRSHRUN:
- mnemonic = instr->Mask(NEON_Q) ? "sqrshrun2" : "sqrshrun";
- nfd.SetFormatMap(1, &map_shift_ta);
- break;
- case NEON_SSHLL:
- nfd.SetFormatMap(0, &map_shift_ta);
- if (instr->ImmNEONImmb() == 0 &&
- CountSetBits(instr->ImmNEONImmh(), 32) == 1) { // sxtl variant.
- form = form_xtl;
- mnemonic = instr->Mask(NEON_Q) ? "sxtl2" : "sxtl";
- } else { // sshll variant.
- form = form_shift_2;
- mnemonic = instr->Mask(NEON_Q) ? "sshll2" : "sshll";
- }
- break;
- case NEON_USHLL:
- nfd.SetFormatMap(0, &map_shift_ta);
- if (instr->ImmNEONImmb() == 0 &&
- CountSetBits(instr->ImmNEONImmh(), 32) == 1) { // uxtl variant.
- form = form_xtl;
- mnemonic = instr->Mask(NEON_Q) ? "uxtl2" : "uxtl";
- } else { // ushll variant.
- form = form_shift_2;
- mnemonic = instr->Mask(NEON_Q) ? "ushll2" : "ushll";
- }
- break;
- default: form = "(NEONShiftImmediate)";
- }
- } else {
- form = "(NEONShiftImmediate)";
- }
- Format(instr, mnemonic, nfd.Substitute(form));
-}
-
-
-void Disassembler::VisitNEONTable(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(NEONTable)";
- const char form_1v[] = "'Vd.%%s, {'Vn.16b}, 'Vm.%%s";
- const char form_2v[] = "'Vd.%%s, {'Vn.16b, v%d.16b}, 'Vm.%%s";
- const char form_3v[] = "'Vd.%%s, {'Vn.16b, v%d.16b, v%d.16b}, 'Vm.%%s";
- const char form_4v[] =
- "'Vd.%%s, {'Vn.16b, v%d.16b, v%d.16b, v%d.16b}, 'Vm.%%s";
- static const NEONFormatMap map_b = { {30}, {NF_8B, NF_16B} };
- NEONFormatDecoder nfd(instr, &map_b);
-
- switch (instr->Mask(NEONTableMask)) {
- case NEON_TBL_1v: mnemonic = "tbl"; form = form_1v; break;
- case NEON_TBL_2v: mnemonic = "tbl"; form = form_2v; break;
- case NEON_TBL_3v: mnemonic = "tbl"; form = form_3v; break;
- case NEON_TBL_4v: mnemonic = "tbl"; form = form_4v; break;
- case NEON_TBX_1v: mnemonic = "tbx"; form = form_1v; break;
- case NEON_TBX_2v: mnemonic = "tbx"; form = form_2v; break;
- case NEON_TBX_3v: mnemonic = "tbx"; form = form_3v; break;
- case NEON_TBX_4v: mnemonic = "tbx"; form = form_4v; break;
- default: break;
- }
-
- char re_form[sizeof(form_4v) + 6];
- int reg_num = instr->Rn();
- snprintf(re_form, sizeof(re_form), form,
- (reg_num + 1) % kNumberOfVRegisters,
- (reg_num + 2) % kNumberOfVRegisters,
- (reg_num + 3) % kNumberOfVRegisters);
-
- Format(instr, mnemonic, nfd.Substitute(re_form));
-}
-
-
-void Disassembler::VisitNEONPerm(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'Vd.%s, 'Vn.%s, 'Vm.%s";
- NEONFormatDecoder nfd(instr);
-
- switch (instr->Mask(NEONPermMask)) {
- case NEON_TRN1: mnemonic = "trn1"; break;
- case NEON_TRN2: mnemonic = "trn2"; break;
- case NEON_UZP1: mnemonic = "uzp1"; break;
- case NEON_UZP2: mnemonic = "uzp2"; break;
- case NEON_ZIP1: mnemonic = "zip1"; break;
- case NEON_ZIP2: mnemonic = "zip2"; break;
- default: form = "(NEONPerm)";
- }
- Format(instr, mnemonic, nfd.Substitute(form));
-}
-
-
-void Disassembler::VisitUnimplemented(const Instruction* instr) {
- Format(instr, "unimplemented", "(Unimplemented)");
-}
-
-
-void Disassembler::VisitUnallocated(const Instruction* instr) {
- Format(instr, "unallocated", "(Unallocated)");
-}
-
-
-void Disassembler::ProcessOutput(const Instruction* /*instr*/) {
- // The base disasm does nothing more than disassembling into a buffer.
-}
-
-
-void Disassembler::AppendRegisterNameToOutput(const Instruction* instr,
- const CPURegister& reg) {
- USE(instr);
- VIXL_ASSERT(reg.IsValid());
- char reg_char;
-
- if (reg.IsRegister()) {
- reg_char = reg.Is64Bits() ? 'x' : 'w';
- } else {
- VIXL_ASSERT(reg.IsVRegister());
- switch (reg.SizeInBits()) {
- case kBRegSize: reg_char = 'b'; break;
- case kHRegSize: reg_char = 'h'; break;
- case kSRegSize: reg_char = 's'; break;
- case kDRegSize: reg_char = 'd'; break;
- default:
- VIXL_ASSERT(reg.Is128Bits());
- reg_char = 'q';
- }
- }
-
- if (reg.IsVRegister() || !(reg.Aliases(sp) || reg.Aliases(xzr))) {
- // A core or scalar/vector register: [wx]0 - 30, [bhsdq]0 - 31.
- AppendToOutput("%c%d", reg_char, reg.code());
- } else if (reg.Aliases(sp)) {
- // Disassemble w31/x31 as stack pointer wsp/sp.
- AppendToOutput("%s", reg.Is64Bits() ? "sp" : "wsp");
- } else {
- // Disassemble w31/x31 as zero register wzr/xzr.
- AppendToOutput("%czr", reg_char);
- }
-}
-
-
-void Disassembler::AppendPCRelativeOffsetToOutput(const Instruction* instr,
- int64_t offset) {
- USE(instr);
- uint64_t abs_offset = offset;
- char sign = (offset < 0) ? '-' : '+';
- if (offset < 0) {
- abs_offset = -abs_offset;
- }
- AppendToOutput("#%c0x%" PRIx64, sign, abs_offset);
-}
-
-
-void Disassembler::AppendAddressToOutput(const Instruction* instr,
- const void* addr) {
- USE(instr);
- AppendToOutput("(addr 0x%" PRIxPTR ")", reinterpret_cast<uintptr_t>(addr));
-}
-
-
-void Disassembler::AppendCodeAddressToOutput(const Instruction* instr,
- const void* addr) {
- AppendAddressToOutput(instr, addr);
-}
-
-
-void Disassembler::AppendDataAddressToOutput(const Instruction* instr,
- const void* addr) {
- AppendAddressToOutput(instr, addr);
-}
-
-
-void Disassembler::AppendCodeRelativeAddressToOutput(const Instruction* instr,
- const void* addr) {
- USE(instr);
- int64_t rel_addr = CodeRelativeAddress(addr);
- if (rel_addr >= 0) {
- AppendToOutput("(addr 0x%" PRIx64 ")", rel_addr);
- } else {
- AppendToOutput("(addr -0x%" PRIx64 ")", -rel_addr);
- }
-}
-
-
-void Disassembler::AppendCodeRelativeCodeAddressToOutput(
- const Instruction* instr, const void* addr) {
- AppendCodeRelativeAddressToOutput(instr, addr);
-}
-
-
-void Disassembler::AppendCodeRelativeDataAddressToOutput(
- const Instruction* instr, const void* addr) {
- AppendCodeRelativeAddressToOutput(instr, addr);
-}
-
-
-void Disassembler::MapCodeAddress(int64_t base_address,
- const Instruction* instr_address) {
- set_code_address_offset(
- base_address - reinterpret_cast<intptr_t>(instr_address));
-}
-int64_t Disassembler::CodeRelativeAddress(const void* addr) {
- return reinterpret_cast<intptr_t>(addr) + code_address_offset();
-}
-
-
-void Disassembler::Format(const Instruction* instr, const char* mnemonic,
- const char* format) {
- VIXL_ASSERT(mnemonic != NULL);
- ResetOutput();
- Substitute(instr, mnemonic);
- if (format != NULL) {
- VIXL_ASSERT(buffer_pos_ < buffer_size_);
- buffer_[buffer_pos_++] = ' ';
- Substitute(instr, format);
- }
- VIXL_ASSERT(buffer_pos_ < buffer_size_);
- buffer_[buffer_pos_] = 0;
- ProcessOutput(instr);
-}
-
-
-void Disassembler::Substitute(const Instruction* instr, const char* string) {
- char chr = *string++;
- while (chr != '\0') {
- if (chr == '\'') {
- string += SubstituteField(instr, string);
- } else {
- VIXL_ASSERT(buffer_pos_ < buffer_size_);
- buffer_[buffer_pos_++] = chr;
- }
- chr = *string++;
- }
-}
-
-
-int Disassembler::SubstituteField(const Instruction* instr,
- const char* format) {
- switch (format[0]) {
- // NB. The remaining substitution prefix characters are: GJKUZ.
- case 'R': // Register. X or W, selected by sf bit.
- case 'F': // FP register. S or D, selected by type field.
- case 'V': // Vector register, V, vector format.
- case 'W':
- case 'X':
- case 'B':
- case 'H':
- case 'S':
- case 'D':
- case 'Q': return SubstituteRegisterField(instr, format);
- case 'I': return SubstituteImmediateField(instr, format);
- case 'L': return SubstituteLiteralField(instr, format);
- case 'N': return SubstituteShiftField(instr, format);
- case 'P': return SubstitutePrefetchField(instr, format);
- case 'C': return SubstituteConditionField(instr, format);
- case 'E': return SubstituteExtendField(instr, format);
- case 'A': return SubstitutePCRelAddressField(instr, format);
- case 'T': return SubstituteBranchTargetField(instr, format);
- case 'O': return SubstituteLSRegOffsetField(instr, format);
- case 'M': return SubstituteBarrierField(instr, format);
- case 'K': return SubstituteCrField(instr, format);
- case 'G': return SubstituteSysOpField(instr, format);
- default: {
- VIXL_UNREACHABLE();
- return 1;
- }
- }
-}
-
-
-int Disassembler::SubstituteRegisterField(const Instruction* instr,
- const char* format) {
- char reg_prefix = format[0];
- unsigned reg_num = 0;
- unsigned field_len = 2;
-
- switch (format[1]) {
- case 'd':
- reg_num = instr->Rd();
- if (format[2] == 'q') {
- reg_prefix = instr->NEONQ() ? 'X' : 'W';
- field_len = 3;
- }
- break;
- case 'n': reg_num = instr->Rn(); break;
- case 'm':
- reg_num = instr->Rm();
- switch (format[2]) {
- // Handle registers tagged with b (bytes), z (instruction), or
- // r (registers), used for address updates in
- // NEON load/store instructions.
- case 'r':
- case 'b':
- case 'z': {
- field_len = 3;
- char* eimm;
- int imm = static_cast<int>(strtol(&format[3], &eimm, 10));
- field_len += eimm - &format[3];
- if (reg_num == 31) {
- switch (format[2]) {
- case 'z':
- imm *= (1 << instr->NEONLSSize());
- break;
- case 'r':
- imm *= (instr->NEONQ() == 0) ? kDRegSizeInBytes
- : kQRegSizeInBytes;
- break;
- case 'b':
- break;
- }
- AppendToOutput("#%d", imm);
- return field_len;
- }
- break;
- }
- }
- break;
- case 'e':
- // This is register Rm, but using a 4-bit specifier. Used in NEON
- // by-element instructions.
- reg_num = (instr->Rm() & 0xf);
- break;
- case 'a': reg_num = instr->Ra(); break;
- case 's': reg_num = instr->Rs(); break;
- case 't':
- reg_num = instr->Rt();
- if (format[0] == 'V') {
- if ((format[2] >= '2') && (format[2] <= '4')) {
- // Handle consecutive vector register specifiers Vt2, Vt3 and Vt4.
- reg_num = (reg_num + format[2] - '1') % 32;
- field_len = 3;
- }
- } else {
- if (format[2] == '2') {
- // Handle register specifier Rt2.
- reg_num = instr->Rt2();
- field_len = 3;
- }
- }
- break;
- default: VIXL_UNREACHABLE();
- }
-
- // Increase field length for registers tagged as stack.
- if (format[2] == 's') {
- field_len = 3;
- }
-
- CPURegister::RegisterType reg_type = CPURegister::kRegister;
- unsigned reg_size = kXRegSize;
-
- if (reg_prefix == 'R') {
- reg_prefix = instr->SixtyFourBits() ? 'X' : 'W';
- } else if (reg_prefix == 'F') {
- reg_prefix = ((instr->FPType() & 1) == 0) ? 'S' : 'D';
- }
-
- switch (reg_prefix) {
- case 'W':
- reg_type = CPURegister::kRegister; reg_size = kWRegSize; break;
- case 'X':
- reg_type = CPURegister::kRegister; reg_size = kXRegSize; break;
- case 'B':
- reg_type = CPURegister::kVRegister; reg_size = kBRegSize; break;
- case 'H':
- reg_type = CPURegister::kVRegister; reg_size = kHRegSize; break;
- case 'S':
- reg_type = CPURegister::kVRegister; reg_size = kSRegSize; break;
- case 'D':
- reg_type = CPURegister::kVRegister; reg_size = kDRegSize; break;
- case 'Q':
- reg_type = CPURegister::kVRegister; reg_size = kQRegSize; break;
- case 'V':
- AppendToOutput("v%d", reg_num);
- return field_len;
- default:
- VIXL_UNREACHABLE();
- }
-
- if ((reg_type == CPURegister::kRegister) &&
- (reg_num == kZeroRegCode) && (format[2] == 's')) {
- reg_num = kSPRegInternalCode;
- }
-
- AppendRegisterNameToOutput(instr, CPURegister(reg_num, reg_size, reg_type));
-
- return field_len;
-}
-
-
-int Disassembler::SubstituteImmediateField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(format[0] == 'I');
-
- switch (format[1]) {
- case 'M': { // IMoveImm, IMoveNeg or IMoveLSL.
- if (format[5] == 'L') {
- AppendToOutput("#0x%" PRIx32, instr->ImmMoveWide());
- if (instr->ShiftMoveWide() > 0) {
- AppendToOutput(", lsl #%" PRId32, 16 * instr->ShiftMoveWide());
- }
- } else {
- VIXL_ASSERT((format[5] == 'I') || (format[5] == 'N'));
- uint64_t imm = static_cast<uint64_t>(instr->ImmMoveWide()) <<
- (16 * instr->ShiftMoveWide());
- if (format[5] == 'N')
- imm = ~imm;
- if (!instr->SixtyFourBits())
- imm &= UINT64_C(0xffffffff);
- AppendToOutput("#0x%" PRIx64, imm);
- }
- return 8;
- }
- case 'L': {
- switch (format[2]) {
- case 'L': { // ILLiteral - Immediate Load Literal.
- AppendToOutput("pc%+" PRId32,
- instr->ImmLLiteral() << kLiteralEntrySizeLog2);
- return 9;
- }
- case 'S': { // ILS - Immediate Load/Store.
- if (instr->ImmLS() != 0) {
- AppendToOutput(", #%" PRId32, instr->ImmLS());
- }
- return 3;
- }
- case 'P': { // ILPx - Immediate Load/Store Pair, x = access size.
- if (instr->ImmLSPair() != 0) {
- // format[3] is the scale value. Convert to a number.
- int scale = 1 << (format[3] - '0');
- AppendToOutput(", #%" PRId32, instr->ImmLSPair() * scale);
- }
- return 4;
- }
- case 'U': { // ILU - Immediate Load/Store Unsigned.
- if (instr->ImmLSUnsigned() != 0) {
- int shift = instr->SizeLS();
- AppendToOutput(", #%" PRId32, instr->ImmLSUnsigned() << shift);
- }
- return 3;
- }
- default: {
- VIXL_UNIMPLEMENTED();
- return 0;
- }
- }
- }
- case 'C': { // ICondB - Immediate Conditional Branch.
- int64_t offset = instr->ImmCondBranch() << 2;
- AppendPCRelativeOffsetToOutput(instr, offset);
- return 6;
- }
- case 'A': { // IAddSub.
- VIXL_ASSERT(instr->ShiftAddSub() <= 1);
- int64_t imm = instr->ImmAddSub() << (12 * instr->ShiftAddSub());
- AppendToOutput("#0x%" PRIx64 " (%" PRId64 ")", imm, imm);
- return 7;
- }
- case 'F': { // IFPSingle, IFPDouble or IFPFBits.
- if (format[3] == 'F') { // IFPFbits.
- AppendToOutput("#%" PRId32, 64 - instr->FPScale());
- return 8;
- } else {
- AppendToOutput("#0x%" PRIx32 " (%.4f)", instr->ImmFP(),
- format[3] == 'S' ? instr->ImmFP32() : instr->ImmFP64());
- return 9;
- }
- }
- case 'T': { // ITri - Immediate Triangular Encoded.
- AppendToOutput("#0x%" PRIx64, instr->ImmLogical());
- return 4;
- }
- case 'N': { // INzcv.
- int nzcv = (instr->Nzcv() << Flags_offset);
- AppendToOutput("#%c%c%c%c", ((nzcv & NFlag) == 0) ? 'n' : 'N',
- ((nzcv & ZFlag) == 0) ? 'z' : 'Z',
- ((nzcv & CFlag) == 0) ? 'c' : 'C',
- ((nzcv & VFlag) == 0) ? 'v' : 'V');
- return 5;
- }
- case 'P': { // IP - Conditional compare.
- AppendToOutput("#%" PRId32, instr->ImmCondCmp());
- return 2;
- }
- case 'B': { // Bitfields.
- return SubstituteBitfieldImmediateField(instr, format);
- }
- case 'E': { // IExtract.
- AppendToOutput("#%" PRId32, instr->ImmS());
- return 8;
- }
- case 'S': { // IS - Test and branch bit.
- AppendToOutput("#%" PRId32, (instr->ImmTestBranchBit5() << 5) |
- instr->ImmTestBranchBit40());
- return 2;
- }
- case 's': { // Is - Shift (immediate).
- switch (format[2]) {
- case '1': { // Is1 - SSHR.
- int shift = 16 << HighestSetBitPosition(instr->ImmNEONImmh());
- shift -= instr->ImmNEONImmhImmb();
- AppendToOutput("#%d", shift);
- return 3;
- }
- case '2': { // Is2 - SLI.
- int shift = instr->ImmNEONImmhImmb();
- shift -= 8 << HighestSetBitPosition(instr->ImmNEONImmh());
- AppendToOutput("#%d", shift);
- return 3;
- }
- default: {
- VIXL_UNIMPLEMENTED();
- return 0;
- }
- }
- }
- case 'D': { // IDebug - HLT and BRK instructions.
- AppendToOutput("#0x%" PRIx32, instr->ImmException());
- return 6;
- }
- case 'V': { // Immediate Vector.
- switch (format[2]) {
- case 'E': { // IVExtract.
- AppendToOutput("#%" PRId32, instr->ImmNEONExt());
- return 9;
- }
- case 'B': { // IVByElemIndex.
- int vm_index = (instr->NEONH() << 1) | instr->NEONL();
- if (instr->NEONSize() == 1) {
- vm_index = (vm_index << 1) | instr->NEONM();
- }
- AppendToOutput("%d", vm_index);
- return strlen("IVByElemIndex");
- }
- case 'I': { // INS element.
- if (strncmp(format, "IVInsIndex", strlen("IVInsIndex")) == 0) {
- int rd_index, rn_index;
- int imm5 = instr->ImmNEON5();
- int imm4 = instr->ImmNEON4();
- int tz = CountTrailingZeros(imm5, 32);
- rd_index = imm5 >> (tz + 1);
- rn_index = imm4 >> tz;
- if (strncmp(format, "IVInsIndex1", strlen("IVInsIndex1")) == 0) {
- AppendToOutput("%d", rd_index);
- return strlen("IVInsIndex1");
- } else if (strncmp(format, "IVInsIndex2",
- strlen("IVInsIndex2")) == 0) {
- AppendToOutput("%d", rn_index);
- return strlen("IVInsIndex2");
- } else {
- VIXL_UNIMPLEMENTED();
- return 0;
- }
- }
- VIXL_FALLTHROUGH();
- }
- case 'L': { // IVLSLane[0123] - suffix indicates access size shift.
- AppendToOutput("%d", instr->NEONLSIndex(format[8] - '0'));
- return 9;
- }
- case 'M': { // Modified Immediate cases.
- if (strncmp(format,
- "IVMIImmFPSingle",
- strlen("IVMIImmFPSingle")) == 0) {
- AppendToOutput("#0x%" PRIx32 " (%.4f)", instr->ImmNEONabcdefgh(),
- instr->ImmNEONFP32());
- return strlen("IVMIImmFPSingle");
- } else if (strncmp(format,
- "IVMIImmFPDouble",
- strlen("IVMIImmFPDouble")) == 0) {
- AppendToOutput("#0x%" PRIx32 " (%.4f)", instr->ImmNEONabcdefgh(),
- instr->ImmNEONFP64());
- return strlen("IVMIImmFPDouble");
- } else if (strncmp(format, "IVMIImm8", strlen("IVMIImm8")) == 0) {
- uint64_t imm8 = instr->ImmNEONabcdefgh();
- AppendToOutput("#0x%" PRIx64, imm8);
- return strlen("IVMIImm8");
- } else if (strncmp(format, "IVMIImm", strlen("IVMIImm")) == 0) {
- uint64_t imm8 = instr->ImmNEONabcdefgh();
- uint64_t imm = 0;
- for (int i = 0; i < 8; ++i) {
- if (imm8 & (1 << i)) {
- imm |= (UINT64_C(0xff) << (8 * i));
- }
- }
- AppendToOutput("#0x%" PRIx64, imm);
- return strlen("IVMIImm");
- } else if (strncmp(format, "IVMIShiftAmt1",
- strlen("IVMIShiftAmt1")) == 0) {
- int cmode = instr->NEONCmode();
- int shift_amount = 8 * ((cmode >> 1) & 3);
- AppendToOutput("#%d", shift_amount);
- return strlen("IVMIShiftAmt1");
- } else if (strncmp(format, "IVMIShiftAmt2",
- strlen("IVMIShiftAmt2")) == 0) {
- int cmode = instr->NEONCmode();
- int shift_amount = 8 << (cmode & 1);
- AppendToOutput("#%d", shift_amount);
- return strlen("IVMIShiftAmt2");
- } else {
- VIXL_UNIMPLEMENTED();
- return 0;
- }
- }
- default: {
- VIXL_UNIMPLEMENTED();
- return 0;
- }
- }
- }
- case 'X': { // IX - CLREX instruction.
- AppendToOutput("#0x%" PRIx32, instr->CRm());
- return 2;
- }
- default: {
- VIXL_UNIMPLEMENTED();
- return 0;
- }
- }
-}
-
-
-int Disassembler::SubstituteBitfieldImmediateField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT((format[0] == 'I') && (format[1] == 'B'));
- unsigned r = instr->ImmR();
- unsigned s = instr->ImmS();
-
- switch (format[2]) {
- case 'r': { // IBr.
- AppendToOutput("#%d", r);
- return 3;
- }
- case 's': { // IBs+1 or IBs-r+1.
- if (format[3] == '+') {
- AppendToOutput("#%d", s + 1);
- return 5;
- } else {
- VIXL_ASSERT(format[3] == '-');
- AppendToOutput("#%d", s - r + 1);
- return 7;
- }
- }
- case 'Z': { // IBZ-r.
- VIXL_ASSERT((format[3] == '-') && (format[4] == 'r'));
- unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize;
- AppendToOutput("#%d", reg_size - r);
- return 5;
- }
- default: {
- VIXL_UNREACHABLE();
- return 0;
- }
- }
-}
-
-
-int Disassembler::SubstituteLiteralField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(strncmp(format, "LValue", 6) == 0);
- USE(format);
-
- const void * address = instr->LiteralAddress<const void *>();
- switch (instr->Mask(LoadLiteralMask)) {
- case LDR_w_lit:
- case LDR_x_lit:
- case LDRSW_x_lit:
- case LDR_s_lit:
- case LDR_d_lit:
- case LDR_q_lit:
- AppendCodeRelativeDataAddressToOutput(instr, address);
- break;
- case PRFM_lit: {
- // Use the prefetch hint to decide how to print the address.
- switch (instr->PrefetchHint()) {
- case 0x0: // PLD: prefetch for load.
- case 0x2: // PST: prepare for store.
- AppendCodeRelativeDataAddressToOutput(instr, address);
- break;
- case 0x1: // PLI: preload instructions.
- AppendCodeRelativeCodeAddressToOutput(instr, address);
- break;
- case 0x3: // Unallocated hint.
- AppendCodeRelativeAddressToOutput(instr, address);
- break;
- }
- break;
- }
- default:
- VIXL_UNREACHABLE();
- }
-
- return 6;
-}
-
-
-int Disassembler::SubstituteShiftField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(format[0] == 'N');
- VIXL_ASSERT(instr->ShiftDP() <= 0x3);
-
- switch (format[1]) {
- case 'D': { // HDP.
- VIXL_ASSERT(instr->ShiftDP() != ROR);
- VIXL_FALLTHROUGH();
- }
- case 'L': { // HLo.
- if (instr->ImmDPShift() != 0) {
- const char* shift_type[] = {"lsl", "lsr", "asr", "ror"};
- AppendToOutput(", %s #%" PRId32, shift_type[instr->ShiftDP()],
- instr->ImmDPShift());
- }
- return 3;
- }
- default:
- VIXL_UNIMPLEMENTED();
- return 0;
- }
-}
-
-
-int Disassembler::SubstituteConditionField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(format[0] == 'C');
- const char* condition_code[] = { "eq", "ne", "hs", "lo",
- "mi", "pl", "vs", "vc",
- "hi", "ls", "ge", "lt",
- "gt", "le", "al", "nv" };
- int cond;
- switch (format[1]) {
- case 'B': cond = instr->ConditionBranch(); break;
- case 'I': {
- cond = InvertCondition(static_cast<Condition>(instr->Condition()));
- break;
- }
- default: cond = instr->Condition();
- }
- AppendToOutput("%s", condition_code[cond]);
- return 4;
-}
-
-
-int Disassembler::SubstitutePCRelAddressField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT((strcmp(format, "AddrPCRelByte") == 0) || // Used by `adr`.
- (strcmp(format, "AddrPCRelPage") == 0)); // Used by `adrp`.
-
- int64_t offset = instr->ImmPCRel();
-
- // Compute the target address based on the effective address (after applying
- // code_address_offset). This is required for correct behaviour of adrp.
- const Instruction* base = instr + code_address_offset();
- if (format[9] == 'P') {
- offset *= kPageSize;
- base = AlignDown(base, kPageSize);
- }
- // Strip code_address_offset before printing, so we can use the
- // semantically-correct AppendCodeRelativeAddressToOutput.
- const void* target =
- reinterpret_cast<const void*>(base + offset - code_address_offset());
-
- AppendPCRelativeOffsetToOutput(instr, offset);
- AppendToOutput(" ");
- AppendCodeRelativeAddressToOutput(instr, target);
- return 13;
-}
-
-
-int Disassembler::SubstituteBranchTargetField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(strncmp(format, "TImm", 4) == 0);
-
- int64_t offset = 0;
- switch (format[5]) {
- // BImmUncn - unconditional branch immediate.
- case 'n': offset = instr->ImmUncondBranch(); break;
- // BImmCond - conditional branch immediate.
- case 'o': offset = instr->ImmCondBranch(); break;
- // BImmCmpa - compare and branch immediate.
- case 'm': offset = instr->ImmCmpBranch(); break;
- // BImmTest - test and branch immediate.
- case 'e': offset = instr->ImmTestBranch(); break;
- default: VIXL_UNIMPLEMENTED();
- }
- offset <<= kInstructionSizeLog2;
- const void* target_address = reinterpret_cast<const void*>(instr + offset);
- VIXL_STATIC_ASSERT(sizeof(*instr) == 1);
-
- AppendPCRelativeOffsetToOutput(instr, offset);
- AppendToOutput(" ");
- AppendCodeRelativeCodeAddressToOutput(instr, target_address);
-
- return 8;
-}
-
-
-int Disassembler::SubstituteExtendField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(strncmp(format, "Ext", 3) == 0);
- VIXL_ASSERT(instr->ExtendMode() <= 7);
- USE(format);
-
- const char* extend_mode[] = { "uxtb", "uxth", "uxtw", "uxtx",
- "sxtb", "sxth", "sxtw", "sxtx" };
-
- // If rd or rn is SP, uxtw on 32-bit registers and uxtx on 64-bit
- // registers becomes lsl.
- if (((instr->Rd() == kZeroRegCode) || (instr->Rn() == kZeroRegCode)) &&
- (((instr->ExtendMode() == UXTW) && (instr->SixtyFourBits() == 0)) ||
- (instr->ExtendMode() == UXTX))) {
- if (instr->ImmExtendShift() > 0) {
- AppendToOutput(", lsl #%" PRId32, instr->ImmExtendShift());
- }
- } else {
- AppendToOutput(", %s", extend_mode[instr->ExtendMode()]);
- if (instr->ImmExtendShift() > 0) {
- AppendToOutput(" #%" PRId32, instr->ImmExtendShift());
- }
- }
- return 3;
-}
-
-
-int Disassembler::SubstituteLSRegOffsetField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(strncmp(format, "Offsetreg", 9) == 0);
- const char* extend_mode[] = { "undefined", "undefined", "uxtw", "lsl",
- "undefined", "undefined", "sxtw", "sxtx" };
- USE(format);
-
- unsigned shift = instr->ImmShiftLS();
- Extend ext = static_cast<Extend>(instr->ExtendMode());
- char reg_type = ((ext == UXTW) || (ext == SXTW)) ? 'w' : 'x';
-
- unsigned rm = instr->Rm();
- if (rm == kZeroRegCode) {
- AppendToOutput("%czr", reg_type);
- } else {
- AppendToOutput("%c%d", reg_type, rm);
- }
-
- // Extend mode UXTX is an alias for shift mode LSL here.
- if (!((ext == UXTX) && (shift == 0))) {
- AppendToOutput(", %s", extend_mode[ext]);
- if (shift != 0) {
- AppendToOutput(" #%d", instr->SizeLS());
- }
- }
- return 9;
-}
-
-
-int Disassembler::SubstitutePrefetchField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(format[0] == 'P');
- USE(format);
-
- static const char* hints[] = {"ld", "li", "st"};
- static const char* stream_options[] = {"keep", "strm"};
-
- unsigned hint = instr->PrefetchHint();
- unsigned target = instr->PrefetchTarget() + 1;
- unsigned stream = instr->PrefetchStream();
-
- if ((hint >= (sizeof(hints) / sizeof(hints[0]))) || (target > 3)) {
- // Unallocated prefetch operations.
- int prefetch_mode = instr->ImmPrefetchOperation();
- AppendToOutput("#0b%c%c%c%c%c",
- (prefetch_mode & (1 << 4)) ? '1' : '0',
- (prefetch_mode & (1 << 3)) ? '1' : '0',
- (prefetch_mode & (1 << 2)) ? '1' : '0',
- (prefetch_mode & (1 << 1)) ? '1' : '0',
- (prefetch_mode & (1 << 0)) ? '1' : '0');
- } else {
- VIXL_ASSERT(stream < (sizeof(stream_options) / sizeof(stream_options[0])));
- AppendToOutput("p%sl%d%s", hints[hint], target, stream_options[stream]);
- }
- return 6;
-}
-
-int Disassembler::SubstituteBarrierField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(format[0] == 'M');
- USE(format);
-
- static const char* options[4][4] = {
- { "sy (0b0000)", "oshld", "oshst", "osh" },
- { "sy (0b0100)", "nshld", "nshst", "nsh" },
- { "sy (0b1000)", "ishld", "ishst", "ish" },
- { "sy (0b1100)", "ld", "st", "sy" }
- };
- int domain = instr->ImmBarrierDomain();
- int type = instr->ImmBarrierType();
-
- AppendToOutput("%s", options[domain][type]);
- return 1;
-}
-
-int Disassembler::SubstituteSysOpField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(format[0] == 'G');
- int op = -1;
- switch (format[1]) {
- case '1': op = instr->SysOp1(); break;
- case '2': op = instr->SysOp2(); break;
- default:
- VIXL_UNREACHABLE();
- }
- AppendToOutput("#%d", op);
- return 2;
-}
-
-int Disassembler::SubstituteCrField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(format[0] == 'K');
- int cr = -1;
- switch (format[1]) {
- case 'n': cr = instr->CRn(); break;
- case 'm': cr = instr->CRm(); break;
- default:
- VIXL_UNREACHABLE();
- }
- AppendToOutput("C%d", cr);
- return 2;
-}
-
-void Disassembler::ResetOutput() {
- buffer_pos_ = 0;
- buffer_[buffer_pos_] = 0;
-}
-
-
-void Disassembler::AppendToOutput(const char* format, ...) {
- va_list args;
- va_start(args, format);
- buffer_pos_ += vsnprintf(&buffer_[buffer_pos_], buffer_size_ - buffer_pos_,
- format, args);
- va_end(args);
-}
-
-
-void PrintDisassembler::ProcessOutput(const Instruction* instr) {
- fprintf(stream_, "0x%016" PRIx64 " %08" PRIx32 "\t\t%s\n",
- reinterpret_cast<uint64_t>(instr),
- instr->InstructionBits(),
- GetOutput());
-}
-
-} // namespace vixl
diff --git a/disas/libvixl/vixl/a64/disasm-a64.h b/disas/libvixl/vixl/a64/disasm-a64.h
deleted file mode 100644
index 930df6ea6a..0000000000
--- a/disas/libvixl/vixl/a64/disasm-a64.h
+++ /dev/null
@@ -1,177 +0,0 @@
-// Copyright 2015, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef VIXL_A64_DISASM_A64_H
-#define VIXL_A64_DISASM_A64_H
-
-#include "vixl/globals.h"
-#include "vixl/utils.h"
-#include "vixl/a64/instructions-a64.h"
-#include "vixl/a64/decoder-a64.h"
-#include "vixl/a64/assembler-a64.h"
-
-namespace vixl {
-
-class Disassembler: public DecoderVisitor {
- public:
- Disassembler();
- Disassembler(char* text_buffer, int buffer_size);
- virtual ~Disassembler();
- char* GetOutput();
-
- // Declare all Visitor functions.
- #define DECLARE(A) virtual void Visit##A(const Instruction* instr);
- VISITOR_LIST(DECLARE)
- #undef DECLARE
-
- protected:
- virtual void ProcessOutput(const Instruction* instr);
-
- // Default output functions. The functions below implement a default way of
- // printing elements in the disassembly. A sub-class can override these to
- // customize the disassembly output.
-
- // Prints the name of a register.
- // TODO: This currently doesn't allow renaming of V registers.
- virtual void AppendRegisterNameToOutput(const Instruction* instr,
- const CPURegister& reg);
-
- // Prints a PC-relative offset. This is used for example when disassembling
- // branches to immediate offsets.
- virtual void AppendPCRelativeOffsetToOutput(const Instruction* instr,
- int64_t offset);
-
- // Prints an address, in the general case. It can be code or data. This is
- // used for example to print the target address of an ADR instruction.
- virtual void AppendCodeRelativeAddressToOutput(const Instruction* instr,
- const void* addr);
-
- // Prints the address of some code.
- // This is used for example to print the target address of a branch to an
- // immediate offset.
- // A sub-class can for example override this method to lookup the address and
- // print an appropriate name.
- virtual void AppendCodeRelativeCodeAddressToOutput(const Instruction* instr,
- const void* addr);
-
- // Prints the address of some data.
- // This is used for example to print the source address of a load literal
- // instruction.
- virtual void AppendCodeRelativeDataAddressToOutput(const Instruction* instr,
- const void* addr);
-
- // Same as the above, but for addresses that are not relative to the code
- // buffer. They are currently not used by VIXL.
- virtual void AppendAddressToOutput(const Instruction* instr,
- const void* addr);
- virtual void AppendCodeAddressToOutput(const Instruction* instr,
- const void* addr);
- virtual void AppendDataAddressToOutput(const Instruction* instr,
- const void* addr);
-
- public:
- // Get/Set the offset that should be added to code addresses when printing
- // code-relative addresses in the AppendCodeRelative<Type>AddressToOutput()
- // helpers.
- // Below is an example of how a branch immediate instruction in memory at
- // address 0xb010200 would disassemble with different offsets.
- // Base address | Disassembly
- // 0x0 | 0xb010200: b #+0xcc (addr 0xb0102cc)
- // 0x10000 | 0xb000200: b #+0xcc (addr 0xb0002cc)
- // 0xb010200 | 0x0: b #+0xcc (addr 0xcc)
- void MapCodeAddress(int64_t base_address, const Instruction* instr_address);
- int64_t CodeRelativeAddress(const void* instr);
-
- private:
- void Format(
- const Instruction* instr, const char* mnemonic, const char* format);
- void Substitute(const Instruction* instr, const char* string);
- int SubstituteField(const Instruction* instr, const char* format);
- int SubstituteRegisterField(const Instruction* instr, const char* format);
- int SubstituteImmediateField(const Instruction* instr, const char* format);
- int SubstituteLiteralField(const Instruction* instr, const char* format);
- int SubstituteBitfieldImmediateField(
- const Instruction* instr, const char* format);
- int SubstituteShiftField(const Instruction* instr, const char* format);
- int SubstituteExtendField(const Instruction* instr, const char* format);
- int SubstituteConditionField(const Instruction* instr, const char* format);
- int SubstitutePCRelAddressField(const Instruction* instr, const char* format);
- int SubstituteBranchTargetField(const Instruction* instr, const char* format);
- int SubstituteLSRegOffsetField(const Instruction* instr, const char* format);
- int SubstitutePrefetchField(const Instruction* instr, const char* format);
- int SubstituteBarrierField(const Instruction* instr, const char* format);
- int SubstituteSysOpField(const Instruction* instr, const char* format);
- int SubstituteCrField(const Instruction* instr, const char* format);
- bool RdIsZROrSP(const Instruction* instr) const {
- return (instr->Rd() == kZeroRegCode);
- }
-
- bool RnIsZROrSP(const Instruction* instr) const {
- return (instr->Rn() == kZeroRegCode);
- }
-
- bool RmIsZROrSP(const Instruction* instr) const {
- return (instr->Rm() == kZeroRegCode);
- }
-
- bool RaIsZROrSP(const Instruction* instr) const {
- return (instr->Ra() == kZeroRegCode);
- }
-
- bool IsMovzMovnImm(unsigned reg_size, uint64_t value);
-
- int64_t code_address_offset() const { return code_address_offset_; }
-
- protected:
- void ResetOutput();
- void AppendToOutput(const char* string, ...) PRINTF_CHECK(2, 3);
-
- void set_code_address_offset(int64_t code_address_offset) {
- code_address_offset_ = code_address_offset;
- }
-
- char* buffer_;
- uint32_t buffer_pos_;
- uint32_t buffer_size_;
- bool own_buffer_;
-
- int64_t code_address_offset_;
-};
-
-
-class PrintDisassembler: public Disassembler {
- public:
- explicit PrintDisassembler(FILE* stream) : stream_(stream) { }
-
- protected:
- virtual void ProcessOutput(const Instruction* instr);
-
- private:
- FILE *stream_;
-};
-} // namespace vixl
-
-#endif // VIXL_A64_DISASM_A64_H
diff --git a/disas/libvixl/vixl/a64/instructions-a64.cc b/disas/libvixl/vixl/a64/instructions-a64.cc
deleted file mode 100644
index 33992f88a4..0000000000
--- a/disas/libvixl/vixl/a64/instructions-a64.cc
+++ /dev/null
@@ -1,622 +0,0 @@
-// Copyright 2015, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#include "vixl/a64/instructions-a64.h"
-#include "vixl/a64/assembler-a64.h"
-
-namespace vixl {
-
-
-// Floating-point infinity values.
-const float16 kFP16PositiveInfinity = 0x7c00;
-const float16 kFP16NegativeInfinity = 0xfc00;
-const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
-const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
-const double kFP64PositiveInfinity =
- rawbits_to_double(UINT64_C(0x7ff0000000000000));
-const double kFP64NegativeInfinity =
- rawbits_to_double(UINT64_C(0xfff0000000000000));
-
-
-// The default NaN values (for FPCR.DN=1).
-const double kFP64DefaultNaN = rawbits_to_double(UINT64_C(0x7ff8000000000000));
-const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);
-const float16 kFP16DefaultNaN = 0x7e00;
-
-
-static uint64_t RotateRight(uint64_t value,
- unsigned int rotate,
- unsigned int width) {
- VIXL_ASSERT(width <= 64);
- rotate &= 63;
- return ((value & ((UINT64_C(1) << rotate) - 1)) <<
- (width - rotate)) | (value >> rotate);
-}
-
-
-static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
- uint64_t value,
- unsigned width) {
- VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
- (width == 32));
- VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
- uint64_t result = value & ((UINT64_C(1) << width) - 1);
- for (unsigned i = width; i < reg_size; i *= 2) {
- result |= (result << i);
- }
- return result;
-}
-
-
-bool Instruction::IsLoad() const {
- if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
- return false;
- }
-
- if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
- return Mask(LoadStorePairLBit) != 0;
- } else {
- LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
- switch (op) {
- case LDRB_w:
- case LDRH_w:
- case LDR_w:
- case LDR_x:
- case LDRSB_w:
- case LDRSB_x:
- case LDRSH_w:
- case LDRSH_x:
- case LDRSW_x:
- case LDR_b:
- case LDR_h:
- case LDR_s:
- case LDR_d:
- case LDR_q: return true;
- default: return false;
- }
- }
-}
-
-
-bool Instruction::IsStore() const {
- if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
- return false;
- }
-
- if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
- return Mask(LoadStorePairLBit) == 0;
- } else {
- LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
- switch (op) {
- case STRB_w:
- case STRH_w:
- case STR_w:
- case STR_x:
- case STR_b:
- case STR_h:
- case STR_s:
- case STR_d:
- case STR_q: return true;
- default: return false;
- }
- }
-}
-
-
-// Logical immediates can't encode zero, so a return value of zero is used to
-// indicate a failure case. Specifically, where the constraints on imm_s are
-// not met.
-uint64_t Instruction::ImmLogical() const {
- unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
- int32_t n = BitN();
- int32_t imm_s = ImmSetBits();
- int32_t imm_r = ImmRotate();
-
- // An integer is constructed from the n, imm_s and imm_r bits according to
- // the following table:
- //
- // N imms immr size S R
- // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
- // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
- // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
- // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
- // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
- // 0 11110s xxxxxr 2 UInt(s) UInt(r)
- // (s bits must not be all set)
- //
- // A pattern is constructed of size bits, where the least significant S+1
- // bits are set. The pattern is rotated right by R, and repeated across a
- // 32 or 64-bit value, depending on destination register width.
- //
-
- if (n == 1) {
- if (imm_s == 0x3f) {
- return 0;
- }
- uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
- return RotateRight(bits, imm_r, 64);
- } else {
- if ((imm_s >> 1) == 0x1f) {
- return 0;
- }
- for (int width = 0x20; width >= 0x2; width >>= 1) {
- if ((imm_s & width) == 0) {
- int mask = width - 1;
- if ((imm_s & mask) == mask) {
- return 0;
- }
- uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
- return RepeatBitsAcrossReg(reg_size,
- RotateRight(bits, imm_r & mask, width),
- width);
- }
- }
- }
- VIXL_UNREACHABLE();
- return 0;
-}
-
-
-uint32_t Instruction::ImmNEONabcdefgh() const {
- return ImmNEONabc() << 5 | ImmNEONdefgh();
-}
-
-
-float Instruction::Imm8ToFP32(uint32_t imm8) {
- // Imm8: abcdefgh (8 bits)
- // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
- // where B is b ^ 1
- uint32_t bits = imm8;
- uint32_t bit7 = (bits >> 7) & 0x1;
- uint32_t bit6 = (bits >> 6) & 0x1;
- uint32_t bit5_to_0 = bits & 0x3f;
- uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
-
- return rawbits_to_float(result);
-}
-
-
-float Instruction::ImmFP32() const {
- return Imm8ToFP32(ImmFP());
-}
-
-
-double Instruction::Imm8ToFP64(uint32_t imm8) {
- // Imm8: abcdefgh (8 bits)
- // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
- // 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
- // where B is b ^ 1
- uint32_t bits = imm8;
- uint64_t bit7 = (bits >> 7) & 0x1;
- uint64_t bit6 = (bits >> 6) & 0x1;
- uint64_t bit5_to_0 = bits & 0x3f;
- uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
-
- return rawbits_to_double(result);
-}
-
-
-double Instruction::ImmFP64() const {
- return Imm8ToFP64(ImmFP());
-}
-
-
-float Instruction::ImmNEONFP32() const {
- return Imm8ToFP32(ImmNEONabcdefgh());
-}
-
-
-double Instruction::ImmNEONFP64() const {
- return Imm8ToFP64(ImmNEONabcdefgh());
-}
-
-
-unsigned CalcLSDataSize(LoadStoreOp op) {
- VIXL_ASSERT((LSSize_offset + LSSize_width) == (kInstructionSize * 8));
- unsigned size = static_cast<Instr>(op) >> LSSize_offset;
- if ((op & LSVector_mask) != 0) {
- // Vector register memory operations encode the access size in the "size"
- // and "opc" fields.
- if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
- size = kQRegSizeInBytesLog2;
- }
- }
- return size;
-}
-
-
-unsigned CalcLSPairDataSize(LoadStorePairOp op) {
- VIXL_STATIC_ASSERT(kXRegSizeInBytes == kDRegSizeInBytes);
- VIXL_STATIC_ASSERT(kWRegSizeInBytes == kSRegSizeInBytes);
- switch (op) {
- case STP_q:
- case LDP_q: return kQRegSizeInBytesLog2;
- case STP_x:
- case LDP_x:
- case STP_d:
- case LDP_d: return kXRegSizeInBytesLog2;
- default: return kWRegSizeInBytesLog2;
- }
-}
-
-
-int Instruction::ImmBranchRangeBitwidth(ImmBranchType branch_type) {
- switch (branch_type) {
- case UncondBranchType:
- return ImmUncondBranch_width;
- case CondBranchType:
- return ImmCondBranch_width;
- case CompareBranchType:
- return ImmCmpBranch_width;
- case TestBranchType:
- return ImmTestBranch_width;
- default:
- VIXL_UNREACHABLE();
- return 0;
- }
-}
-
-
-int32_t Instruction::ImmBranchForwardRange(ImmBranchType branch_type) {
- int32_t encoded_max = 1 << (ImmBranchRangeBitwidth(branch_type) - 1);
- return encoded_max * kInstructionSize;
-}
-
-
-bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
- int64_t offset) {
- return is_intn(ImmBranchRangeBitwidth(branch_type), offset);
-}
-
-
-const Instruction* Instruction::ImmPCOffsetTarget() const {
- const Instruction * base = this;
- ptrdiff_t offset;
- if (IsPCRelAddressing()) {
- // ADR and ADRP.
- offset = ImmPCRel();
- if (Mask(PCRelAddressingMask) == ADRP) {
- base = AlignDown(base, kPageSize);
- offset *= kPageSize;
- } else {
- VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
- }
- } else {
- // All PC-relative branches.
- VIXL_ASSERT(BranchType() != UnknownBranchType);
- // Relative branch offsets are instruction-size-aligned.
- offset = ImmBranch() << kInstructionSizeLog2;
- }
- return base + offset;
-}
-
-
-int Instruction::ImmBranch() const {
- switch (BranchType()) {
- case CondBranchType: return ImmCondBranch();
- case UncondBranchType: return ImmUncondBranch();
- case CompareBranchType: return ImmCmpBranch();
- case TestBranchType: return ImmTestBranch();
- default: VIXL_UNREACHABLE();
- }
- return 0;
-}
-
-
-void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
- if (IsPCRelAddressing()) {
- SetPCRelImmTarget(target);
- } else {
- SetBranchImmTarget(target);
- }
-}
-
-
-void Instruction::SetPCRelImmTarget(const Instruction* target) {
- ptrdiff_t imm21;
- if ((Mask(PCRelAddressingMask) == ADR)) {
- imm21 = target - this;
- } else {
- VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
- uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
- uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
- imm21 = target_page - this_page;
- }
- Instr imm = Assembler::ImmPCRelAddress(static_cast<int32_t>(imm21));
-
- SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
-}
-
-
-void Instruction::SetBranchImmTarget(const Instruction* target) {
- VIXL_ASSERT(((target - this) & 3) == 0);
- Instr branch_imm = 0;
- uint32_t imm_mask = 0;
- int offset = static_cast<int>((target - this) >> kInstructionSizeLog2);
- switch (BranchType()) {
- case CondBranchType: {
- branch_imm = Assembler::ImmCondBranch(offset);
- imm_mask = ImmCondBranch_mask;
- break;
- }
- case UncondBranchType: {
- branch_imm = Assembler::ImmUncondBranch(offset);
- imm_mask = ImmUncondBranch_mask;
- break;
- }
- case CompareBranchType: {
- branch_imm = Assembler::ImmCmpBranch(offset);
- imm_mask = ImmCmpBranch_mask;
- break;
- }
- case TestBranchType: {
- branch_imm = Assembler::ImmTestBranch(offset);
- imm_mask = ImmTestBranch_mask;
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- SetInstructionBits(Mask(~imm_mask) | branch_imm);
-}
-
-
-void Instruction::SetImmLLiteral(const Instruction* source) {
- VIXL_ASSERT(IsWordAligned(source));
- ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
- Instr imm = Assembler::ImmLLiteral(static_cast<int>(offset));
- Instr mask = ImmLLiteral_mask;
-
- SetInstructionBits(Mask(~mask) | imm);
-}
-
-
-VectorFormat VectorFormatHalfWidth(const VectorFormat vform) {
- VIXL_ASSERT(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D ||
- vform == kFormatH || vform == kFormatS || vform == kFormatD);
- switch (vform) {
- case kFormat8H: return kFormat8B;
- case kFormat4S: return kFormat4H;
- case kFormat2D: return kFormat2S;
- case kFormatH: return kFormatB;
- case kFormatS: return kFormatH;
- case kFormatD: return kFormatS;
- default: VIXL_UNREACHABLE(); return kFormatUndefined;
- }
-}
-
-
-VectorFormat VectorFormatDoubleWidth(const VectorFormat vform) {
- VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S ||
- vform == kFormatB || vform == kFormatH || vform == kFormatS);
- switch (vform) {
- case kFormat8B: return kFormat8H;
- case kFormat4H: return kFormat4S;
- case kFormat2S: return kFormat2D;
- case kFormatB: return kFormatH;
- case kFormatH: return kFormatS;
- case kFormatS: return kFormatD;
- default: VIXL_UNREACHABLE(); return kFormatUndefined;
- }
-}
-
-
-VectorFormat VectorFormatFillQ(const VectorFormat vform) {
- switch (vform) {
- case kFormatB:
- case kFormat8B:
- case kFormat16B: return kFormat16B;
- case kFormatH:
- case kFormat4H:
- case kFormat8H: return kFormat8H;
- case kFormatS:
- case kFormat2S:
- case kFormat4S: return kFormat4S;
- case kFormatD:
- case kFormat1D:
- case kFormat2D: return kFormat2D;
- default: VIXL_UNREACHABLE(); return kFormatUndefined;
- }
-}
-
-VectorFormat VectorFormatHalfWidthDoubleLanes(const VectorFormat vform) {
- switch (vform) {
- case kFormat4H: return kFormat8B;
- case kFormat8H: return kFormat16B;
- case kFormat2S: return kFormat4H;
- case kFormat4S: return kFormat8H;
- case kFormat1D: return kFormat2S;
- case kFormat2D: return kFormat4S;
- default: VIXL_UNREACHABLE(); return kFormatUndefined;
- }
-}
-
-VectorFormat VectorFormatDoubleLanes(const VectorFormat vform) {
- VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
- switch (vform) {
- case kFormat8B: return kFormat16B;
- case kFormat4H: return kFormat8H;
- case kFormat2S: return kFormat4S;
- default: VIXL_UNREACHABLE(); return kFormatUndefined;
- }
-}
-
-
-VectorFormat VectorFormatHalfLanes(const VectorFormat vform) {
- VIXL_ASSERT(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
- switch (vform) {
- case kFormat16B: return kFormat8B;
- case kFormat8H: return kFormat4H;
- case kFormat4S: return kFormat2S;
- default: VIXL_UNREACHABLE(); return kFormatUndefined;
- }
-}
-
-
-VectorFormat ScalarFormatFromLaneSize(int laneSize) {
- switch (laneSize) {
- case 8: return kFormatB;
- case 16: return kFormatH;
- case 32: return kFormatS;
- case 64: return kFormatD;
- default: VIXL_UNREACHABLE(); return kFormatUndefined;
- }
-}
-
-
-unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
- VIXL_ASSERT(vform != kFormatUndefined);
- switch (vform) {
- case kFormatB: return kBRegSize;
- case kFormatH: return kHRegSize;
- case kFormatS: return kSRegSize;
- case kFormatD: return kDRegSize;
- case kFormat8B:
- case kFormat4H:
- case kFormat2S:
- case kFormat1D: return kDRegSize;
- default: return kQRegSize;
- }
-}
-
-
-unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
- return RegisterSizeInBitsFromFormat(vform) / 8;
-}
-
-
-unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
- VIXL_ASSERT(vform != kFormatUndefined);
- switch (vform) {
- case kFormatB:
- case kFormat8B:
- case kFormat16B: return 8;
- case kFormatH:
- case kFormat4H:
- case kFormat8H: return 16;
- case kFormatS:
- case kFormat2S:
- case kFormat4S: return 32;
- case kFormatD:
- case kFormat1D:
- case kFormat2D: return 64;
- default: VIXL_UNREACHABLE(); return 0;
- }
-}
-
-
-int LaneSizeInBytesFromFormat(VectorFormat vform) {
- return LaneSizeInBitsFromFormat(vform) / 8;
-}
-
-
-int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
- VIXL_ASSERT(vform != kFormatUndefined);
- switch (vform) {
- case kFormatB:
- case kFormat8B:
- case kFormat16B: return 0;
- case kFormatH:
- case kFormat4H:
- case kFormat8H: return 1;
- case kFormatS:
- case kFormat2S:
- case kFormat4S: return 2;
- case kFormatD:
- case kFormat1D:
- case kFormat2D: return 3;
- default: VIXL_UNREACHABLE(); return 0;
- }
-}
-
-
-int LaneCountFromFormat(VectorFormat vform) {
- VIXL_ASSERT(vform != kFormatUndefined);
- switch (vform) {
- case kFormat16B: return 16;
- case kFormat8B:
- case kFormat8H: return 8;
- case kFormat4H:
- case kFormat4S: return 4;
- case kFormat2S:
- case kFormat2D: return 2;
- case kFormat1D:
- case kFormatB:
- case kFormatH:
- case kFormatS:
- case kFormatD: return 1;
- default: VIXL_UNREACHABLE(); return 0;
- }
-}
-
-
-int MaxLaneCountFromFormat(VectorFormat vform) {
- VIXL_ASSERT(vform != kFormatUndefined);
- switch (vform) {
- case kFormatB:
- case kFormat8B:
- case kFormat16B: return 16;
- case kFormatH:
- case kFormat4H:
- case kFormat8H: return 8;
- case kFormatS:
- case kFormat2S:
- case kFormat4S: return 4;
- case kFormatD:
- case kFormat1D:
- case kFormat2D: return 2;
- default: VIXL_UNREACHABLE(); return 0;
- }
-}
-
-
-// Does 'vform' indicate a vector format or a scalar format?
-bool IsVectorFormat(VectorFormat vform) {
- VIXL_ASSERT(vform != kFormatUndefined);
- switch (vform) {
- case kFormatB:
- case kFormatH:
- case kFormatS:
- case kFormatD: return false;
- default: return true;
- }
-}
-
-
-int64_t MaxIntFromFormat(VectorFormat vform) {
- return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
-}
-
-
-int64_t MinIntFromFormat(VectorFormat vform) {
- return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform));
-}
-
-
-uint64_t MaxUintFromFormat(VectorFormat vform) {
- return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
-}
-} // namespace vixl
-
diff --git a/disas/libvixl/vixl/a64/instructions-a64.h b/disas/libvixl/vixl/a64/instructions-a64.h
deleted file mode 100644
index 7e0dbae36a..0000000000
--- a/disas/libvixl/vixl/a64/instructions-a64.h
+++ /dev/null
@@ -1,757 +0,0 @@
-// Copyright 2015, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef VIXL_A64_INSTRUCTIONS_A64_H_
-#define VIXL_A64_INSTRUCTIONS_A64_H_
-
-#include "vixl/globals.h"
-#include "vixl/utils.h"
-#include "vixl/a64/constants-a64.h"
-
-namespace vixl {
-// ISA constants. --------------------------------------------------------------
-
-typedef uint32_t Instr;
-const unsigned kInstructionSize = 4;
-const unsigned kInstructionSizeLog2 = 2;
-const unsigned kLiteralEntrySize = 4;
-const unsigned kLiteralEntrySizeLog2 = 2;
-const unsigned kMaxLoadLiteralRange = 1 * MBytes;
-
-// This is the nominal page size (as used by the adrp instruction); the actual
-// size of the memory pages allocated by the kernel is likely to differ.
-const unsigned kPageSize = 4 * KBytes;
-const unsigned kPageSizeLog2 = 12;
-
-const unsigned kBRegSize = 8;
-const unsigned kBRegSizeLog2 = 3;
-const unsigned kBRegSizeInBytes = kBRegSize / 8;
-const unsigned kBRegSizeInBytesLog2 = kBRegSizeLog2 - 3;
-const unsigned kHRegSize = 16;
-const unsigned kHRegSizeLog2 = 4;
-const unsigned kHRegSizeInBytes = kHRegSize / 8;
-const unsigned kHRegSizeInBytesLog2 = kHRegSizeLog2 - 3;
-const unsigned kWRegSize = 32;
-const unsigned kWRegSizeLog2 = 5;
-const unsigned kWRegSizeInBytes = kWRegSize / 8;
-const unsigned kWRegSizeInBytesLog2 = kWRegSizeLog2 - 3;
-const unsigned kXRegSize = 64;
-const unsigned kXRegSizeLog2 = 6;
-const unsigned kXRegSizeInBytes = kXRegSize / 8;
-const unsigned kXRegSizeInBytesLog2 = kXRegSizeLog2 - 3;
-const unsigned kSRegSize = 32;
-const unsigned kSRegSizeLog2 = 5;
-const unsigned kSRegSizeInBytes = kSRegSize / 8;
-const unsigned kSRegSizeInBytesLog2 = kSRegSizeLog2 - 3;
-const unsigned kDRegSize = 64;
-const unsigned kDRegSizeLog2 = 6;
-const unsigned kDRegSizeInBytes = kDRegSize / 8;
-const unsigned kDRegSizeInBytesLog2 = kDRegSizeLog2 - 3;
-const unsigned kQRegSize = 128;
-const unsigned kQRegSizeLog2 = 7;
-const unsigned kQRegSizeInBytes = kQRegSize / 8;
-const unsigned kQRegSizeInBytesLog2 = kQRegSizeLog2 - 3;
-const uint64_t kWRegMask = UINT64_C(0xffffffff);
-const uint64_t kXRegMask = UINT64_C(0xffffffffffffffff);
-const uint64_t kSRegMask = UINT64_C(0xffffffff);
-const uint64_t kDRegMask = UINT64_C(0xffffffffffffffff);
-const uint64_t kSSignMask = UINT64_C(0x80000000);
-const uint64_t kDSignMask = UINT64_C(0x8000000000000000);
-const uint64_t kWSignMask = UINT64_C(0x80000000);
-const uint64_t kXSignMask = UINT64_C(0x8000000000000000);
-const uint64_t kByteMask = UINT64_C(0xff);
-const uint64_t kHalfWordMask = UINT64_C(0xffff);
-const uint64_t kWordMask = UINT64_C(0xffffffff);
-const uint64_t kXMaxUInt = UINT64_C(0xffffffffffffffff);
-const uint64_t kWMaxUInt = UINT64_C(0xffffffff);
-const int64_t kXMaxInt = INT64_C(0x7fffffffffffffff);
-const int64_t kXMinInt = INT64_C(0x8000000000000000);
-const int32_t kWMaxInt = INT32_C(0x7fffffff);
-const int32_t kWMinInt = INT32_C(0x80000000);
-const unsigned kLinkRegCode = 30;
-const unsigned kZeroRegCode = 31;
-const unsigned kSPRegInternalCode = 63;
-const unsigned kRegCodeMask = 0x1f;
-
-const unsigned kAddressTagOffset = 56;
-const unsigned kAddressTagWidth = 8;
-const uint64_t kAddressTagMask =
- ((UINT64_C(1) << kAddressTagWidth) - 1) << kAddressTagOffset;
-VIXL_STATIC_ASSERT(kAddressTagMask == UINT64_C(0xff00000000000000));
-
-// AArch64 floating-point specifics. These match IEEE-754.
-const unsigned kDoubleMantissaBits = 52;
-const unsigned kDoubleExponentBits = 11;
-const unsigned kFloatMantissaBits = 23;
-const unsigned kFloatExponentBits = 8;
-const unsigned kFloat16MantissaBits = 10;
-const unsigned kFloat16ExponentBits = 5;
-
-// Floating-point infinity values.
-extern const float16 kFP16PositiveInfinity;
-extern const float16 kFP16NegativeInfinity;
-extern const float kFP32PositiveInfinity;
-extern const float kFP32NegativeInfinity;
-extern const double kFP64PositiveInfinity;
-extern const double kFP64NegativeInfinity;
-
-// The default NaN values (for FPCR.DN=1).
-extern const float16 kFP16DefaultNaN;
-extern const float kFP32DefaultNaN;
-extern const double kFP64DefaultNaN;
-
-unsigned CalcLSDataSize(LoadStoreOp op);
-unsigned CalcLSPairDataSize(LoadStorePairOp op);
-
-enum ImmBranchType {
- UnknownBranchType = 0,
- CondBranchType = 1,
- UncondBranchType = 2,
- CompareBranchType = 3,
- TestBranchType = 4
-};
-
-enum AddrMode {
- Offset,
- PreIndex,
- PostIndex
-};
-
-enum FPRounding {
- // The first four values are encodable directly by FPCR<RMode>.
- FPTieEven = 0x0,
- FPPositiveInfinity = 0x1,
- FPNegativeInfinity = 0x2,
- FPZero = 0x3,
-
- // The final rounding modes are only available when explicitly specified by
- // the instruction (such as with fcvta). It cannot be set in FPCR.
- FPTieAway,
- FPRoundOdd
-};
-
-enum Reg31Mode {
- Reg31IsStackPointer,
- Reg31IsZeroRegister
-};
-
-// Instructions. ---------------------------------------------------------------
-
-class Instruction {
- public:
- Instr InstructionBits() const {
- return *(reinterpret_cast<const Instr*>(this));
- }
-
- void SetInstructionBits(Instr new_instr) {
- *(reinterpret_cast<Instr*>(this)) = new_instr;
- }
-
- int Bit(int pos) const {
- return (InstructionBits() >> pos) & 1;
- }
-
- uint32_t Bits(int msb, int lsb) const {
- return unsigned_bitextract_32(msb, lsb, InstructionBits());
- }
-
- int32_t SignedBits(int msb, int lsb) const {
- int32_t bits = *(reinterpret_cast<const int32_t*>(this));
- return signed_bitextract_32(msb, lsb, bits);
- }
-
- Instr Mask(uint32_t mask) const {
- return InstructionBits() & mask;
- }
-
- #define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
- int32_t Name() const { return Func(HighBit, LowBit); }
- INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
- #undef DEFINE_GETTER
-
- // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
- // formed from ImmPCRelLo and ImmPCRelHi.
- int ImmPCRel() const {
- int offset =
- static_cast<int>((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
- int width = ImmPCRelLo_width + ImmPCRelHi_width;
- return signed_bitextract_32(width - 1, 0, offset);
- }
-
- uint64_t ImmLogical() const;
- unsigned ImmNEONabcdefgh() const;
- float ImmFP32() const;
- double ImmFP64() const;
- float ImmNEONFP32() const;
- double ImmNEONFP64() const;
-
- unsigned SizeLS() const {
- return CalcLSDataSize(static_cast<LoadStoreOp>(Mask(LoadStoreMask)));
- }
-
- unsigned SizeLSPair() const {
- return CalcLSPairDataSize(
- static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
- }
-
- int NEONLSIndex(int access_size_shift) const {
- int64_t q = NEONQ();
- int64_t s = NEONS();
- int64_t size = NEONLSSize();
- int64_t index = (q << 3) | (s << 2) | size;
- return static_cast<int>(index >> access_size_shift);
- }
-
- // Helpers.
- bool IsCondBranchImm() const {
- return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
- }
-
- bool IsUncondBranchImm() const {
- return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
- }
-
- bool IsCompareBranch() const {
- return Mask(CompareBranchFMask) == CompareBranchFixed;
- }
-
- bool IsTestBranch() const {
- return Mask(TestBranchFMask) == TestBranchFixed;
- }
-
- bool IsImmBranch() const {
- return BranchType() != UnknownBranchType;
- }
-
- bool IsPCRelAddressing() const {
- return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
- }
-
- bool IsLogicalImmediate() const {
- return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
- }
-
- bool IsAddSubImmediate() const {
- return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
- }
-
- bool IsAddSubExtended() const {
- return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
- }
-
- bool IsLoadOrStore() const {
- return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
- }
-
- bool IsLoad() const;
- bool IsStore() const;
-
- bool IsLoadLiteral() const {
- // This includes PRFM_lit.
- return Mask(LoadLiteralFMask) == LoadLiteralFixed;
- }
-
- bool IsMovn() const {
- return (Mask(MoveWideImmediateMask) == MOVN_x) ||
- (Mask(MoveWideImmediateMask) == MOVN_w);
- }
-
- static int ImmBranchRangeBitwidth(ImmBranchType branch_type);
- static int32_t ImmBranchForwardRange(ImmBranchType branch_type);
- static bool IsValidImmPCOffset(ImmBranchType branch_type, int64_t offset);
-
- // Indicate whether Rd can be the stack pointer or the zero register. This
- // does not check that the instruction actually has an Rd field.
- Reg31Mode RdMode() const {
- // The following instructions use sp or wsp as Rd:
- // Add/sub (immediate) when not setting the flags.
- // Add/sub (extended) when not setting the flags.
- // Logical (immediate) when not setting the flags.
- // Otherwise, r31 is the zero register.
- if (IsAddSubImmediate() || IsAddSubExtended()) {
- if (Mask(AddSubSetFlagsBit)) {
- return Reg31IsZeroRegister;
- } else {
- return Reg31IsStackPointer;
- }
- }
- if (IsLogicalImmediate()) {
- // Of the logical (immediate) instructions, only ANDS (and its aliases)
- // can set the flags. The others can all write into sp.
- // Note that some logical operations are not available to
- // immediate-operand instructions, so we have to combine two masks here.
- if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
- return Reg31IsZeroRegister;
- } else {
- return Reg31IsStackPointer;
- }
- }
- return Reg31IsZeroRegister;
- }
-
- // Indicate whether Rn can be the stack pointer or the zero register. This
- // does not check that the instruction actually has an Rn field.
- Reg31Mode RnMode() const {
- // The following instructions use sp or wsp as Rn:
- // All loads and stores.
- // Add/sub (immediate).
- // Add/sub (extended).
- // Otherwise, r31 is the zero register.
- if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
- return Reg31IsStackPointer;
- }
- return Reg31IsZeroRegister;
- }
-
- ImmBranchType BranchType() const {
- if (IsCondBranchImm()) {
- return CondBranchType;
- } else if (IsUncondBranchImm()) {
- return UncondBranchType;
- } else if (IsCompareBranch()) {
- return CompareBranchType;
- } else if (IsTestBranch()) {
- return TestBranchType;
- } else {
- return UnknownBranchType;
- }
- }
-
- // Find the target of this instruction. 'this' may be a branch or a
- // PC-relative addressing instruction.
- const Instruction* ImmPCOffsetTarget() const;
-
- // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
- // a PC-relative addressing instruction.
- void SetImmPCOffsetTarget(const Instruction* target);
- // Patch a literal load instruction to load from 'source'.
- void SetImmLLiteral(const Instruction* source);
-
- // The range of a load literal instruction, expressed as 'instr +- range'.
- // The range is actually the 'positive' range; the branch instruction can
- // target [instr - range - kInstructionSize, instr + range].
- static const int kLoadLiteralImmBitwidth = 19;
- static const int kLoadLiteralRange =
- (1 << kLoadLiteralImmBitwidth) / 2 - kInstructionSize;
-
- // Calculate the address of a literal referred to by a load-literal
- // instruction, and return it as the specified type.
- //
- // The literal itself is safely mutable only if the backing buffer is safely
- // mutable.
- template <typename T>
- T LiteralAddress() const {
- uint64_t base_raw = reinterpret_cast<uint64_t>(this);
- int64_t offset = ImmLLiteral() << kLiteralEntrySizeLog2;
- uint64_t address_raw = base_raw + offset;
-
- // Cast the address using a C-style cast. A reinterpret_cast would be
- // appropriate, but it can't cast one integral type to another.
- T address = (T)(address_raw);
-
- // Assert that the address can be represented by the specified type.
- VIXL_ASSERT((uint64_t)(address) == address_raw);
-
- return address;
- }
-
- uint32_t Literal32() const {
- uint32_t literal;
- memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
- return literal;
- }
-
- uint64_t Literal64() const {
- uint64_t literal;
- memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
- return literal;
- }
-
- float LiteralFP32() const {
- return rawbits_to_float(Literal32());
- }
-
- double LiteralFP64() const {
- return rawbits_to_double(Literal64());
- }
-
- const Instruction* NextInstruction() const {
- return this + kInstructionSize;
- }
-
- const Instruction* InstructionAtOffset(int64_t offset) const {
- VIXL_ASSERT(IsWordAligned(this + offset));
- return this + offset;
- }
-
- template<typename T> static Instruction* Cast(T src) {
- return reinterpret_cast<Instruction*>(src);
- }
-
- template<typename T> static const Instruction* CastConst(T src) {
- return reinterpret_cast<const Instruction*>(src);
- }
-
- private:
- int ImmBranch() const;
-
- static float Imm8ToFP32(uint32_t imm8);
- static double Imm8ToFP64(uint32_t imm8);
-
- void SetPCRelImmTarget(const Instruction* target);
- void SetBranchImmTarget(const Instruction* target);
-};
-
-
-// Functions for handling NEON vector format information.
-enum VectorFormat {
- kFormatUndefined = 0xffffffff,
- kFormat8B = NEON_8B,
- kFormat16B = NEON_16B,
- kFormat4H = NEON_4H,
- kFormat8H = NEON_8H,
- kFormat2S = NEON_2S,
- kFormat4S = NEON_4S,
- kFormat1D = NEON_1D,
- kFormat2D = NEON_2D,
-
- // Scalar formats. We add the scalar bit to distinguish between scalar and
- // vector enumerations; the bit is always set in the encoding of scalar ops
- // and always clear for vector ops. Although kFormatD and kFormat1D appear
- // to be the same, their meaning is subtly different. The first is a scalar
- // operation, the second a vector operation that only affects one lane.
- kFormatB = NEON_B | NEONScalar,
- kFormatH = NEON_H | NEONScalar,
- kFormatS = NEON_S | NEONScalar,
- kFormatD = NEON_D | NEONScalar
-};
-
-VectorFormat VectorFormatHalfWidth(const VectorFormat vform);
-VectorFormat VectorFormatDoubleWidth(const VectorFormat vform);
-VectorFormat VectorFormatDoubleLanes(const VectorFormat vform);
-VectorFormat VectorFormatHalfLanes(const VectorFormat vform);
-VectorFormat ScalarFormatFromLaneSize(int lanesize);
-VectorFormat VectorFormatHalfWidthDoubleLanes(const VectorFormat vform);
-VectorFormat VectorFormatFillQ(const VectorFormat vform);
-unsigned RegisterSizeInBitsFromFormat(VectorFormat vform);
-unsigned RegisterSizeInBytesFromFormat(VectorFormat vform);
-// TODO: Make the return types of these functions consistent.
-unsigned LaneSizeInBitsFromFormat(VectorFormat vform);
-int LaneSizeInBytesFromFormat(VectorFormat vform);
-int LaneSizeInBytesLog2FromFormat(VectorFormat vform);
-int LaneCountFromFormat(VectorFormat vform);
-int MaxLaneCountFromFormat(VectorFormat vform);
-bool IsVectorFormat(VectorFormat vform);
-int64_t MaxIntFromFormat(VectorFormat vform);
-int64_t MinIntFromFormat(VectorFormat vform);
-uint64_t MaxUintFromFormat(VectorFormat vform);
-
-
-enum NEONFormat {
- NF_UNDEF = 0,
- NF_8B = 1,
- NF_16B = 2,
- NF_4H = 3,
- NF_8H = 4,
- NF_2S = 5,
- NF_4S = 6,
- NF_1D = 7,
- NF_2D = 8,
- NF_B = 9,
- NF_H = 10,
- NF_S = 11,
- NF_D = 12
-};
-
-static const unsigned kNEONFormatMaxBits = 6;
-
-struct NEONFormatMap {
- // The bit positions in the instruction to consider.
- uint8_t bits[kNEONFormatMaxBits];
-
- // Mapping from concatenated bits to format.
- NEONFormat map[1 << kNEONFormatMaxBits];
-};
-
-class NEONFormatDecoder {
- public:
- enum SubstitutionMode {
- kPlaceholder,
- kFormat
- };
-
- // Construct a format decoder with increasingly specific format maps for each
- // subsitution. If no format map is specified, the default is the integer
- // format map.
- explicit NEONFormatDecoder(const Instruction* instr) {
- instrbits_ = instr->InstructionBits();
- SetFormatMaps(IntegerFormatMap());
- }
- NEONFormatDecoder(const Instruction* instr,
- const NEONFormatMap* format) {
- instrbits_ = instr->InstructionBits();
- SetFormatMaps(format);
- }
- NEONFormatDecoder(const Instruction* instr,
- const NEONFormatMap* format0,
- const NEONFormatMap* format1) {
- instrbits_ = instr->InstructionBits();
- SetFormatMaps(format0, format1);
- }
- NEONFormatDecoder(const Instruction* instr,
- const NEONFormatMap* format0,
- const NEONFormatMap* format1,
- const NEONFormatMap* format2) {
- instrbits_ = instr->InstructionBits();
- SetFormatMaps(format0, format1, format2);
- }
-
- // Set the format mapping for all or individual substitutions.
- void SetFormatMaps(const NEONFormatMap* format0,
- const NEONFormatMap* format1 = NULL,
- const NEONFormatMap* format2 = NULL) {
- VIXL_ASSERT(format0 != NULL);
- formats_[0] = format0;
- formats_[1] = (format1 == NULL) ? formats_[0] : format1;
- formats_[2] = (format2 == NULL) ? formats_[1] : format2;
- }
- void SetFormatMap(unsigned index, const NEONFormatMap* format) {
- VIXL_ASSERT(index <= (sizeof(formats_) / sizeof(formats_[0])));
- VIXL_ASSERT(format != NULL);
- formats_[index] = format;
- }
-
- // Substitute %s in the input string with the placeholder string for each
- // register, ie. "'B", "'H", etc.
- const char* SubstitutePlaceholders(const char* string) {
- return Substitute(string, kPlaceholder, kPlaceholder, kPlaceholder);
- }
-
- // Substitute %s in the input string with a new string based on the
- // substitution mode.
- const char* Substitute(const char* string,
- SubstitutionMode mode0 = kFormat,
- SubstitutionMode mode1 = kFormat,
- SubstitutionMode mode2 = kFormat) {
- snprintf(form_buffer_, sizeof(form_buffer_), string,
- GetSubstitute(0, mode0),
- GetSubstitute(1, mode1),
- GetSubstitute(2, mode2));
- return form_buffer_;
- }
-
- // Append a "2" to a mnemonic string based of the state of the Q bit.
- const char* Mnemonic(const char* mnemonic) {
- if ((instrbits_ & NEON_Q) != 0) {
- snprintf(mne_buffer_, sizeof(mne_buffer_), "%s2", mnemonic);
- return mne_buffer_;
- }
- return mnemonic;
- }
-
- VectorFormat GetVectorFormat(int format_index = 0) {
- return GetVectorFormat(formats_[format_index]);
- }
-
- VectorFormat GetVectorFormat(const NEONFormatMap* format_map) {
- static const VectorFormat vform[] = {
- kFormatUndefined,
- kFormat8B, kFormat16B, kFormat4H, kFormat8H,
- kFormat2S, kFormat4S, kFormat1D, kFormat2D,
- kFormatB, kFormatH, kFormatS, kFormatD
- };
- VIXL_ASSERT(GetNEONFormat(format_map) < (sizeof(vform) / sizeof(vform[0])));
- return vform[GetNEONFormat(format_map)];
- }
-
- // Built in mappings for common cases.
-
- // The integer format map uses three bits (Q, size<1:0>) to encode the
- // "standard" set of NEON integer vector formats.
- static const NEONFormatMap* IntegerFormatMap() {
- static const NEONFormatMap map = {
- {23, 22, 30},
- {NF_8B, NF_16B, NF_4H, NF_8H, NF_2S, NF_4S, NF_UNDEF, NF_2D}
- };
- return &map;
- }
-
- // The long integer format map uses two bits (size<1:0>) to encode the
- // long set of NEON integer vector formats. These are used in narrow, wide
- // and long operations.
- static const NEONFormatMap* LongIntegerFormatMap() {
- static const NEONFormatMap map = {
- {23, 22}, {NF_8H, NF_4S, NF_2D}
- };
- return &map;
- }
-
- // The FP format map uses two bits (Q, size<0>) to encode the NEON FP vector
- // formats: NF_2S, NF_4S, NF_2D.
- static const NEONFormatMap* FPFormatMap() {
- // The FP format map assumes two bits (Q, size<0>) are used to encode the
- // NEON FP vector formats: NF_2S, NF_4S, NF_2D.
- static const NEONFormatMap map = {
- {22, 30}, {NF_2S, NF_4S, NF_UNDEF, NF_2D}
- };
- return &map;
- }
-
- // The load/store format map uses three bits (Q, 11, 10) to encode the
- // set of NEON vector formats.
- static const NEONFormatMap* LoadStoreFormatMap() {
- static const NEONFormatMap map = {
- {11, 10, 30},
- {NF_8B, NF_16B, NF_4H, NF_8H, NF_2S, NF_4S, NF_1D, NF_2D}
- };
- return &map;
- }
-
- // The logical format map uses one bit (Q) to encode the NEON vector format:
- // NF_8B, NF_16B.
- static const NEONFormatMap* LogicalFormatMap() {
- static const NEONFormatMap map = {
- {30}, {NF_8B, NF_16B}
- };
- return &map;
- }
-
- // The triangular format map uses between two and five bits to encode the NEON
- // vector format:
- // xxx10->8B, xxx11->16B, xx100->4H, xx101->8H
- // x1000->2S, x1001->4S, 10001->2D, all others undefined.
- static const NEONFormatMap* TriangularFormatMap() {
- static const NEONFormatMap map = {
- {19, 18, 17, 16, 30},
- {NF_UNDEF, NF_UNDEF, NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B, NF_2S,
- NF_4S, NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B, NF_UNDEF, NF_2D,
- NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B, NF_2S, NF_4S, NF_8B, NF_16B,
- NF_4H, NF_8H, NF_8B, NF_16B}
- };
- return &map;
- }
-
- // The scalar format map uses two bits (size<1:0>) to encode the NEON scalar
- // formats: NF_B, NF_H, NF_S, NF_D.
- static const NEONFormatMap* ScalarFormatMap() {
- static const NEONFormatMap map = {
- {23, 22}, {NF_B, NF_H, NF_S, NF_D}
- };
- return &map;
- }
-
- // The long scalar format map uses two bits (size<1:0>) to encode the longer
- // NEON scalar formats: NF_H, NF_S, NF_D.
- static const NEONFormatMap* LongScalarFormatMap() {
- static const NEONFormatMap map = {
- {23, 22}, {NF_H, NF_S, NF_D}
- };
- return &map;
- }
-
- // The FP scalar format map assumes one bit (size<0>) is used to encode the
- // NEON FP scalar formats: NF_S, NF_D.
- static const NEONFormatMap* FPScalarFormatMap() {
- static const NEONFormatMap map = {
- {22}, {NF_S, NF_D}
- };
- return &map;
- }
-
- // The triangular scalar format map uses between one and four bits to encode
- // the NEON FP scalar formats:
- // xxx1->B, xx10->H, x100->S, 1000->D, all others undefined.
- static const NEONFormatMap* TriangularScalarFormatMap() {
- static const NEONFormatMap map = {
- {19, 18, 17, 16},
- {NF_UNDEF, NF_B, NF_H, NF_B, NF_S, NF_B, NF_H, NF_B,
- NF_D, NF_B, NF_H, NF_B, NF_S, NF_B, NF_H, NF_B}
- };
- return &map;
- }
-
- private:
- // Get a pointer to a string that represents the format or placeholder for
- // the specified substitution index, based on the format map and instruction.
- const char* GetSubstitute(int index, SubstitutionMode mode) {
- if (mode == kFormat) {
- return NEONFormatAsString(GetNEONFormat(formats_[index]));
- }
- VIXL_ASSERT(mode == kPlaceholder);
- return NEONFormatAsPlaceholder(GetNEONFormat(formats_[index]));
- }
-
- // Get the NEONFormat enumerated value for bits obtained from the
- // instruction based on the specified format mapping.
- NEONFormat GetNEONFormat(const NEONFormatMap* format_map) {
- return format_map->map[PickBits(format_map->bits)];
- }
-
- // Convert a NEONFormat into a string.
- static const char* NEONFormatAsString(NEONFormat format) {
- static const char* formats[] = {
- "undefined",
- "8b", "16b", "4h", "8h", "2s", "4s", "1d", "2d",
- "b", "h", "s", "d"
- };
- VIXL_ASSERT(format < (sizeof(formats) / sizeof(formats[0])));
- return formats[format];
- }
-
- // Convert a NEONFormat into a register placeholder string.
- static const char* NEONFormatAsPlaceholder(NEONFormat format) {
- VIXL_ASSERT((format == NF_B) || (format == NF_H) ||
- (format == NF_S) || (format == NF_D) ||
- (format == NF_UNDEF));
- static const char* formats[] = {
- "undefined",
- "undefined", "undefined", "undefined", "undefined",
- "undefined", "undefined", "undefined", "undefined",
- "'B", "'H", "'S", "'D"
- };
- return formats[format];
- }
-
- // Select bits from instrbits_ defined by the bits array, concatenate them,
- // and return the value.
- uint8_t PickBits(const uint8_t bits[]) {
- uint8_t result = 0;
- for (unsigned b = 0; b < kNEONFormatMaxBits; b++) {
- if (bits[b] == 0) break;
- result <<= 1;
- result |= ((instrbits_ & (1 << bits[b])) == 0) ? 0 : 1;
- }
- return result;
- }
-
- Instr instrbits_;
- const NEONFormatMap* formats_[3];
- char form_buffer_[64];
- char mne_buffer_[16];
-};
-} // namespace vixl
-
-#endif // VIXL_A64_INSTRUCTIONS_A64_H_
diff --git a/disas/libvixl/vixl/code-buffer.h b/disas/libvixl/vixl/code-buffer.h
deleted file mode 100644
index b95babbdee..0000000000
--- a/disas/libvixl/vixl/code-buffer.h
+++ /dev/null
@@ -1,113 +0,0 @@
-// Copyright 2014, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef VIXL_CODE_BUFFER_H
-#define VIXL_CODE_BUFFER_H
-
-#include <cstring>
-#include "vixl/globals.h"
-
-namespace vixl {
-
-class CodeBuffer {
- public:
- explicit CodeBuffer(size_t capacity = 4 * KBytes);
- CodeBuffer(void* buffer, size_t capacity);
- ~CodeBuffer();
-
- void Reset();
-
- ptrdiff_t OffsetFrom(ptrdiff_t offset) const {
- ptrdiff_t cursor_offset = cursor_ - buffer_;
- VIXL_ASSERT((offset >= 0) && (offset <= cursor_offset));
- return cursor_offset - offset;
- }
-
- ptrdiff_t CursorOffset() const {
- return OffsetFrom(0);
- }
-
- template <typename T>
- T GetOffsetAddress(ptrdiff_t offset) const {
- VIXL_ASSERT((offset >= 0) && (offset <= (cursor_ - buffer_)));
- return reinterpret_cast<T>(buffer_ + offset);
- }
-
- size_t RemainingBytes() const {
- VIXL_ASSERT((cursor_ >= buffer_) && (cursor_ <= (buffer_ + capacity_)));
- return (buffer_ + capacity_) - cursor_;
- }
-
- // A code buffer can emit:
- // * 32-bit data: instruction and constant.
- // * 64-bit data: constant.
- // * string: debug info.
- void Emit32(uint32_t data) { Emit(data); }
-
- void Emit64(uint64_t data) { Emit(data); }
-
- void EmitString(const char* string);
-
- // Align to kInstructionSize.
- void Align();
-
- size_t capacity() const { return capacity_; }
-
- bool IsManaged() const { return managed_; }
-
- void Grow(size_t new_capacity);
-
- bool IsDirty() const { return dirty_; }
-
- void SetClean() { dirty_ = false; }
-
- private:
- template <typename T>
- void Emit(T value) {
- VIXL_ASSERT(RemainingBytes() >= sizeof(value));
- dirty_ = true;
- memcpy(cursor_, &value, sizeof(value));
- cursor_ += sizeof(value);
- }
-
- // Backing store of the buffer.
- byte* buffer_;
- // If true the backing store is allocated and deallocated by the buffer. The
- // backing store can then grow on demand. If false the backing store is
- // provided by the user and cannot be resized internally.
- bool managed_;
- // Pointer to the next location to be written.
- byte* cursor_;
- // True if there has been any write since the buffer was created or cleaned.
- bool dirty_;
- // Capacity in bytes of the backing store.
- size_t capacity_;
-};
-
-} // namespace vixl
-
-#endif // VIXL_CODE_BUFFER_H
-
diff --git a/disas/libvixl/vixl/compiler-intrinsics.cc b/disas/libvixl/vixl/compiler-intrinsics.cc
deleted file mode 100644
index fd551faeb1..0000000000
--- a/disas/libvixl/vixl/compiler-intrinsics.cc
+++ /dev/null
@@ -1,144 +0,0 @@
-// Copyright 2015, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#include "compiler-intrinsics.h"
-
-namespace vixl {
-
-
-int CountLeadingSignBitsFallBack(int64_t value, int width) {
- VIXL_ASSERT(IsPowerOf2(width) && (width <= 64));
- if (value >= 0) {
- return CountLeadingZeros(value, width) - 1;
- } else {
- return CountLeadingZeros(~value, width) - 1;
- }
-}
-
-
-int CountLeadingZerosFallBack(uint64_t value, int width) {
- VIXL_ASSERT(IsPowerOf2(width) && (width <= 64));
- if (value == 0) {
- return width;
- }
- int count = 0;
- value = value << (64 - width);
- if ((value & UINT64_C(0xffffffff00000000)) == 0) {
- count += 32;
- value = value << 32;
- }
- if ((value & UINT64_C(0xffff000000000000)) == 0) {
- count += 16;
- value = value << 16;
- }
- if ((value & UINT64_C(0xff00000000000000)) == 0) {
- count += 8;
- value = value << 8;
- }
- if ((value & UINT64_C(0xf000000000000000)) == 0) {
- count += 4;
- value = value << 4;
- }
- if ((value & UINT64_C(0xc000000000000000)) == 0) {
- count += 2;
- value = value << 2;
- }
- if ((value & UINT64_C(0x8000000000000000)) == 0) {
- count += 1;
- }
- count += (value == 0);
- return count;
-}
-
-
-int CountSetBitsFallBack(uint64_t value, int width) {
- VIXL_ASSERT(IsPowerOf2(width) && (width <= 64));
-
- // Mask out unused bits to ensure that they are not counted.
- value &= (UINT64_C(0xffffffffffffffff) >> (64 - width));
-
- // Add up the set bits.
- // The algorithm works by adding pairs of bit fields together iteratively,
- // where the size of each bit field doubles each time.
- // An example for an 8-bit value:
- // Bits: h g f e d c b a
- // \ | \ | \ | \ |
- // value = h+g f+e d+c b+a
- // \ | \ |
- // value = h+g+f+e d+c+b+a
- // \ |
- // value = h+g+f+e+d+c+b+a
- const uint64_t kMasks[] = {
- UINT64_C(0x5555555555555555),
- UINT64_C(0x3333333333333333),
- UINT64_C(0x0f0f0f0f0f0f0f0f),
- UINT64_C(0x00ff00ff00ff00ff),
- UINT64_C(0x0000ffff0000ffff),
- UINT64_C(0x00000000ffffffff),
- };
-
- for (unsigned i = 0; i < (sizeof(kMasks) / sizeof(kMasks[0])); i++) {
- int shift = 1 << i;
- value = ((value >> shift) & kMasks[i]) + (value & kMasks[i]);
- }
-
- return static_cast<int>(value);
-}
-
-
-int CountTrailingZerosFallBack(uint64_t value, int width) {
- VIXL_ASSERT(IsPowerOf2(width) && (width <= 64));
- int count = 0;
- value = value << (64 - width);
- if ((value & UINT64_C(0xffffffff)) == 0) {
- count += 32;
- value = value >> 32;
- }
- if ((value & 0xffff) == 0) {
- count += 16;
- value = value >> 16;
- }
- if ((value & 0xff) == 0) {
- count += 8;
- value = value >> 8;
- }
- if ((value & 0xf) == 0) {
- count += 4;
- value = value >> 4;
- }
- if ((value & 0x3) == 0) {
- count += 2;
- value = value >> 2;
- }
- if ((value & 0x1) == 0) {
- count += 1;
- }
- count += (value == 0);
- return count - (64 - width);
-}
-
-
-} // namespace vixl
diff --git a/disas/libvixl/vixl/compiler-intrinsics.h b/disas/libvixl/vixl/compiler-intrinsics.h
deleted file mode 100644
index 9431beddb9..0000000000
--- a/disas/libvixl/vixl/compiler-intrinsics.h
+++ /dev/null
@@ -1,155 +0,0 @@
-// Copyright 2015, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-
-#ifndef VIXL_COMPILER_INTRINSICS_H
-#define VIXL_COMPILER_INTRINSICS_H
-
-#include "globals.h"
-
-namespace vixl {
-
-// Helper to check whether the version of GCC used is greater than the specified
-// requirement.
-#define MAJOR 1000000
-#define MINOR 1000
-#if defined(__GNUC__) && defined(__GNUC_MINOR__) && defined(__GNUC_PATCHLEVEL__)
-#define GCC_VERSION_OR_NEWER(major, minor, patchlevel) \
- ((__GNUC__ * MAJOR + __GNUC_MINOR__ * MINOR + __GNUC_PATCHLEVEL__) >= \
- ((major) * MAJOR + (minor) * MINOR + (patchlevel)))
-#elif defined(__GNUC__) && defined(__GNUC_MINOR__)
-#define GCC_VERSION_OR_NEWER(major, minor, patchlevel) \
- ((__GNUC__ * MAJOR + __GNUC_MINOR__ * MINOR) >= \
- ((major) * MAJOR + (minor) * MINOR + (patchlevel)))
-#else
-#define GCC_VERSION_OR_NEWER(major, minor, patchlevel) 0
-#endif
-
-
-#if defined(__clang__) && !defined(VIXL_NO_COMPILER_BUILTINS)
-
-#define COMPILER_HAS_BUILTIN_CLRSB (__has_builtin(__builtin_clrsb))
-#define COMPILER_HAS_BUILTIN_CLZ (__has_builtin(__builtin_clz))
-#define COMPILER_HAS_BUILTIN_CTZ (__has_builtin(__builtin_ctz))
-#define COMPILER_HAS_BUILTIN_FFS (__has_builtin(__builtin_ffs))
-#define COMPILER_HAS_BUILTIN_POPCOUNT (__has_builtin(__builtin_popcount))
-
-#elif defined(__GNUC__) && !defined(VIXL_NO_COMPILER_BUILTINS)
-// The documentation for these builtins is available at:
-// https://gcc.gnu.org/onlinedocs/gcc-$MAJOR.$MINOR.$PATCHLEVEL/gcc//Other-Builtins.html
-
-# define COMPILER_HAS_BUILTIN_CLRSB (GCC_VERSION_OR_NEWER(4, 7, 0))
-# define COMPILER_HAS_BUILTIN_CLZ (GCC_VERSION_OR_NEWER(3, 4, 0))
-# define COMPILER_HAS_BUILTIN_CTZ (GCC_VERSION_OR_NEWER(3, 4, 0))
-# define COMPILER_HAS_BUILTIN_FFS (GCC_VERSION_OR_NEWER(3, 4, 0))
-# define COMPILER_HAS_BUILTIN_POPCOUNT (GCC_VERSION_OR_NEWER(3, 4, 0))
-
-#else
-// One can define VIXL_NO_COMPILER_BUILTINS to force using the manually
-// implemented C++ methods.
-
-#define COMPILER_HAS_BUILTIN_BSWAP false
-#define COMPILER_HAS_BUILTIN_CLRSB false
-#define COMPILER_HAS_BUILTIN_CLZ false
-#define COMPILER_HAS_BUILTIN_CTZ false
-#define COMPILER_HAS_BUILTIN_FFS false
-#define COMPILER_HAS_BUILTIN_POPCOUNT false
-
-#endif
-
-
-template<typename V>
-inline bool IsPowerOf2(V value) {
- return (value != 0) && ((value & (value - 1)) == 0);
-}
-
-
-// Declaration of fallback functions.
-int CountLeadingSignBitsFallBack(int64_t value, int width);
-int CountLeadingZerosFallBack(uint64_t value, int width);
-int CountSetBitsFallBack(uint64_t value, int width);
-int CountTrailingZerosFallBack(uint64_t value, int width);
-
-
-// Implementation of intrinsics functions.
-// TODO: The implementations could be improved for sizes different from 32bit
-// and 64bit: we could mask the values and call the appropriate builtin.
-
-template<typename V>
-inline int CountLeadingSignBits(V value, int width = (sizeof(V) * 8)) {
-#if COMPILER_HAS_BUILTIN_CLRSB
- if (width == 32) {
- return __builtin_clrsb(value);
- } else if (width == 64) {
- return __builtin_clrsbll(value);
- }
-#endif
- return CountLeadingSignBitsFallBack(value, width);
-}
-
-
-template<typename V>
-inline int CountLeadingZeros(V value, int width = (sizeof(V) * 8)) {
-#if COMPILER_HAS_BUILTIN_CLZ
- if (width == 32) {
- return (value == 0) ? 32 : __builtin_clz(static_cast<unsigned>(value));
- } else if (width == 64) {
- return (value == 0) ? 64 : __builtin_clzll(value);
- }
-#endif
- return CountLeadingZerosFallBack(value, width);
-}
-
-
-template<typename V>
-inline int CountSetBits(V value, int width = (sizeof(V) * 8)) {
-#if COMPILER_HAS_BUILTIN_POPCOUNT
- if (width == 32) {
- return __builtin_popcount(static_cast<unsigned>(value));
- } else if (width == 64) {
- return __builtin_popcountll(value);
- }
-#endif
- return CountSetBitsFallBack(value, width);
-}
-
-
-template<typename V>
-inline int CountTrailingZeros(V value, int width = (sizeof(V) * 8)) {
-#if COMPILER_HAS_BUILTIN_CTZ
- if (width == 32) {
- return (value == 0) ? 32 : __builtin_ctz(static_cast<unsigned>(value));
- } else if (width == 64) {
- return (value == 0) ? 64 : __builtin_ctzll(value);
- }
-#endif
- return CountTrailingZerosFallBack(value, width);
-}
-
-} // namespace vixl
-
-#endif // VIXL_COMPILER_INTRINSICS_H
-
diff --git a/disas/libvixl/vixl/globals.h b/disas/libvixl/vixl/globals.h
deleted file mode 100644
index 3a71942f1e..0000000000
--- a/disas/libvixl/vixl/globals.h
+++ /dev/null
@@ -1,155 +0,0 @@
-// Copyright 2015, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef VIXL_GLOBALS_H
-#define VIXL_GLOBALS_H
-
-// Get standard C99 macros for integer types.
-#ifndef __STDC_CONSTANT_MACROS
-#define __STDC_CONSTANT_MACROS
-#endif
-
-#ifndef __STDC_LIMIT_MACROS
-#define __STDC_LIMIT_MACROS
-#endif
-
-#ifndef __STDC_FORMAT_MACROS
-#define __STDC_FORMAT_MACROS
-#endif
-
-extern "C" {
-#include <inttypes.h>
-#include <stdint.h>
-}
-
-#include <cassert>
-#include <cstdarg>
-#include <cstddef>
-#include <cstdio>
-#include <cstdlib>
-
-#include "vixl/platform.h"
-
-
-typedef uint8_t byte;
-
-// Type for half-precision (16 bit) floating point numbers.
-typedef uint16_t float16;
-
-const int KBytes = 1024;
-const int MBytes = 1024 * KBytes;
-
-#define VIXL_ABORT() \
- do { printf("in %s, line %i", __FILE__, __LINE__); abort(); } while (false)
-#ifdef VIXL_DEBUG
- #define VIXL_ASSERT(condition) assert(condition)
- #define VIXL_CHECK(condition) VIXL_ASSERT(condition)
- #define VIXL_UNIMPLEMENTED() \
- do { fprintf(stderr, "UNIMPLEMENTED\t"); VIXL_ABORT(); } while (false)
- #define VIXL_UNREACHABLE() \
- do { fprintf(stderr, "UNREACHABLE\t"); VIXL_ABORT(); } while (false)
-#else
- #define VIXL_ASSERT(condition) ((void) 0)
- #define VIXL_CHECK(condition) assert(condition)
- #define VIXL_UNIMPLEMENTED() ((void) 0)
- #define VIXL_UNREACHABLE() ((void) 0)
-#endif
-// This is not as powerful as template based assertions, but it is simple.
-// It assumes that the descriptions are unique. If this starts being a problem,
-// we can switch to a different implemention.
-#define VIXL_CONCAT(a, b) a##b
-#define VIXL_STATIC_ASSERT_LINE(line, condition) \
- typedef char VIXL_CONCAT(STATIC_ASSERT_LINE_, line)[(condition) ? 1 : -1] \
- __attribute__((unused))
-#define VIXL_STATIC_ASSERT(condition) \
- VIXL_STATIC_ASSERT_LINE(__LINE__, condition)
-
-template <typename T1>
-inline void USE(T1) {}
-
-template <typename T1, typename T2>
-inline void USE(T1, T2) {}
-
-template <typename T1, typename T2, typename T3>
-inline void USE(T1, T2, T3) {}
-
-template <typename T1, typename T2, typename T3, typename T4>
-inline void USE(T1, T2, T3, T4) {}
-
-#define VIXL_ALIGNMENT_EXCEPTION() \
- do { fprintf(stderr, "ALIGNMENT EXCEPTION\t"); VIXL_ABORT(); } while (0)
-
-// The clang::fallthrough attribute is used along with the Wimplicit-fallthrough
-// argument to annotate intentional fall-through between switch labels.
-// For more information please refer to:
-// http://clang.llvm.org/docs/AttributeReference.html#fallthrough-clang-fallthrough
-#ifndef __has_warning
- #define __has_warning(x) 0
-#endif
-
-// Fallthrough annotation for Clang and C++11(201103L).
-#if __has_warning("-Wimplicit-fallthrough") && __cplusplus >= 201103L
- #define VIXL_FALLTHROUGH() [[clang::fallthrough]] //NOLINT
-// Fallthrough annotation for GCC >= 7.
-#elif __GNUC__ >= 7
- #define VIXL_FALLTHROUGH() __attribute__((fallthrough))
-#else
- #define VIXL_FALLTHROUGH() do {} while (0)
-#endif
-
-#if __cplusplus >= 201103L
- #define VIXL_NO_RETURN [[noreturn]] //NOLINT
-#else
- #define VIXL_NO_RETURN __attribute__((noreturn))
-#endif
-
-// Some functions might only be marked as "noreturn" for the DEBUG build. This
-// macro should be used for such cases (for more details see what
-// VIXL_UNREACHABLE expands to).
-#ifdef VIXL_DEBUG
- #define VIXL_DEBUG_NO_RETURN VIXL_NO_RETURN
-#else
- #define VIXL_DEBUG_NO_RETURN
-#endif
-
-#ifdef VIXL_INCLUDE_SIMULATOR
-#ifndef VIXL_GENERATE_SIMULATOR_INSTRUCTIONS_VALUE
- #define VIXL_GENERATE_SIMULATOR_INSTRUCTIONS_VALUE 1
-#endif
-#else
-#ifndef VIXL_GENERATE_SIMULATOR_INSTRUCTIONS_VALUE
- #define VIXL_GENERATE_SIMULATOR_INSTRUCTIONS_VALUE 0
-#endif
-#if VIXL_GENERATE_SIMULATOR_INSTRUCTIONS_VALUE
- #warning "Generating Simulator instructions without Simulator support."
-#endif
-#endif
-
-#ifdef USE_SIMULATOR
- #error "Please see the release notes for USE_SIMULATOR."
-#endif
-
-#endif // VIXL_GLOBALS_H
diff --git a/disas/libvixl/vixl/invalset.h b/disas/libvixl/vixl/invalset.h
deleted file mode 100644
index 2e0871f8c3..0000000000
--- a/disas/libvixl/vixl/invalset.h
+++ /dev/null
@@ -1,775 +0,0 @@
-// Copyright 2015, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef VIXL_INVALSET_H_
-#define VIXL_INVALSET_H_
-
-#include <cstring>
-
-#include <algorithm>
-#include <vector>
-
-#include "vixl/globals.h"
-
-namespace vixl {
-
-// We define a custom data structure template and its iterator as `std`
-// containers do not fit the performance requirements for some of our use cases.
-//
-// The structure behaves like an iterable unordered set with special properties
-// and restrictions. "InvalSet" stands for "Invalidatable Set".
-//
-// Restrictions and requirements:
-// - Adding an element already present in the set is illegal. In debug mode,
-// this is checked at insertion time.
-// - The templated class `ElementType` must provide comparison operators so that
-// `std::sort()` can be used.
-// - A key must be available to represent invalid elements.
-// - Elements with an invalid key must compare higher or equal to any other
-// element.
-//
-// Use cases and performance considerations:
-// Our use cases present two specificities that allow us to design this
-// structure to provide fast insertion *and* fast search and deletion
-// operations:
-// - Elements are (generally) inserted in order (sorted according to their key).
-// - A key is available to mark elements as invalid (deleted).
-// The backing `std::vector` allows for fast insertions. When
-// searching for an element we ensure the elements are sorted (this is generally
-// the case) and perform a binary search. When deleting an element we do not
-// free the associated memory immediately. Instead, an element to be deleted is
-// marked with the 'invalid' key. Other methods of the container take care of
-// ignoring entries marked as invalid.
-// To avoid the overhead of the `std::vector` container when only few entries
-// are used, a number of elements are preallocated.
-
-// 'ElementType' and 'KeyType' are respectively the types of the elements and
-// their key. The structure only reclaims memory when safe to do so, if the
-// number of elements that can be reclaimed is greater than `RECLAIM_FROM` and
-// greater than `<total number of elements> / RECLAIM_FACTOR.
-#define TEMPLATE_INVALSET_P_DECL \
- class ElementType, \
- unsigned N_PREALLOCATED_ELEMENTS, \
- class KeyType, \
- KeyType INVALID_KEY, \
- size_t RECLAIM_FROM, \
- unsigned RECLAIM_FACTOR
-
-#define TEMPLATE_INVALSET_P_DEF \
-ElementType, N_PREALLOCATED_ELEMENTS, \
-KeyType, INVALID_KEY, RECLAIM_FROM, RECLAIM_FACTOR
-
-template<class S> class InvalSetIterator; // Forward declaration.
-
-template<TEMPLATE_INVALSET_P_DECL> class InvalSet {
- public:
- InvalSet();
- ~InvalSet();
-
- static const size_t kNPreallocatedElements = N_PREALLOCATED_ELEMENTS;
- static const KeyType kInvalidKey = INVALID_KEY;
-
- // It is illegal to insert an element already present in the set.
- void insert(const ElementType& element);
-
- // Looks for the specified element in the set and - if found - deletes it.
- void erase(const ElementType& element);
-
- // This indicates the number of (valid) elements stored in this set.
- size_t size() const;
-
- // Returns true if no elements are stored in the set.
- // Note that this does not mean the the backing storage is empty: it can still
- // contain invalid elements.
- bool empty() const;
-
- void clear();
-
- const ElementType min_element();
-
- // This returns the key of the minimum element in the set.
- KeyType min_element_key();
-
- static bool IsValid(const ElementType& element);
- static KeyType Key(const ElementType& element);
- static void SetKey(ElementType* element, KeyType key);
-
- protected:
- // Returns a pointer to the element in vector_ if it was found, or NULL
- // otherwise.
- ElementType* Search(const ElementType& element);
-
- // The argument *must* point to an element stored in *this* set.
- // This function is not allowed to move elements in the backing vector
- // storage.
- void EraseInternal(ElementType* element);
-
- // The elements in the range searched must be sorted.
- ElementType* BinarySearch(const ElementType& element,
- ElementType* start,
- ElementType* end) const;
-
- // Sort the elements.
- enum SortType {
- // The 'hard' version guarantees that invalid elements are moved to the end
- // of the container.
- kHardSort,
- // The 'soft' version only guarantees that the elements will be sorted.
- // Invalid elements may still be present anywhere in the set.
- kSoftSort
- };
- void Sort(SortType sort_type);
-
- // Delete the elements that have an invalid key. The complexity is linear
- // with the size of the vector.
- void Clean();
-
- const ElementType Front() const;
- const ElementType Back() const;
-
- // Delete invalid trailing elements and return the last valid element in the
- // set.
- const ElementType CleanBack();
-
- // Returns a pointer to the start or end of the backing storage.
- const ElementType* StorageBegin() const;
- const ElementType* StorageEnd() const;
- ElementType* StorageBegin();
- ElementType* StorageEnd();
-
- // Returns the index of the element within the backing storage. The element
- // must belong to the backing storage.
- size_t ElementIndex(const ElementType* element) const;
-
- // Returns the element at the specified index in the backing storage.
- const ElementType* ElementAt(size_t index) const;
- ElementType* ElementAt(size_t index);
-
- static const ElementType* FirstValidElement(const ElementType* from,
- const ElementType* end);
-
- void CacheMinElement();
- const ElementType CachedMinElement() const;
-
- bool ShouldReclaimMemory() const;
- void ReclaimMemory();
-
- bool IsUsingVector() const { return vector_ != NULL; }
- void set_sorted(bool sorted) { sorted_ = sorted; }
-
- // We cache some data commonly required by users to improve performance.
- // We cannot cache pointers to elements as we do not control the backing
- // storage.
- bool valid_cached_min_;
- size_t cached_min_index_; // Valid iff `valid_cached_min_` is true.
- KeyType cached_min_key_; // Valid iff `valid_cached_min_` is true.
-
- // Indicates whether the elements are sorted.
- bool sorted_;
-
- // This represents the number of (valid) elements in this set.
- size_t size_;
-
- // The backing storage is either the array of preallocated elements or the
- // vector. The structure starts by using the preallocated elements, and
- // transitions (permanently) to using the vector once more than
- // kNPreallocatedElements are used.
- // Elements are only invalidated when using the vector. The preallocated
- // storage always only contains valid elements.
- ElementType preallocated_[kNPreallocatedElements];
- std::vector<ElementType>* vector_;
-
-#ifdef VIXL_DEBUG
- // Iterators acquire and release this monitor. While a set is acquired,
- // certain operations are illegal to ensure that the iterator will
- // correctly iterate over the elements in the set.
- int monitor_;
- int monitor() const { return monitor_; }
- void Acquire() { monitor_++; }
- void Release() {
- monitor_--;
- VIXL_ASSERT(monitor_ >= 0);
- }
-#endif
-
- friend class InvalSetIterator<InvalSet<TEMPLATE_INVALSET_P_DEF> >;
- typedef ElementType _ElementType;
- typedef KeyType _KeyType;
-};
-
-
-template<class S> class InvalSetIterator {
- private:
- // Redefine types to mirror the associated set types.
- typedef typename S::_ElementType ElementType;
- typedef typename S::_KeyType KeyType;
-
- public:
- explicit InvalSetIterator(S* inval_set);
- ~InvalSetIterator();
-
- ElementType* Current() const;
- void Advance();
- bool Done() const;
-
- // Mark this iterator as 'done'.
- void Finish();
-
- // Delete the current element and advance the iterator to point to the next
- // element.
- void DeleteCurrentAndAdvance();
-
- static bool IsValid(const ElementType& element);
- static KeyType Key(const ElementType& element);
-
- protected:
- void MoveToValidElement();
-
- // Indicates if the iterator is looking at the vector or at the preallocated
- // elements.
- const bool using_vector_;
- // Used when looking at the preallocated elements, or in debug mode when using
- // the vector to track how many times the iterator has advanced.
- size_t index_;
- typename std::vector<ElementType>::iterator iterator_;
- S* inval_set_;
-};
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-InvalSet<TEMPLATE_INVALSET_P_DEF>::InvalSet()
- : valid_cached_min_(false),
- sorted_(true), size_(0), vector_(NULL) {
-#ifdef VIXL_DEBUG
- monitor_ = 0;
-#endif
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-InvalSet<TEMPLATE_INVALSET_P_DEF>::~InvalSet() {
- VIXL_ASSERT(monitor_ == 0);
- delete vector_;
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-void InvalSet<TEMPLATE_INVALSET_P_DEF>::insert(const ElementType& element) {
- VIXL_ASSERT(monitor() == 0);
- VIXL_ASSERT(IsValid(element));
- VIXL_ASSERT(Search(element) == NULL);
- set_sorted(empty() || (sorted_ && (element > CleanBack())));
- if (IsUsingVector()) {
- vector_->push_back(element);
- } else {
- if (size_ < kNPreallocatedElements) {
- preallocated_[size_] = element;
- } else {
- // Transition to using the vector.
- vector_ = new std::vector<ElementType>(preallocated_,
- preallocated_ + size_);
- vector_->push_back(element);
- }
- }
- size_++;
-
- if (valid_cached_min_ && (element < min_element())) {
- cached_min_index_ = IsUsingVector() ? vector_->size() - 1 : size_ - 1;
- cached_min_key_ = Key(element);
- valid_cached_min_ = true;
- }
-
- if (ShouldReclaimMemory()) {
- ReclaimMemory();
- }
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-void InvalSet<TEMPLATE_INVALSET_P_DEF>::erase(const ElementType& element) {
- VIXL_ASSERT(monitor() == 0);
- VIXL_ASSERT(IsValid(element));
- ElementType* local_element = Search(element);
- if (local_element != NULL) {
- EraseInternal(local_element);
- }
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::Search(
- const ElementType& element) {
- VIXL_ASSERT(monitor() == 0);
- if (empty()) {
- return NULL;
- }
- if (ShouldReclaimMemory()) {
- ReclaimMemory();
- }
- if (!sorted_) {
- Sort(kHardSort);
- }
- if (!valid_cached_min_) {
- CacheMinElement();
- }
- return BinarySearch(element, ElementAt(cached_min_index_), StorageEnd());
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-size_t InvalSet<TEMPLATE_INVALSET_P_DEF>::size() const {
- return size_;
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-bool InvalSet<TEMPLATE_INVALSET_P_DEF>::empty() const {
- return size_ == 0;
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-void InvalSet<TEMPLATE_INVALSET_P_DEF>::clear() {
- VIXL_ASSERT(monitor() == 0);
- size_ = 0;
- if (IsUsingVector()) {
- vector_->clear();
- }
- set_sorted(true);
- valid_cached_min_ = false;
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-const ElementType InvalSet<TEMPLATE_INVALSET_P_DEF>::min_element() {
- VIXL_ASSERT(monitor() == 0);
- VIXL_ASSERT(!empty());
- CacheMinElement();
- return *ElementAt(cached_min_index_);
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-KeyType InvalSet<TEMPLATE_INVALSET_P_DEF>::min_element_key() {
- VIXL_ASSERT(monitor() == 0);
- if (valid_cached_min_) {
- return cached_min_key_;
- } else {
- return Key(min_element());
- }
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-bool InvalSet<TEMPLATE_INVALSET_P_DEF>::IsValid(const ElementType& element) {
- return Key(element) != kInvalidKey;
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-void InvalSet<TEMPLATE_INVALSET_P_DEF>::EraseInternal(ElementType* element) {
- // Note that this function must be safe even while an iterator has acquired
- // this set.
- VIXL_ASSERT(element != NULL);
- size_t deleted_index = ElementIndex(element);
- if (IsUsingVector()) {
- VIXL_ASSERT((&(vector_->front()) <= element) &&
- (element <= &(vector_->back())));
- SetKey(element, kInvalidKey);
- } else {
- VIXL_ASSERT((preallocated_ <= element) &&
- (element < (preallocated_ + kNPreallocatedElements)));
- ElementType* end = preallocated_ + kNPreallocatedElements;
- size_t copy_size = sizeof(*element) * (end - element - 1);
- memmove(element, element + 1, copy_size);
- }
- size_--;
-
- if (valid_cached_min_ &&
- (deleted_index == cached_min_index_)) {
- if (sorted_ && !empty()) {
- const ElementType* min = FirstValidElement(element, StorageEnd());
- cached_min_index_ = ElementIndex(min);
- cached_min_key_ = Key(*min);
- valid_cached_min_ = true;
- } else {
- valid_cached_min_ = false;
- }
- }
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::BinarySearch(
- const ElementType& element, ElementType* start, ElementType* end) const {
- if (start == end) {
- return NULL;
- }
- VIXL_ASSERT(sorted_);
- VIXL_ASSERT(start < end);
- VIXL_ASSERT(!empty());
-
- // Perform a binary search through the elements while ignoring invalid
- // elements.
- ElementType* elements = start;
- size_t low = 0;
- size_t high = (end - start) - 1;
- while (low < high) {
- // Find valid bounds.
- while (!IsValid(elements[low]) && (low < high)) ++low;
- while (!IsValid(elements[high]) && (low < high)) --high;
- VIXL_ASSERT(low <= high);
- // Avoid overflow when computing the middle index.
- size_t middle = low / 2 + high / 2 + (low & high & 1);
- if ((middle == low) || (middle == high)) {
- break;
- }
- while (!IsValid(elements[middle]) && (middle < high - 1)) ++middle;
- while (!IsValid(elements[middle]) && (low + 1 < middle)) --middle;
- if (!IsValid(elements[middle])) {
- break;
- }
- if (elements[middle] < element) {
- low = middle;
- } else {
- high = middle;
- }
- }
-
- if (elements[low] == element) return &elements[low];
- if (elements[high] == element) return &elements[high];
- return NULL;
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-void InvalSet<TEMPLATE_INVALSET_P_DEF>::Sort(SortType sort_type) {
- VIXL_ASSERT(monitor() == 0);
- if (sort_type == kSoftSort) {
- if (sorted_) {
- return;
- }
- }
- if (empty()) {
- return;
- }
-
- Clean();
- std::sort(StorageBegin(), StorageEnd());
-
- set_sorted(true);
- cached_min_index_ = 0;
- cached_min_key_ = Key(Front());
- valid_cached_min_ = true;
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-void InvalSet<TEMPLATE_INVALSET_P_DEF>::Clean() {
- VIXL_ASSERT(monitor() == 0);
- if (empty() || !IsUsingVector()) {
- return;
- }
- // Manually iterate through the vector storage to discard invalid elements.
- ElementType* start = &(vector_->front());
- ElementType* end = start + vector_->size();
- ElementType* c = start;
- ElementType* first_invalid;
- ElementType* first_valid;
- ElementType* next_invalid;
-
- while (c < end && IsValid(*c)) { c++; }
- first_invalid = c;
-
- while (c < end) {
- while (c < end && !IsValid(*c)) { c++; }
- first_valid = c;
- while (c < end && IsValid(*c)) { c++; }
- next_invalid = c;
-
- ptrdiff_t n_moved_elements = (next_invalid - first_valid);
- memmove(first_invalid, first_valid, n_moved_elements * sizeof(*c));
- first_invalid = first_invalid + n_moved_elements;
- c = next_invalid;
- }
-
- // Delete the trailing invalid elements.
- vector_->erase(vector_->begin() + (first_invalid - start), vector_->end());
- VIXL_ASSERT(vector_->size() == size_);
-
- if (sorted_) {
- valid_cached_min_ = true;
- cached_min_index_ = 0;
- cached_min_key_ = Key(*ElementAt(0));
- } else {
- valid_cached_min_ = false;
- }
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-const ElementType InvalSet<TEMPLATE_INVALSET_P_DEF>::Front() const {
- VIXL_ASSERT(!empty());
- return IsUsingVector() ? vector_->front() : preallocated_[0];
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-const ElementType InvalSet<TEMPLATE_INVALSET_P_DEF>::Back() const {
- VIXL_ASSERT(!empty());
- return IsUsingVector() ? vector_->back() : preallocated_[size_ - 1];
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-const ElementType InvalSet<TEMPLATE_INVALSET_P_DEF>::CleanBack() {
- VIXL_ASSERT(monitor() == 0);
- if (IsUsingVector()) {
- // Delete the invalid trailing elements.
- typename std::vector<ElementType>::reverse_iterator it = vector_->rbegin();
- while (!IsValid(*it)) {
- it++;
- }
- vector_->erase(it.base(), vector_->end());
- }
- return Back();
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-const ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::StorageBegin() const {
- return IsUsingVector() ? &(vector_->front()) : preallocated_;
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-const ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::StorageEnd() const {
- return IsUsingVector() ? &(vector_->back()) + 1 : preallocated_ + size_;
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::StorageBegin() {
- return IsUsingVector() ? &(vector_->front()) : preallocated_;
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::StorageEnd() {
- return IsUsingVector() ? &(vector_->back()) + 1 : preallocated_ + size_;
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-size_t InvalSet<TEMPLATE_INVALSET_P_DEF>::ElementIndex(
- const ElementType* element) const {
- VIXL_ASSERT((StorageBegin() <= element) && (element < StorageEnd()));
- return element - StorageBegin();
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-const ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::ElementAt(
- size_t index) const {
- VIXL_ASSERT(
- (IsUsingVector() && (index < vector_->size())) || (index < size_));
- return StorageBegin() + index;
-}
-
-template<TEMPLATE_INVALSET_P_DECL>
-ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::ElementAt(size_t index) {
- VIXL_ASSERT(
- (IsUsingVector() && (index < vector_->size())) || (index < size_));
- return StorageBegin() + index;
-}
-
-template<TEMPLATE_INVALSET_P_DECL>
-const ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::FirstValidElement(
- const ElementType* from, const ElementType* end) {
- while ((from < end) && !IsValid(*from)) {
- from++;
- }
- return from;
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-void InvalSet<TEMPLATE_INVALSET_P_DEF>::CacheMinElement() {
- VIXL_ASSERT(monitor() == 0);
- VIXL_ASSERT(!empty());
-
- if (valid_cached_min_) {
- return;
- }
-
- if (sorted_) {
- const ElementType* min = FirstValidElement(StorageBegin(), StorageEnd());
- cached_min_index_ = ElementIndex(min);
- cached_min_key_ = Key(*min);
- valid_cached_min_ = true;
- } else {
- Sort(kHardSort);
- }
- VIXL_ASSERT(valid_cached_min_);
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-bool InvalSet<TEMPLATE_INVALSET_P_DEF>::ShouldReclaimMemory() const {
- if (!IsUsingVector()) {
- return false;
- }
- size_t n_invalid_elements = vector_->size() - size_;
- return (n_invalid_elements > RECLAIM_FROM) &&
- (n_invalid_elements > vector_->size() / RECLAIM_FACTOR);
-}
-
-
-template<TEMPLATE_INVALSET_P_DECL>
-void InvalSet<TEMPLATE_INVALSET_P_DEF>::ReclaimMemory() {
- VIXL_ASSERT(monitor() == 0);
- Clean();
-}
-
-
-template<class S>
-InvalSetIterator<S>::InvalSetIterator(S* inval_set)
- : using_vector_((inval_set != NULL) && inval_set->IsUsingVector()),
- index_(0),
- inval_set_(inval_set) {
- if (inval_set != NULL) {
- inval_set->Sort(S::kSoftSort);
-#ifdef VIXL_DEBUG
- inval_set->Acquire();
-#endif
- if (using_vector_) {
- iterator_ = typename std::vector<ElementType>::iterator(
- inval_set_->vector_->begin());
- }
- MoveToValidElement();
- }
-}
-
-
-template<class S>
-InvalSetIterator<S>::~InvalSetIterator() {
-#ifdef VIXL_DEBUG
- if (inval_set_ != NULL) {
- inval_set_->Release();
- }
-#endif
-}
-
-
-template<class S>
-typename S::_ElementType* InvalSetIterator<S>::Current() const {
- VIXL_ASSERT(!Done());
- if (using_vector_) {
- return &(*iterator_);
- } else {
- return &(inval_set_->preallocated_[index_]);
- }
-}
-
-
-template<class S>
-void InvalSetIterator<S>::Advance() {
- VIXL_ASSERT(!Done());
- if (using_vector_) {
- iterator_++;
-#ifdef VIXL_DEBUG
- index_++;
-#endif
- MoveToValidElement();
- } else {
- index_++;
- }
-}
-
-
-template<class S>
-bool InvalSetIterator<S>::Done() const {
- if (using_vector_) {
- bool done = (iterator_ == inval_set_->vector_->end());
- VIXL_ASSERT(done == (index_ == inval_set_->size()));
- return done;
- } else {
- return index_ == inval_set_->size();
- }
-}
-
-
-template<class S>
-void InvalSetIterator<S>::Finish() {
- VIXL_ASSERT(inval_set_->sorted_);
- if (using_vector_) {
- iterator_ = inval_set_->vector_->end();
- }
- index_ = inval_set_->size();
-}
-
-
-template<class S>
-void InvalSetIterator<S>::DeleteCurrentAndAdvance() {
- if (using_vector_) {
- inval_set_->EraseInternal(&(*iterator_));
- MoveToValidElement();
- } else {
- inval_set_->EraseInternal(inval_set_->preallocated_ + index_);
- }
-}
-
-
-template<class S>
-bool InvalSetIterator<S>::IsValid(const ElementType& element) {
- return S::IsValid(element);
-}
-
-
-template<class S>
-typename S::_KeyType InvalSetIterator<S>::Key(const ElementType& element) {
- return S::Key(element);
-}
-
-
-template<class S>
-void InvalSetIterator<S>::MoveToValidElement() {
- if (using_vector_) {
- while ((iterator_ != inval_set_->vector_->end()) && !IsValid(*iterator_)) {
- iterator_++;
- }
- } else {
- VIXL_ASSERT(inval_set_->empty() || IsValid(inval_set_->preallocated_[0]));
- // Nothing to do.
- }
-}
-
-#undef TEMPLATE_INVALSET_P_DECL
-#undef TEMPLATE_INVALSET_P_DEF
-
-} // namespace vixl
-
-#endif // VIXL_INVALSET_H_
diff --git a/disas/libvixl/vixl/platform.h b/disas/libvixl/vixl/platform.h
deleted file mode 100644
index 26a74de81b..0000000000
--- a/disas/libvixl/vixl/platform.h
+++ /dev/null
@@ -1,39 +0,0 @@
-// Copyright 2014, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef PLATFORM_H
-#define PLATFORM_H
-
-// Define platform specific functionalities.
-extern "C" {
-#include <signal.h>
-}
-
-namespace vixl {
-inline void HostBreakpoint() { raise(SIGINT); }
-} // namespace vixl
-
-#endif
diff --git a/disas/libvixl/vixl/utils.cc b/disas/libvixl/vixl/utils.cc
deleted file mode 100644
index 69304d266d..0000000000
--- a/disas/libvixl/vixl/utils.cc
+++ /dev/null
@@ -1,142 +0,0 @@
-// Copyright 2015, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#include "vixl/utils.h"
-#include <cstdio>
-
-namespace vixl {
-
-uint32_t float_to_rawbits(float value) {
- uint32_t bits = 0;
- memcpy(&bits, &value, 4);
- return bits;
-}
-
-
-uint64_t double_to_rawbits(double value) {
- uint64_t bits = 0;
- memcpy(&bits, &value, 8);
- return bits;
-}
-
-
-float rawbits_to_float(uint32_t bits) {
- float value = 0.0;
- memcpy(&value, &bits, 4);
- return value;
-}
-
-
-double rawbits_to_double(uint64_t bits) {
- double value = 0.0;
- memcpy(&value, &bits, 8);
- return value;
-}
-
-
-uint32_t float_sign(float val) {
- uint32_t rawbits = float_to_rawbits(val);
- return unsigned_bitextract_32(31, 31, rawbits);
-}
-
-
-uint32_t float_exp(float val) {
- uint32_t rawbits = float_to_rawbits(val);
- return unsigned_bitextract_32(30, 23, rawbits);
-}
-
-
-uint32_t float_mantissa(float val) {
- uint32_t rawbits = float_to_rawbits(val);
- return unsigned_bitextract_32(22, 0, rawbits);
-}
-
-
-uint32_t double_sign(double val) {
- uint64_t rawbits = double_to_rawbits(val);
- return static_cast<uint32_t>(unsigned_bitextract_64(63, 63, rawbits));
-}
-
-
-uint32_t double_exp(double val) {
- uint64_t rawbits = double_to_rawbits(val);
- return static_cast<uint32_t>(unsigned_bitextract_64(62, 52, rawbits));
-}
-
-
-uint64_t double_mantissa(double val) {
- uint64_t rawbits = double_to_rawbits(val);
- return unsigned_bitextract_64(51, 0, rawbits);
-}
-
-
-float float_pack(uint32_t sign, uint32_t exp, uint32_t mantissa) {
- uint32_t bits = (sign << 31) | (exp << 23) | mantissa;
- return rawbits_to_float(bits);
-}
-
-
-double double_pack(uint64_t sign, uint64_t exp, uint64_t mantissa) {
- uint64_t bits = (sign << 63) | (exp << 52) | mantissa;
- return rawbits_to_double(bits);
-}
-
-
-int float16classify(float16 value) {
- uint16_t exponent_max = (1 << 5) - 1;
- uint16_t exponent_mask = exponent_max << 10;
- uint16_t mantissa_mask = (1 << 10) - 1;
-
- uint16_t exponent = (value & exponent_mask) >> 10;
- uint16_t mantissa = value & mantissa_mask;
- if (exponent == 0) {
- if (mantissa == 0) {
- return FP_ZERO;
- }
- return FP_SUBNORMAL;
- } else if (exponent == exponent_max) {
- if (mantissa == 0) {
- return FP_INFINITE;
- }
- return FP_NAN;
- }
- return FP_NORMAL;
-}
-
-
-unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size) {
- VIXL_ASSERT((reg_size % 8) == 0);
- int count = 0;
- for (unsigned i = 0; i < (reg_size / 16); i++) {
- if ((imm & 0xffff) == 0) {
- count++;
- }
- imm >>= 16;
- }
- return count;
-}
-
-} // namespace vixl
diff --git a/disas/libvixl/vixl/utils.h b/disas/libvixl/vixl/utils.h
deleted file mode 100644
index ecb0f1014a..0000000000
--- a/disas/libvixl/vixl/utils.h
+++ /dev/null
@@ -1,286 +0,0 @@
-// Copyright 2015, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef VIXL_UTILS_H
-#define VIXL_UTILS_H
-
-#include <cmath>
-#include <cstring>
-#include "vixl/globals.h"
-#include "vixl/compiler-intrinsics.h"
-
-namespace vixl {
-
-// Macros for compile-time format checking.
-#if GCC_VERSION_OR_NEWER(4, 4, 0)
-#define PRINTF_CHECK(format_index, varargs_index) \
- __attribute__((format(gnu_printf, format_index, varargs_index)))
-#else
-#define PRINTF_CHECK(format_index, varargs_index)
-#endif
-
-// Check number width.
-inline bool is_intn(unsigned n, int64_t x) {
- VIXL_ASSERT((0 < n) && (n < 64));
- int64_t limit = INT64_C(1) << (n - 1);
- return (-limit <= x) && (x < limit);
-}
-
-inline bool is_uintn(unsigned n, int64_t x) {
- VIXL_ASSERT((0 < n) && (n < 64));
- return !(x >> n);
-}
-
-inline uint32_t truncate_to_intn(unsigned n, int64_t x) {
- VIXL_ASSERT((0 < n) && (n < 64));
- return static_cast<uint32_t>(x & ((INT64_C(1) << n) - 1));
-}
-
-#define INT_1_TO_63_LIST(V) \
-V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) \
-V(9) V(10) V(11) V(12) V(13) V(14) V(15) V(16) \
-V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24) \
-V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32) \
-V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \
-V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) \
-V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56) \
-V(57) V(58) V(59) V(60) V(61) V(62) V(63)
-
-#define DECLARE_IS_INT_N(N) \
-inline bool is_int##N(int64_t x) { return is_intn(N, x); }
-#define DECLARE_IS_UINT_N(N) \
-inline bool is_uint##N(int64_t x) { return is_uintn(N, x); }
-#define DECLARE_TRUNCATE_TO_INT_N(N) \
-inline uint32_t truncate_to_int##N(int x) { return truncate_to_intn(N, x); }
-INT_1_TO_63_LIST(DECLARE_IS_INT_N)
-INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
-INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N)
-#undef DECLARE_IS_INT_N
-#undef DECLARE_IS_UINT_N
-#undef DECLARE_TRUNCATE_TO_INT_N
-
-// Bit field extraction.
-inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) {
- return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1);
-}
-
-inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) {
- return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
-}
-
-inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) {
- return (x << (31 - msb)) >> (lsb + 31 - msb);
-}
-
-inline int64_t signed_bitextract_64(int msb, int lsb, int64_t x) {
- return (x << (63 - msb)) >> (lsb + 63 - msb);
-}
-
-// Floating point representation.
-uint32_t float_to_rawbits(float value);
-uint64_t double_to_rawbits(double value);
-float rawbits_to_float(uint32_t bits);
-double rawbits_to_double(uint64_t bits);
-
-uint32_t float_sign(float val);
-uint32_t float_exp(float val);
-uint32_t float_mantissa(float val);
-uint32_t double_sign(double val);
-uint32_t double_exp(double val);
-uint64_t double_mantissa(double val);
-
-float float_pack(uint32_t sign, uint32_t exp, uint32_t mantissa);
-double double_pack(uint64_t sign, uint64_t exp, uint64_t mantissa);
-
-// An fpclassify() function for 16-bit half-precision floats.
-int float16classify(float16 value);
-
-// NaN tests.
-inline bool IsSignallingNaN(double num) {
- const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
- uint64_t raw = double_to_rawbits(num);
- if (std::isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) {
- return true;
- }
- return false;
-}
-
-
-inline bool IsSignallingNaN(float num) {
- const uint32_t kFP32QuietNaNMask = 0x00400000;
- uint32_t raw = float_to_rawbits(num);
- if (std::isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) {
- return true;
- }
- return false;
-}
-
-
-inline bool IsSignallingNaN(float16 num) {
- const uint16_t kFP16QuietNaNMask = 0x0200;
- return (float16classify(num) == FP_NAN) &&
- ((num & kFP16QuietNaNMask) == 0);
-}
-
-
-template <typename T>
-inline bool IsQuietNaN(T num) {
- return std::isnan(num) && !IsSignallingNaN(num);
-}
-
-
-// Convert the NaN in 'num' to a quiet NaN.
-inline double ToQuietNaN(double num) {
- const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
- VIXL_ASSERT(std::isnan(num));
- return rawbits_to_double(double_to_rawbits(num) | kFP64QuietNaNMask);
-}
-
-
-inline float ToQuietNaN(float num) {
- const uint32_t kFP32QuietNaNMask = 0x00400000;
- VIXL_ASSERT(std::isnan(num));
- return rawbits_to_float(float_to_rawbits(num) | kFP32QuietNaNMask);
-}
-
-
-// Fused multiply-add.
-inline double FusedMultiplyAdd(double op1, double op2, double a) {
- return fma(op1, op2, a);
-}
-
-
-inline float FusedMultiplyAdd(float op1, float op2, float a) {
- return fmaf(op1, op2, a);
-}
-
-
-inline uint64_t LowestSetBit(uint64_t value) {
- return value & -value;
-}
-
-
-template<typename T>
-inline int HighestSetBitPosition(T value) {
- VIXL_ASSERT(value != 0);
- return (sizeof(value) * 8 - 1) - CountLeadingZeros(value);
-}
-
-
-template<typename V>
-inline int WhichPowerOf2(V value) {
- VIXL_ASSERT(IsPowerOf2(value));
- return CountTrailingZeros(value);
-}
-
-
-unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
-
-
-template <typename T>
-T ReverseBits(T value) {
- VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
- (sizeof(value) == 4) || (sizeof(value) == 8));
- T result = 0;
- for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
- result = (result << 1) | (value & 1);
- value >>= 1;
- }
- return result;
-}
-
-
-template <typename T>
-T ReverseBytes(T value, int block_bytes_log2) {
- VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8));
- VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value));
- // Split the 64-bit value into an 8-bit array, where b[0] is the least
- // significant byte, and b[7] is the most significant.
- uint8_t bytes[8];
- uint64_t mask = UINT64_C(0xff00000000000000);
- for (int i = 7; i >= 0; i--) {
- bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8);
- mask >>= 8;
- }
-
- // Permutation tables for REV instructions.
- // permute_table[0] is used by REV16_x, REV16_w
- // permute_table[1] is used by REV32_x, REV_w
- // permute_table[2] is used by REV_x
- VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4));
- static const uint8_t permute_table[3][8] = { {6, 7, 4, 5, 2, 3, 0, 1},
- {4, 5, 6, 7, 0, 1, 2, 3},
- {0, 1, 2, 3, 4, 5, 6, 7} };
- T result = 0;
- for (int i = 0; i < 8; i++) {
- result <<= 8;
- result |= bytes[permute_table[block_bytes_log2 - 1][i]];
- }
- return result;
-}
-
-
-// Pointer alignment
-// TODO: rename/refactor to make it specific to instructions.
-template<typename T>
-bool IsWordAligned(T pointer) {
- VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t)); // NOLINT(runtime/sizeof)
- return ((intptr_t)(pointer) & 3) == 0;
-}
-
-// Increment a pointer (up to 64 bits) until it has the specified alignment.
-template<class T>
-T AlignUp(T pointer, size_t alignment) {
- // Use C-style casts to get static_cast behaviour for integral types (T), and
- // reinterpret_cast behaviour for other types.
-
- uint64_t pointer_raw = (uint64_t)pointer;
- VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
-
- size_t align_step = (alignment - pointer_raw) % alignment;
- VIXL_ASSERT((pointer_raw + align_step) % alignment == 0);
-
- return (T)(pointer_raw + align_step);
-}
-
-// Decrement a pointer (up to 64 bits) until it has the specified alignment.
-template<class T>
-T AlignDown(T pointer, size_t alignment) {
- // Use C-style casts to get static_cast behaviour for integral types (T), and
- // reinterpret_cast behaviour for other types.
-
- uint64_t pointer_raw = (uint64_t)pointer;
- VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
-
- size_t align_step = pointer_raw % alignment;
- VIXL_ASSERT((pointer_raw - align_step) % alignment == 0);
-
- return (T)(pointer_raw - align_step);
-}
-
-} // namespace vixl
-
-#endif // VIXL_UTILS_H
diff --git a/disas/meson.build b/disas/meson.build
index 7da48ea74a..ba22f7cbcd 100644
--- a/disas/meson.build
+++ b/disas/meson.build
@@ -1,9 +1,4 @@
-libvixl_ss = ss.source_set()
-subdir('libvixl')
-
common_ss.add(when: 'CONFIG_ALPHA_DIS', if_true: files('alpha.c'))
-common_ss.add(when: 'CONFIG_ARM_A64_DIS', if_true: files('arm-a64.cc'))
-common_ss.add_all(when: 'CONFIG_ARM_A64_DIS', if_true: libvixl_ss)
common_ss.add(when: 'CONFIG_CRIS_DIS', if_true: files('cris.c'))
common_ss.add(when: 'CONFIG_HEXAGON_DIS', if_true: files('hexagon.c'))
common_ss.add(when: 'CONFIG_HPPA_DIS', if_true: files('hppa.c'))