summaryrefslogtreecommitdiffstats
path: root/target/mips/tcg/mxu_translate.c
blob: f52244e1b2bef97ff0d2c1bf0f449b49b2621649 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
/*
 *  Ingenic XBurst Media eXtension Unit (MXU) translation routines.
 *
 *  Copyright (c) 2004-2005 Jocelyn Mayer
 *  Copyright (c) 2006 Marius Groeger (FPU operations)
 *  Copyright (c) 2006 Thiemo Seufer (MIPS32R2 support)
 *  Copyright (c) 2009 CodeSourcery (MIPS16 and microMIPS support)
 *  Copyright (c) 2012 Jia Liu & Dongxue Zhang (MIPS ASE DSP support)
 *
 * SPDX-License-Identifier: LGPL-2.1-or-later
 *
 * Datasheet:
 *
 *   "XBurst® Instruction Set Architecture MIPS eXtension/enhanced Unit
 *   Programming Manual", Ingenic Semiconductor Co, Ltd., revision June 2, 2017
 */

#include "qemu/osdep.h"
#include "tcg/tcg-op.h"
#include "exec/helper-gen.h"
#include "translate.h"

/*
 *
 *       AN OVERVIEW OF MXU EXTENSION INSTRUCTION SET
 *       ============================================
 *
 *
 * MXU (full name: MIPS eXtension/enhanced Unit) is a SIMD extension of MIPS32
 * instructions set. It is designed to fit the needs of signal, graphical and
 * video processing applications. MXU instruction set is used in Xburst family
 * of microprocessors by Ingenic.
 *
 * MXU unit contains 17 registers called X0-X16. X0 is always zero, and X16 is
 * the control register.
 *
 *
 *     The notation used in MXU assembler mnemonics
 *     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *  Register operands:
 *
 *   XRa, XRb, XRc, XRd - MXU registers
 *   Rb, Rc, Rd, Rs, Rt - general purpose MIPS registers
 *
 *  Non-register operands:
 *
 *   aptn1 - 1-bit accumulate add/subtract pattern
 *   aptn2 - 2-bit accumulate add/subtract pattern
 *   eptn2 - 2-bit execute add/subtract pattern
 *   optn2 - 2-bit operand pattern
 *   optn3 - 3-bit operand pattern
 *   sft4  - 4-bit shift amount
 *   strd2 - 2-bit stride amount
 *
 *  Prefixes:
 *
 *   Level of parallelism:                Operand size:
 *    S - single operation at a time       32 - word
 *    D - two operations in parallel       16 - half word
 *    Q - four operations in parallel       8 - byte
 *
 *  Operations:
 *
 *   ADD   - Add or subtract
 *   ADDC  - Add with carry-in
 *   ACC   - Accumulate
 *   ASUM  - Sum together then accumulate (add or subtract)
 *   ASUMC - Sum together then accumulate (add or subtract) with carry-in
 *   AVG   - Average between 2 operands
 *   ABD   - Absolute difference
 *   ALN   - Align data
 *   AND   - Logical bitwise 'and' operation
 *   CPS   - Copy sign
 *   EXTR  - Extract bits
 *   I2M   - Move from GPR register to MXU register
 *   LDD   - Load data from memory to XRF
 *   LDI   - Load data from memory to XRF (and increase the address base)
 *   LUI   - Load unsigned immediate
 *   MUL   - Multiply
 *   MULU  - Unsigned multiply
 *   MADD  - 64-bit operand add 32x32 product
 *   MSUB  - 64-bit operand subtract 32x32 product
 *   MAC   - Multiply and accumulate (add or subtract)
 *   MAD   - Multiply and add or subtract
 *   MAX   - Maximum between 2 operands
 *   MIN   - Minimum between 2 operands
 *   M2I   - Move from MXU register to GPR register
 *   MOVZ  - Move if zero
 *   MOVN  - Move if non-zero
 *   NOR   - Logical bitwise 'nor' operation
 *   OR    - Logical bitwise 'or' operation
 *   STD   - Store data from XRF to memory
 *   SDI   - Store data from XRF to memory (and increase the address base)
 *   SLT   - Set of less than comparison
 *   SAD   - Sum of absolute differences
 *   SLL   - Logical shift left
 *   SLR   - Logical shift right
 *   SAR   - Arithmetic shift right
 *   SAT   - Saturation
 *   SFL   - Shuffle
 *   SCOP  - Calculate x’s scope (-1, means x<0; 0, means x==0; 1, means x>0)
 *   XOR   - Logical bitwise 'exclusive or' operation
 *
 *  Suffixes:
 *
 *   E - Expand results
 *   F - Fixed point multiplication
 *   L - Low part result
 *   R - Doing rounding
 *   V - Variable instead of immediate
 *   W - Combine above L and V
 *
 *
 *     The list of MXU instructions grouped by functionality
 *     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 * Load/Store instructions           Multiplication instructions
 * -----------------------           ---------------------------
 *
 *  S32LDD XRa, Rb, s12               S32MADD XRa, XRd, Rs, Rt
 *  S32STD XRa, Rb, s12               S32MADDU XRa, XRd, Rs, Rt
 *  S32LDDV XRa, Rb, rc, strd2        S32MSUB XRa, XRd, Rs, Rt
 *  S32STDV XRa, Rb, rc, strd2        S32MSUBU XRa, XRd, Rs, Rt
 *  S32LDI XRa, Rb, s12               S32MUL XRa, XRd, Rs, Rt
 *  S32SDI XRa, Rb, s12               S32MULU XRa, XRd, Rs, Rt
 *  S32LDIV XRa, Rb, rc, strd2        D16MUL XRa, XRb, XRc, XRd, optn2
 *  S32SDIV XRa, Rb, rc, strd2        D16MULE XRa, XRb, XRc, optn2
 *  S32LDDR XRa, Rb, s12              D16MULF XRa, XRb, XRc, optn2
 *  S32STDR XRa, Rb, s12              D16MAC XRa, XRb, XRc, XRd, aptn2, optn2
 *  S32LDDVR XRa, Rb, rc, strd2       D16MACE XRa, XRb, XRc, XRd, aptn2, optn2
 *  S32STDVR XRa, Rb, rc, strd2       D16MACF XRa, XRb, XRc, XRd, aptn2, optn2
 *  S32LDIR XRa, Rb, s12              D16MADL XRa, XRb, XRc, XRd, aptn2, optn2
 *  S32SDIR XRa, Rb, s12              S16MAD XRa, XRb, XRc, XRd, aptn1, optn2
 *  S32LDIVR XRa, Rb, rc, strd2       Q8MUL XRa, XRb, XRc, XRd
 *  S32SDIVR XRa, Rb, rc, strd2       Q8MULSU XRa, XRb, XRc, XRd
 *  S16LDD XRa, Rb, s10, eptn2        Q8MAC XRa, XRb, XRc, XRd, aptn2
 *  S16STD XRa, Rb, s10, eptn2        Q8MACSU XRa, XRb, XRc, XRd, aptn2
 *  S16LDI XRa, Rb, s10, eptn2        Q8MADL XRa, XRb, XRc, XRd, aptn2
 *  S16SDI XRa, Rb, s10, eptn2
 *  S8LDD XRa, Rb, s8, eptn3
 *  S8STD XRa, Rb, s8, eptn3         Addition and subtraction instructions
 *  S8LDI XRa, Rb, s8, eptn3         -------------------------------------
 *  S8SDI XRa, Rb, s8, eptn3
 *  LXW Rd, Rs, Rt, strd2             D32ADD XRa, XRb, XRc, XRd, eptn2
 *  LXH Rd, Rs, Rt, strd2             D32ADDC XRa, XRb, XRc, XRd
 *  LXHU Rd, Rs, Rt, strd2            D32ACC XRa, XRb, XRc, XRd, eptn2
 *  LXB Rd, Rs, Rt, strd2             D32ACCM XRa, XRb, XRc, XRd, eptn2
 *  LXBU Rd, Rs, Rt, strd2            D32ASUM XRa, XRb, XRc, XRd, eptn2
 *                                    S32CPS XRa, XRb, XRc
 *                                    Q16ADD XRa, XRb, XRc, XRd, eptn2, optn2
 * Comparison instructions            Q16ACC XRa, XRb, XRc, XRd, eptn2
 * -----------------------            Q16ACCM XRa, XRb, XRc, XRd, eptn2
 *                                    D16ASUM XRa, XRb, XRc, XRd, eptn2
 *  S32MAX XRa, XRb, XRc              D16CPS XRa, XRb,
 *  S32MIN XRa, XRb, XRc              D16AVG XRa, XRb, XRc
 *  S32SLT XRa, XRb, XRc              D16AVGR XRa, XRb, XRc
 *  S32MOVZ XRa, XRb, XRc             Q8ADD XRa, XRb, XRc, eptn2
 *  S32MOVN XRa, XRb, XRc             Q8ADDE XRa, XRb, XRc, XRd, eptn2
 *  D16MAX XRa, XRb, XRc              Q8ACCE XRa, XRb, XRc, XRd, eptn2
 *  D16MIN XRa, XRb, XRc              Q8ABD XRa, XRb, XRc
 *  D16SLT XRa, XRb, XRc              Q8SAD XRa, XRb, XRc, XRd
 *  D16MOVZ XRa, XRb, XRc             Q8AVG XRa, XRb, XRc
 *  D16MOVN XRa, XRb, XRc             Q8AVGR XRa, XRb, XRc
 *  Q8MAX XRa, XRb, XRc               D8SUM XRa, XRb, XRc, XRd
 *  Q8MIN XRa, XRb, XRc               D8SUMC XRa, XRb, XRc, XRd
 *  Q8SLT XRa, XRb, XRc
 *  Q8SLTU XRa, XRb, XRc
 *  Q8MOVZ XRa, XRb, XRc             Shift instructions
 *  Q8MOVN XRa, XRb, XRc             ------------------
 *
 *                                    D32SLL XRa, XRb, XRc, XRd, sft4
 * Bitwise instructions               D32SLR XRa, XRb, XRc, XRd, sft4
 * --------------------               D32SAR XRa, XRb, XRc, XRd, sft4
 *                                    D32SARL XRa, XRb, XRc, sft4
 *  S32NOR XRa, XRb, XRc              D32SLLV XRa, XRb, Rb
 *  S32AND XRa, XRb, XRc              D32SLRV XRa, XRb, Rb
 *  S32XOR XRa, XRb, XRc              D32SARV XRa, XRb, Rb
 *  S32OR XRa, XRb, XRc               D32SARW XRa, XRb, XRc, Rb
 *                                    Q16SLL XRa, XRb, XRc, XRd, sft4
 *                                    Q16SLR XRa, XRb, XRc, XRd, sft4
 * Miscellaneous instructions         Q16SAR XRa, XRb, XRc, XRd, sft4
 * -------------------------          Q16SLLV XRa, XRb, Rb
 *                                    Q16SLRV XRa, XRb, Rb
 *  S32SFL XRa, XRb, XRc, XRd, optn2  Q16SARV XRa, XRb, Rb
 *  S32ALN XRa, XRb, XRc, Rb
 *  S32ALNI XRa, XRb, XRc, s3
 *  S32LUI XRa, s8, optn3            Move instructions
 *  S32EXTR XRa, XRb, Rb, bits5      -----------------
 *  S32EXTRV XRa, XRb, Rs, Rt
 *  Q16SCOP XRa, XRb, XRc, XRd        S32M2I XRa, Rb
 *  Q16SAT XRa, XRb, XRc              S32I2M XRa, Rb
 *
 *
 *     The opcode organization of MXU instructions
 *     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 * The bits 31..26 of all MXU instructions are equal to 0x1C (also referred
 * as opcode SPECIAL2 in the base MIPS ISA). The organization and meaning of
 * other bits up to the instruction level is as follows:
 *
 *              bits
 *             05..00
 *
 *          ┌─ 000000 ─ OPC_MXU_S32MADD
 *          ├─ 000001 ─ OPC_MXU_S32MADDU
 *          ├─ 000010 ─ <not assigned>   (non-MXU OPC_MUL)
 *          │
 *          │                               20..18
 *          ├─ 000011 ─ OPC_MXU__POOL00 ─┬─ 000 ─ OPC_MXU_S32MAX
 *          │                            ├─ 001 ─ OPC_MXU_S32MIN
 *          │                            ├─ 010 ─ OPC_MXU_D16MAX
 *          │                            ├─ 011 ─ OPC_MXU_D16MIN
 *          │                            ├─ 100 ─ OPC_MXU_Q8MAX
 *          │                            ├─ 101 ─ OPC_MXU_Q8MIN
 *          │                            ├─ 110 ─ OPC_MXU_Q8SLT
 *          │                            └─ 111 ─ OPC_MXU_Q8SLTU
 *          ├─ 000100 ─ OPC_MXU_S32MSUB
 *          ├─ 000101 ─ OPC_MXU_S32MSUBU    20..18
 *          ├─ 000110 ─ OPC_MXU__POOL01 ─┬─ 000 ─ OPC_MXU_S32SLT
 *          │                            ├─ 001 ─ OPC_MXU_D16SLT
 *          │                            ├─ 010 ─ OPC_MXU_D16AVG
 *          │                            ├─ 011 ─ OPC_MXU_D16AVGR
 *          │                            ├─ 100 ─ OPC_MXU_Q8AVG
 *          │                            ├─ 101 ─ OPC_MXU_Q8AVGR
 *          │                            └─ 111 ─ OPC_MXU_Q8ADD
 *          │
 *          │                               20..18
 *          ├─ 000111 ─ OPC_MXU__POOL02 ─┬─ 000 ─ OPC_MXU_S32CPS
 *          │                            ├─ 010 ─ OPC_MXU_D16CPS
 *          │                            ├─ 100 ─ OPC_MXU_Q8ABD
 *          │                            └─ 110 ─ OPC_MXU_Q16SAT
 *          ├─ 001000 ─ OPC_MXU_D16MUL
 *          │                               25..24
 *          ├─ 001001 ─ OPC_MXU__POOL03 ─┬─ 00 ─ OPC_MXU_D16MULF
 *          │                            └─ 01 ─ OPC_MXU_D16MULE
 *          ├─ 001010 ─ OPC_MXU_D16MAC
 *          ├─ 001011 ─ OPC_MXU_D16MACF
 *          ├─ 001100 ─ OPC_MXU_D16MADL
 *          ├─ 001101 ─ OPC_MXU_S16MAD
 *          ├─ 001110 ─ OPC_MXU_Q16ADD
 *          ├─ 001111 ─ OPC_MXU_D16MACE     23
 *          │                            ┌─ 0 ─ OPC_MXU_S32LDD
 *          ├─ 010000 ─ OPC_MXU__POOL04 ─┴─ 1 ─ OPC_MXU_S32LDDR
 *          │
 *          │                               23
 *          ├─ 010001 ─ OPC_MXU__POOL05 ─┬─ 0 ─ OPC_MXU_S32STD
 *          │                            └─ 1 ─ OPC_MXU_S32STDR
 *          │
 *          │                               13..10
 *          ├─ 010010 ─ OPC_MXU__POOL06 ─┬─ 0000 ─ OPC_MXU_S32LDDV
 *          │                            └─ 0001 ─ OPC_MXU_S32LDDVR
 *          │
 *          │                               13..10
 *          ├─ 010011 ─ OPC_MXU__POOL07 ─┬─ 0000 ─ OPC_MXU_S32STDV
 *          │                            └─ 0001 ─ OPC_MXU_S32STDVR
 *          │
 *          │                               23
 *          ├─ 010100 ─ OPC_MXU__POOL08 ─┬─ 0 ─ OPC_MXU_S32LDI
 *          │                            └─ 1 ─ OPC_MXU_S32LDIR
 *          │
 *          │                               23
 *          ├─ 010101 ─ OPC_MXU__POOL09 ─┬─ 0 ─ OPC_MXU_S32SDI
 *          │                            └─ 1 ─ OPC_MXU_S32SDIR
 *          │
 *          │                               13..10
 *          ├─ 010110 ─ OPC_MXU__POOL10 ─┬─ 0000 ─ OPC_MXU_S32LDIV
 *          │                            └─ 0001 ─ OPC_MXU_S32LDIVR
 *          │
 *          │                               13..10
 *          ├─ 010111 ─ OPC_MXU__POOL11 ─┬─ 0000 ─ OPC_MXU_S32SDIV
 *          │                            └─ 0001 ─ OPC_MXU_S32SDIVR
 *          ├─ 011000 ─ OPC_MXU_D32ADD
 *          │                               23..22
 *   MXU    ├─ 011001 ─ OPC_MXU__POOL12 ─┬─ 00 ─ OPC_MXU_D32ACC
 * opcodes ─┤                            ├─ 01 ─ OPC_MXU_D32ACCM
 *          │                            └─ 10 ─ OPC_MXU_D32ASUM
 *          ├─ 011010 ─ <not assigned>
 *          │                               23..22
 *          ├─ 011011 ─ OPC_MXU__POOL13 ─┬─ 00 ─ OPC_MXU_Q16ACC
 *          │                            ├─ 01 ─ OPC_MXU_Q16ACCM
 *          │                            └─ 10 ─ OPC_MXU_Q16ASUM
 *          │
 *          │                               23..22
 *          ├─ 011100 ─ OPC_MXU__POOL14 ─┬─ 00 ─ OPC_MXU_Q8ADDE
 *          │                            ├─ 01 ─ OPC_MXU_D8SUM
 *          ├─ 011101 ─ OPC_MXU_Q8ACCE   └─ 10 ─ OPC_MXU_D8SUMC
 *          ├─ 011110 ─ <not assigned>
 *          ├─ 011111 ─ <not assigned>
 *          ├─ 100000 ─ <not assigned>   (overlaps with CLZ)
 *          ├─ 100001 ─ <not assigned>   (overlaps with CLO)
 *          ├─ 100010 ─ OPC_MXU_S8LDD
 *          ├─ 100011 ─ OPC_MXU_S8STD       15..14
 *          ├─ 100100 ─ OPC_MXU_S8LDI    ┌─ 00 ─ OPC_MXU_S32MUL
 *          ├─ 100101 ─ OPC_MXU_S8SDI    ├─ 00 ─ OPC_MXU_S32MULU
 *          │                            ├─ 00 ─ OPC_MXU_S32EXTR
 *          ├─ 100110 ─ OPC_MXU__POOL15 ─┴─ 00 ─ OPC_MXU_S32EXTRV
 *          │
 *          │                               20..18
 *          ├─ 100111 ─ OPC_MXU__POOL16 ─┬─ 000 ─ OPC_MXU_D32SARW
 *          │                            ├─ 001 ─ OPC_MXU_S32ALN
 *          │                            ├─ 010 ─ OPC_MXU_S32ALNI
 *          │                            ├─ 011 ─ OPC_MXU_S32LUI
 *          │                            ├─ 100 ─ OPC_MXU_S32NOR
 *          │                            ├─ 101 ─ OPC_MXU_S32AND
 *          │                            ├─ 110 ─ OPC_MXU_S32OR
 *          │                            └─ 111 ─ OPC_MXU_S32XOR
 *          │
 *          │                               7..5
 *          ├─ 101000 ─ OPC_MXU__POOL17 ─┬─ 000 ─ OPC_MXU_LXB
 *          │                            ├─ 001 ─ OPC_MXU_LXH
 *          ├─ 101001 ─ <not assigned>   ├─ 011 ─ OPC_MXU_LXW
 *          ├─ 101010 ─ OPC_MXU_S16LDD   ├─ 100 ─ OPC_MXU_LXBU
 *          ├─ 101011 ─ OPC_MXU_S16STD   └─ 101 ─ OPC_MXU_LXHU
 *          ├─ 101100 ─ OPC_MXU_S16LDI
 *          ├─ 101101 ─ OPC_MXU_S16SDI
 *          ├─ 101110 ─ OPC_MXU_S32M2I
 *          ├─ 101111 ─ OPC_MXU_S32I2M
 *          ├─ 110000 ─ OPC_MXU_D32SLL
 *          ├─ 110001 ─ OPC_MXU_D32SLR      20..18
 *          ├─ 110010 ─ OPC_MXU_D32SARL  ┌─ 000 ─ OPC_MXU_D32SLLV
 *          ├─ 110011 ─ OPC_MXU_D32SAR   ├─ 001 ─ OPC_MXU_D32SLRV
 *          ├─ 110100 ─ OPC_MXU_Q16SLL   ├─ 010 ─ OPC_MXU_D32SARV
 *          ├─ 110101 ─ OPC_MXU_Q16SLR   ├─ 011 ─ OPC_MXU_Q16SLLV
 *          │                            ├─ 100 ─ OPC_MXU_Q16SLRV
 *          ├─ 110110 ─ OPC_MXU__POOL18 ─┴─ 101 ─ OPC_MXU_Q16SARV
 *          │
 *          ├─ 110111 ─ OPC_MXU_Q16SAR
 *          │                               23..22
 *          ├─ 111000 ─ OPC_MXU__POOL19 ─┬─ 00 ─ OPC_MXU_Q8MUL
 *          │                            └─ 01 ─ OPC_MXU_Q8MULSU
 *          │
 *          │                               20..18
 *          ├─ 111001 ─ OPC_MXU__POOL20 ─┬─ 000 ─ OPC_MXU_Q8MOVZ
 *          │                            ├─ 001 ─ OPC_MXU_Q8MOVN
 *          │                            ├─ 010 ─ OPC_MXU_D16MOVZ
 *          │                            ├─ 011 ─ OPC_MXU_D16MOVN
 *          │                            ├─ 100 ─ OPC_MXU_S32MOVZ
 *          │                            └─ 101 ─ OPC_MXU_S32MOVN
 *          │
 *          │                               23..22
 *          ├─ 111010 ─ OPC_MXU__POOL21 ─┬─ 00 ─ OPC_MXU_Q8MAC
 *          │                            └─ 10 ─ OPC_MXU_Q8MACSU
 *          ├─ 111011 ─ OPC_MXU_Q16SCOP
 *          ├─ 111100 ─ OPC_MXU_Q8MADL
 *          ├─ 111101 ─ OPC_MXU_S32SFL
 *          ├─ 111110 ─ OPC_MXU_Q8SAD
 *          └─ 111111 ─ <not assigned>   (overlaps with SDBBP)
 *
 *
 * Compiled after:
 *
 *   "XBurst® Instruction Set Architecture MIPS eXtension/enhanced Unit
 *   Programming Manual", Ingenic Semiconductor Co, Ltd., revision June 2, 2017
 */

enum {
    OPC_MXU__POOL00  = 0x03,
    OPC_MXU_D16MUL   = 0x08,
    OPC_MXU_D16MAC   = 0x0A,
    OPC_MXU__POOL04  = 0x10,
    OPC_MXU_S8LDD    = 0x22,
    OPC_MXU__POOL16  = 0x27,
    OPC_MXU_S32M2I   = 0x2E,
    OPC_MXU_S32I2M   = 0x2F,
    OPC_MXU__POOL19  = 0x38,
};


/*
 * MXU pool 00
 */
enum {
    OPC_MXU_S32MAX   = 0x00,
    OPC_MXU_S32MIN   = 0x01,
    OPC_MXU_D16MAX   = 0x02,
    OPC_MXU_D16MIN   = 0x03,
    OPC_MXU_Q8MAX    = 0x04,
    OPC_MXU_Q8MIN    = 0x05,
};

/*
 * MXU pool 04
 */
enum {
    OPC_MXU_S32LDD   = 0x00,
    OPC_MXU_S32LDDR  = 0x01,
};

/*
 * MXU pool 16
 */
enum {
    OPC_MXU_S32ALNI  = 0x02,
    OPC_MXU_S32NOR   = 0x04,
    OPC_MXU_S32AND   = 0x05,
    OPC_MXU_S32OR    = 0x06,
    OPC_MXU_S32XOR   = 0x07,
};

/*
 * MXU pool 19
 */
enum {
    OPC_MXU_Q8MUL    = 0x00,
    OPC_MXU_Q8MULSU  = 0x01,
};

/* MXU accumulate add/subtract 1-bit pattern 'aptn1' */
#define MXU_APTN1_A    0
#define MXU_APTN1_S    1

/* MXU accumulate add/subtract 2-bit pattern 'aptn2' */
#define MXU_APTN2_AA    0
#define MXU_APTN2_AS    1
#define MXU_APTN2_SA    2
#define MXU_APTN2_SS    3

/* MXU execute add/subtract 2-bit pattern 'eptn2' */
#define MXU_EPTN2_AA    0
#define MXU_EPTN2_AS    1
#define MXU_EPTN2_SA    2
#define MXU_EPTN2_SS    3

/* MXU operand getting pattern 'optn2' */
#define MXU_OPTN2_PTN0  0
#define MXU_OPTN2_PTN1  1
#define MXU_OPTN2_PTN2  2
#define MXU_OPTN2_PTN3  3
/* alternative naming scheme for 'optn2' */
#define MXU_OPTN2_WW    0
#define MXU_OPTN2_LW    1
#define MXU_OPTN2_HW    2
#define MXU_OPTN2_XW    3

/* MXU operand getting pattern 'optn3' */
#define MXU_OPTN3_PTN0  0
#define MXU_OPTN3_PTN1  1
#define MXU_OPTN3_PTN2  2
#define MXU_OPTN3_PTN3  3
#define MXU_OPTN3_PTN4  4
#define MXU_OPTN3_PTN5  5
#define MXU_OPTN3_PTN6  6
#define MXU_OPTN3_PTN7  7

/* MXU registers */
static TCGv mxu_gpr[NUMBER_OF_MXU_REGISTERS - 1];
static TCGv mxu_CR;

static const char mxuregnames[][4] = {
    "XR1",  "XR2",  "XR3",  "XR4",  "XR5",  "XR6",  "XR7",  "XR8",
    "XR9",  "XR10", "XR11", "XR12", "XR13", "XR14", "XR15", "XCR",
};

void mxu_translate_init(void)
{
    for (unsigned i = 0; i < NUMBER_OF_MXU_REGISTERS - 1; i++) {
        mxu_gpr[i] = tcg_global_mem_new(cpu_env,
                                        offsetof(CPUMIPSState, active_tc.mxu_gpr[i]),
                                        mxuregnames[i]);
    }

    mxu_CR = tcg_global_mem_new(cpu_env,
                                offsetof(CPUMIPSState, active_tc.mxu_cr),
                                mxuregnames[NUMBER_OF_MXU_REGISTERS - 1]);
}

/* MXU General purpose registers moves. */
static inline void gen_load_mxu_gpr(TCGv t, unsigned int reg)
{
    if (reg == 0) {
        tcg_gen_movi_tl(t, 0);
    } else if (reg <= 15) {
        tcg_gen_mov_tl(t, mxu_gpr[reg - 1]);
    }
}

static inline void gen_store_mxu_gpr(TCGv t, unsigned int reg)
{
    if (reg > 0 && reg <= 15) {
        tcg_gen_mov_tl(mxu_gpr[reg - 1], t);
    }
}

/* MXU control register moves. */
static inline void gen_load_mxu_cr(TCGv t)
{
    tcg_gen_mov_tl(t, mxu_CR);
}

static inline void gen_store_mxu_cr(TCGv t)
{
    /* TODO: Add handling of RW rules for MXU_CR. */
    tcg_gen_mov_tl(mxu_CR, t);
}

/*
 * S32I2M XRa, rb - Register move from GRF to XRF
 */
static void gen_mxu_s32i2m(DisasContext *ctx)
{
    TCGv t0;
    uint32_t XRa, Rb;

    t0 = tcg_temp_new();

    XRa = extract32(ctx->opcode, 6, 5);
    Rb = extract32(ctx->opcode, 16, 5);

    gen_load_gpr(t0, Rb);
    if (XRa <= 15) {
        gen_store_mxu_gpr(t0, XRa);
    } else if (XRa == 16) {
        gen_store_mxu_cr(t0);
    }

    tcg_temp_free(t0);
}

/*
 * S32M2I XRa, rb - Register move from XRF to GRF
 */
static void gen_mxu_s32m2i(DisasContext *ctx)
{
    TCGv t0;
    uint32_t XRa, Rb;

    t0 = tcg_temp_new();

    XRa = extract32(ctx->opcode, 6, 5);
    Rb = extract32(ctx->opcode, 16, 5);

    if (XRa <= 15) {
        gen_load_mxu_gpr(t0, XRa);
    } else if (XRa == 16) {
        gen_load_mxu_cr(t0);
    }

    gen_store_gpr(t0, Rb);

    tcg_temp_free(t0);
}

/*
 * S8LDD XRa, Rb, s8, optn3 - Load a byte from memory to XRF
 */
static void gen_mxu_s8ldd(DisasContext *ctx)
{
    TCGv t0, t1;
    uint32_t XRa, Rb, s8, optn3;

    t0 = tcg_temp_new();
    t1 = tcg_temp_new();

    XRa = extract32(ctx->opcode, 6, 4);
    s8 = extract32(ctx->opcode, 10, 8);
    optn3 = extract32(ctx->opcode, 18, 3);
    Rb = extract32(ctx->opcode, 21, 5);

    gen_load_gpr(t0, Rb);
    tcg_gen_addi_tl(t0, t0, (int8_t)s8);

    switch (optn3) {
    /* XRa[7:0] = tmp8 */
    case MXU_OPTN3_PTN0:
        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
        gen_load_mxu_gpr(t0, XRa);
        tcg_gen_deposit_tl(t0, t0, t1, 0, 8);
        break;
    /* XRa[15:8] = tmp8 */
    case MXU_OPTN3_PTN1:
        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
        gen_load_mxu_gpr(t0, XRa);
        tcg_gen_deposit_tl(t0, t0, t1, 8, 8);
        break;
    /* XRa[23:16] = tmp8 */
    case MXU_OPTN3_PTN2:
        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
        gen_load_mxu_gpr(t0, XRa);
        tcg_gen_deposit_tl(t0, t0, t1, 16, 8);
        break;
    /* XRa[31:24] = tmp8 */
    case MXU_OPTN3_PTN3:
        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
        gen_load_mxu_gpr(t0, XRa);
        tcg_gen_deposit_tl(t0, t0, t1, 24, 8);
        break;
    /* XRa = {8'b0, tmp8, 8'b0, tmp8} */
    case MXU_OPTN3_PTN4:
        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
        tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
        break;
    /* XRa = {tmp8, 8'b0, tmp8, 8'b0} */
    case MXU_OPTN3_PTN5:
        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
        tcg_gen_shli_tl(t1, t1, 8);
        tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
        break;
    /* XRa = {{8{sign of tmp8}}, tmp8, {8{sign of tmp8}}, tmp8} */
    case MXU_OPTN3_PTN6:
        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_SB);
        tcg_gen_mov_tl(t0, t1);
        tcg_gen_andi_tl(t0, t0, 0xFF00FFFF);
        tcg_gen_shli_tl(t1, t1, 16);
        tcg_gen_or_tl(t0, t0, t1);
        break;
    /* XRa = {tmp8, tmp8, tmp8, tmp8} */
    case MXU_OPTN3_PTN7:
        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
        tcg_gen_deposit_tl(t1, t1, t1, 8, 8);
        tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
        break;
    }

    gen_store_mxu_gpr(t0, XRa);

    tcg_temp_free(t0);
    tcg_temp_free(t1);
}

/*
 * D16MUL XRa, XRb, XRc, XRd, optn2 - Signed 16 bit pattern multiplication
 */
static void gen_mxu_d16mul(DisasContext *ctx)
{
    TCGv t0, t1, t2, t3;
    uint32_t XRa, XRb, XRc, XRd, optn2;

    t0 = tcg_temp_new();
    t1 = tcg_temp_new();
    t2 = tcg_temp_new();
    t3 = tcg_temp_new();

    XRa = extract32(ctx->opcode, 6, 4);
    XRb = extract32(ctx->opcode, 10, 4);
    XRc = extract32(ctx->opcode, 14, 4);
    XRd = extract32(ctx->opcode, 18, 4);
    optn2 = extract32(ctx->opcode, 22, 2);

    gen_load_mxu_gpr(t1, XRb);
    tcg_gen_sextract_tl(t0, t1, 0, 16);
    tcg_gen_sextract_tl(t1, t1, 16, 16);
    gen_load_mxu_gpr(t3, XRc);
    tcg_gen_sextract_tl(t2, t3, 0, 16);
    tcg_gen_sextract_tl(t3, t3, 16, 16);

    switch (optn2) {
    case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */
        tcg_gen_mul_tl(t3, t1, t3);
        tcg_gen_mul_tl(t2, t0, t2);
        break;
    case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */
        tcg_gen_mul_tl(t3, t0, t3);
        tcg_gen_mul_tl(t2, t0, t2);
        break;
    case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */
        tcg_gen_mul_tl(t3, t1, t3);
        tcg_gen_mul_tl(t2, t1, t2);
        break;
    case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */
        tcg_gen_mul_tl(t3, t0, t3);
        tcg_gen_mul_tl(t2, t1, t2);
        break;
    }
    gen_store_mxu_gpr(t3, XRa);
    gen_store_mxu_gpr(t2, XRd);

    tcg_temp_free(t0);
    tcg_temp_free(t1);
    tcg_temp_free(t2);
    tcg_temp_free(t3);
}

/*
 * D16MAC XRa, XRb, XRc, XRd, aptn2, optn2 - Signed 16 bit pattern multiply
 *                                           and accumulate
 */
static void gen_mxu_d16mac(DisasContext *ctx)
{
    TCGv t0, t1, t2, t3;
    uint32_t XRa, XRb, XRc, XRd, optn2, aptn2;

    t0 = tcg_temp_new();
    t1 = tcg_temp_new();
    t2 = tcg_temp_new();
    t3 = tcg_temp_new();

    XRa = extract32(ctx->opcode, 6, 4);
    XRb = extract32(ctx->opcode, 10, 4);
    XRc = extract32(ctx->opcode, 14, 4);
    XRd = extract32(ctx->opcode, 18, 4);
    optn2 = extract32(ctx->opcode, 22, 2);
    aptn2 = extract32(ctx->opcode, 24, 2);

    gen_load_mxu_gpr(t1, XRb);
    tcg_gen_sextract_tl(t0, t1, 0, 16);
    tcg_gen_sextract_tl(t1, t1, 16, 16);

    gen_load_mxu_gpr(t3, XRc);
    tcg_gen_sextract_tl(t2, t3, 0, 16);
    tcg_gen_sextract_tl(t3, t3, 16, 16);

    switch (optn2) {
    case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */
        tcg_gen_mul_tl(t3, t1, t3);
        tcg_gen_mul_tl(t2, t0, t2);
        break;
    case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */
        tcg_gen_mul_tl(t3, t0, t3);
        tcg_gen_mul_tl(t2, t0, t2);
        break;
    case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */
        tcg_gen_mul_tl(t3, t1, t3);
        tcg_gen_mul_tl(t2, t1, t2);
        break;
    case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */
        tcg_gen_mul_tl(t3, t0, t3);
        tcg_gen_mul_tl(t2, t1, t2);
        break;
    }
    gen_load_mxu_gpr(t0, XRa);
    gen_load_mxu_gpr(t1, XRd);

    switch (aptn2) {
    case MXU_APTN2_AA:
        tcg_gen_add_tl(t3, t0, t3);
        tcg_gen_add_tl(t2, t1, t2);
        break;
    case MXU_APTN2_AS:
        tcg_gen_add_tl(t3, t0, t3);
        tcg_gen_sub_tl(t2, t1, t2);
        break;
    case MXU_APTN2_SA:
        tcg_gen_sub_tl(t3, t0, t3);
        tcg_gen_add_tl(t2, t1, t2);
        break;
    case MXU_APTN2_SS:
        tcg_gen_sub_tl(t3, t0, t3);
        tcg_gen_sub_tl(t2, t1, t2);
        break;
    }
    gen_store_mxu_gpr(t3, XRa);
    gen_store_mxu_gpr(t2, XRd);

    tcg_temp_free(t0);
    tcg_temp_free(t1);
    tcg_temp_free(t2);
    tcg_temp_free(t3);
}

/*
 * Q8MUL   XRa, XRb, XRc, XRd - Parallel unsigned 8 bit pattern multiply
 * Q8MULSU XRa, XRb, XRc, XRd - Parallel signed 8 bit pattern multiply
 */
static void gen_mxu_q8mul_q8mulsu(DisasContext *ctx)
{
    TCGv t0, t1, t2, t3, t4, t5, t6, t7;
    uint32_t XRa, XRb, XRc, XRd, sel;

    t0 = tcg_temp_new();
    t1 = tcg_temp_new();
    t2 = tcg_temp_new();
    t3 = tcg_temp_new();
    t4 = tcg_temp_new();
    t5 = tcg_temp_new();
    t6 = tcg_temp_new();
    t7 = tcg_temp_new();

    XRa = extract32(ctx->opcode, 6, 4);
    XRb = extract32(ctx->opcode, 10, 4);
    XRc = extract32(ctx->opcode, 14, 4);
    XRd = extract32(ctx->opcode, 18, 4);
    sel = extract32(ctx->opcode, 22, 2);

    gen_load_mxu_gpr(t3, XRb);
    gen_load_mxu_gpr(t7, XRc);

    if (sel == 0x2) {
        /* Q8MULSU */
        tcg_gen_ext8s_tl(t0, t3);
        tcg_gen_shri_tl(t3, t3, 8);
        tcg_gen_ext8s_tl(t1, t3);
        tcg_gen_shri_tl(t3, t3, 8);
        tcg_gen_ext8s_tl(t2, t3);
        tcg_gen_shri_tl(t3, t3, 8);
        tcg_gen_ext8s_tl(t3, t3);
    } else {
        /* Q8MUL */
        tcg_gen_ext8u_tl(t0, t3);
        tcg_gen_shri_tl(t3, t3, 8);
        tcg_gen_ext8u_tl(t1, t3);
        tcg_gen_shri_tl(t3, t3, 8);
        tcg_gen_ext8u_tl(t2, t3);
        tcg_gen_shri_tl(t3, t3, 8);
        tcg_gen_ext8u_tl(t3, t3);
    }

    tcg_gen_ext8u_tl(t4, t7);
    tcg_gen_shri_tl(t7, t7, 8);
    tcg_gen_ext8u_tl(t5, t7);
    tcg_gen_shri_tl(t7, t7, 8);
    tcg_gen_ext8u_tl(t6, t7);
    tcg_gen_shri_tl(t7, t7, 8);
    tcg_gen_ext8u_tl(t7, t7);

    tcg_gen_mul_tl(t0, t0, t4);
    tcg_gen_mul_tl(t1, t1, t5);
    tcg_gen_mul_tl(t2, t2, t6);
    tcg_gen_mul_tl(t3, t3, t7);

    tcg_gen_andi_tl(t0, t0, 0xFFFF);
    tcg_gen_andi_tl(t1, t1, 0xFFFF);
    tcg_gen_andi_tl(t2, t2, 0xFFFF);
    tcg_gen_andi_tl(t3, t3, 0xFFFF);

    tcg_gen_shli_tl(t1, t1, 16);
    tcg_gen_shli_tl(t3, t3, 16);

    tcg_gen_or_tl(t0, t0, t1);
    tcg_gen_or_tl(t1, t2, t3);

    gen_store_mxu_gpr(t0, XRd);
    gen_store_mxu_gpr(t1, XRa);

    tcg_temp_free(t0);
    tcg_temp_free(t1);
    tcg_temp_free(t2);
    tcg_temp_free(t3);
    tcg_temp_free(t4);
    tcg_temp_free(t5);
    tcg_temp_free(t6);
    tcg_temp_free(t7);
}

/*
 * S32LDD  XRa, Rb, S12 - Load a word from memory to XRF
 * S32LDDR XRa, Rb, S12 - Load a word from memory to XRF, reversed byte seq.
 */
static void gen_mxu_s32ldd_s32lddr(DisasContext *ctx)
{
    TCGv t0, t1;
    uint32_t XRa, Rb, s12, sel;

    t0 = tcg_temp_new();
    t1 = tcg_temp_new();

    XRa = extract32(ctx->opcode, 6, 4);
    s12 = extract32(ctx->opcode, 10, 10);
    sel = extract32(ctx->opcode, 20, 1);
    Rb = extract32(ctx->opcode, 21, 5);

    gen_load_gpr(t0, Rb);

    tcg_gen_movi_tl(t1, s12);
    tcg_gen_shli_tl(t1, t1, 2);
    if (s12 & 0x200) {
        tcg_gen_ori_tl(t1, t1, 0xFFFFF000);
    }
    tcg_gen_add_tl(t1, t0, t1);
    tcg_gen_qemu_ld_tl(t1, t1, ctx->mem_idx, MO_TESL ^ (sel * MO_BSWAP));

    gen_store_mxu_gpr(t1, XRa);

    tcg_temp_free(t0);
    tcg_temp_free(t1);
}


/*
 *                 MXU instruction category: logic
 *                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *               S32NOR    S32AND    S32OR    S32XOR
 */

/*
 *  S32NOR XRa, XRb, XRc
 *    Update XRa with the result of logical bitwise 'nor' operation
 *    applied to the content of XRb and XRc.
 */
static void gen_mxu_S32NOR(DisasContext *ctx)
{
    uint32_t pad, XRc, XRb, XRa;

    pad = extract32(ctx->opcode, 21, 5);
    XRc = extract32(ctx->opcode, 14, 4);
    XRb = extract32(ctx->opcode, 10, 4);
    XRa = extract32(ctx->opcode,  6, 4);

    if (unlikely(pad != 0)) {
        /* opcode padding incorrect -> do nothing */
    } else if (unlikely(XRa == 0)) {
        /* destination is zero register -> do nothing */
    } else if (unlikely((XRb == 0) && (XRc == 0))) {
        /* both operands zero registers -> just set destination to all 1s */
        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0xFFFFFFFF);
    } else if (unlikely(XRb == 0)) {
        /* XRb zero register -> just set destination to the negation of XRc */
        tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
    } else if (unlikely(XRc == 0)) {
        /* XRa zero register -> just set destination to the negation of XRb */
        tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
    } else if (unlikely(XRb == XRc)) {
        /* both operands same -> just set destination to the negation of XRb */
        tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
    } else {
        /* the most general case */
        tcg_gen_nor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
    }
}

/*
 *  S32AND XRa, XRb, XRc
 *    Update XRa with the result of logical bitwise 'and' operation
 *    applied to the content of XRb and XRc.
 */
static void gen_mxu_S32AND(DisasContext *ctx)
{
    uint32_t pad, XRc, XRb, XRa;

    pad = extract32(ctx->opcode, 21, 5);
    XRc = extract32(ctx->opcode, 14, 4);
    XRb = extract32(ctx->opcode, 10, 4);
    XRa = extract32(ctx->opcode,  6, 4);

    if (unlikely(pad != 0)) {
        /* opcode padding incorrect -> do nothing */
    } else if (unlikely(XRa == 0)) {
        /* destination is zero register -> do nothing */
    } else if (unlikely((XRb == 0) || (XRc == 0))) {
        /* one of operands zero register -> just set destination to all 0s */
        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
    } else if (unlikely(XRb == XRc)) {
        /* both operands same -> just set destination to one of them */
        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
    } else {
        /* the most general case */
        tcg_gen_and_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
    }
}

/*
 *  S32OR XRa, XRb, XRc
 *    Update XRa with the result of logical bitwise 'or' operation
 *    applied to the content of XRb and XRc.
 */
static void gen_mxu_S32OR(DisasContext *ctx)
{
    uint32_t pad, XRc, XRb, XRa;

    pad = extract32(ctx->opcode, 21, 5);
    XRc = extract32(ctx->opcode, 14, 4);
    XRb = extract32(ctx->opcode, 10, 4);
    XRa = extract32(ctx->opcode,  6, 4);

    if (unlikely(pad != 0)) {
        /* opcode padding incorrect -> do nothing */
    } else if (unlikely(XRa == 0)) {
        /* destination is zero register -> do nothing */
    } else if (unlikely((XRb == 0) && (XRc == 0))) {
        /* both operands zero registers -> just set destination to all 0s */
        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
    } else if (unlikely(XRb == 0)) {
        /* XRb zero register -> just set destination to the content of XRc */
        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
    } else if (unlikely(XRc == 0)) {
        /* XRc zero register -> just set destination to the content of XRb */
        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
    } else if (unlikely(XRb == XRc)) {
        /* both operands same -> just set destination to one of them */
        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
    } else {
        /* the most general case */
        tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
    }
}

/*
 *  S32XOR XRa, XRb, XRc
 *    Update XRa with the result of logical bitwise 'xor' operation
 *    applied to the content of XRb and XRc.
 */
static void gen_mxu_S32XOR(DisasContext *ctx)
{
    uint32_t pad, XRc, XRb, XRa;

    pad = extract32(ctx->opcode, 21, 5);
    XRc = extract32(ctx->opcode, 14, 4);
    XRb = extract32(ctx->opcode, 10, 4);
    XRa = extract32(ctx->opcode,  6, 4);

    if (unlikely(pad != 0)) {
        /* opcode padding incorrect -> do nothing */
    } else if (unlikely(XRa == 0)) {
        /* destination is zero register -> do nothing */
    } else if (unlikely((XRb == 0) && (XRc == 0))) {
        /* both operands zero registers -> just set destination to all 0s */
        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
    } else if (unlikely(XRb == 0)) {
        /* XRb zero register -> just set destination to the content of XRc */
        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
    } else if (unlikely(XRc == 0)) {
        /* XRc zero register -> just set destination to the content of XRb */
        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
    } else if (unlikely(XRb == XRc)) {
        /* both operands same -> just set destination to all 0s */
        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
    } else {
        /* the most general case */
        tcg_gen_xor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
    }
}


/*
 *                   MXU instruction category max/min
 *                   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *                     S32MAX     D16MAX     Q8MAX
 *                     S32MIN     D16MIN     Q8MIN
 */

/*
 *  S32MAX XRa, XRb, XRc
 *    Update XRa with the maximum of signed 32-bit integers contained
 *    in XRb and XRc.
 *
 *  S32MIN XRa, XRb, XRc
 *    Update XRa with the minimum of signed 32-bit integers contained
 *    in XRb and XRc.
 */
static void gen_mxu_S32MAX_S32MIN(DisasContext *ctx)
{
    uint32_t pad, opc, XRc, XRb, XRa;

    pad = extract32(ctx->opcode, 21, 5);
    opc = extract32(ctx->opcode, 18, 3);
    XRc = extract32(ctx->opcode, 14, 4);
    XRb = extract32(ctx->opcode, 10, 4);
    XRa = extract32(ctx->opcode,  6, 4);

    if (unlikely(pad != 0)) {
        /* opcode padding incorrect -> do nothing */
    } else if (unlikely(XRa == 0)) {
        /* destination is zero register -> do nothing */
    } else if (unlikely((XRb == 0) && (XRc == 0))) {
        /* both operands zero registers -> just set destination to zero */
        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
    } else if (unlikely((XRb == 0) || (XRc == 0))) {
        /* exactly one operand is zero register - find which one is not...*/
        uint32_t XRx = XRb ? XRb : XRc;
        /* ...and do max/min operation with one operand 0 */
        if (opc == OPC_MXU_S32MAX) {
            tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0);
        } else {
            tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0);
        }
    } else if (unlikely(XRb == XRc)) {
        /* both operands same -> just set destination to one of them */
        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
    } else {
        /* the most general case */
        if (opc == OPC_MXU_S32MAX) {
            tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1],
                                               mxu_gpr[XRc - 1]);
        } else {
            tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1],
                                               mxu_gpr[XRc - 1]);
        }
    }
}

/*
 *  D16MAX
 *    Update XRa with the 16-bit-wise maximums of signed integers
 *    contained in XRb and XRc.
 *
 *  D16MIN
 *    Update XRa with the 16-bit-wise minimums of signed integers
 *    contained in XRb and XRc.
 */
static void gen_mxu_D16MAX_D16MIN(DisasContext *ctx)
{
    uint32_t pad, opc, XRc, XRb, XRa;

    pad = extract32(ctx->opcode, 21, 5);
    opc = extract32(ctx->opcode, 18, 3);
    XRc = extract32(ctx->opcode, 14, 4);
    XRb = extract32(ctx->opcode, 10, 4);
    XRa = extract32(ctx->opcode,  6, 4);

    if (unlikely(pad != 0)) {
        /* opcode padding incorrect -> do nothing */
    } else if (unlikely(XRa == 0)) {
        /* destination is zero register -> do nothing */
    } else if (unlikely((XRb == 0) && (XRc == 0))) {
        /* both operands zero registers -> just set destination to zero */
        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
    } else if (unlikely((XRb == 0) || (XRc == 0))) {
        /* exactly one operand is zero register - find which one is not...*/
        uint32_t XRx = XRb ? XRb : XRc;
        /* ...and do half-word-wise max/min with one operand 0 */
        TCGv_i32 t0 = tcg_temp_new();
        TCGv_i32 t1 = tcg_const_i32(0);

        /* the left half-word first */
        tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFFFF0000);
        if (opc == OPC_MXU_D16MAX) {
            tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
        } else {
            tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
        }

        /* the right half-word */
        tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0x0000FFFF);
        /* move half-words to the leftmost position */
        tcg_gen_shli_i32(t0, t0, 16);
        /* t0 will be max/min of t0 and t1 */
        if (opc == OPC_MXU_D16MAX) {
            tcg_gen_smax_i32(t0, t0, t1);
        } else {
            tcg_gen_smin_i32(t0, t0, t1);
        }
        /* return resulting half-words to its original position */
        tcg_gen_shri_i32(t0, t0, 16);
        /* finally update the destination */
        tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);

        tcg_temp_free(t1);
        tcg_temp_free(t0);
    } else if (unlikely(XRb == XRc)) {
        /* both operands same -> just set destination to one of them */
        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
    } else {
        /* the most general case */
        TCGv_i32 t0 = tcg_temp_new();
        TCGv_i32 t1 = tcg_temp_new();

        /* the left half-word first */
        tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFFFF0000);
        tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000);
        if (opc == OPC_MXU_D16MAX) {
            tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
        } else {
            tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
        }

        /* the right half-word */
        tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF);
        tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0x0000FFFF);
        /* move half-words to the leftmost position */
        tcg_gen_shli_i32(t0, t0, 16);
        tcg_gen_shli_i32(t1, t1, 16);
        /* t0 will be max/min of t0 and t1 */
        if (opc == OPC_MXU_D16MAX) {
            tcg_gen_smax_i32(t0, t0, t1);
        } else {
            tcg_gen_smin_i32(t0, t0, t1);
        }
        /* return resulting half-words to its original position */
        tcg_gen_shri_i32(t0, t0, 16);
        /* finally update the destination */
        tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);

        tcg_temp_free(t1);
        tcg_temp_free(t0);
    }
}

/*
 *  Q8MAX
 *    Update XRa with the 8-bit-wise maximums of signed integers
 *    contained in XRb and XRc.
 *
 *  Q8MIN
 *    Update XRa with the 8-bit-wise minimums of signed integers
 *    contained in XRb and XRc.
 */
static void gen_mxu_Q8MAX_Q8MIN(DisasContext *ctx)
{
    uint32_t pad, opc, XRc, XRb, XRa;

    pad = extract32(ctx->opcode, 21, 5);
    opc = extract32(ctx->opcode, 18, 3);
    XRc = extract32(ctx->opcode, 14, 4);
    XRb = extract32(ctx->opcode, 10, 4);
    XRa = extract32(ctx->opcode,  6, 4);

    if (unlikely(pad != 0)) {
        /* opcode padding incorrect -> do nothing */
    } else if (unlikely(XRa == 0)) {
        /* destination is zero register -> do nothing */
    } else if (unlikely((XRb == 0) && (XRc == 0))) {
        /* both operands zero registers -> just set destination to zero */
        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
    } else if (unlikely((XRb == 0) || (XRc == 0))) {
        /* exactly one operand is zero register - make it be the first...*/
        uint32_t XRx = XRb ? XRb : XRc;
        /* ...and do byte-wise max/min with one operand 0 */
        TCGv_i32 t0 = tcg_temp_new();
        TCGv_i32 t1 = tcg_const_i32(0);
        int32_t i;

        /* the leftmost byte (byte 3) first */
        tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF000000);
        if (opc == OPC_MXU_Q8MAX) {
            tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
        } else {
            tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
        }

        /* bytes 2, 1, 0 */
        for (i = 2; i >= 0; i--) {
            /* extract the byte */
            tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF << (8 * i));
            /* move the byte to the leftmost position */
            tcg_gen_shli_i32(t0, t0, 8 * (3 - i));
            /* t0 will be max/min of t0 and t1 */
            if (opc == OPC_MXU_Q8MAX) {
                tcg_gen_smax_i32(t0, t0, t1);
            } else {
                tcg_gen_smin_i32(t0, t0, t1);
            }
            /* return resulting byte to its original position */
            tcg_gen_shri_i32(t0, t0, 8 * (3 - i));
            /* finally update the destination */
            tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
        }

        tcg_temp_free(t1);
        tcg_temp_free(t0);
    } else if (unlikely(XRb == XRc)) {
        /* both operands same -> just set destination to one of them */
        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
    } else {
        /* the most general case */
        TCGv_i32 t0 = tcg_temp_new();
        TCGv_i32 t1 = tcg_temp_new();
        int32_t i;

        /* the leftmost bytes (bytes 3) first */
        tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF000000);
        tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000);
        if (opc == OPC_MXU_Q8MAX) {
            tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
        } else {
            tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
        }

        /* bytes 2, 1, 0 */
        for (i = 2; i >= 0; i--) {
            /* extract corresponding bytes */
            tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF << (8 * i));
            tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF << (8 * i));
            /* move the bytes to the leftmost position */
            tcg_gen_shli_i32(t0, t0, 8 * (3 - i));
            tcg_gen_shli_i32(t1, t1, 8 * (3 - i));
            /* t0 will be max/min of t0 and t1 */
            if (opc == OPC_MXU_Q8MAX) {
                tcg_gen_smax_i32(t0, t0, t1);
            } else {
                tcg_gen_smin_i32(t0, t0, t1);
            }
            /* return resulting byte to its original position */
            tcg_gen_shri_i32(t0, t0, 8 * (3 - i));
            /* finally update the destination */
            tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
        }

        tcg_temp_free(t1);
        tcg_temp_free(t0);
    }
}


/*
 *                 MXU instruction category: align
 *                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *                       S32ALN     S32ALNI
 */

/*
 *  S32ALNI XRc, XRb, XRa, optn3
 *    Arrange bytes from XRb and XRc according to one of five sets of
 *    rules determined by optn3, and place the result in XRa.
 */
static void gen_mxu_S32ALNI(DisasContext *ctx)
{
    uint32_t optn3, pad, XRc, XRb, XRa;

    optn3 = extract32(ctx->opcode,  23, 3);
    pad   = extract32(ctx->opcode,  21, 2);
    XRc   = extract32(ctx->opcode, 14, 4);
    XRb   = extract32(ctx->opcode, 10, 4);
    XRa   = extract32(ctx->opcode,  6, 4);

    if (unlikely(pad != 0)) {
        /* opcode padding incorrect -> do nothing */
    } else if (unlikely(XRa == 0)) {
        /* destination is zero register -> do nothing */
    } else if (unlikely((XRb == 0) && (XRc == 0))) {
        /* both operands zero registers -> just set destination to all 0s */
        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
    } else if (unlikely(XRb == 0)) {
        /* XRb zero register -> just appropriatelly shift XRc into XRa */
        switch (optn3) {
        case MXU_OPTN3_PTN0:
            tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
            break;
        case MXU_OPTN3_PTN1:
        case MXU_OPTN3_PTN2:
        case MXU_OPTN3_PTN3:
            tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1],
                             8 * (4 - optn3));
            break;
        case MXU_OPTN3_PTN4:
            tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
            break;
        }
    } else if (unlikely(XRc == 0)) {
        /* XRc zero register -> just appropriatelly shift XRb into XRa */
        switch (optn3) {
        case MXU_OPTN3_PTN0:
            tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
            break;
        case MXU_OPTN3_PTN1:
        case MXU_OPTN3_PTN2:
        case MXU_OPTN3_PTN3:
            tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3);
            break;
        case MXU_OPTN3_PTN4:
            tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
            break;
        }
    } else if (unlikely(XRb == XRc)) {
        /* both operands same -> just rotation or moving from any of them */
        switch (optn3) {
        case MXU_OPTN3_PTN0:
        case MXU_OPTN3_PTN4:
            tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
            break;
        case MXU_OPTN3_PTN1:
        case MXU_OPTN3_PTN2:
        case MXU_OPTN3_PTN3:
            tcg_gen_rotli_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3);
            break;
        }
    } else {
        /* the most general case */
        switch (optn3) {
        case MXU_OPTN3_PTN0:
            {
                /*                                         */
                /*         XRb                XRc          */
                /*  +---------------+                      */
                /*  | A   B   C   D |    E   F   G   H     */
                /*  +-------+-------+                      */
                /*          |                              */
                /*         XRa                             */
                /*                                         */

                tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
            }
            break;
        case MXU_OPTN3_PTN1:
            {
                /*                                         */
                /*         XRb                 XRc         */
                /*      +-------------------+              */
                /*    A | B   C   D       E | F   G   H    */
                /*      +---------+---------+              */
                /*                |                        */
                /*               XRa                       */
                /*                                         */

                TCGv_i32 t0 = tcg_temp_new();
                TCGv_i32 t1 = tcg_temp_new();

                tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x00FFFFFF);
                tcg_gen_shli_i32(t0, t0, 8);

                tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000);
                tcg_gen_shri_i32(t1, t1, 24);

                tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);

                tcg_temp_free(t1);
                tcg_temp_free(t0);
            }
            break;
        case MXU_OPTN3_PTN2:
            {
                /*                                         */
                /*         XRb                 XRc         */
                /*          +-------------------+          */
                /*    A   B | C   D       E   F | G   H    */
                /*          +---------+---------+          */
                /*                    |                    */
                /*                   XRa                   */
                /*                                         */

                TCGv_i32 t0 = tcg_temp_new();
                TCGv_i32 t1 = tcg_temp_new();

                tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF);
                tcg_gen_shli_i32(t0, t0, 16);

                tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000);
                tcg_gen_shri_i32(t1, t1, 16);

                tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);

                tcg_temp_free(t1);
                tcg_temp_free(t0);
            }
            break;
        case MXU_OPTN3_PTN3:
            {
                /*                                         */
                /*         XRb                 XRc         */
                /*              +-------------------+      */
                /*    A   B   C | D       E   F   G | H    */
                /*              +---------+---------+      */
                /*                        |                */
                /*                       XRa               */
                /*                                         */

                TCGv_i32 t0 = tcg_temp_new();
                TCGv_i32 t1 = tcg_temp_new();

                tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x000000FF);
                tcg_gen_shli_i32(t0, t0, 24);

                tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFFFF00);
                tcg_gen_shri_i32(t1, t1, 8);

                tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);

                tcg_temp_free(t1);
                tcg_temp_free(t0);
            }
            break;
        case MXU_OPTN3_PTN4:
            {
                /*                                         */
                /*         XRb                 XRc         */
                /*                     +---------------+   */
                /*    A   B   C   D    | E   F   G   H |   */
                /*                     +-------+-------+   */
                /*                             |           */
                /*                            XRa          */
                /*                                         */

                tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
            }
            break;
        }
    }
}


/*
 * Decoding engine for MXU
 * =======================
 */

static void decode_opc_mxu__pool00(DisasContext *ctx)
{
    uint32_t opcode = extract32(ctx->opcode, 18, 3);

    switch (opcode) {
    case OPC_MXU_S32MAX:
    case OPC_MXU_S32MIN:
        gen_mxu_S32MAX_S32MIN(ctx);
        break;
    case OPC_MXU_D16MAX:
    case OPC_MXU_D16MIN:
        gen_mxu_D16MAX_D16MIN(ctx);
        break;
    case OPC_MXU_Q8MAX:
    case OPC_MXU_Q8MIN:
        gen_mxu_Q8MAX_Q8MIN(ctx);
        break;
    default:
        MIPS_INVAL("decode_opc_mxu");
        gen_reserved_instruction(ctx);
        break;
    }
}

static void decode_opc_mxu__pool04(DisasContext *ctx)
{
    uint32_t opcode = extract32(ctx->opcode, 20, 1);

    switch (opcode) {
    case OPC_MXU_S32LDD:
    case OPC_MXU_S32LDDR:
        gen_mxu_s32ldd_s32lddr(ctx);
        break;
    default:
        MIPS_INVAL("decode_opc_mxu");
        gen_reserved_instruction(ctx);
        break;
    }
}

static void decode_opc_mxu__pool16(DisasContext *ctx)
{
    uint32_t opcode = extract32(ctx->opcode, 18, 3);

    switch (opcode) {
    case OPC_MXU_S32ALNI:
        gen_mxu_S32ALNI(ctx);
        break;
    case OPC_MXU_S32NOR:
        gen_mxu_S32NOR(ctx);
        break;
    case OPC_MXU_S32AND:
        gen_mxu_S32AND(ctx);
        break;
    case OPC_MXU_S32OR:
        gen_mxu_S32OR(ctx);
        break;
    case OPC_MXU_S32XOR:
        gen_mxu_S32XOR(ctx);
        break;
    default:
        MIPS_INVAL("decode_opc_mxu");
        gen_reserved_instruction(ctx);
        break;
    }
}

static void decode_opc_mxu__pool19(DisasContext *ctx)
{
    uint32_t opcode = extract32(ctx->opcode, 22, 2);

    switch (opcode) {
    case OPC_MXU_Q8MUL:
    case OPC_MXU_Q8MULSU:
        gen_mxu_q8mul_q8mulsu(ctx);
        break;
    default:
        MIPS_INVAL("decode_opc_mxu");
        gen_reserved_instruction(ctx);
        break;
    }
}

bool decode_ase_mxu(DisasContext *ctx, uint32_t insn)
{
    uint32_t opcode = extract32(insn, 0, 6);

    if (opcode == OPC_MXU_S32M2I) {
        gen_mxu_s32m2i(ctx);
        return true;
    }

    if (opcode == OPC_MXU_S32I2M) {
        gen_mxu_s32i2m(ctx);
        return true;
    }

    {
        TCGv t_mxu_cr = tcg_temp_new();
        TCGLabel *l_exit = gen_new_label();

        gen_load_mxu_cr(t_mxu_cr);
        tcg_gen_andi_tl(t_mxu_cr, t_mxu_cr, MXU_CR_MXU_EN);
        tcg_gen_brcondi_tl(TCG_COND_NE, t_mxu_cr, MXU_CR_MXU_EN, l_exit);

        switch (opcode) {
        case OPC_MXU__POOL00:
            decode_opc_mxu__pool00(ctx);
            break;
        case OPC_MXU_D16MUL:
            gen_mxu_d16mul(ctx);
            break;
        case OPC_MXU_D16MAC:
            gen_mxu_d16mac(ctx);
            break;
        case OPC_MXU__POOL04:
            decode_opc_mxu__pool04(ctx);
            break;
        case OPC_MXU_S8LDD:
            gen_mxu_s8ldd(ctx);
            break;
        case OPC_MXU__POOL16:
            decode_opc_mxu__pool16(ctx);
            break;
        case OPC_MXU__POOL19:
            decode_opc_mxu__pool19(ctx);
            break;
        default:
            MIPS_INVAL("decode_opc_mxu");
            gen_reserved_instruction(ctx);
        }

        gen_set_label(l_exit);
        tcg_temp_free(t_mxu_cr);
    }

    return true;
}