summaryrefslogtreecommitdiffstats
path: root/src/kernel/tests/include/tst_fuzzy_sync.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/kernel/tests/include/tst_fuzzy_sync.h')
-rw-r--r--src/kernel/tests/include/tst_fuzzy_sync.h776
1 files changed, 776 insertions, 0 deletions
diff --git a/src/kernel/tests/include/tst_fuzzy_sync.h b/src/kernel/tests/include/tst_fuzzy_sync.h
new file mode 100644
index 0000000..4141f5c
--- /dev/null
+++ b/src/kernel/tests/include/tst_fuzzy_sync.h
@@ -0,0 +1,776 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * Copyright (c) 2017-2018 Richard Palethorpe <rpalethorpe@suse.com>
+ */
+/**
+ * @file tst_fuzzy_sync.h
+ * Fuzzy Synchronisation - abbreviated to fzsync
+ *
+ * This library is intended to help reproduce race conditions by synchronising
+ * two threads at a given place by marking the range a race may occur
+ * in. Because the exact place where any race occurs is within the kernel,
+ * and therefore impossible to mark accurately, the library may add randomised
+ * delays to either thread in order to help find the exact race timing.
+ *
+ * Currently only two way races are explicitly supported, that is races
+ * involving two threads or processes. We refer to the main test thread as
+ * thread A and the child thread as thread B.
+ *
+ * In each thread you need a simple while- or for-loop which the tst_fzsync_*
+ * functions are called in. In the simplest case thread A will look something
+ * like:
+ *
+ * tst_fzsync_pair_reset(&pair, run_thread_b);
+ * while (tst_fzsync_run_a(&pair)) {
+ * // Perform some setup which must happen before the race
+ * tst_fzsync_start_race_a(&pair);
+ * // Do some dodgy syscall
+ * tst_fzsync_end_race_a(&pair);
+ * }
+ *
+ * Then in thread B (run_thread_b):
+ *
+ * while (tst_fzsync_run_b(&pair)) {
+ * tst_fzsync_start_race_b(&pair);
+ * // Do something which can race with the dodgy syscall in A
+ * tst_fzsync_end_race_b(&pair)
+ * }
+ *
+ * The calls to tst_fzsync_start/end_race and tst_fzsync_run_a/b block (at
+ * least) until both threads have enter them. These functions can only be
+ * called once for each iteration, but further synchronisation points can be
+ * added by calling tst_fzsync_wait_a() and tst_fzsync_wait_b() in each
+ * thread.
+ *
+ * The execution of the loops in threads A and B are bounded by both iteration
+ * count and time. A slow machine is likely to be limited by time and a fast
+ * one by iteration count. The user can use the -i parameter to run the test
+ * multiple times or LTP_TIMEOUT_MUL to give the test more time.
+ *
+ * It is possible to use the library just for tst_fzsync_pair_wait() to get a
+ * basic spin wait. However if you are actually testing a race condition then
+ * it is recommended to use tst_fzsync_start_race_a/b even if the
+ * randomisation is not needed. It provides some semantic information which
+ * may be useful in the future.
+ *
+ * For a usage example see testcases/cve/cve-2016-7117.c or just run
+ * 'git grep tst_fuzzy_sync.h'
+ *
+ * @sa tst_fzsync_pair
+ */
+
+#include <sys/time.h>
+#include <time.h>
+#include <math.h>
+#include <stdlib.h>
+#include <pthread.h>
+#include "tst_atomic.h"
+#include "tst_timer.h"
+#include "tst_safe_pthread.h"
+
+#ifndef TST_FUZZY_SYNC_H__
+#define TST_FUZZY_SYNC_H__
+
+/* how much of exec time is sampling allowed to take */
+#define SAMPLING_SLICE 0.5f
+
+/** Some statistics for a variable */
+struct tst_fzsync_stat {
+ float avg;
+ float avg_dev;
+ float dev_ratio;
+};
+
+/**
+ * The state of a two way synchronisation or race.
+ *
+ * This contains all the necessary state for approximately synchronising two
+ * sections of code in different threads.
+ *
+ * Some of the fields can be configured before calling
+ * tst_fzsync_pair_reset(), however this is mainly for debugging purposes. If
+ * a test requires one of the parameters to be modified, we should consider
+ * finding a way of automatically selecting an appropriate value at runtime.
+ *
+ * Internal fields should only be accessed by library functions.
+ */
+struct tst_fzsync_pair {
+ /**
+ * The rate at which old diff samples are forgotten
+ *
+ * Defaults to 0.25.
+ */
+ float avg_alpha;
+ /** Internal; Thread A start time */
+ struct timespec a_start;
+ /** Internal; Thread B start time */
+ struct timespec b_start;
+ /** Internal; Thread A end time */
+ struct timespec a_end;
+ /** Internal; Thread B end time */
+ struct timespec b_end;
+ /** Internal; Avg. difference between a_start and b_start */
+ struct tst_fzsync_stat diff_ss;
+ /** Internal; Avg. difference between a_start and a_end */
+ struct tst_fzsync_stat diff_sa;
+ /** Internal; Avg. difference between b_start and b_end */
+ struct tst_fzsync_stat diff_sb;
+ /** Internal; Avg. difference between a_end and b_end */
+ struct tst_fzsync_stat diff_ab;
+ /** Internal; Number of spins while waiting for the slower thread */
+ int spins;
+ struct tst_fzsync_stat spins_avg;
+ /**
+ * Internal; Number of spins to use in the delay.
+ *
+ * A negative value delays thread A and a positive delays thread B.
+ */
+ int delay;
+ int delay_bias;
+ /**
+ * Internal; The number of samples left or the sampling state.
+ *
+ * A positive value is the number of remaining mandatory
+ * samples. Zero or a negative indicate some other state.
+ */
+ int sampling;
+ /**
+ * The Minimum number of statistical samples which must be collected.
+ *
+ * The minimum number of iterations which must be performed before a
+ * random delay can be calculated. Defaults to 1024.
+ */
+ int min_samples;
+ /**
+ * The maximum allowed proportional average deviation.
+ *
+ * A value in the range (0, 1) which gives the maximum average
+ * deviation which must be attained before random delays can be
+ * calculated.
+ *
+ * It is a ratio of (average_deviation / total_time). The default is
+ * 0.1, so this allows an average deviation of at most 10%.
+ */
+ float max_dev_ratio;
+
+ /** Internal; Atomic counter used by fzsync_pair_wait() */
+ int a_cntr;
+ /** Internal; Atomic counter used by fzsync_pair_wait() */
+ int b_cntr;
+ /** Internal; Used by tst_fzsync_pair_exit() and fzsync_pair_wait() */
+ int exit;
+ /**
+ * The maximum desired execution time as a proportion of the timeout
+ *
+ * A value x so that 0 < x < 1 which decides how long the test should
+ * be run for (assuming the loop limit is not exceeded first).
+ *
+ * Defaults to 0.5 (~150 seconds with default timeout).
+ */
+ float exec_time_p;
+ /** Internal; The test time remaining on tst_fzsync_pair_reset() */
+ float exec_time_start;
+ /**
+ * The maximum number of iterations to execute during the test
+ *
+ * Defaults to a large number, but not too large.
+ */
+ int exec_loops;
+ /** Internal; The current loop index */
+ int exec_loop;
+ /** Internal; The second thread or 0 */
+ pthread_t thread_b;
+};
+
+#define CHK(param, low, hi, def) do { \
+ pair->param = (pair->param ? pair->param : def); \
+ if (pair->param < low) \
+ tst_brk(TBROK, #param " is less than the lower bound " #low); \
+ if (pair->param > hi) \
+ tst_brk(TBROK, #param " is more than the upper bound " #hi); \
+ } while (0)
+/**
+ * Ensures that any Fuzzy Sync parameters are properly set
+ *
+ * @relates tst_fzsync_pair
+ *
+ * Usually called from the setup function, it sets default parameter values or
+ * validates any existing non-defaults.
+ *
+ * @sa tst_fzsync_pair_reset()
+ */
+static void tst_fzsync_pair_init(struct tst_fzsync_pair *pair)
+{
+ CHK(avg_alpha, 0, 1, 0.25);
+ CHK(min_samples, 20, INT_MAX, 1024);
+ CHK(max_dev_ratio, 0, 1, 0.1);
+ CHK(exec_time_p, 0, 1, 0.5);
+ CHK(exec_loops, 20, INT_MAX, 3000000);
+}
+#undef CHK
+
+/**
+ * Exit and join thread B if necessary.
+ *
+ * @relates tst_fzsync_pair
+ *
+ * Call this from your cleanup function.
+ */
+static void tst_fzsync_pair_cleanup(struct tst_fzsync_pair *pair)
+{
+ if (pair->thread_b) {
+ /* Revoke thread B if parent hits accidental break */
+ if (!pair->exit) {
+ tst_atomic_store(1, &pair->exit);
+ usleep(100000);
+ pthread_cancel(pair->thread_b);
+ }
+ SAFE_PTHREAD_JOIN(pair->thread_b, NULL);
+ pair->thread_b = 0;
+ }
+}
+
+/** To store the run_b pointer and pass to tst_fzsync_thread_wrapper */
+struct tst_fzsync_run_thread {
+ void *(*func)(void *);
+ void *arg;
+};
+
+/**
+ * Wrap run_b for tst_fzsync_pair_reset to enable pthread cancel
+ * at the start of the thread B.
+ */
+static void *tst_fzsync_thread_wrapper(void *run_thread)
+{
+ struct tst_fzsync_run_thread t = *(struct tst_fzsync_run_thread *)run_thread;
+
+ pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
+ pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
+ return t.func(t.arg);
+}
+
+/**
+ * Zero some stat fields
+ *
+ * @relates tst_fzsync_stat
+ */
+static void tst_init_stat(struct tst_fzsync_stat *s)
+{
+ s->avg = 0;
+ s->avg_dev = 0;
+}
+
+/**
+ * Reset or initialise fzsync.
+ *
+ * @relates tst_fzsync_pair
+ * @param pair The state structure initialised with TST_FZSYNC_PAIR_INIT.
+ * @param run_b The function defining thread B or NULL.
+ *
+ * Call this from your main test function (thread A), just before entering the
+ * main loop. It will (re)set any variables needed by fzsync and (re)start
+ * thread B using the function provided.
+ *
+ * If you need to use fork or clone to start the second thread/process then
+ * you can pass NULL to run_b and handle starting and stopping thread B
+ * yourself. You may need to place tst_fzsync_pair in some shared memory as
+ * well.
+ *
+ * @sa tst_fzsync_pair_init()
+ */
+static void tst_fzsync_pair_reset(struct tst_fzsync_pair *pair,
+ void *(*run_b)(void *))
+{
+ tst_fzsync_pair_cleanup(pair);
+
+ tst_init_stat(&pair->diff_ss);
+ tst_init_stat(&pair->diff_sa);
+ tst_init_stat(&pair->diff_sb);
+ tst_init_stat(&pair->diff_ab);
+ tst_init_stat(&pair->spins_avg);
+ pair->delay = 0;
+ pair->sampling = pair->min_samples;
+
+ pair->exec_loop = 0;
+
+ pair->a_cntr = 0;
+ pair->b_cntr = 0;
+ pair->exit = 0;
+ if (run_b) {
+ static struct tst_fzsync_run_thread wrap_run_b;
+
+ wrap_run_b.func = run_b;
+ wrap_run_b.arg = NULL;
+ SAFE_PTHREAD_CREATE(&pair->thread_b, 0, tst_fzsync_thread_wrapper, &wrap_run_b);
+ }
+
+ pair->exec_time_start = (float)tst_timeout_remaining();
+}
+
+/**
+ * Print stat
+ *
+ * @relates tst_fzsync_stat
+ */
+static inline void tst_fzsync_stat_info(struct tst_fzsync_stat stat,
+ char *unit, char *name)
+{
+ tst_res(TINFO,
+ "%1$-17s: { avg = %3$5.0f%2$s, avg_dev = %4$5.0f%2$s, dev_ratio = %5$.2f }",
+ name, unit, stat.avg, stat.avg_dev, stat.dev_ratio);
+}
+
+/**
+ * Print some synchronisation statistics
+ *
+ * @relates tst_fzsync_pair
+ */
+static void tst_fzsync_pair_info(struct tst_fzsync_pair *pair)
+{
+ tst_res(TINFO, "loop = %d, delay_bias = %d",
+ pair->exec_loop, pair->delay_bias);
+ tst_fzsync_stat_info(pair->diff_ss, "ns", "start_a - start_b");
+ tst_fzsync_stat_info(pair->diff_sa, "ns", "end_a - start_a");
+ tst_fzsync_stat_info(pair->diff_sb, "ns", "end_b - start_b");
+ tst_fzsync_stat_info(pair->diff_ab, "ns", "end_a - end_b");
+ tst_fzsync_stat_info(pair->spins_avg, " ", "spins");
+}
+
+/** Wraps clock_gettime */
+static inline void tst_fzsync_time(struct timespec *t)
+{
+#ifdef CLOCK_MONOTONIC_RAW
+ clock_gettime(CLOCK_MONOTONIC_RAW, t);
+#else
+ clock_gettime(CLOCK_MONOTONIC, t);
+#endif
+}
+
+/**
+ * Exponential moving average
+ *
+ * @param alpha The preference for recent samples over old ones.
+ * @param sample The current sample
+ * @param prev_avg The average of the all the previous samples
+ *
+ * @return The average including the current sample.
+ */
+static inline float tst_exp_moving_avg(float alpha,
+ float sample,
+ float prev_avg)
+{
+ return alpha * sample + (1.0 - alpha) * prev_avg;
+}
+
+/**
+ * Update a stat with a new sample
+ *
+ * @relates tst_fzsync_stat
+ */
+static inline void tst_upd_stat(struct tst_fzsync_stat *s,
+ float alpha,
+ float sample)
+{
+ s->avg = tst_exp_moving_avg(alpha, sample, s->avg);
+ s->avg_dev = tst_exp_moving_avg(alpha,
+ fabs(s->avg - sample), s->avg_dev);
+ s->dev_ratio = fabs(s->avg ? s->avg_dev / s->avg : 0);
+}
+
+/**
+ * Update a stat with a new diff sample
+ *
+ * @relates tst_fzsync_stat
+ */
+static inline void tst_upd_diff_stat(struct tst_fzsync_stat *s,
+ float alpha,
+ struct timespec t1,
+ struct timespec t2)
+{
+ tst_upd_stat(s, alpha, tst_timespec_diff_ns(t1, t2));
+}
+
+/**
+ * Calculate various statistics and the delay
+ *
+ * This function helps create the fuzz in fuzzy sync. Imagine we have the
+ * following timelines in threads A and B:
+ *
+ * start_race_a
+ * ^ end_race_a (a)
+ * | ^
+ * | |
+ * - --+------------------------+-- - -
+ * | Syscall A | Thread A
+ * - --+------------------------+-- - -
+ * - --+----------------+-------+-- - -
+ * | Syscall B | spin | Thread B
+ * - --+----------------+-------+-- - -
+ * | |
+ * ^ ^
+ * start_race_b end_race_b
+ *
+ * Here we have synchronised the calls to syscall A and B with start_race_{a,
+ * b} so that they happen at approximately the same time in threads A and
+ * B. If the race condition occurs during the entry code for these two
+ * functions then we will quickly hit it. If it occurs during the exit code of
+ * B and mid way through A, then we will quickly hit it.
+ *
+ * However if the exit paths of A and B need to be aligned and (end_race_a -
+ * end_race_b) is large relative to the variation in call times, the
+ * probability of hitting the race condition is close to zero. To solve this
+ * scenario (and others) a randomised delay is introduced before the syscalls
+ * in A and B. Given enough time the following should happen where the exit
+ * paths are now synchronised:
+ *
+ * start_race_a
+ * ^ end_race_a (a)
+ * | ^
+ * | |
+ * - --+------------------------+-- - -
+ * | Syscall A | Thread A
+ * - --+------------------------+-- - -
+ * - --+-------+----------------+-- - -
+ * | delay | Syscall B | Thread B
+ * - --+-------+----------------+-- - -
+ * | |
+ * ^ ^
+ * start_race_b end_race_b
+ *
+ * The delay is not introduced immediately and the delay range is only
+ * calculated once the average relative deviation has dropped below some
+ * percentage of the total time.
+ *
+ * The delay range is chosen so that any point in Syscall A could be
+ * synchronised with any point in Syscall B using a value from the
+ * range. Because the delay range may be too large for a linear search, we use
+ * an evenly distributed random function to pick a value from it.
+ *
+ * The delay range goes from positive to negative. A negative delay will delay
+ * thread A and a positive one will delay thread B. The range is bounded by
+ * the point where the entry code to Syscall A is synchronised with the exit
+ * to Syscall B and the entry code to Syscall B is synchronised with the exit
+ * of A.
+ *
+ * In order to calculate the lower bound (the max delay of A) we can simply
+ * negate the execution time of Syscall B and convert it to a spin count. For
+ * the upper bound (the max delay of B), we just take the execution time of A
+ * and convert it to a spin count.
+ *
+ * In order to calculate spin count we need to know approximately how long a
+ * spin takes and divide the delay time with it. We find this by first
+ * counting how many spins one thread spends waiting for the other during
+ * end_race[1]. We also know when each syscall exits so we can take the
+ * difference between the exit times and divide it with the number of spins
+ * spent waiting.
+ *
+ * All the times and counts we use in the calculation are averaged over a
+ * variable number of iterations. There is an initial sampling period where we
+ * simply collect time and count samples then calculate their averages. When a
+ * minimum number of samples have been collected, and if the average deviation
+ * is below some proportion of the average sample magnitude, then the sampling
+ * period is ended. On all further iterations a random delay is calculated and
+ * applied, but the averages are not updated.
+ *
+ * [1] This assumes there is always a significant difference. The algorithm
+ * may fail to introduce a delay (when one is needed) in situations where
+ * Syscall A and B finish at approximately the same time.
+ *
+ * @relates tst_fzsync_pair
+ */
+static void tst_fzsync_pair_update(struct tst_fzsync_pair *pair)
+{
+ float alpha = pair->avg_alpha;
+ float per_spin_time, time_delay;
+ float max_dev = pair->max_dev_ratio;
+ int over_max_dev;
+
+ pair->delay = pair->delay_bias;
+
+ over_max_dev = pair->diff_ss.dev_ratio > max_dev
+ || pair->diff_sa.dev_ratio > max_dev
+ || pair->diff_sb.dev_ratio > max_dev
+ || pair->diff_ab.dev_ratio > max_dev
+ || pair->spins_avg.dev_ratio > max_dev;
+
+ if (pair->sampling > 0 || over_max_dev) {
+ tst_upd_diff_stat(&pair->diff_ss, alpha,
+ pair->a_start, pair->b_start);
+ tst_upd_diff_stat(&pair->diff_sa, alpha,
+ pair->a_end, pair->a_start);
+ tst_upd_diff_stat(&pair->diff_sb, alpha,
+ pair->b_end, pair->b_start);
+ tst_upd_diff_stat(&pair->diff_ab, alpha,
+ pair->a_end, pair->b_end);
+ tst_upd_stat(&pair->spins_avg, alpha, pair->spins);
+ if (pair->sampling > 0 && --pair->sampling == 0) {
+ tst_res(TINFO, "Minimum sampling period ended");
+ tst_fzsync_pair_info(pair);
+ }
+ } else if (fabsf(pair->diff_ab.avg) >= 1) {
+ per_spin_time = fabsf(pair->diff_ab.avg) / MAX(pair->spins_avg.avg, 1.0f);
+ time_delay = drand48() * (pair->diff_sa.avg + pair->diff_sb.avg)
+ - pair->diff_sb.avg;
+ pair->delay += (int)(1.1 * time_delay / per_spin_time);
+
+ if (!pair->sampling) {
+ tst_res(TINFO,
+ "Reached deviation ratios < %.2f, introducing randomness",
+ pair->max_dev_ratio);
+ tst_res(TINFO, "Delay range is [-%d, %d]",
+ (int)(pair->diff_sb.avg / per_spin_time) + pair->delay_bias,
+ (int)(pair->diff_sa.avg / per_spin_time) - pair->delay_bias);
+ tst_fzsync_pair_info(pair);
+ pair->sampling = -1;
+ }
+ } else if (!pair->sampling) {
+ tst_res(TWARN, "Can't calculate random delay");
+ tst_fzsync_pair_info(pair);
+ pair->sampling = -1;
+ }
+
+ pair->spins = 0;
+}
+
+/**
+ * Wait for the other thread
+ *
+ * @relates tst_fzsync_pair
+ * @param our_cntr The counter for the thread we are on
+ * @param other_cntr The counter for the thread we are synchronising with
+ * @param spins A pointer to the spin counter or NULL
+ *
+ * Used by tst_fzsync_pair_wait_a(), tst_fzsync_pair_wait_b(),
+ * tst_fzsync_start_race_a(), etc. If the calling thread is ahead of the other
+ * thread, then it will spin wait. Unlike pthread_barrier_wait it will never
+ * use futex and can count the number of spins spent waiting.
+ *
+ * @return A non-zero value if the thread should continue otherwise the
+ * calling thread should exit.
+ */
+static inline void tst_fzsync_pair_wait(int *our_cntr,
+ int *other_cntr,
+ int *spins)
+{
+ if (tst_atomic_inc(other_cntr) == INT_MAX) {
+ /*
+ * We are about to break the invariant that the thread with
+ * the lowest count is in front of the other. So we must wait
+ * here to ensure the other thread has at least reached the
+ * line above before doing that. If we are in rear position
+ * then our counter may already have been set to zero.
+ */
+ while (tst_atomic_load(our_cntr) > 0
+ && tst_atomic_load(our_cntr) < INT_MAX) {
+ if (spins)
+ (*spins)++;
+ }
+
+ tst_atomic_store(0, other_cntr);
+ /*
+ * Once both counters have been set to zero the invariant
+ * is restored and we can continue.
+ */
+ while (tst_atomic_load(our_cntr) > 1)
+ ;
+ } else {
+ /*
+ * If our counter is less than the other thread's we are ahead
+ * of it and need to wait.
+ */
+ while (tst_atomic_load(our_cntr) < tst_atomic_load(other_cntr)) {
+ if (spins)
+ (*spins)++;
+ }
+ }
+}
+
+/**
+ * Wait in thread A
+ *
+ * @relates tst_fzsync_pair
+ * @sa tst_fzsync_pair_wait
+ */
+static inline void tst_fzsync_wait_a(struct tst_fzsync_pair *pair)
+{
+ tst_fzsync_pair_wait(&pair->a_cntr, &pair->b_cntr, NULL);
+}
+
+/**
+ * Wait in thread B
+ *
+ * @relates tst_fzsync_pair
+ * @sa tst_fzsync_pair_wait
+ */
+static inline void tst_fzsync_wait_b(struct tst_fzsync_pair *pair)
+{
+ tst_fzsync_pair_wait(&pair->b_cntr, &pair->a_cntr, NULL);
+}
+
+/**
+ * Decide whether to continue running thread A
+ *
+ * @relates tst_fzsync_pair
+ *
+ * Checks some values and decides whether it is time to break the loop of
+ * thread A.
+ *
+ * @return True to continue and false to break.
+ * @sa tst_fzsync_run_a
+ */
+static inline int tst_fzsync_run_a(struct tst_fzsync_pair *pair)
+{
+ int exit = 0;
+ float rem_p = 1 - tst_timeout_remaining() / pair->exec_time_start;
+
+ if ((pair->exec_time_p * SAMPLING_SLICE < rem_p)
+ && (pair->sampling > 0)) {
+ tst_res(TINFO, "Stopped sampling at %d (out of %d) samples, "
+ "sampling time reached 50%% of the total time limit",
+ pair->exec_loop, pair->min_samples);
+ pair->sampling = 0;
+ tst_fzsync_pair_info(pair);
+ }
+
+ if (pair->exec_time_p < rem_p) {
+ tst_res(TINFO,
+ "Exceeded execution time, requesting exit");
+ exit = 1;
+ }
+
+ if (++pair->exec_loop > pair->exec_loops) {
+ tst_res(TINFO,
+ "Exceeded execution loops, requesting exit");
+ exit = 1;
+ }
+
+ tst_atomic_store(exit, &pair->exit);
+ tst_fzsync_wait_a(pair);
+
+ if (exit) {
+ tst_fzsync_pair_cleanup(pair);
+ return 0;
+ }
+
+ return 1;
+}
+
+/**
+ * Decide whether to continue running thread B
+ *
+ * @relates tst_fzsync_pair
+ * @sa tst_fzsync_run_a
+ */
+static inline int tst_fzsync_run_b(struct tst_fzsync_pair *pair)
+{
+ tst_fzsync_wait_b(pair);
+ return !tst_atomic_load(&pair->exit);
+}
+
+/**
+ * Marks the start of a race region in thread A
+ *
+ * @relates tst_fzsync_pair
+ *
+ * This should be placed just before performing whatever action can cause a
+ * race condition. Usually it is placed just before a syscall and
+ * tst_fzsync_end_race_a() is placed just afterwards.
+ *
+ * A corresponding call to tst_fzsync_start_race_b() should be made in thread
+ * B.
+ *
+ * @return A non-zero value if the calling thread should continue to loop. If
+ * it returns zero then tst_fzsync_exit() has been called and you must exit
+ * the thread.
+ *
+ * @sa tst_fzsync_pair_update
+ */
+static inline void tst_fzsync_start_race_a(struct tst_fzsync_pair *pair)
+{
+ volatile int delay;
+
+ tst_fzsync_pair_update(pair);
+
+ tst_fzsync_wait_a(pair);
+
+ delay = pair->delay;
+ while (delay < 0)
+ delay++;
+
+ tst_fzsync_time(&pair->a_start);
+}
+
+/**
+ * Marks the end of a race region in thread A
+ *
+ * @relates tst_fzsync_pair
+ * @sa tst_fzsync_start_race_a
+ */
+static inline void tst_fzsync_end_race_a(struct tst_fzsync_pair *pair)
+{
+ tst_fzsync_time(&pair->a_end);
+ tst_fzsync_pair_wait(&pair->a_cntr, &pair->b_cntr, &pair->spins);
+}
+
+/**
+ * Marks the start of a race region in thread B
+ *
+ * @relates tst_fzsync_pair
+ * @sa tst_fzsync_start_race_a
+ */
+static inline void tst_fzsync_start_race_b(struct tst_fzsync_pair *pair)
+{
+ volatile int delay;
+
+ tst_fzsync_wait_b(pair);
+
+ delay = pair->delay;
+ while (delay > 0)
+ delay--;
+
+ tst_fzsync_time(&pair->b_start);
+}
+
+/**
+ * Marks the end of a race region in thread B
+ *
+ * @relates tst_fzsync_pair
+ * @sa tst_fzsync_start_race_a
+ */
+static inline void tst_fzsync_end_race_b(struct tst_fzsync_pair *pair)
+{
+ tst_fzsync_time(&pair->b_end);
+ tst_fzsync_pair_wait(&pair->b_cntr, &pair->a_cntr, &pair->spins);
+}
+
+/**
+ * Add some amount to the delay bias
+ *
+ * @relates tst_fzsync_pair
+ * @param change The amount to add, can be negative
+ *
+ * A positive change delays thread B and a negative one delays thread
+ * A.
+ *
+ * It is intended to be used in tests where the time taken by syscall A and/or
+ * B are significantly affected by their chronological order. To the extent
+ * that the delay range will not include the correct values if too many of the
+ * initial samples are taken when the syscalls (or operations within the
+ * syscalls) happen in the wrong order.
+ *
+ * An example of this is cve/cve-2016-7117.c where a call to close() is racing
+ * with a call to recvmmsg(). If close() happens before recvmmsg() has chance
+ * to check if the file descriptor is open then recvmmsg() completes very
+ * quickly. If the call to close() happens once recvmmsg() has already checked
+ * the descriptor it takes much longer. The sample where recvmmsg() completes
+ * quickly is essentially invalid for our purposes. The test uses the simple
+ * heuristic of whether recvmmsg() returns EBADF, to decide if it should call
+ * tst_fzsync_pair_add_bias() to further delay syscall B.
+ */
+static inline void tst_fzsync_pair_add_bias(struct tst_fzsync_pair *pair, int change)
+{
+ if (pair->sampling > 0)
+ pair->delay_bias += change;
+}
+
+#endif /* TST_FUZZY_SYNC_H__ */