summaryrefslogtreecommitdiffstats
path: root/src/kernel/tests/include/tst_fuzzy_sync.h
blob: 4141f5c646dbf1d1abf96056b0dc2d19b75c2ebe (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * Copyright (c) 2017-2018 Richard Palethorpe <rpalethorpe@suse.com>
 */
/**
 * @file tst_fuzzy_sync.h
 * Fuzzy Synchronisation - abbreviated to fzsync
 *
 * This library is intended to help reproduce race conditions by synchronising
 * two threads at a given place by marking the range a race may occur
 * in. Because the exact place where any race occurs is within the kernel,
 * and therefore impossible to mark accurately, the library may add randomised
 * delays to either thread in order to help find the exact race timing.
 *
 * Currently only two way races are explicitly supported, that is races
 * involving two threads or processes. We refer to the main test thread as
 * thread A and the child thread as thread B.
 *
 * In each thread you need a simple while- or for-loop which the tst_fzsync_*
 * functions are called in. In the simplest case thread A will look something
 * like:
 *
 * tst_fzsync_pair_reset(&pair, run_thread_b);
 * while (tst_fzsync_run_a(&pair)) {
 *	// Perform some setup which must happen before the race
 *	tst_fzsync_start_race_a(&pair);
 *	// Do some dodgy syscall
 *	tst_fzsync_end_race_a(&pair);
 * }
 *
 * Then in thread B (run_thread_b):
 *
 * while (tst_fzsync_run_b(&pair)) {
 *	tst_fzsync_start_race_b(&pair);
 *	// Do something which can race with the dodgy syscall in A
 *	tst_fzsync_end_race_b(&pair)
 * }
 *
 * The calls to tst_fzsync_start/end_race and tst_fzsync_run_a/b block (at
 * least) until both threads have enter them. These functions can only be
 * called once for each iteration, but further synchronisation points can be
 * added by calling tst_fzsync_wait_a() and tst_fzsync_wait_b() in each
 * thread.
 *
 * The execution of the loops in threads A and B are bounded by both iteration
 * count and time. A slow machine is likely to be limited by time and a fast
 * one by iteration count. The user can use the -i parameter to run the test
 * multiple times or LTP_TIMEOUT_MUL to give the test more time.
 *
 * It is possible to use the library just for tst_fzsync_pair_wait() to get a
 * basic spin wait. However if you are actually testing a race condition then
 * it is recommended to use tst_fzsync_start_race_a/b even if the
 * randomisation is not needed. It provides some semantic information which
 * may be useful in the future.
 *
 * For a usage example see testcases/cve/cve-2016-7117.c or just run
 * 'git grep tst_fuzzy_sync.h'
 *
 * @sa tst_fzsync_pair
 */

#include <sys/time.h>
#include <time.h>
#include <math.h>
#include <stdlib.h>
#include <pthread.h>
#include "tst_atomic.h"
#include "tst_timer.h"
#include "tst_safe_pthread.h"

#ifndef TST_FUZZY_SYNC_H__
#define TST_FUZZY_SYNC_H__

/* how much of exec time is sampling allowed to take */
#define SAMPLING_SLICE 0.5f

/** Some statistics for a variable */
struct tst_fzsync_stat {
	float avg;
	float avg_dev;
	float dev_ratio;
};

/**
 * The state of a two way synchronisation or race.
 *
 * This contains all the necessary state for approximately synchronising two
 * sections of code in different threads.
 *
 * Some of the fields can be configured before calling
 * tst_fzsync_pair_reset(), however this is mainly for debugging purposes. If
 * a test requires one of the parameters to be modified, we should consider
 * finding a way of automatically selecting an appropriate value at runtime.
 *
 * Internal fields should only be accessed by library functions.
 */
struct tst_fzsync_pair {
	/**
	 * The rate at which old diff samples are forgotten
	 *
	 * Defaults to 0.25.
	 */
	float avg_alpha;
	/** Internal; Thread A start time */
	struct timespec a_start;
	/** Internal; Thread B start time */
	struct timespec b_start;
	/** Internal; Thread A end time */
	struct timespec a_end;
	/** Internal; Thread B end time */
	struct timespec b_end;
	/** Internal; Avg. difference between a_start and b_start */
	struct tst_fzsync_stat diff_ss;
	/** Internal; Avg. difference between a_start and a_end */
	struct tst_fzsync_stat diff_sa;
	/** Internal; Avg. difference between b_start and b_end */
	struct tst_fzsync_stat diff_sb;
	/** Internal; Avg. difference between a_end and b_end */
	struct tst_fzsync_stat diff_ab;
	/** Internal; Number of spins while waiting for the slower thread */
	int spins;
	struct tst_fzsync_stat spins_avg;
	/**
	 * Internal; Number of spins to use in the delay.
	 *
	 * A negative value delays thread A and a positive delays thread B.
	 */
	int delay;
	int delay_bias;
	/**
	 *  Internal; The number of samples left or the sampling state.
	 *
	 *  A positive value is the number of remaining mandatory
	 *  samples. Zero or a negative indicate some other state.
	 */
	int sampling;
	/**
	 * The Minimum number of statistical samples which must be collected.
	 *
	 * The minimum number of iterations which must be performed before a
	 * random delay can be calculated. Defaults to 1024.
	 */
	int min_samples;
	/**
	 * The maximum allowed proportional average deviation.
	 *
	 * A value in the range (0, 1) which gives the maximum average
	 * deviation which must be attained before random delays can be
	 * calculated.
	 *
	 * It is a ratio of (average_deviation / total_time). The default is
	 * 0.1, so this allows an average deviation of at most 10%.
	 */
	float max_dev_ratio;

	/** Internal; Atomic counter used by fzsync_pair_wait() */
	int a_cntr;
	/** Internal; Atomic counter used by fzsync_pair_wait() */
	int b_cntr;
	/** Internal; Used by tst_fzsync_pair_exit() and fzsync_pair_wait() */
	int exit;
	/**
	 * The maximum desired execution time as a proportion of the timeout
	 *
	 * A value x so that 0 < x < 1 which decides how long the test should
	 * be run for (assuming the loop limit is not exceeded first).
	 *
	 * Defaults to 0.5 (~150 seconds with default timeout).
	 */
	float exec_time_p;
	/** Internal; The test time remaining on tst_fzsync_pair_reset() */
	float exec_time_start;
	/**
	 * The maximum number of iterations to execute during the test
	 *
	 * Defaults to a large number, but not too large.
	 */
	int exec_loops;
	/** Internal; The current loop index  */
	int exec_loop;
	/** Internal; The second thread or 0 */
	pthread_t thread_b;
};

#define CHK(param, low, hi, def) do {					      \
	pair->param = (pair->param ? pair->param : def);		      \
	if (pair->param < low)						      \
		tst_brk(TBROK, #param " is less than the lower bound " #low); \
	if (pair->param > hi)						      \
		tst_brk(TBROK, #param " is more than the upper bound " #hi);  \
	} while (0)
/**
 * Ensures that any Fuzzy Sync parameters are properly set
 *
 * @relates tst_fzsync_pair
 *
 * Usually called from the setup function, it sets default parameter values or
 * validates any existing non-defaults.
 *
 * @sa tst_fzsync_pair_reset()
 */
static void tst_fzsync_pair_init(struct tst_fzsync_pair *pair)
{
	CHK(avg_alpha, 0, 1, 0.25);
	CHK(min_samples, 20, INT_MAX, 1024);
	CHK(max_dev_ratio, 0, 1, 0.1);
	CHK(exec_time_p, 0, 1, 0.5);
	CHK(exec_loops, 20, INT_MAX, 3000000);
}
#undef CHK

/**
 * Exit and join thread B if necessary.
 *
 * @relates tst_fzsync_pair
 *
 * Call this from your cleanup function.
 */
static void tst_fzsync_pair_cleanup(struct tst_fzsync_pair *pair)
{
	if (pair->thread_b) {
		/* Revoke thread B if parent hits accidental break */
		if (!pair->exit) {
			tst_atomic_store(1, &pair->exit);
			usleep(100000);
			pthread_cancel(pair->thread_b);
		}
		SAFE_PTHREAD_JOIN(pair->thread_b, NULL);
		pair->thread_b = 0;
	}
}

/** To store the run_b pointer and pass to tst_fzsync_thread_wrapper */
struct tst_fzsync_run_thread {
	void *(*func)(void *);
	void *arg;
};

/**
 * Wrap run_b for tst_fzsync_pair_reset to enable pthread cancel
 * at the start of the thread B.
 */
static void *tst_fzsync_thread_wrapper(void *run_thread)
{
       struct tst_fzsync_run_thread t = *(struct tst_fzsync_run_thread *)run_thread;

       pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
       pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
       return t.func(t.arg);
}

/**
 * Zero some stat fields
 *
 * @relates tst_fzsync_stat
 */
static void tst_init_stat(struct tst_fzsync_stat *s)
{
	s->avg = 0;
	s->avg_dev = 0;
}

/**
 * Reset or initialise fzsync.
 *
 * @relates tst_fzsync_pair
 * @param pair The state structure initialised with TST_FZSYNC_PAIR_INIT.
 * @param run_b The function defining thread B or NULL.
 *
 * Call this from your main test function (thread A), just before entering the
 * main loop. It will (re)set any variables needed by fzsync and (re)start
 * thread B using the function provided.
 *
 * If you need to use fork or clone to start the second thread/process then
 * you can pass NULL to run_b and handle starting and stopping thread B
 * yourself. You may need to place tst_fzsync_pair in some shared memory as
 * well.
 *
 * @sa tst_fzsync_pair_init()
 */
static void tst_fzsync_pair_reset(struct tst_fzsync_pair *pair,
				  void *(*run_b)(void *))
{
	tst_fzsync_pair_cleanup(pair);

	tst_init_stat(&pair->diff_ss);
	tst_init_stat(&pair->diff_sa);
	tst_init_stat(&pair->diff_sb);
	tst_init_stat(&pair->diff_ab);
	tst_init_stat(&pair->spins_avg);
	pair->delay = 0;
	pair->sampling = pair->min_samples;

	pair->exec_loop = 0;

	pair->a_cntr = 0;
	pair->b_cntr = 0;
	pair->exit = 0;
	if (run_b) {
		static struct tst_fzsync_run_thread wrap_run_b;

		wrap_run_b.func = run_b;
		wrap_run_b.arg = NULL;
		SAFE_PTHREAD_CREATE(&pair->thread_b, 0, tst_fzsync_thread_wrapper, &wrap_run_b);
	}

	pair->exec_time_start = (float)tst_timeout_remaining();
}

/**
 * Print stat
 *
 * @relates tst_fzsync_stat
 */
static inline void tst_fzsync_stat_info(struct tst_fzsync_stat stat,
					char *unit, char *name)
{
	tst_res(TINFO,
		"%1$-17s: { avg = %3$5.0f%2$s, avg_dev = %4$5.0f%2$s, dev_ratio = %5$.2f }",
		name, unit, stat.avg, stat.avg_dev, stat.dev_ratio);
}

/**
 * Print some synchronisation statistics
 *
 * @relates tst_fzsync_pair
 */
static void tst_fzsync_pair_info(struct tst_fzsync_pair *pair)
{
	tst_res(TINFO, "loop = %d, delay_bias = %d",
		pair->exec_loop, pair->delay_bias);
	tst_fzsync_stat_info(pair->diff_ss, "ns", "start_a - start_b");
	tst_fzsync_stat_info(pair->diff_sa, "ns", "end_a - start_a");
	tst_fzsync_stat_info(pair->diff_sb, "ns", "end_b - start_b");
	tst_fzsync_stat_info(pair->diff_ab, "ns", "end_a - end_b");
	tst_fzsync_stat_info(pair->spins_avg, "  ", "spins");
}

/** Wraps clock_gettime */
static inline void tst_fzsync_time(struct timespec *t)
{
#ifdef CLOCK_MONOTONIC_RAW
	clock_gettime(CLOCK_MONOTONIC_RAW, t);
#else
	clock_gettime(CLOCK_MONOTONIC, t);
#endif
}

/**
 * Exponential moving average
 *
 * @param alpha The preference for recent samples over old ones.
 * @param sample The current sample
 * @param prev_avg The average of the all the previous samples
 *
 * @return The average including the current sample.
 */
static inline float tst_exp_moving_avg(float alpha,
					float sample,
					float prev_avg)
{
	return alpha * sample + (1.0 - alpha) * prev_avg;
}

/**
 * Update a stat with a new sample
 *
 * @relates tst_fzsync_stat
 */
static inline void tst_upd_stat(struct tst_fzsync_stat *s,
				 float alpha,
				 float sample)
{
	s->avg = tst_exp_moving_avg(alpha, sample, s->avg);
	s->avg_dev = tst_exp_moving_avg(alpha,
					fabs(s->avg - sample), s->avg_dev);
	s->dev_ratio = fabs(s->avg ? s->avg_dev / s->avg : 0);
}

/**
 * Update a stat with a new diff sample
 *
 * @relates tst_fzsync_stat
 */
static inline void tst_upd_diff_stat(struct tst_fzsync_stat *s,
				     float alpha,
				     struct timespec t1,
				     struct timespec t2)
{
	tst_upd_stat(s, alpha, tst_timespec_diff_ns(t1, t2));
}

/**
 * Calculate various statistics and the delay
 *
 * This function helps create the fuzz in fuzzy sync. Imagine we have the
 * following timelines in threads A and B:
 *
 *  start_race_a
 *      ^                    end_race_a (a)
 *      |                        ^
 *      |                        |
 *  - --+------------------------+-- - -
 *      |        Syscall A       |                 Thread A
 *  - --+------------------------+-- - -
 *  - --+----------------+-------+-- - -
 *      |   Syscall B    | spin  |                 Thread B
 *  - --+----------------+-------+-- - -
 *      |                |
 *      ^                ^
 *  start_race_b     end_race_b
 *
 * Here we have synchronised the calls to syscall A and B with start_race_{a,
 * b} so that they happen at approximately the same time in threads A and
 * B. If the race condition occurs during the entry code for these two
 * functions then we will quickly hit it. If it occurs during the exit code of
 * B and mid way through A, then we will quickly hit it.
 *
 * However if the exit paths of A and B need to be aligned and (end_race_a -
 * end_race_b) is large relative to the variation in call times, the
 * probability of hitting the race condition is close to zero. To solve this
 * scenario (and others) a randomised delay is introduced before the syscalls
 * in A and B. Given enough time the following should happen where the exit
 * paths are now synchronised:
 *
 *  start_race_a
 *      ^                    end_race_a (a)
 *      |                        ^
 *      |                        |
 *  - --+------------------------+-- - -
 *      |        Syscall A       |                 Thread A
 *  - --+------------------------+-- - -
 *  - --+-------+----------------+-- - -
 *      | delay |   Syscall B    |                 Thread B
 *  - --+-------+----------------+-- - -
 *      |                        |
 *      ^                        ^
 *  start_race_b             end_race_b
 *
 * The delay is not introduced immediately and the delay range is only
 * calculated once the average relative deviation has dropped below some
 * percentage of the total time.
 *
 * The delay range is chosen so that any point in Syscall A could be
 * synchronised with any point in Syscall B using a value from the
 * range. Because the delay range may be too large for a linear search, we use
 * an evenly distributed random function to pick a value from it.
 *
 * The delay range goes from positive to negative. A negative delay will delay
 * thread A and a positive one will delay thread B. The range is bounded by
 * the point where the entry code to Syscall A is synchronised with the exit
 * to Syscall B and the entry code to Syscall B is synchronised with the exit
 * of A.
 *
 * In order to calculate the lower bound (the max delay of A) we can simply
 * negate the execution time of Syscall B and convert it to a spin count. For
 * the upper bound (the max delay of B), we just take the execution time of A
 * and convert it to a spin count.
 *
 * In order to calculate spin count we need to know approximately how long a
 * spin takes and divide the delay time with it. We find this by first
 * counting how many spins one thread spends waiting for the other during
 * end_race[1]. We also know when each syscall exits so we can take the
 * difference between the exit times and divide it with the number of spins
 * spent waiting.
 *
 * All the times and counts we use in the calculation are averaged over a
 * variable number of iterations. There is an initial sampling period where we
 * simply collect time and count samples then calculate their averages. When a
 * minimum number of samples have been collected, and if the average deviation
 * is below some proportion of the average sample magnitude, then the sampling
 * period is ended. On all further iterations a random delay is calculated and
 * applied, but the averages are not updated.
 *
 * [1] This assumes there is always a significant difference. The algorithm
 * may fail to introduce a delay (when one is needed) in situations where
 * Syscall A and B finish at approximately the same time.
 *
 * @relates tst_fzsync_pair
 */
static void tst_fzsync_pair_update(struct tst_fzsync_pair *pair)
{
	float alpha = pair->avg_alpha;
	float per_spin_time, time_delay;
	float max_dev = pair->max_dev_ratio;
	int over_max_dev;

	pair->delay = pair->delay_bias;

	over_max_dev = pair->diff_ss.dev_ratio > max_dev
		|| pair->diff_sa.dev_ratio > max_dev
		|| pair->diff_sb.dev_ratio > max_dev
		|| pair->diff_ab.dev_ratio > max_dev
		|| pair->spins_avg.dev_ratio > max_dev;

	if (pair->sampling > 0 || over_max_dev) {
		tst_upd_diff_stat(&pair->diff_ss, alpha,
				  pair->a_start, pair->b_start);
		tst_upd_diff_stat(&pair->diff_sa, alpha,
				  pair->a_end, pair->a_start);
		tst_upd_diff_stat(&pair->diff_sb, alpha,
				  pair->b_end, pair->b_start);
		tst_upd_diff_stat(&pair->diff_ab, alpha,
				  pair->a_end, pair->b_end);
		tst_upd_stat(&pair->spins_avg, alpha, pair->spins);
		if (pair->sampling > 0 && --pair->sampling == 0) {
			tst_res(TINFO, "Minimum sampling period ended");
			tst_fzsync_pair_info(pair);
		}
	} else if (fabsf(pair->diff_ab.avg) >= 1) {
		per_spin_time = fabsf(pair->diff_ab.avg) / MAX(pair->spins_avg.avg, 1.0f);
		time_delay = drand48() * (pair->diff_sa.avg + pair->diff_sb.avg)
			- pair->diff_sb.avg;
		pair->delay += (int)(1.1 * time_delay / per_spin_time);

		if (!pair->sampling) {
			tst_res(TINFO,
				"Reached deviation ratios < %.2f, introducing randomness",
				pair->max_dev_ratio);
			tst_res(TINFO, "Delay range is [-%d, %d]",
				(int)(pair->diff_sb.avg / per_spin_time) + pair->delay_bias,
				(int)(pair->diff_sa.avg / per_spin_time) - pair->delay_bias);
			tst_fzsync_pair_info(pair);
			pair->sampling = -1;
		}
	} else if (!pair->sampling) {
		tst_res(TWARN, "Can't calculate random delay");
		tst_fzsync_pair_info(pair);
		pair->sampling = -1;
	}

	pair->spins = 0;
}

/**
 * Wait for the other thread
 *
 * @relates tst_fzsync_pair
 * @param our_cntr The counter for the thread we are on
 * @param other_cntr The counter for the thread we are synchronising with
 * @param spins A pointer to the spin counter or NULL
 *
 * Used by tst_fzsync_pair_wait_a(), tst_fzsync_pair_wait_b(),
 * tst_fzsync_start_race_a(), etc. If the calling thread is ahead of the other
 * thread, then it will spin wait. Unlike pthread_barrier_wait it will never
 * use futex and can count the number of spins spent waiting.
 *
 * @return A non-zero value if the thread should continue otherwise the
 * calling thread should exit.
 */
static inline void tst_fzsync_pair_wait(int *our_cntr,
					int *other_cntr,
					int *spins)
{
	if (tst_atomic_inc(other_cntr) == INT_MAX) {
		/*
		 * We are about to break the invariant that the thread with
		 * the lowest count is in front of the other. So we must wait
		 * here to ensure the other thread has at least reached the
		 * line above before doing that. If we are in rear position
		 * then our counter may already have been set to zero.
		 */
		while (tst_atomic_load(our_cntr) > 0
		       && tst_atomic_load(our_cntr) < INT_MAX) {
			if (spins)
				(*spins)++;
		}

		tst_atomic_store(0, other_cntr);
		/*
		 * Once both counters have been set to zero the invariant
		 * is restored and we can continue.
		 */
		while (tst_atomic_load(our_cntr) > 1)
			;
	} else {
		/*
		 * If our counter is less than the other thread's we are ahead
		 * of it and need to wait.
		 */
		while (tst_atomic_load(our_cntr) < tst_atomic_load(other_cntr)) {
			if (spins)
				(*spins)++;
		}
	}
}

/**
 * Wait in thread A
 *
 * @relates tst_fzsync_pair
 * @sa tst_fzsync_pair_wait
 */
static inline void tst_fzsync_wait_a(struct tst_fzsync_pair *pair)
{
	tst_fzsync_pair_wait(&pair->a_cntr, &pair->b_cntr, NULL);
}

/**
 * Wait in thread B
 *
 * @relates tst_fzsync_pair
 * @sa tst_fzsync_pair_wait
 */
static inline void tst_fzsync_wait_b(struct tst_fzsync_pair *pair)
{
	tst_fzsync_pair_wait(&pair->b_cntr, &pair->a_cntr, NULL);
}

/**
 * Decide whether to continue running thread A
 *
 * @relates tst_fzsync_pair
 *
 * Checks some values and decides whether it is time to break the loop of
 * thread A.
 *
 * @return True to continue and false to break.
 * @sa tst_fzsync_run_a
 */
static inline int tst_fzsync_run_a(struct tst_fzsync_pair *pair)
{
	int exit = 0;
	float rem_p = 1 - tst_timeout_remaining() / pair->exec_time_start;

	if ((pair->exec_time_p * SAMPLING_SLICE < rem_p)
		&& (pair->sampling > 0)) {
		tst_res(TINFO, "Stopped sampling at %d (out of %d) samples, "
			"sampling time reached 50%% of the total time limit",
			pair->exec_loop, pair->min_samples);
		pair->sampling = 0;
		tst_fzsync_pair_info(pair);
	}

	if (pair->exec_time_p < rem_p) {
		tst_res(TINFO,
			"Exceeded execution time, requesting exit");
		exit = 1;
	}

	if (++pair->exec_loop > pair->exec_loops) {
		tst_res(TINFO,
			"Exceeded execution loops, requesting exit");
		exit = 1;
	}

	tst_atomic_store(exit, &pair->exit);
	tst_fzsync_wait_a(pair);

	if (exit) {
		tst_fzsync_pair_cleanup(pair);
		return 0;
	}

	return 1;
}

/**
 * Decide whether to continue running thread B
 *
 * @relates tst_fzsync_pair
 * @sa tst_fzsync_run_a
 */
static inline int tst_fzsync_run_b(struct tst_fzsync_pair *pair)
{
	tst_fzsync_wait_b(pair);
	return !tst_atomic_load(&pair->exit);
}

/**
 * Marks the start of a race region in thread A
 *
 * @relates tst_fzsync_pair
 *
 * This should be placed just before performing whatever action can cause a
 * race condition. Usually it is placed just before a syscall and
 * tst_fzsync_end_race_a() is placed just afterwards.
 *
 * A corresponding call to tst_fzsync_start_race_b() should be made in thread
 * B.
 *
 * @return A non-zero value if the calling thread should continue to loop. If
 * it returns zero then tst_fzsync_exit() has been called and you must exit
 * the thread.
 *
 * @sa tst_fzsync_pair_update
 */
static inline void tst_fzsync_start_race_a(struct tst_fzsync_pair *pair)
{
	volatile int delay;

	tst_fzsync_pair_update(pair);

	tst_fzsync_wait_a(pair);

	delay = pair->delay;
	while (delay < 0)
		delay++;

	tst_fzsync_time(&pair->a_start);
}

/**
 * Marks the end of a race region in thread A
 *
 * @relates tst_fzsync_pair
 * @sa tst_fzsync_start_race_a
 */
static inline void tst_fzsync_end_race_a(struct tst_fzsync_pair *pair)
{
	tst_fzsync_time(&pair->a_end);
	tst_fzsync_pair_wait(&pair->a_cntr, &pair->b_cntr, &pair->spins);
}

/**
 * Marks the start of a race region in thread B
 *
 * @relates tst_fzsync_pair
 * @sa tst_fzsync_start_race_a
 */
static inline void tst_fzsync_start_race_b(struct tst_fzsync_pair *pair)
{
	volatile int delay;

	tst_fzsync_wait_b(pair);

	delay = pair->delay;
	while (delay > 0)
		delay--;

	tst_fzsync_time(&pair->b_start);
}

/**
 * Marks the end of a race region in thread B
 *
 * @relates tst_fzsync_pair
 * @sa tst_fzsync_start_race_a
 */
static inline void tst_fzsync_end_race_b(struct tst_fzsync_pair *pair)
{
	tst_fzsync_time(&pair->b_end);
	tst_fzsync_pair_wait(&pair->b_cntr, &pair->a_cntr, &pair->spins);
}

/**
 * Add some amount to the delay bias
 *
 * @relates tst_fzsync_pair
 * @param change The amount to add, can be negative
 *
 * A positive change delays thread B and a negative one delays thread
 * A.
 *
 * It is intended to be used in tests where the time taken by syscall A and/or
 * B are significantly affected by their chronological order. To the extent
 * that the delay range will not include the correct values if too many of the
 * initial samples are taken when the syscalls (or operations within the
 * syscalls) happen in the wrong order.
 *
 * An example of this is cve/cve-2016-7117.c where a call to close() is racing
 * with a call to recvmmsg(). If close() happens before recvmmsg() has chance
 * to check if the file descriptor is open then recvmmsg() completes very
 * quickly. If the call to close() happens once recvmmsg() has already checked
 * the descriptor it takes much longer. The sample where recvmmsg() completes
 * quickly is essentially invalid for our purposes. The test uses the simple
 * heuristic of whether recvmmsg() returns EBADF, to decide if it should call
 * tst_fzsync_pair_add_bias() to further delay syscall B.
 */
static inline void tst_fzsync_pair_add_bias(struct tst_fzsync_pair *pair, int change)
{
	if (pair->sampling > 0)
		pair->delay_bias += change;
}

#endif /* TST_FUZZY_SYNC_H__ */