/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "link_encoder.h"
#include "stream_encoder.h"
#include "resource.h"
#include "dce110/dce110_resource.h"
#include "include/irq_service_interface.h"
#include "dce/dce_audio.h"
#include "dce110/dce110_timing_generator.h"
#include "irq/dce110/irq_service_dce110.h"
#include "dce110/dce110_timing_generator_v.h"
#include "dce/dce_link_encoder.h"
#include "dce/dce_stream_encoder.h"
#include "dce110/dce110_mem_input.h"
#include "dce110/dce110_mem_input_v.h"
#include "dce110/dce110_ipp.h"
#include "dce/dce_transform.h"
#include "dce110/dce110_transform_v.h"
#include "dce/dce_opp.h"
#include "dce110/dce110_opp_v.h"
#include "dce/dce_clocks.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_hwseq.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dce/dce_abm.h"
#include "dce/dce_dmcu.h"
#include "reg_helper.h"
#include "dce/dce_11_0_d.h"
#include "dce/dce_11_0_sh_mask.h"
#ifndef mmMC_HUB_RDREQ_DMIF_LIMIT
#include "gmc/gmc_8_2_d.h"
#include "gmc/gmc_8_2_sh_mask.h"
#endif
#ifndef mmDP_DPHY_INTERNAL_CTRL
#define mmDP_DPHY_INTERNAL_CTRL 0x4aa7
#define mmDP0_DP_DPHY_INTERNAL_CTRL 0x4aa7
#define mmDP1_DP_DPHY_INTERNAL_CTRL 0x4ba7
#define mmDP2_DP_DPHY_INTERNAL_CTRL 0x4ca7
#define mmDP3_DP_DPHY_INTERNAL_CTRL 0x4da7
#define mmDP4_DP_DPHY_INTERNAL_CTRL 0x4ea7
#define mmDP5_DP_DPHY_INTERNAL_CTRL 0x4fa7
#define mmDP6_DP_DPHY_INTERNAL_CTRL 0x54a7
#define mmDP7_DP_DPHY_INTERNAL_CTRL 0x56a7
#define mmDP8_DP_DPHY_INTERNAL_CTRL 0x57a7
#endif
#ifndef mmBIOS_SCRATCH_2
#define mmBIOS_SCRATCH_2 0x05CB
#define mmBIOS_SCRATCH_6 0x05CF
#endif
#ifndef mmDP_DPHY_BS_SR_SWAP_CNTL
#define mmDP_DPHY_BS_SR_SWAP_CNTL 0x4ADC
#define mmDP0_DP_DPHY_BS_SR_SWAP_CNTL 0x4ADC
#define mmDP1_DP_DPHY_BS_SR_SWAP_CNTL 0x4BDC
#define mmDP2_DP_DPHY_BS_SR_SWAP_CNTL 0x4CDC
#define mmDP3_DP_DPHY_BS_SR_SWAP_CNTL 0x4DDC
#define mmDP4_DP_DPHY_BS_SR_SWAP_CNTL 0x4EDC
#define mmDP5_DP_DPHY_BS_SR_SWAP_CNTL 0x4FDC
#define mmDP6_DP_DPHY_BS_SR_SWAP_CNTL 0x54DC
#endif
#ifndef mmDP_DPHY_FAST_TRAINING
#define mmDP_DPHY_FAST_TRAINING 0x4ABC
#define mmDP0_DP_DPHY_FAST_TRAINING 0x4ABC
#define mmDP1_DP_DPHY_FAST_TRAINING 0x4BBC
#define mmDP2_DP_DPHY_FAST_TRAINING 0x4CBC
#define mmDP3_DP_DPHY_FAST_TRAINING 0x4DBC
#define mmDP4_DP_DPHY_FAST_TRAINING 0x4EBC
#define mmDP5_DP_DPHY_FAST_TRAINING 0x4FBC
#define mmDP6_DP_DPHY_FAST_TRAINING 0x54BC
#endif
#ifndef DPHY_RX_FAST_TRAINING_CAPABLE
#define DPHY_RX_FAST_TRAINING_CAPABLE 0x1
#endif
static const struct dce110_timing_generator_offsets dce110_tg_offsets[] = {
{
.crtc = (mmCRTC0_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP0_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC1_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP1_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC2_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP2_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC3_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP3_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC4_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP4_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC5_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP5_GRPH_CONTROL - mmGRPH_CONTROL),
}
};
static const struct dce110_mem_input_reg_offsets dce110_mi_reg_offsets[] = {
{
.dcp = (mmDCP0_GRPH_CONTROL - mmGRPH_CONTROL),
.dmif = (mmDMIF_PG0_DPG_WATERMARK_MASK_CONTROL
- mmDPG_WATERMARK_MASK_CONTROL),
.pipe = (mmPIPE0_DMIF_BUFFER_CONTROL
- mmPIPE0_DMIF_BUFFER_CONTROL),
},
{
.dcp = (mmDCP1_GRPH_CONTROL - mmGRPH_CONTROL),
.dmif = (mmDMIF_PG1_DPG_WATERMARK_MASK_CONTROL
- mmDPG_WATERMARK_MASK_CONTROL),
.pipe = (mmPIPE1_DMIF_BUFFER_CONTROL
- mmPIPE0_DMIF_BUFFER_CONTROL),
},
{
.dcp = (mmDCP2_GRPH_CONTROL - mmGRPH_CONTROL),
.dmif = (mmDMIF_PG2_DPG_WATERMARK_MASK_CONTROL
- mmDPG_WATERMARK_MASK_CONTROL),
.pipe = (mmPIPE2_DMIF_BUFFER_CONTROL
- mmPIPE0_DMIF_BUFFER_CONTROL),
}
};
static const struct dce110_ipp_reg_offsets dce110_ipp_reg_offsets[] = {
{
.dcp_offset = (mmDCP0_CUR_CONTROL - mmCUR_CONTROL),
},
{
.dcp_offset = (mmDCP1_CUR_CONTROL - mmCUR_CONTROL),
},
{
.dcp_offset = (mmDCP2_CUR_CONTROL - mmCUR_CONTROL),
},
{
.dcp_offset = (mmDCP3_CUR_CONTROL - mmCUR_CONTROL),
},
{
.dcp_offset = (mmDCP4_CUR_CONTROL - mmCUR_CONTROL),
},
{
.dcp_offset = (mmDCP5_CUR_CONTROL - mmCUR_CONTROL),
}
};
/* set register offset */
#define SR(reg_name)\
.reg_name = mm ## reg_name
/* set register offset with instance */
#define SRI(reg_name, block, id)\
.reg_name = mm ## block ## id ## _ ## reg_name
static const struct dce_disp_clk_registers disp_clk_regs = {
CLK_COMMON_REG_LIST_DCE_BASE()
};
static const struct dce_disp_clk_shift disp_clk_shift = {
CLK_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT)
};
static const struct dce_disp_clk_mask disp_clk_mask = {
CLK_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(_MASK)
};
static const struct dce_dmcu_registers dmcu_regs = {
DMCU_DCE110_COMMON_REG_LIST()
};
static const struct dce_dmcu_shift dmcu_shift = {
DMCU_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_dmcu_mask dmcu_mask = {
DMCU_MASK_SH_LIST_DCE110(_MASK)
};
static const struct dce_abm_registers abm_regs = {
ABM_DCE110_COMMON_REG_LIST()
};
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCE110(_MASK)
};
#define transform_regs(id)\
[id] = {\
XFM_COMMON_REG_LIST_DCE110(id)\
}
static const struct dce_transform_registers xfm_regs[] = {
transform_regs(0),
transform_regs(1),
transform_regs(2)
};
static const struct dce_transform_shift xfm_shift = {
XFM_COMMON_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_transform_mask xfm_mask = {
XFM_COMMON_MASK_SH_LIST_DCE110(_MASK)
};
#define aux_regs(id)\
[id] = {\
AUX_REG_LIST(id)\
}
static const struct dce110_link_enc_aux_registers link_enc_aux_regs[] = {
aux_regs(0),
aux_regs(1),
aux_regs(2),
aux_regs(3),
aux_regs(4),
aux_regs(5)
};
#define hpd_regs(id)\
[id] = {\
HPD_REG_LIST(id)\
}
static const struct dce110_link_enc_hpd_registers link_enc_hpd_regs[] = {
hpd_regs(0),
hpd_regs(1),
hpd_regs(2),
hpd_regs(3),
hpd_regs(4),
hpd_regs(5)
};
#define link_regs(id)\
[id] = {\
LE_DCE110_REG_LIST(id)\
}
static const struct dce110_link_enc_registers link_enc_regs[] = {
link_regs(0),
link_regs(1),
link_regs(2),
link_regs(3),
link_regs(4),
link_regs(5),
link_regs(6),
};
#define stream_enc_regs(id)\
[id] = {\
SE_COMMON_REG_LIST(id),\
.TMDS_CNTL = 0,\
}
static const struct dce110_stream_enc_registers stream_enc_regs[] = {
stream_enc_regs(0),
stream_enc_regs(1),
stream_enc_regs(2)
};
static const struct dce_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCE110(_MASK)
};
#define opp_regs(id)\
[id] = {\
OPP_DCE_110_REG_LIST(id),\
}
static const struct dce_opp_registers opp_regs[] = {
opp_regs(0),
opp_regs(1),
opp_regs(2),
opp_regs(3),
opp_regs(4),
opp_regs(5)
};
static const struct dce_opp_shift opp_shift = {
OPP_COMMON_MASK_SH_LIST_DCE_110(__SHIFT)
};
static const struct dce_opp_mask opp_mask = {
OPP_COMMON_MASK_SH_LIST_DCE_110(_MASK)
};
#define audio_regs(id)\
[id] = {\
AUD_COMMON_REG_LIST(id)\
}
static const struct dce_audio_registers audio_regs[] = {
audio_regs(0),
audio_regs(1),
audio_regs(2),
audio_regs(3),
audio_regs(4),
audio_regs(5),
audio_regs(6),
};
static const struct dce_audio_shift audio_shift = {
AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_aduio_mask audio_mask = {
AUD_COMMON_MASK_SH_LIST(_MASK)
};
/* AG TBD Needs to be reduced back to 3 pipes once dce10 hw sequencer implemented. */
#define clk_src_regs(id)\
[id] = {\
CS_COMMON_REG_LIST_DCE_100_110(id),\
}
static const struct dce110_clk_src_regs clk_src_regs[] = {
clk_src_regs(0),
clk_src_regs(1),
clk_src_regs(2)
};
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(_MASK)
};
static const struct bios_registers bios_regs = {
.BIOS_SCRATCH_6 = mmBIOS_SCRATCH_6
};
static const struct resource_caps carrizo_resource_cap = {
.num_timing_generator = 3,
.num_video_plane = 1,
.num_audio = 3,
.num_stream_encoder = 3,
.num_pll = 2,
};
static const struct resource_caps stoney_resource_cap = {
.num_timing_generator = 2,
.num_video_plane = 1,
.num_audio = 3,
.num_stream_encoder = 3,
.num_pll = 2,
};
#define CTX ctx
#define REG(reg) mm ## reg
#ifndef mmCC_DC_HDMI_STRAPS
#define mmCC_DC_HDMI_STRAPS 0x4819
#define CC_DC_HDMI_STRAPS__HDMI_DISABLE_MASK 0x40
#define CC_DC_HDMI_STRAPS__HDMI_DISABLE__SHIFT 0x6
#define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER_MASK 0x700
#define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER__SHIFT 0x8
#endif
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
REG_GET_2(CC_DC_HDMI_STRAPS,
HDMI_DISABLE, &straps->hdmi_disable,
AUDIO_STREAM_NUMBER, &straps->audio_stream_number);
REG_GET(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO, &straps->dc_pinstraps_audio);
}
static struct audio *create_audio(
struct dc_context *ctx, unsigned int inst)
{
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
static struct timing_generator *dce110_timing_generator_create(
struct dc_context *ctx,
uint32_t instance,
const struct dce110_timing_generator_offsets *offsets)
{
struct dce110_timing_generator *tg110 =
dm_alloc(sizeof(struct dce110_timing_generator));
if (!tg110)
return NULL;
if (dce110_timing_generator_construct(tg110, ctx, instance, offsets))
return &tg110->base;
BREAK_TO_DEBUGGER();
dm_free(tg110);
return NULL;
}
static struct stream_encoder *dce110_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dce110_stream_encoder *enc110 =
dm_alloc(sizeof(struct dce110_stream_encoder));
if (!enc110)
return NULL;
if (dce110_stream_encoder_construct(
enc110, ctx, ctx->dc_bios, eng_id,
&stream_enc_regs[eng_id], &se_shift, &se_mask))
return &enc110->base;
BREAK_TO_DEBUGGER();
dm_free(enc110);
return NULL;
}
#define SRII(reg_name, block, id)\
.reg_name[id] = mm ## block ## id ## _ ## reg_name
static const struct dce_hwseq_registers hwseq_stoney_reg = {
HWSEQ_ST_REG_LIST()
};
static const struct dce_hwseq_registers hwseq_cz_reg = {
HWSEQ_CZ_REG_LIST()
};
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCE11_MASK_SH_LIST(__SHIFT),
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCE11_MASK_SH_LIST(_MASK),
};
static struct dce_hwseq *dce110_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = dm_alloc(sizeof(struct dce_hwseq));
if (hws) {
hws->ctx = ctx;
hws->regs = ASIC_REV_IS_STONEY(ctx->asic_id.hw_internal_rev) ?
&hwseq_stoney_reg : &hwseq_cz_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
hws->wa.blnd_crtc_trigger = true;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = create_audio,
.create_stream_encoder = dce110_stream_encoder_create,
.create_hwseq = dce110_hwseq_create,
};
#define mi_inst_regs(id) { \
MI_DCE11_REG_LIST(id), \
.MC_HUB_RDREQ_DMIF_LIMIT = mmMC_HUB_RDREQ_DMIF_LIMIT \
}
static const struct dce_mem_input_registers mi_regs[] = {
mi_inst_regs(0),
mi_inst_regs(1),
mi_inst_regs(2),
};
static const struct dce_mem_input_shift mi_shifts = {
MI_DCE11_MASK_SH_LIST(__SHIFT),
.ENABLE = MC_HUB_RDREQ_DMIF_LIMIT__ENABLE__SHIFT
};
static const struct dce_mem_input_mask mi_masks = {
MI_DCE11_MASK_SH_LIST(_MASK),
.ENABLE = MC_HUB_RDREQ_DMIF_LIMIT__ENABLE_MASK
};
static struct mem_input *dce110_mem_input_create(
struct dc_context *ctx,
uint32_t inst,
const struct dce110_mem_input_reg_offsets *offset)
{
struct dce110_mem_input *mem_input110 =
dm_alloc(sizeof(struct dce110_mem_input));
if (!mem_input110)
return NULL;
if (dce110_mem_input_construct(mem_input110, ctx, inst, offset)) {
struct mem_input *mi = &mem_input110->base;
mi->regs = &mi_regs[inst];
mi->shifts = &mi_shifts;
mi->masks = &mi_masks;
mi->wa.single_head_rdreq_dmif_limit = 3;
return mi;
}
BREAK_TO_DEBUGGER();
dm_free(mem_input110);
return NULL;
}
static void dce110_transform_destroy(struct transform **xfm)
{
dm_free(TO_DCE_TRANSFORM(*xfm));
*xfm = NULL;
}
static struct transform *dce110_transform_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_transform *transform =
dm_alloc(sizeof(struct dce_transform));
if (!transform)
return NULL;
if (dce_transform_construct(transform, ctx, inst,
&xfm_regs[inst], &xfm_shift, &xfm_mask))
return &transform->base;
BREAK_TO_DEBUGGER();
dm_free(transform);
return NULL;
}
static struct input_pixel_processor *dce110_ipp_create(
struct dc_context *ctx,
uint32_t inst,
const struct dce110_ipp_reg_offsets *offsets)
{
struct dce110_ipp *ipp =
dm_alloc(sizeof(struct dce110_ipp));
if (!ipp)
return NULL;
if (dce110_ipp_construct(ipp, ctx, inst, offsets))
return &ipp->base;
BREAK_TO_DEBUGGER();
dm_free(ipp);
return NULL;
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 594000,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true,
.flags.bits.IS_YCBCR_CAPABLE = true
};
struct link_encoder *dce110_link_encoder_create(
const struct encoder_init_data *enc_init_data)
{
struct dce110_link_encoder *enc110 =
dm_alloc(sizeof(struct dce110_link_encoder));
if (!enc110)
return NULL;
if (dce110_link_encoder_construct(
enc110,
enc_init_data,
&link_enc_feature,
&link_enc_regs[enc_init_data->transmitter],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source])) {
return &enc110->base;
}
BREAK_TO_DEBUGGER();
dm_free(enc110);
return NULL;
}
static struct output_pixel_processor *dce110_opp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce110_opp *opp =
dm_alloc(sizeof(struct dce110_opp));
if (!opp)
return NULL;
if (dce110_opp_construct(opp,
ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask))
return &opp->base;
BREAK_TO_DEBUGGER();
dm_free(opp);
return NULL;
}
struct clock_source *dce110_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
dm_alloc(sizeof(struct dce110_clk_src));
if (!clk_src)
return NULL;
if (dce110_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
BREAK_TO_DEBUGGER();
return NULL;
}
void dce110_clock_source_destroy(struct clock_source **clk_src)
{
struct dce110_clk_src *dce110_clk_src;
if (!clk_src)
return;
dce110_clk_src = TO_DCE110_CLK_SRC(*clk_src);
if (dce110_clk_src->dp_ss_params)
dm_free(dce110_clk_src->dp_ss_params);
if (dce110_clk_src->hdmi_ss_params)
dm_free(dce110_clk_src->hdmi_ss_params);
if (dce110_clk_src->dvi_ss_params)
dm_free(dce110_clk_src->dvi_ss_params);
dm_free(dce110_clk_src);
*clk_src = NULL;
}
static void destruct(struct dce110_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.opps[i] != NULL)
dce110_opp_destroy(&pool->base.opps[i]);
if (pool->base.transforms[i] != NULL)
dce110_transform_destroy(&pool->base.transforms[i]);
if (pool->base.ipps[i] != NULL)
dce110_ipp_destroy(&pool->base.ipps[i]);
if (pool->base.mis[i] != NULL) {
dm_free(TO_DCE110_MEM_INPUT(pool->base.mis[i]));
pool->base.mis[i] = NULL;
}
if (pool->base.timing_generators[i] != NULL) {
dm_free(DCE110TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL)
dm_free(DCE110STRENC_FROM_STRENC(pool->base.stream_enc[i]));
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL) {
dce110_clock_source_destroy(&pool->base.clock_sources[i]);
}
}
if (pool->base.dp_clock_source != NULL)
dce110_clock_source_destroy(&pool->base.dp_clock_source);
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i] != NULL) {
dce_aud_destroy(&pool->base.audios[i]);
}
}
if (pool->base.abm != NULL)
dce_abm_destroy(&pool->base.abm);
if (pool->base.dmcu != NULL)
dce_dmcu_destroy(&pool->base.dmcu);
if (pool->base.display_clock != NULL)
dce_disp_clk_destroy(&pool->base.display_clock);
if (pool->base.irqs != NULL) {
dal_irq_service_destroy(&pool->base.irqs);
}
}
static void get_pixel_clock_parameters(
const struct pipe_ctx *pipe_ctx,
struct pixel_clk_params *pixel_clk_params)
{
const struct core_stream *stream = pipe_ctx->stream;
/*TODO: is this halved for YCbCr 420? in that case we might want to move
* the pixel clock normalization for hdmi up to here instead of doing it
* in pll_adjust_pix_clk
*/
pixel_clk_params->requested_pix_clk = stream->public.timing.pix_clk_khz;
pixel_clk_params->encoder_object_id = stream->sink->link->link_enc->id;
pixel_clk_params->signal_type = pipe_ctx->stream->signal;
pixel_clk_params->controller_id = pipe_ctx->pipe_idx + 1;
/* TODO: un-hardcode*/
pixel_clk_params->requested_sym_clk = LINK_RATE_LOW *
LINK_RATE_REF_FREQ_IN_KHZ;
pixel_clk_params->flags.ENABLE_SS = 0;
pixel_clk_params->color_depth =
stream->public.timing.display_color_depth;
pixel_clk_params->flags.DISPLAY_BLANKED = 1;
pixel_clk_params->flags.SUPPORT_YCBCR420 = (stream->public.timing.pixel_encoding ==
PIXEL_ENCODING_YCBCR420);
pixel_clk_params->pixel_encoding = stream->public.timing.pixel_encoding;
if (stream->public.timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) {
pixel_clk_params->color_depth = COLOR_DEPTH_888;
}
if (stream->public.timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
pixel_clk_params->requested_pix_clk = pixel_clk_params->requested_pix_clk / 2;
}
}
void dce110_resource_build_bit_depth_reduction_params(
const struct core_stream *stream,
struct bit_depth_reduction_params *fmt_bit_depth)
{
memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
/*TODO: Need to un-hardcode, refer to function with same name
* in dal2 hw_sequencer*/
fmt_bit_depth->flags.TRUNCATE_ENABLED = 0;
fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 0;
fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 0;
/* Diagnostics need consistent CRC of the image, that means
* dithering should not be enabled for Diagnostics. */
if (IS_DIAG_DC(stream->ctx->dce_environment) == false) {
switch (stream->public.timing.display_color_depth) {
case COLOR_DEPTH_666:
fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
break;
case COLOR_DEPTH_888:
fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
break;
case COLOR_DEPTH_101010:
fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
break;
default:
break;
}
fmt_bit_depth->flags.RGB_RANDOM = 1;
fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
fmt_bit_depth->pixel_encoding =
stream->public.timing.pixel_encoding;
}
return;
}
enum dc_status dce110_resource_build_pipe_hw_param(struct pipe_ctx *pipe_ctx)
{
get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->pix_clk_params);
pipe_ctx->clock_source->funcs->get_pix_clk_dividers(
pipe_ctx->clock_source,
&pipe_ctx->pix_clk_params,
&pipe_ctx->pll_settings);
dce110_resource_build_bit_depth_reduction_params(pipe_ctx->stream,
&pipe_ctx->stream->bit_depth_params);
pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->public.timing.pixel_encoding;
return DC_OK;
}
static bool is_surface_pixel_format_supported(struct pipe_ctx *pipe_ctx, unsigned int underlay_idx)
{
if (pipe_ctx->pipe_idx != underlay_idx)
return true;
if (!pipe_ctx->surface)
return false;
if (pipe_ctx->surface->public.format < SURFACE_PIXEL_FORMAT_VIDEO_BEGIN)
return false;
return true;
}
static enum dc_status validate_mapped_resource(
const struct core_dc *dc,
struct validate_context *context)
{
enum dc_status status = DC_OK;
uint8_t i, j;
for (i = 0; i < context->stream_count; i++) {
struct core_stream *stream = context->streams[i];
struct core_link *link = stream->sink->link;
if (resource_is_stream_unchanged(dc->current_context, stream))
continue;
for (j = 0; j < MAX_PIPES; j++) {
struct pipe_ctx *pipe_ctx =
&context->res_ctx.pipe_ctx[j];
if (context->res_ctx.pipe_ctx[j].stream != stream)
continue;
if (!is_surface_pixel_format_supported(pipe_ctx,
context->res_ctx.pool->underlay_pipe_index))
return DC_SURFACE_PIXEL_FORMAT_UNSUPPORTED;
if (!pipe_ctx->tg->funcs->validate_timing(
pipe_ctx->tg, &stream->public.timing))
return DC_FAIL_CONTROLLER_VALIDATE;
status = dce110_resource_build_pipe_hw_param(pipe_ctx);
if (status != DC_OK)
return status;
if (!link->link_enc->funcs->validate_output_with_stream(
link->link_enc,
pipe_ctx))
return DC_FAIL_ENC_VALIDATE;
/* TODO: validate audio ASIC caps, encoder */
status = dc_link_validate_mode_timing(stream,
link,
&stream->public.timing);
if (status != DC_OK)
return status;
resource_build_info_frame(pipe_ctx);
/* do not need to validate non root pipes */
break;
}
}
return DC_OK;
}
enum dc_status dce110_validate_bandwidth(
const struct core_dc *dc,
struct validate_context *context)
{
enum dc_status result = DC_ERROR_UNEXPECTED;
dm_logger_write(
dc->ctx->logger, LOG_BANDWIDTH_CALCS,
"%s: start",
__func__);
if (!bw_calcs(
dc->ctx,
&dc->bw_dceip,
&dc->bw_vbios,
context->res_ctx.pipe_ctx,
context->res_ctx.pool->pipe_count,
&context->bw_results))
result = DC_FAIL_BANDWIDTH_VALIDATE;
else
result = DC_OK;
context->dispclk_khz = context->bw_results.dispclk_khz;
if (result == DC_FAIL_BANDWIDTH_VALIDATE)
dm_logger_write(dc->ctx->logger, LOG_BANDWIDTH_VALIDATION,
"%s: %dx%d@%d Bandwidth validation failed!\n",
__func__,
context->streams[0]->public.timing.h_addressable,
context->streams[0]->public.timing.v_addressable,
context->streams[0]->public.timing.pix_clk_khz);
if (memcmp(&dc->current_context->bw_results,
&context->bw_results, sizeof(context->bw_results))) {
struct log_entry log_entry;
dm_logger_open(
dc->ctx->logger,
&log_entry,
LOG_BANDWIDTH_CALCS);
dm_logger_append(&log_entry, "%s: finish,\n"
"nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n"
"stutMark_b: %d stutMark_a: %d\n",
__func__,
context->bw_results.nbp_state_change_wm_ns[0].b_mark,
context->bw_results.nbp_state_change_wm_ns[0].a_mark,
context->bw_results.urgent_wm_ns[0].b_mark,
context->bw_results.urgent_wm_ns[0].a_mark,
context->bw_results.stutter_exit_wm_ns[0].b_mark,
context->bw_results.stutter_exit_wm_ns[0].a_mark);
dm_logger_append(&log_entry,
"nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n"
"stutMark_b: %d stutMark_a: %d\n",
context->bw_results.nbp_state_change_wm_ns[1].b_mark,
context->bw_results.nbp_state_change_wm_ns[1].a_mark,
context->bw_results.urgent_wm_ns[1].b_mark,
context->bw_results.urgent_wm_ns[1].a_mark,
context->bw_results.stutter_exit_wm_ns[1].b_mark,
context->bw_results.stutter_exit_wm_ns[1].a_mark);
dm_logger_append(&log_entry,
"nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n"
"stutMark_b: %d stutMark_a: %d stutter_mode_enable: %d\n",
context->bw_results.nbp_state_change_wm_ns[2].b_mark,
context->bw_results.nbp_state_change_wm_ns[2].a_mark,
context->bw_results.urgent_wm_ns[2].b_mark,
context->bw_results.urgent_wm_ns[2].a_mark,
context->bw_results.stutter_exit_wm_ns[2].b_mark,
context->bw_results.stutter_exit_wm_ns[2].a_mark,
context->bw_results.stutter_mode_enable);
dm_logger_append(&log_entry,
"cstate: %d pstate: %d nbpstate: %d sync: %d dispclk: %d\n"
"sclk: %d sclk_sleep: %d yclk: %d blackout_recovery_time_us: %d\n",
context->bw_results.cpuc_state_change_enable,
context->bw_results.cpup_state_change_enable,
context->bw_results.nbp_state_change_enable,
context->bw_results.all_displays_in_sync,
context->bw_results.dispclk_khz,
context->bw_results.required_sclk,
context->bw_results.required_sclk_deep_sleep,
context->bw_results.required_yclk,
context->bw_results.blackout_recovery_time_us);
dm_logger_close(&log_entry);
}
return result;
}
static bool dce110_validate_surface_sets(
const struct dc_validation_set set[],
int set_count)
{
int i;
for (i = 0; i < set_count; i++) {
if (set[i].surface_count == 0)
continue;
if (set[i].surface_count > 2)
return false;
if (set[i].surfaces[0]->clip_rect.width
> set[i].stream->src.width
|| set[i].surfaces[0]->clip_rect.height
> set[i].stream->src.height)
return false;
if (set[i].surfaces[0]->format
>= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN)
return false;
if (set[i].surface_count == 2) {
if (set[i].surfaces[1]->format
< SURFACE_PIXEL_FORMAT_VIDEO_BEGIN)
return false;
if (set[i].surfaces[1]->src_rect.width > 1920
|| set[i].surfaces[1]->src_rect.height > 1080)
return false;
if (set[i].stream->timing.pixel_encoding != PIXEL_ENCODING_RGB)
return false;
}
}
return true;
}
enum dc_status dce110_validate_with_context(
const struct core_dc *dc,
const struct dc_validation_set set[],
int set_count,
struct validate_context *context)
{
struct dc_context *dc_ctx = dc->ctx;
enum dc_status result = DC_ERROR_UNEXPECTED;
int i;
if (!dce110_validate_surface_sets(set, set_count))
return DC_FAIL_SURFACE_VALIDATE;
context->res_ctx.pool = dc->res_pool;
for (i = 0; i < set_count; i++) {
context->streams[i] = DC_STREAM_TO_CORE(set[i].stream);
dc_stream_retain(&context->streams[i]->public);
context->stream_count++;
}
result = resource_map_pool_resources(dc, context);
if (result == DC_OK)
result = resource_map_clock_resources(dc, context);
if (!resource_validate_attach_surfaces(
set, set_count, dc->current_context, context)) {
DC_ERROR("Failed to attach surface to stream!\n");
return DC_FAIL_ATTACH_SURFACES;
}
if (result == DC_OK)
result = validate_mapped_resource(dc, context);
if (result == DC_OK)
result = resource_build_scaling_params_for_context(dc, context);
if (result == DC_OK)
result = dce110_validate_bandwidth(dc, context);
return result;
}
enum dc_status dce110_validate_guaranteed(
const struct core_dc *dc,
const struct dc_stream *dc_stream,
struct validate_context *context)
{
enum dc_status result = DC_ERROR_UNEXPECTED;
context->res_ctx.pool = dc->res_pool;
context->streams[0] = DC_STREAM_TO_CORE(dc_stream);
dc_stream_retain(&context->streams[0]->public);
context->stream_count++;
result = resource_map_pool_resources(dc, context);
if (result == DC_OK)
result = resource_map_clock_resources(dc, context);
if (result == DC_OK)
result = validate_mapped_resource(dc, context);
if (result == DC_OK) {
validate_guaranteed_copy_streams(
context, dc->public.caps.max_streams);
result = resource_build_scaling_params_for_context(dc, context);
}
if (result == DC_OK)
result = dce110_validate_bandwidth(dc, context);
return result;
}
static struct pipe_ctx *dce110_acquire_idle_pipe_for_layer(
struct resource_context *res_ctx,
struct core_stream *stream)
{
unsigned int underlay_idx = res_ctx->pool->underlay_pipe_index;
struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[underlay_idx];
if (res_ctx->pipe_ctx[underlay_idx].stream) {
return NULL;
}
pipe_ctx->tg = res_ctx->pool->timing_generators[underlay_idx];
pipe_ctx->mi = res_ctx->pool->mis[underlay_idx];
/*pipe_ctx->ipp = res_ctx->pool->ipps[underlay_idx];*/
pipe_ctx->xfm = res_ctx->pool->transforms[underlay_idx];
pipe_ctx->opp = res_ctx->pool->opps[underlay_idx];
pipe_ctx->dis_clk = res_ctx->pool->display_clock;
pipe_ctx->pipe_idx = underlay_idx;
pipe_ctx->stream = stream;
return pipe_ctx;
}
static void dce110_destroy_resource_pool(struct resource_pool **pool)
{
struct dce110_resource_pool *dce110_pool = TO_DCE110_RES_POOL(*pool);
destruct(dce110_pool);
dm_free(dce110_pool);
*pool = NULL;
}
static const struct resource_funcs dce110_res_pool_funcs = {
.destroy = dce110_destroy_resource_pool,
.link_enc_create = dce110_link_encoder_create,
.validate_with_context = dce110_validate_with_context,
.validate_guaranteed = dce110_validate_guaranteed,
.validate_bandwidth = dce110_validate_bandwidth,
.acquire_idle_pipe_for_layer = dce110_acquire_idle_pipe_for_layer,
.build_bit_depth_reduction_params =
dce110_resource_build_bit_depth_reduction_params
};
static bool underlay_create(struct dc_context *ctx, struct resource_pool *pool)
{
struct dce110_timing_generator *dce110_tgv = dm_alloc(sizeof (*dce110_tgv));
struct dce_transform *dce110_xfmv = dm_alloc(sizeof (*dce110_xfmv));
struct dce110_mem_input *dce110_miv = dm_alloc(sizeof (*dce110_miv));
struct dce110_opp *dce110_oppv = dm_alloc(sizeof (*dce110_oppv));
if ((dce110_tgv == NULL) ||
(dce110_xfmv == NULL) ||
(dce110_miv == NULL) ||
(dce110_oppv == NULL))
return false;
if (!dce110_opp_v_construct(dce110_oppv, ctx))
return false;
dce110_timing_generator_v_construct(dce110_tgv, ctx);
dce110_mem_input_v_construct(dce110_miv, ctx);
dce110_transform_v_construct(dce110_xfmv, ctx);
pool->opps[pool->pipe_count] = &dce110_oppv->base;
pool->timing_generators[pool->pipe_count] = &dce110_tgv->base;
pool->mis[pool->pipe_count] = &dce110_miv->base;
pool->transforms[pool->pipe_count] = &dce110_xfmv->base;
pool->pipe_count++;
/* update the public caps to indicate an underlay is available */
ctx->dc->caps.max_slave_planes = 1;
ctx->dc->caps.max_slave_planes = 1;
return true;
}
static void bw_calcs_data_update_from_pplib(struct core_dc *dc)
{
struct dm_pp_clock_levels clks = {0};
/*do system clock*/
dm_pp_get_clock_levels_by_type(
dc->ctx,
DM_PP_CLOCK_TYPE_ENGINE_CLK,
&clks);
/* convert all the clock fro kHz to fix point mHz */
dc->bw_vbios.high_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels-1], 1000);
dc->bw_vbios.mid1_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels/8], 1000);
dc->bw_vbios.mid2_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*2/8], 1000);
dc->bw_vbios.mid3_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*3/8], 1000);
dc->bw_vbios.mid4_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*4/8], 1000);
dc->bw_vbios.mid5_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*5/8], 1000);
dc->bw_vbios.mid6_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*6/8], 1000);
dc->bw_vbios.low_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[0], 1000);
dc->sclk_lvls = clks;
/*do display clock*/
dm_pp_get_clock_levels_by_type(
dc->ctx,
DM_PP_CLOCK_TYPE_DISPLAY_CLK,
&clks);
dc->bw_vbios.high_voltage_max_dispclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels-1], 1000);
dc->bw_vbios.mid_voltage_max_dispclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels>>1], 1000);
dc->bw_vbios.low_voltage_max_dispclk = bw_frc_to_fixed(
clks.clocks_in_khz[0], 1000);
/*do memory clock*/
dm_pp_get_clock_levels_by_type(
dc->ctx,
DM_PP_CLOCK_TYPE_MEMORY_CLK,
&clks);
dc->bw_vbios.low_yclk = bw_frc_to_fixed(
clks.clocks_in_khz[0] * MEMORY_TYPE_MULTIPLIER, 1000);
dc->bw_vbios.mid_yclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels>>1] * MEMORY_TYPE_MULTIPLIER,
1000);
dc->bw_vbios.high_yclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels-1] * MEMORY_TYPE_MULTIPLIER,
1000);
}
const struct resource_caps *dce110_resource_cap(
struct hw_asic_id *asic_id)
{
if (ASIC_REV_IS_STONEY(asic_id->hw_internal_rev))
return &stoney_resource_cap;
else
return &carrizo_resource_cap;
}
static bool construct(
uint8_t num_virtual_links,
struct core_dc *dc,
struct dce110_resource_pool *pool,
struct hw_asic_id asic_id)
{
unsigned int i;
struct dc_context *ctx = dc->ctx;
struct firmware_info info;
struct dc_bios *bp;
struct dm_pp_static_clock_info static_clk_info = {0};
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = dce110_resource_cap(&ctx->asic_id);
pool->base.funcs = &dce110_res_pool_funcs;
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.pipe_count = pool->base.res_cap->num_timing_generator;
pool->base.underlay_pipe_index = pool->base.pipe_count;
dc->public.caps.max_downscale_ratio = 150;
dc->public.caps.i2c_speed_in_khz = 100;
dc->public.caps.max_cursor_size = 128;
/*************************************************
* Create resources *
*************************************************/
bp = ctx->dc_bios;
if ((bp->funcs->get_firmware_info(bp, &info) == BP_RESULT_OK) &&
info.external_clock_source_frequency_for_dp != 0) {
pool->base.dp_clock_source =
dce110_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_EXTERNAL, NULL, true);
pool->base.clock_sources[0] =
dce110_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL0,
&clk_src_regs[0], false);
pool->base.clock_sources[1] =
dce110_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL1,
&clk_src_regs[1], false);
pool->base.clk_src_count = 2;
/* TODO: find out if CZ support 3 PLLs */
}
if (pool->base.dp_clock_source == NULL) {
dm_error("DC: failed to create dp clock source!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
}
pool->base.display_clock = dce110_disp_clk_create(ctx,
&disp_clk_regs,
&disp_clk_shift,
&disp_clk_mask);
if (pool->base.display_clock == NULL) {
dm_error("DC: failed to create display clock!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
pool->base.dmcu = dce_dmcu_create(ctx,
&dmcu_regs,
&dmcu_shift,
&dmcu_mask);
if (pool->base.dmcu == NULL) {
dm_error("DC: failed to create dmcu!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
pool->base.abm = dce_abm_create(ctx,
&abm_regs,
&abm_shift,
&abm_mask);
if (pool->base.abm == NULL) {
dm_error("DC: failed to create abm!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
/* get static clock information for PPLIB or firmware, save
* max_clock_state
*/
if (dm_pp_get_static_clocks(ctx, &static_clk_info))
pool->base.display_clock->max_clks_state =
static_clk_info.max_clocks_state;
{
struct irq_service_init_data init_data;
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dce110_create(&init_data);
if (!pool->base.irqs)
goto res_create_fail;
}
for (i = 0; i < pool->base.pipe_count; i++) {
pool->base.timing_generators[i] = dce110_timing_generator_create(
ctx, i, &dce110_tg_offsets[i]);
if (pool->base.timing_generators[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto res_create_fail;
}
pool->base.mis[i] = dce110_mem_input_create(ctx, i,
&dce110_mi_reg_offsets[i]);
if (pool->base.mis[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create memory input!\n");
goto res_create_fail;
}
pool->base.ipps[i] = dce110_ipp_create(ctx, i, &dce110_ipp_reg_offsets[i]);
if (pool->base.ipps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create input pixel processor!\n");
goto res_create_fail;
}
pool->base.transforms[i] = dce110_transform_create(ctx, i);
if (pool->base.transforms[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create transform!\n");
goto res_create_fail;
}
pool->base.opps[i] = dce110_opp_create(ctx, i);
if (pool->base.opps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create output pixel processor!\n");
goto res_create_fail;
}
}
if (!underlay_create(ctx, &pool->base))
goto res_create_fail;
if (!resource_construct(num_virtual_links, dc, &pool->base,
&res_create_funcs))
goto res_create_fail;
/* Create hardware sequencer */
if (!dce110_hw_sequencer_construct(dc))
goto res_create_fail;
bw_calcs_init(&dc->bw_dceip, &dc->bw_vbios, dc->ctx->asic_id);
bw_calcs_data_update_from_pplib(dc);
return true;
res_create_fail:
destruct(pool);
return false;
}
struct resource_pool *dce110_create_resource_pool(
uint8_t num_virtual_links,
struct core_dc *dc,
struct hw_asic_id asic_id)
{
struct dce110_resource_pool *pool =
dm_alloc(sizeof(struct dce110_resource_pool));
if (!pool)
return NULL;
if (construct(num_virtual_links, dc, pool, asic_id))
return &pool->base;
BREAK_TO_DEBUGGER();
return NULL;
}